
A Black-Box Construction of a CCA2 Encryption Scheme from a

Plaintext Aware Encryption Scheme

Dana Dachman-Soled
University of Maryland
danadach@ece.umd.edu

October 14, 2013

Abstract

We present a construction of a CCA2-secure encryption scheme from a plaintext aware, weakly sim-
ulatable public key encryption scheme. The notion of plaintext aware, weakly simulatable public key
encryption has been considered previously by Myers, Sergi and shelat (SCN, 2012) and natural encryp-
tion schemes such as the Damg̊ard Elgamal Scheme (Damg̊ard, Crypto, 1991) and the Cramer-Shoup
Lite Scheme (Cramer and Shoup, SIAM J. Comput., 2003) were shown to satisfy these properties.

Recently, Myers, Sergi and shelat (SCN, 2012) defined an extension of non-malleable CCA1 security,
called cNM-CCA1, and showed how to construct a cNM-CCA1-secure encryption scheme from a plaintext
aware and weakly simulatable public key encryption scheme. Our work extends and improves on
this result by showing that a full CCA2-secure encryption scheme can be constructed from the same
assumptions.

Key words: CCA2-secure encryption, plaintext aware encryption, weakly simulatable public
key encryption, black-box

1 Introduction

The basic security requirement for public key encryption schemes is Chosen Plaintext Attack (CPA)
security [GM84] (also known as semantic security), which ensures security against a passive, eavesdropping
adversary. A stronger security requirement for public key encryption schemes, which ensures that they
remain secure even in the face of an active adversary, is known as Adaptive Chosen Ciphertext Attack
(CCA2) security. More specifically, a CCA2-secure encryption scheme is guaranteed to be secure even
against an adversary who has access to a decryption oracle and may use it to decrypt any ciphertext of
its choice except for the challenge ciphertext itself. This captures real-life scenarios where the adversary
has control over network traffic which allows the adversary, in effect, to decrypt all ciphertexts of its
choice.

There is a significant body of work on constructing CCA2-secure encryption schemes from specific
computational hardness assumptions (c.f. [CS02, HK08, CKS09, HJKS10]), as well as from various
lower level primitives (c.f. [DDN00, CHK04, Kil06, PW11, RS10, KMO10, Wee10]). Nevertheless, the
central question in this area remains open: To determine the relationship between CCA2 and CPA-secure
encryption—whether a CCA2-secure encryption scheme can be constructed assuming only the existence
of a CPA-secure encryption scheme, or whether CCA2-security requires stronger assumptions. Although
a partial answer was given in [GMM07], the larger question remains open for both black-box and non-
black-box constructions. Moreover, several important variants of the question such as whether a CCA2
secure encryption scheme can be constructed from a CCA1-secure encryption scheme1 remain open.

In this paper, we consider a strong type of CPA-secure public key encryption scheme which is also
plaintext aware, weakly simulatable, and enjoys perfect correctness2 and show how to construct full CCA2-
secure public key encryption schemes from such a CPA-secure encryption scheme. Moreover, the CCA2
construction presented is black-box in the underlying CPA-secure scheme.

Although the required assumptions are strong—we discuss and provide more details on the assump-
tions of plaintext awareness and weak simulatability below—we view our new construction of CCA2
encryption from plaintext aware, weakly simulatable PKE as meaningful progress since our underlying
assumption is an assumption which was not previously known to imply CCA2 security. Moreover, to the
best of our knowledge, this is the first construction of a CCA2 scheme from encryption schemes with
seemingly weaker or incomparable security to CCA2 and requiring no additional assumptions. Finally,
we present new proof techniques for proving CCA2 security, which may be useful for constructing CCA2
secure encryption from other lower-level primitives.

1.1 Our Assumptions

Our work relies on a strong assumption on the underlying CPA-secure encryption scheme called plaintext
awareness. The notion of a plaintext aware encryption scheme was first introduced in the seminal paper
of Bellare and Rogaway [BR94] and the notion was further studied by Bellare et al. [BDPR98]. Both of
these works dealt with the notion of plaintext awareness in the Random Oracle model. Subsequently,
Bellare and Palacio [BP04b] considered extending the notion of plaintext awareness to the plain model3.
In this work, we are also interested in the notion of plaintext awareness in the plain model without
random oracles. Informally, an encryption scheme is plaintext aware (called sPA1 in [BP04b]) if for every
efficient ciphertext creator, C, there exists an efficient plaintext extractor, C∗, that outputs the same
value as the decryption algorithm on ciphertexts outputted by C. This type of assumption is known as

1A CCA1-encryption scheme is one where the adversary has oracle access to the decryption oracle up to the point that it
receives the challenge ciphertext.

2We can remove the requirement of perfect correctness by using the transformation of [DNR04] to transform a public
key encryption scheme with decryption error to a public key encryption scheme with perfect correctness. Note that each
transformation in the sequence of transformations given in the proof of Theorem 3 of [DNR04] preserves both simulatability
and plaintext awareness of the underlying encryption scheme.

3We note that prior to the work of [BP04b], Herzog et al. [HLM03] considered a notion of plaintext awareness in the key
registration model.

1

a knowledge assumption (other examples of knowledge assumptions include the knowledge of exponent
assumption [HT98, BP04a] and extractable collision resistant hash functions [BCCT12]) and is thus a
non-falsifiable assumption. Despite the strength of the assumption, the notion of plaintext awareness is
meant to capture an intuitive property of certain encryption schemes that an efficient adversary cannot
create a valid ciphertext without ”knowing” the corresponding plaintext.

It is not hard to see that any plaintext aware encryption scheme is itself also CCA1-secure, since the
plaintext extractor can be used to simulate the decryption oracle in the CCA1 experiment. However,
plaintext aware encryption does not directly imply CCA2-secure encryption since the plaintext extractor
is not guaranteed to work correctly when the ciphertext creator receives a valid encryption as input.
Thus, when the adversary queries the CCA2 decryption oracle after receiving the challenge ciphertext
CT ∗ in the CCA2 experiment, the extractor may not be able to simulate the decryption oracle. In fact,
since we are given no guarantees on the output of the plaintext extractor when the ciphertext creator
receives CT ∗ as input, it would seem that constructing CCA2-secure encryption from plaintext aware
encryption is just as hard as constructing CCA2-secure encryption from CCA1-secure encryption; we have
the extra guarantee of a plaintext extractor, but the extractor seems useless for queries made after the
challenge ciphertext is received.

Recently, a fascinating result by Myers, Sergi and shelat [MSS12], showed that by adding an additional
assumption that the plaintext aware public key encryption scheme is also weakly simulatable, the above
problem can be partially overcome. Essentially, they present a new construction and show that the
plaintext extractor can still be useful for simulating the decryption oracle for a constant number of
parallel queries made after the adversary receives the challenge ciphertext when the underlying plaintext
aware public key encryption scheme is also weakly simulatable.

The notion of simulatable public key encryption was first introduced by Damg̊ard and Nielsen [DN00]
in the context of non-committing encryption. Loosely speaking, [DN00] define a simulatable public key
encryption scheme to be an encryption scheme with special algorithms for obliviously sampling public
keys and random ciphertexts without learning the corresponding secret keys and plaintexts; in addition,
both of these oblivious sampling algorithms should be eficiently invertible. An incomparable notion
of simulatable public key encryption was introduced by [Den06] and was shown to imply CCA2-secure
encryption. Here, the public key encryption scheme has an invertible algorithm f for obliviously sampling
random ciphertexts (but not public keys) and in addition, f(r), where r is a random string r and C,
where C is an honestly generated ciphertext are indistinguishable, even when given access to a decryption
oracle. The weakly simulatable encryption schemes used in this work are strictly weaker than both of
the above notions. They are weaker than the [DN00] notion since only the ciphertext and not the public
key has an invertible oblivious sampling algorithm and they are weaker than the [Den06] notion since the
attacker is not given access to the decryption oracle.

In their work, [MSS12] defined an extension of non-malleable CCA1 security, called cNM-CCA1, where
an adversary can make c adaptive parallel decryption queries after seeing the challenge ciphertext. Then,
[MSS12] showed how to construct cNM-CCA1 encryption from plaintext aware and weakly simulatable
public key encryption for any constant c. Similar assumptions of plaintext aware and weakly simulatable
public key encryption were previously made by [Den06]. Moreover, as shown by Myers, Sergi and she-
lat [MSS12] natural encryption schemes such as the D̊amgard Elgamal encryption scheme (DEG) and the
lite version of Cramer-Shoup encryption scheme (CS-lite) satisfy both of these properties under the DDH
assumption and a suitable extension of the Diffie-Hellman Knowledge (DHK) assumption (see [BP04b]
for discussion of the DHK assumption).

Following the work of [MSS12], it is interesting to explore how far we can take the assumption of the
existence of a plaintext aware and weakly simulatable public key encryption scheme and what the power
of this assumption is relative to the assumption of the existence of a CCA2-secure encryption scheme.

1.2 Our Results

Informally, we show the following:

2

Theorem 1.1 (Informal) There is a black-box construction of CCA2-secure encryption from plaintext
aware and weakly simulatable public key encryption with perfect correctness.

Our result extends the work of [MSS12] by showing that plaintext aware and weakly simulatable
public key encryption can, in fact, be used to achieve full CCA2 security.

Finally, the assumption of a plaintext aware encryption scheme can be viewed as an assumption
that allows us to use strong non-black-box techniques on the adversary in the security reduction. More
specifically, we leverage the code of the adversary by using it to extract crucial information that the
adversary must ”know.” This raises the intriguing question of whether we can present a construction of
CCA2 from CPA where the security proof uses non-black-box access to the adversary. Such reductions are
known to be more powerful than black-box reductions in the setting of multiparty computation as first
shown in the seminal work of Barak [Bar01]. But it has not been clear how to leverage these techniques
in the non-interactive setting of public key encryption.

1.3 Technical Overview

We adapt and combine many of the techniques of [HLW12], [MSS12] and, in addition, we introduce new
techniques as discussed in detail below.

The construction. On security parameter k, the scheme will consist of a one-time signature as well as
both inner and outer ciphertexts, with corresponding public keys. More specifically, two inner ciphertexts
will be encrypted under public keys pkin0

,pkin1
, and k outer ciphertexts will be encrypted using k public

keys chosen out of k pairs of public keys (pk0
1,pk

1
1), . . . , (pk

0
k, pk

1
k). The selection of the k public keys

pkb11 , . . . ,pk
bk
k will depend on bits of the verification key, vksig, chosen for the one-time signature (as in

[DDN00, MSS12]).
In particular, a ciphertext will consist of the following:

Verification key: A verification key, vksig, for the one-time signature scheme, generated by GenSig.

Inner ciphertexts: Two ciphertexts CTin0 = Enc(pkin0
, s̃0), CTin1 = Enc(pkin1

, s̃1) where s̃0, s̃1 are
additive secret shares of m||r, m is the message to be encrypted, r is the randomness used to encrypt
the outer ciphertexts (as described below), and || denotes concatenation.

Outer ciphertexts: k ciphertexts CT1, . . . , CTk computed the following way: r1|| · · · ||rk ← prg(r),

where prg is a pseudorandom generator. Each CTi = Enc(pk
vksigi
i , CTin0 ||CTin1 ; ri).

Signature: A signature σ = Sign(sksig, CT1|| · · · ||CTk).

The security reduction. We consider a modified CCA2 experiment where the decryption oracle is
replaced with the plaintext extractor guaranteed by the plaintext awareness property of the underlying
encryption scheme. Note that once the adversary receives the challenge ciphertext in the CCA2 exper-
iment, we have no guarantees on whether the plaintext extractor returns messages that are consistent
with the answers of the decryption oracle. Therefore, we define a bad extraction event as the event that
the plaintext extractor and decryption oracle disagree on a query submitted by the adversary A to the
decryption oracle. We consider a sequence of hybrids and show that (1) In the first hybrid, the probabil-
ity of bad extraction event ocurring is negligible (due to the security guarantees of the plaintext aware,
weakly simulatable encryption scheme) and (2) In consecutive hybrids the probability of bad extraction
event occurring differs by a negligible amount (since the occurrence of a bad extraction event can be
detected in each hybrid). Put together, these imply that the decryption oracle and plaintext extractor
agree (even for queries after the challenge ciphertext is received) in the original experiment with all but
negligible probability. Furthermore, this implies that the CCA2 experiment can be simulated without
knowing the secret key of the inner encryption scheme (by using the plaintext extractor to decrypt oracle

3

queries), which immediately implies the CCA2 security of the scheme. To show (1), we use techniques
similar to those of [MSS12]. To show (2), we build upon the sequence of hybrids used by [HLW12].

The main new technical challenge in this work is showing that property (2) holds for each pair of
consecutive hybrids. More specifically, in the final two hybrids, which we denote here by H̃0, H̃1, we
run the CCA2 experiment with the CCA2 adversary, but use the plaintext extractor to decrypt the inner
ciphertexts CTin0 , CTin1 . Additionally, in H̃0, the value s̃0 ⊕ s̃1 is set to a random string, while in H̃1,
value s̃0⊕ s̃1 is set honestly to (r||mβ). Note that if a bad extraction event does not occur, then the view
of the adversary in H̃1 is identical to its view in the original CCA2 experiment. By previous arguments,
we have that the probability of a bad extraction event is negligible in H̃0. To argue that the probability of
bad extraction event occurring differs by a negligible amount in these final two hybrids, we must reduce
to the semantic security of the inner encryption scheme. However, a bad extraction event—in which the
plaintext extractor disagrees with the decryption oracle—cannot be detected unless the adversary has
the secret keys corresponding to the inner encryptions and if this is the case, it seems that we cannot
hope to reduce to semantic security.

Thus, we consider a modified experiment where at the beginning of the experiment we fix a bit
b←$ {0, 1} and a modified bad extraction event defined as the event that the plaintext extractor and
decryption oracle disagree specifically on the decryption of CTinb

for a query submitted by the adversary
A. Since b←$ {0, 1} is chosen uniformly at random, independent of all other variables, we show that the
probability that the first bad extraction event occurs on CTinb

is exactly half the probability that the
first bad extraction event occurs on either CTin0 or CTin1 . Now, if the first bad extraction event occurs
on CTinb

, then the semantic security adversary successfully detects the first bad extraction event. In the
following, we will give additional details on the semantic security adversary.

An adversary attempting to break the semantic security of the inner encryption simulates the modified
experiment in the final two hybrids by fixing b←$ {0, 1}, embedding its challenge public key in place of
pkin1−b

and embedding a public key with a known secret key in place of pkinb
. Now, due to the additive

secret sharing of the inner plaintexts, we have that in both hybrids H̃0 and H̃1, each of the inner plaintexts
s̃0, s̃1 are individually uniformly distributed. Leveraging this property, the semantic security adversary
chooses a random plaintext s̃b and computes an honest encryption CT ∗inb

of s̃b. To embed the remaining

inner ciphertext, the adversary chooses β ∈ {0, 1} and computes: s̃01−b←$ {0, 1}`, s̃11−b = (r||mβ) ⊕ s̃b
where m0,m1 are the plaintexts submitted by the internal CCA2 adversary, and submits s̃01−b, s̃

1
1−b to the

external semantic security experiment. The semantic security adversary receives in return a ciphertext
CTpa-cpa, which is an encryption of either s̃01−b or s̃11−b and sets CT ∗in1−b

= CTpa-cpa. Note that when the

external experiment returns an encryption of s̃01−b, the generated ciphertext is identically distributed to the

challenge ciphertext in H̃0 and when the external experiment returns an encryption of s̃11−b, the generated

ciphertext is identically distributed to the challenge ciphertext in H̃1. Finally, since the adversary has the
secret key corresponding to pkinb

, it will successfully detect the case that a bad extraction event occurs
for the first time on CT ∗inb

. Thus, we have that the occurrence of modified bad extraction event with

non-negligible probability in H̃1, implies an attack on the CPA security of the underlying scheme.

1.4 Related Work

In their seminal work, Dolev et al. [DDN00] presented the first construction of CCA2-encryption from
the lower-level primitive of enhanced trapdoor permutations. However, the [DDN00] construction is not
black-box and requires the use of generic non-interactive zero knowledge proofs. Subsequently, Pass
et al. [PSV06] presented a new definition of non-malleability and presented a construction from CPA
to non-malleable CPA requiring non-black box use of the underlying encryption scheme. Choi et al.
[CDSMW08] gave a black-box version of this result thereafter. Myers and shelat [MS09] showed how
to construct many-bit CCA2-encryption from single-bit cca2-encryption and Hohenberg et al. [HLW12]
extended their result and showed how to build CCA2-encryption from any detectable chosen ciphertext
(DCCA) secure encryption scheme. As discussed previously, [MSS12] show how to construct a cNM-CCA1-

4

secure encryption scheme from a plaintext aware, weakly simulatable public key encryption scheme.
A different line of work introduced new low-level primitives and showed how to construct CCA2

encryption from these low-level primtives. Examples are constructions of CCA2-secure encryption from the
primitives of identity-based encryption [CHK04], tag-based encryption [Kil06], lossy trapdoor functions
[PW11], correlated products [RS10], adaptive trapdoor functions [KMO10], and extractable hash proofs
[Wee10].

Finally, several works [CS02, HK08, CKS09, HJKS10] construct CCA2-encryption directly from various
number-theoretic assumptions.

2 Preliminaries

2.1 CCA2 Security

Definition 2.1 (CCA2 Security) Let E = (Gen,Enc,Dec) be an encryption scheme and let the random
variable CCA2-Exprβ(E , A, k) where β ∈ {0, 1}, A = (A1, A2) are ppt algorithms and k ∈ N, denote the
result of the following probabilistic experiment:

CCA2-Exprβ(E , A, k)

• (pk, sk)←$ Gen(1k)

• (m0,m1, stateA)←$A
Dec(sk,·)
1 (pk)

• y←$ Enc(pk,mβ)

• D←$A
Dec(sk,·)
2 (y, stateA)

We require that the output of A1 satisfies |m0| = |m1| and that A2 does not query y to its oracle.
(Gen,Enc,Dec) is CCA2-secure if for any ppt algorithms A = (A1, A2) the following two ensembles

are computationally indistinguishable:

{CCA2-Expr0(E , A, k)}k∈N
c
≈ {CCA2-Expr1(E , A, k)}k∈N .

2.2 Plaintext Awareness for Multiple key Setup

We follow [MSS12] for the following definition.

sPA1`(E,C,C
∗, k):

• Let R[C], R[C∗] be randomly chosen bit strings for C and C∗.

• ((pki, ski))i∈[`(k)]←$ Gen(1k)

• st←
(
(pki)i∈[`(k)], R[C]

)
• CC∗(st,·) ((pki)i∈[`(k)])
• Let Q = {(qi = (pkji , ci),mi)} be the set of queries C made to C∗ until it halted and C∗’s responses

to them. Return ∧|Q|i=1(mi = Decskji (ci)).

In the above experiment, C is a ciphertext creator, and C∗ is a stateful ppt algorithm called the
extractor that takes as input the state information st and a ciphertext given by the ciphertext creator
C, and will return the decryption of that ciphertext and the updated state st. The state information
is initially set to the public key pk and the adversary C’s random coins. It gets updated by C∗ as C∗

answers each query that the adversary C submits. The above experiment returns 1 if all the extractor’s
answers to queries are the true decryption of those queries under sk. Otherwise, the experiment returns
0.

5

Definition 2.2 (sPA1`) Let ` be a polynomial. Let E = (Gen,Enc,Dec) be an asymmetric encryption
scheme. Let the ciphertext-creator adversary C and the extractor C∗ be ppt algorithms. For k ∈ N, the
sPA1-advantage of C relative to C∗ is defined as:

AdvsPA1`(E , C, C∗) = Pr[sPA1(E , C, C∗, k) = 0]

The extractor C∗ is a successful sPA1`-extractor for the ciphertext-creator adversary C if for all k ∈ N,
the function AdvsPA1`(E , C, C∗) is negligible. The encryption scheme E is called sPA1` multi-key secure if
for any ppt ciphertext creator there exists a successful sPA1`-extractor.

As shown by [MSS12], both the Damgard Elgamal encryption scheme (DEG) and the lite version of
Cramer-Shoup encryption scheme (CS-lite) are sPA1` secure under a suitable generalization of the DHK1
assumption.

2.3 Weakly Simulatable Encryption Scheme

As in [MSS12], we consider a notion of simulatability similar to the one of Dent [Den06], but where the
attacker is not given access to the decryption oracle. If an encryption scheme satisfies this weaker notion
of simulatability, we say it is weakly simulatable.

Definition 2.3 (Weakly Simulatable Encryption Scheme) An asymmetric encryption scheme (Gen,
Enc, Dec) is weakly simulatable if there exist two poly-time algorithms (f, f−1) where f is deterministic
and f−1 is probabilistic, such that for all k ∈ N there exists the polynomial function p(·) where l = p(k),
we have the following correctness properties:

• f on inputs of public key pk (in the range of Gen) and a random string r ∈ {0, 1}l, returns elements
in C, where C is the set of all possible ”ciphertext”-strings that can be submitted to the decryption
oracle (notice that C ∈ C might not be a valid ciphertext).

• f−1 on input of a public key pk (in the range of Gen) and an element C ∈ C outputs elements of
{0, 1}l.

• f(pk, f−1(pk, C)) = C for all C ∈ C.

And the following security properties. No polynomial time attacker A has probability better than
1/2 + µ(k) of winning the following experiment, where µ is some negligible function.

• The challenger generates a random key pair (pk, sk)←$ Gen(1k), and chooses randomly b ∈ {0, 1}.

• The attacker A executes on the input 1k and the public key pk outputs m ∈ M. The challenger
sends A the pair (f−1(pk, c = Enc(pk,m)), c) if b = 0, or (r, f(pk, r)) for some randomly generated
element r ∈ {0, 1}l if b = 1. The attacker A terminates by outputting a guess b′ for b. A wins if
b = b′ and its advantage is defined in the usual way.

Lemma 2.4 If E is a weakly simulatable encryption scheme, then E is CPA-secure.

[MSS12] show that DEG and CS-lite schemes can both be weakly simulatable when instantiated in
proper groups.

6

2.4 PA1+–An Extension of Plaintext Awareness

[MSS12] additionally consider an augmented notion of plaintext awareness in which the ciphertext creator
has access to an oracle that produces random bits, PA1+. The extractor receives the answers to any queries
generated by the creator, but only at the time these queries are issued. This oracle is meant is to model
the fact that the plaintext extractor might not receive all of the random coins used by the ciphertext
creator at the beginning of the experiment. By introducing this oracle, we require the extractor to work
even when it receives the random coins at the same time as the ciphertext creator. This modification
has implications when the notion of plaintext awareness is computational. However, in our case, as in
[MSS12], we require statistical plaintext awareness, and as argued by [MSS12], allowing access to such
an oracle does not affect the sPA1` security.

Any encryption scheme that is sPA1` secure is also sPA1+` secure.

Definition 2.5 Define the sPA1+` experiment in a similar way to the sPA1` experiment. The only differ-
ence between the two is that during the sPA1+` experiment, the ciphertext creator has access to a random
oracle O that takes no input, but returns independent uniform random strings upon each access. Any time
the creator accesses the oracle, the oracle’s response is forwarded to both the creator and the extractor.

If an encryption scheme would be deemed sPA1` secure, when we replace the sPA1` experiment in the
definition with the modified sPA1+` experiment, then the encryption scheme is said to be sPA1+` secure.

Lemma 2.6 (Appeared in [MSS12].) If an encryption scheme E is sPA1` secure, then it is sPA1+`
secure.

2.5 Strong One-Time Signature Scheme

We follow here the definition of [CDSMW08]. Informally, a strong one-time signature scheme (GenSig,Sign,Ver)
is an existentially unforgeable signature scheme, with the restriction that the signer signs at most one
message with any key. This means that an efficient adversary, upon seeing a signature on a message
m of his choice, cannot generate a valid signature on a different message, or a different valid signature
on the same message m. Such schemes can be constructed in a black-box way from one-way functions
[Lam79, Rom90], and thus from any semantically-secure encryption scheme (Gen,Enc,Dec).

3 The Scheme

We present a CCA2-secure encryption scheme Ecca = (Gencca,Enccca,Deccca) from any scheme Epa-cpa =
(Genpa-cpa,Encpa-cpa,Decpa-cpa) which is a plaintext aware, weakly simulatable public key encryption
scheme with perfect correctness and any scheme (GenSig,Sign,Ver), which is a strong one-time signa-
ture scheme and any pseudorandom generator prg. See Figure 1.

Theorem 3.1 Encryption scheme Ecca, presented in Figure 1, is CCA2-secure under the assumptions that
Epa-cpa = (Genpa-cpa,Encpa-cpa,Decpa-cpa) is a plaintext aware, weakly simulatable public key encryption
scheme with perfect correctness, the scheme (GenSig, Sign,Ver) is a strong one-time signature scheme and
prg is a pseudorandom generator.

Note that the Damgard Elgamal encryption scheme (DEG) and the lite version of Cramer-Shoup
encryption scheme (CS-lite) are plaintext aware, weakly simulatable and have perfect correctness.

Since strong one-time signature schemes and pseudorandom generators can be constructed in a black-
box manner from CPA-secure public key encryption (and hence plaintext aware, weakly simulatable public
key encryption) we have the following corollary:

Corollary 3.2 There is a black-box construction of a CCA2-secure public key encryption scheme from
any plaintext aware, weakly simulatable public key encryption scheme with perfect correctness.

7

Encryption Scheme Ecca = (Gencca,Enccca,Deccca)

Key Generation Gencca(1
k):

• [pkinb
, skinb

]b∈{0,1}←$ Genpa-cpa(1
k)

• [pkbi , sk
b
i]b∈{0,1},i∈[k]←$ Genpa-cpa(1

k)

• pk ← ([pkinb
]b∈{0,1}, [pk

b
i]b∈{0,1},i∈[k]); sk ← ([skinb

]b∈{0,1}, [sk
b
i]b∈{0,1},i∈[k])

• Return (pk, sk)

Encryption Enccca(pk,m):

• (vksig, sksig)←$ GenSig(1k)

• r←$ {0, 1}k

• s̃0←$ {0, 1}`, where ` = k + |m|; s̃1 ← (r||m)⊕ s̃0
• CTin0←$ Encpa-cpa(pkin0

, s̃0); CTin1←$ Encpa-cpa(pkin1
, s̃1)

• r1|| · · · ||rk = prg(r)

• For 1 ≤ i ≤ k, CTi ← Encpa-cpa(pk
vksigi
i , CTin0 ||CTin1 ; ri)

• Return CT = (CT1|| · · · ||CTk, vksig, σ = Sign(sksig, CT1|| · · · ||CTk))

Decryption Deccca(sk, (CT = CT1|| · · · ||CTn, vksig, σ))

• If Ver(vksig, CT, σ) = ⊥, output ⊥.

• Otherwise, CTin0 ||CTin1 ← Decpa-cpa(sk
vksig1
1 , CT1)

• s̃0 ← Decpa-cpa(skin0 , CTin0)

• s̃1 ← Decpa-cpa(skin1 , CTin1)

• (r||m)← s̃0 ⊕ s̃1
• (r1|| · · · ||rk)← prg(r)

• If for all i, CTi = Encpa-cpa(pk
vksigi
i , CTin0 ||CTin1 ; ri) return m

• Else return ⊥.

Figure 1: The CCA2-Secure Encryption Scheme Ecca

4 Security Analysis

We begin by defining an experiment which is different than the regular CCA2 experiment, but will be
useful in our analsysis of Ecca:
Nested Indistinguishability Experiment for scheme Ecca:

We define the expriment Nested-Expr(β, z) for β, z ∈ {0, 1}.
For every adversary A = (A1, A2) participating in a CCA2 experiment, we consider a corresponding

ciphertext creator CA (described below) and ciphertext extractor C∗ (as guaranteed by the security of
the encryption scheme Epa-cpa), interacting with an oracle O (described below). Let the random variable
Nested-Exprβ,z(Ecca, A, k), where β, z ∈ {0, 1} and k ∈ N, denote the result of the following probabilistic
experiment:

Nested-Exprβ,z(Ecca, A, k):

• CA receives public keys [pkinb
]b∈{0,1}, {pkbi}b∈{0,1},i∈[n] from the sPA1+2k+2 experiment

8

• CA chooses (sksig∗, vksig∗)←$ GenSig(1k; rsksig), where rsksig consists of the first k bits of CA’s random
tape.

• CA sets pk = [pkinb
]b∈{0,1}, {pkbi}b∈{0,1},i∈[n].

• CA chooses a random tape for A and begins an emulation of A1 on input pk.

• Whenever CA receives query CT = (CT1|| · · · ||CTk, vksig, σ) from A, CA checks Ver(vksig, CT1||
· · · ||CTk, σ) = 1. If not, CA returns ⊥. If so, CA submits CTi, where i is the first index s.t.
vksig∗i 6= vksig, to the extractor to obtain (CTin0 ||CTin1). If there is no such index, CA returns ⊥
and halts. Otherwise, CA submits CTin0 and CTin1 to the extractor to obtain s̃0, s̃1. CA computes
r||m = s̃0 ⊕ s̃1 and checks that CT1, . . . , CTn were computed correctly. If not, CA returns ⊥. If so,
CA returns m. Eventually A1 returns (m0,m1, st) and halts. CA outputs (m0,m1).

• CA queries its oracleO andO returns r1, . . . , rk where (r1, CT
∗
1) = f−1(pk

vksig∗1
1 , CT ∗1), . . . , (rk, CT

∗
k) =

f−1(pk
vksig∗k
1 , CT ∗k) and where CT ∗1 , . . . , CT

∗
k are computed in the following way:

1. r←$ {0, 1}k, r1, . . . , rn ← prg(r).

2. (sksig, vksig)←$ GenSig(1k)

3. s̃0←$ {0, 1}`

4. If z = 0 then s̃1←$ {0, 1}`.
5. Else if z = 1 then s̃1 ← (r||mβ)⊕ s̃0 .

6. CT ∗in0
←$ Encpa-cpa(pkin0

, s̃0); CT
∗
in1
←$ Encpa-cpa(pkin1

, s̃1)

7. For 1 ≤ i ≤ k, CT ∗i ← Encpa-cpa(pk
vksig∗i
i , CT ∗in0

||CT ∗in1
; ri)

• CA computes CT ∗i = f(xi) for each i and the signature σ∗. CA returns CT ∗ = (CT ∗1 || · · · ||CT ∗k , vksig∗, σ∗)
to A

• Whenever CA receives query CT = (CT1|| · · · ||CTk, vksig, σ) from A, CA checks Ver(vksig, CT1||
· · · ||CTk, σ) = 1. If not, CA returns ⊥. If so, CA submits CTi, where i is the first index s.t.
vksigi 6= vksig∗i , to the extractor to obtain (CTin0 ||CTin1). If there is no such index, CA returns ⊥
and halts. Otherwise, CA submits CTin0 and CTin1 to the extractor to obtain s̃0, s̃1. CA computes
r||m = s̃0 ⊕ s̃1 and checks that CT1, . . . , CTn were computed correctly. If not, CA returns ⊥. If so,
CA returns m. Eventually A2 outputs D and halts.

We require that the output of A1 satisfies |m0| = |m1| and that A2 does not query CT ∗ to its oracle.

Definition 4.1 (Nested Indistinguishability) We say that Ecca = (Gencca,Enccca,Deccca) is nested-
indistinguishable if for any ppt algorithms A = (A1, A2) and for β ∈ {0, 1} the following two ensembles
are computationally indistinguishable:{

Nested-Exprβ,0(Ecca, A, k)
}
k∈N

c
≈

{
Nested-Exprβ,1(Ecca, A, k)

}
k∈N .

Consider the following event:

Definition 4.2 (The Bad Extraction Event) We say that a bad extraction event has occurred during
an execution of the nested indistinguishability experiment if at some point A submits a decryption query
CT = (CT1|| · · · ||CTn, vksig, σ) such that one of the following occurs:

• C∗(st, CTi) 6= Decpa-cpa(sk
vksigi
i , CTi) where i is the first index such that vksig∗i 6= vksigi.

• C∗(st, CTin0) 6= Decpa-cpa(skin0 , CTin0)

9

• C∗(st, CTin1) 6= Decpa-cpa(skin1 , CTin1)

Definition 4.3 (The Forging Signature Event) We say that a forging signature event has occurred
during an execution of the nested indistinguishability experiment if at some point A submits a decryption
query (CT = (CT1|| · · · ||CTn, vksig, σ)) such that vksig = vksig∗ and Ver(vksig, CT, σ) = 1.

Our main theorem, Theorem 3.1, is immediately implied by the following two lemmas:

Lemma 4.4 Assume that the scheme Epa-cpa = (Genpa-cpa,Encpa-cpa,Decpa-cpa) is a plaintext aware,
weakly simulatable public key encryption scheme with perfect correctness. Then encryption scheme Ecca
is nested-indistinguishable.

Lemma 4.5 Assume that the scheme Epa-cpa = (Genpa-cpa,Encpa-cpa,Decpa-cpa) is a plaintext aware,
weakly simulatable public key encryption scheme with perfect correctness, the scheme (GenSig,Sign,Ver)
is a strong one-time signature scheme and prg is a pseudorandom generator. Then for β ∈ {0, 1} and for
every ppt adversary A:

{Nested-Exprβ,1(Ecca, A, k)}k∈N
s
≈ {CCA2-Exprβ(Ecca, A, k)}k∈N

Lemma 4.4 follows by a straightforward reduction to semantic security of Epa-cpa. Lemma 4.5 follows
in a straightforward manner from the fact that Bad Extraction Event and Forging Signature Event occur
with at most negligible probability when z = 1 along with the perfect correctness of Epa-cpa.

Thus, in what follows, we focus our attention on proving that Bad Extraction Event and Forging
Signature Event occur with at most negligible probability when z = 1. To show this we proceed in the
following way:

• In Section 4.1 we prove that Bad Extraction Event occurs with negligible probability in the Nested
Indistinguishability Experiment when z = 0.

• In Section 4.2 we use the fact that Bad Extraction Event occurs with negligible probability in the
Nested Indistinguishability Experiment when z = 0 to prove that Bad Extraction Event also occurs
with negligible probability in the Nested Indistinguishability Experiment when z = 1.

• In Section 4.3 we use the fact that Bad Extraction event occurs with negligible probability in the
Nested Indistinguishability Experiment when z = 1 to prove that Forging Signature Event occurs
with negligible probability in the Nested Indistinguishability Experiment when z = 1.

4.1 Bad Extraction Event when z = 0

In this section we prove the following lemma:

Lemma 4.6 Bad Extraction Event occurs with negligible probability when z = 0.

We proceed by considering a sequence of hybrids:

Hybrid H0: Proceeds exactly as the nested indistinguishability game for the case where z = 0.

Hybrid H1: Proceeds exactly like H0 except that fresh randomness ri is used to encrypt each CT ∗i =

Encpa-cpa(pk
vksigi
i , CT ∗in0

||CT ∗in1
; ri), instead of the output of the prg.

Claim 4.7 The probability of a Bad Extraction Event in H1 and H0 differs by a negligible amount.

This follows in a straightforward manner from the security of the prg.

10

Hybrid H2: Proceeds exactly like H1 except the oracle O returns uniformly random r1, . . . , rk .

Claim 4.8 The probability of Bad Extraction Event in H2 is negligible.

The claim follows due to the fact that the view of CA in the nested indistinguishability experiment
in Hybrid H2 is identical to the view of CA in the sPA1+2k+2 experiment (since in H2 the oracle O simply
returns uniformly random coins r1, . . . , rk, as does the oracle in the sPA1∗2k+2 experiment). Thus, by the
sPA1+2k+2-secuirty of Epa-cpa, C∗ is guaranteed to return the same value as Decpa-cpa on all ciphertexts
submitted by CA with all but negligible probability.

Claim 4.9 The probability of a Bad Extraction Event in H1 and H2 differs by a negligible amount.

Proof: Assume towards contradiction that there exists a ppt adversary A such that a Bad Extraction
Event in H1 and H2 differs by a non-negligible amount p = p(k) when interacting with A,CA, C

∗. We
present a ppt adversary B breaking the weak simulatability of Epa-cpa.
B participates in an external experiment where B plays the security game of the weakly simulatable en-
cryption scheme Epa-cpa while internally interacting with the adversary A and the corresponding ciphertext
creator CA and extractor C∗ in the following way:

• B receives p̂k1, . . . , p̂kk from the external simulatability security experiment.

• B chooses a random tape rCA
for the ciphertext creator CA.

• B computes (sksig∗, vksig∗)←$ GenSig(1k; rsksig), where rsksig consists of the first k bits of rCA
.

• B generates public key, secret key pairs [pkinb
, skinb

]b∈{0,1}, {pk
1−vksig∗i
i , sk

1−vksig∗i
i }i∈[k] and for i ∈ [k]

sets pk
vksig∗i
i = p̂ki.

• B instantiates CA with random tape rCA
on input [pkinb

]b∈{0,1}, {pkbi}b∈{0,1},i∈[k].

• Eventually CA outputs (m0,m1). At this point, B plays the part of the oracle O and does the
following:

1. Choose s̃0, s̃1←$ {0, 1}`

2. Compute CT ∗in0
←$ Encpa-cpa(pkin0

, s̃0); CT
∗
in1
←$ Encpa-cpa(pkin1

, s̃1)

3. Submit CT ∗in0
||CT ∗in1

to its external challenger.

4. Receives (r1, CT
∗
1), . . . , (rk, CT

∗
k) from its external challenger, where for each i, ri = f−1(pki, c =

Encpa-cpa(pki, CT
∗
in0
||CT ∗in1

)) if b = 0 or (ri, f(pki, ri)) for randomly generated ri if b = 1.

B forwards r1, . . . , rk to CA on behalf of oracle O and continues the emulation of CA.

• If at any point during the emulation, Bad Extraction Event occurs (which B can check by decrypting

using [skinb
]b∈{0,1}, {sk

1−vksig∗i
i }i∈[k]), B aborts and outputs 1.

• Otherwise, B outputs 0.

Note that for β ∈ {0, 1}, B perfectly simulates CA’s view in Hybrid H1 when b = 0 by returning r1, . . . , rk
where for each i, ri = f−1(pki, c = Encpa-cpa(pki, CT

∗
in0
||CT ∗in1

)) and perfectly simulates CA’s view in
Hybrid H2 by returning r1, . . . , rk where for each i, ri is chosen uniformly at random. Thus, B outputs
1 in the case that b = 0 in the external experiment with probability p1 and B outputs 1 in the case
that b = 1 in the external experiment with probability p2 where p1 − p2 > p. Since by hypothesis, p is
non-negligible, we have that B breaks the security of the weakly simulatable encryption scheme Epa-cpa.

Lemma 4.6 follows immediately from Claims 4.7, 4.8 and 4.9.

11

4.2 Bad Extraction Event when z = 1

In this section we prove the following lemma:

Lemma 4.10 Bad Extraction Event occurs with negligible probability when z = 1.

To aid in our analysis, we define a second experiment ”Modified Nested Indistinguishability” and a sec-
ond Bad Extraction Event, ”Modified Bad Extraction Event”. The Modified Nested Indistinguishability
experiment is identical to the Nested Indistinguishability experiment except that an additional random
variable b←$ {0, 1} is chosen at the very beginning of the experiment The Modified Bad Extraction Event
will then depend on the value of b chosen during the experiment. Details follow.

For every adversary A = (A1, A2) participating in a CCA2 experiment, we consider a corresponding
ciphertext creator CA (described below) and ciphertext extractor C∗ (as guaranteed by the security of
the encryption scheme Epa-cpa), interacting with the oracle O (described below). Let the random variable
Modified-Nested-Exprβ,z(Ecca, A, k), where β, z ∈ {0, 1} and k ∈ N, denote the result of the following
probabilistic experiment:

Modified-Nested-Exprβ,z(Ecca, A, k):

• b←$ {0, 1}

• CA receives public keys [pkinb
]b∈{0,1}, {pkbi}b∈{0,1},i∈[n] from the sPA1+2k+2 experiment

• CA chooses (sksig∗, vksig∗)←$ GenSig(1k; rsksig), where rsksig are the first k bits of CA’s random tape.

• CA sets pk = [pkinb
]b∈{0,1}, {pkbi}b∈{0,1},i∈[n].

• CA chooses a random tape for A and begins an emulation of A1 on the input of pk.

• Whenever CA receives query CT = (CT1|| · · · ||CTk, vksig, σ) fromA, CA checks Ver(vksig, CT1|| · · · ||CTk, σ) =
1. If not, CA returns ⊥. If so, CA submits CTi, where i is the first index s.t. vksig∗i 6= vksig, to the
extractor to obtain (CTin0 ||CTin1). If there is no such index, CA returns ⊥ and halts. Otherwise,
CA submits CTin0 and CTin1 to the extractor to obtain s̃0, s̃1. CA computes r||m = s̃0 ⊕ s̃1 and
checks that CT1, . . . , CTn were computed correctly. If not, CA returns ⊥. If so, CA returns m.
Eventually A1 returns (m0,m1, st) and halts. CA outputs (m0,m1).

• CA queries its oracleO andO returns r1, . . . , rk where (r1, CT
∗
1) = f−1(pk

vksig∗1
1 , CT ∗1), . . . , (rk, CT

∗
k) =

f−1(pk
vksig∗k
1 , CT ∗k) and where CT ∗1 , . . . , CT

∗
k are computed in the following way:

1. r←$ {0, 1}k, r1, . . . , rn ← prg(r).

2. (sksig, vksig)←$ GenSig(1k)

3. s̃0←$ {0, 1}`

4. If z = 0 then s̃1←$ {0, 1}`.
5. Else if z = 1 then s̃1 ← (r||mβ)⊕ s̃0 .

6. CT ∗in0
←$ Encpa-cpa(pkin0

, s̃0); CT
∗
in1
←$ Encpa-cpa(pkin1

, s̃1)

7. For 1 ≤ i ≤ k, CT ∗i ← Encpa-cpa(pk
vksig
i , CT ∗in0

||CT ∗in1
; ri)

• CA computes CT ∗i = f(xi) for each i and the signature σ∗. CA returns CT ∗ = (CT ∗1 || · · · ||CT ∗k , vksig∗, σ∗)
to A

• Whenever CA receives query CT = (CT1|| · · · ||CTk, vksig, σ) fromA, CA checks Ver(vksig, CT1|| · · · ||CTk, σ) =
1. If not, CA returns ⊥. If so, CA submits CTi, where i is the first index s.t. vksigi 6= vksig∗i to the
extractor to obtain (CTin0 ||CTin1). If there is no such index, CA returns ⊥ and halts. Otherwise,
CA submits CTin0 and CTin1 to the extractor to obtain s̃0, s̃1. CA computes r||m = s̃0 ⊕ s̃1 and
checks that CT1, . . . , CTn were computed correctly. If not, CA returns ⊥. If so, CA returns m.
Eventually A2 outputs D and halts.

12

Definition 4.11 (The Modified Bad Extraction Event) We say that a modified bad extraction
event has occurred during an execution of the nested indistinguishability experiment if at some point
A submits a decryption query CT = (CT1|| · · · ||CTn, vksig, σ) such that one of the following occurs:

• C∗(st, CTi) 6= Decpa-cpa(sk
vksigi
i , CTi) where i is the first index such that vksig∗i 6= vksigi.

• C∗(st, CTinb
) 6= Decpa-cpa(skinb

, CTinb
)

Claim 4.12 For every ppt adversary A = (A1, A2) and for β ∈ {0, 1}, Modified Bad Extraction Event
occurs in Modified-Nested-Exprβ,z(Ecca, A, k) with negligible probability when z = 0.

This follows immediately from the fact that for every ppt adversary A = (A1, A2), Bad Extraction
event occurs in Nested-Exprβ,z(Ecca, A, k) with negligible probability when z = 0.

Claim 4.13 If for some ppt adversary A = (A1, A2) we have that Bad Extraction Event occurs with
probability p1 in Nested-Exprβ,z(Ecca, A, k) when z = 1 then Modified Bad Extraction Event occurs with
probability at least p1/2 in Modified-Nested-Exprβ,z(Ecca, A, k) when z = 1.

Proof: Let A be a ppt adversary such that Bad Extraction Event occurs with probability p1 in the experi-
ment Nested-Exprβ,1(Ecca, A, k). Let event E be the event that for some query, CT = (CT1|| · · · ||CTk, vksig, σ),
one of the following occurs:

C∗(st, CTi) 6= Decpa-cpa(sk
vksigi
i , CTi) (1)

where i is the first index such that vksig∗i 6= vksigi.

OR

C∗(st, CTin0) 6= Decpa-cpa(skin0 , CTin0) (2)

OR

C∗(st, CTin1) 6= Decpa-cpa(skin1 , CTin1) (3)

and this is the first such query made by A during the experiment. Note that the probability that event E
occurs in Nested-Exprβ,1(Ecca, A, k) and the probability that E occurs in Modified-Nested-Exprβ,1(Ecca, A, k)
is p1.

We consider an experiment, Modified-Nested-Expr′beta,z(Ecca, A, k), identical to the Modified Nested Indis-
tinguishability experiment except the value of b is chosen ”on the fly” at the first point when event E
occurs. It is straightforward to see that the probability of event E in Modified-Nested-Expr′β,1(Ecca, A, k)
is also p1 (the same as the probability of E in the experiment Modified-Nested-Exprβ,1(Ecca, A, k)).

Now, if event E was triggered by a query CT = (CT1|| · · · ||CTk, vksig, σ) in Modified-Nested-Expr′beta,1(Ecca, A, k)
such that (1) occurs, then modified bad extraction event also occurs. Alternatively, if event E was trig-
gered by a query CT = (CT1|| · · · ||CTk, vksig, σ) in Modified-Nested-Expr′beta,1(Ecca, A, k) such that (2) or
(3) occurs, then modified bad extraction event will occur with probability exactly 1/2. Thus, modified bad
extraction event occurs in Modified-Nested-Expr′beta,1(Ecca, A, k) with probability at least p1/2. Since the
view of CA is identical in Modified-Nested-Expr′beta,1(Ecca, A, k) and in Modified-Nested-Exprbeta,1(Ecca, A, k)
we must also have that modified bad extraction event occurs in Modified-Nested-Exprβ,1(Ecca, A, k) with
probability at least p1/2.

Claim 4.14 The probability of a Modified Bad Extraction Event when z = 0 and z = 1 differs by a
negligible amount.

13

Proof: Assume towards contradiction that there is a ppt adversary A such that the probability of a
Modified Bad Extraction Event in Modified-Nested-Exprbeta,0(Ecca, A, k) is p0 = p0(k), the probability
of a Modified Bad Extraction Event in Modified-Nested-Exprbeta,1(Ecca, A, k) is p1 = p1(k) and p(k) =
p1(k)− p0(k) is non-negligible. We present a ppt adversary B that uses A to break the semantic security
of Epa-cpa.

B participates in an external semantic security experiment for encryption scheme Epa-cpa while internally
emulating a run of Modified-Nested-Expr with CA, A and playing the part of the oracleO. More specifically,
B receives a public key pkpa-cpa from the semantic security experiment for the encryption scheme Epa-cpa
and does the following:

• B chooses b←$ {0, 1}.

• B sets pkin1−b
= pkpa-cpa

• B chooses (pkinb
, skinb

)←$ Genpa-cpa(1
k) and [pkbi , sk

b
i]b∈{0,1},i∈[k]←$ Genpa-cpa(1

k).

• B chooses a random tape rCA
for CA and begins an emulation of CA with input ([pkinb

]b∈{0,1},

[pkbi]b∈{0,1},i∈[k]).

• At some point CA outputs m0,m1. At this point, B, playing the part of the oracle O, re-

turns r1, . . . , rk where (r1, CT
∗
1) = f−1(pk

vksig∗1
1 , CT ∗1), . . . , (rk, CT

∗
k) = f−1(pk

vksig∗k
1 , CT ∗k) and

CT ∗1 , . . . , CT
∗
k are computed in the following way:

– r←$ {0, 1}k, r1, . . . , rn ← prg(r).

– (sksig, vksig)←$ GenSig(1k)

– s̃b←$ {0, 1}`

– Choose s̃01−b←$ {0, 1}`. and set s̃11−b ← (r||mβ)⊕ s̃0 .

– B returns M0 = s̃01−b,M1 = s̃11−b to its external challenger and receives ciphertext CTpa-cpa in
return.

– B sets CT ∗inb
←$ Encpa-cpa(pkin0

, s̃b) and sets CT ∗in1−b
= CTpa-cpa.

– For 1 ≤ i ≤ k, CT ∗i ← Encpa-cpa(pk
vksig
i , CT ∗in0

||CT ∗in1
; ri)

• B continues the emulation of CA, A.

• If the event Modified Bad Extraction Event occurs, B aborts and outputs 1.

• Otherwise, B outputs 0.

Note that for β ∈ {0, 1}, B perfectly simulates CA’s view in the experiment Modified-Nested-Expr(β, 0).
Thus, B outputs 1 in the case that the external challenger returned an encryption of M1 with probability
p1 and B outputs 1 in the case that the external challenger returned an encryption of M0 with probability
p2 where p1−p2 > p. Since by hypothesis, p is non-negligible, we have that B breaks the semantic security
of Epa-cpa.

Together, Claims 4.12, 4.13 and 4.14 immediately imply Lemma 4.10.

4.3 Forging Signature Event when z = 1

In this section, we prove the following lemma:

Lemma 4.15 Forging Signature Event occurs with negligible probability when z = 1.

14

Proof: Assume towards contradiction that there exists a ppt adversary A such that Forging Signature
Event occurs in Nested-Expr with non-negligible probability, p = p(k). We use A to construct a ppt
adversary B breaking the security of the signature scheme. B does the following:

• B receives vksig∗ from its external challenger.

• B generates public, secret keys [pkinb
, skinb

]b∈{0,1}, {pkbi , skbi}b∈{0,1},i∈[n] from the sPA1+2k+2 experi-

ment and sets pk = [pkinb
]b∈{0,1}, {pkbi}b∈{0,1},i∈[n]

• B chooses random coins for A and begins an emulation of A1 on input pk.

• Whenever B receives query CT = (CT1|| · · · ||CTn, vksig, σ) from A1, B checks Ver(vksig, CT1|| · · ·
||CTk, σ) = 1. If not, B returns⊥. If so, B decrypts CTi, where i is the first index s.t. vksigi 6= vksig∗i
using sk

vksigi
i to obtain (CTin0 ||CTin1). B decrypts CTin0 and CTin1 using skin0 , skin1 to obtain

s̃0, s̃1. B computes r||m = s̃0 ⊕ s̃1 and checks that CT1, . . . , CTn were computed correctly. If not,
B returns ⊥. If so, B returns m. Eventually A1 returns (m0,m1, st) and halts.

• B does the following:

1. r←$ {0, 1}k, r1, . . . , rn ← prg(r).

2. (sksig, vksig)←$ GenSig(1k)

3. s̃0←$ {0, 1}` , s̃1 ← (r||mβ)⊕ s̃0 .

4. CT ∗in0
←$ Encpa-cpa(pkin0

, s̃0); CT
∗
in1
←$ Encpa-cpa(pkin1

, s̃1)

5. For 1 ≤ i ≤ k, CT ∗i ← Encpa-cpa(pk
vksig
i , CT ∗in0

||CT ∗in1
; ri)

6. B requests a signature for message CT ∗1 || · · · ||CT ∗k and receives (CT ∗1 || · · · ||CT ∗k , vksig∗, σ∗)
from its oracle.

7. B returns CT ∗ = (CT ∗1 || · · · ||CT ∗k , vksig∗, σ∗) to A

• Whenever B receives query CT = (CT1|| · · · ||CTn, vksig, σ) from A, B checks Ver(vksig, CT1||
· · · ||CTk, σ) = 1. If not, B returns ⊥. If so, B decrypts CTi, where i is the first index such that

vksigi 6= vksig∗i using sk
vksigi
i to obtain (CTin0 ||CTin1). B decrypts CTin0 and CTin1 using skin0 , skin1

to obtain s̃0, s̃1. B computes r||m = s̃0⊕ s̃1 and checks that CT1, . . . , CTn were computed correctly.
If not, B returns ⊥. If so, B returns m. Eventually A2 outputs D and halts.

• If at any point during the execution, A submits a query CT = (CT1|| · · · ||CTn, vksig, σ) such that
vksig = vksig∗ and Ver(vksig, CT1|| · · · ||CTn, σ) = 1, (i.e. Forging Signature Event occurs), then B
aborts the experiment and submits σ to its challenge oracle.

We claim that the probability that Forging Signature Event occurs in B’s simulation differs by at most
a negligible amount from the probability that Forging Signature Event occurs in Nested-Exprβ,z(Ecca, A, k).
Thus, if Forging Signature Event occurs with non-negligible probability p = p(k) in Nested-Exprβ,z(Ecca, A, k)
then Forging Signature Event occurs with non-negligible probability p/2 during B’s emulation and con-
tradicts the security of the signature scheme (GenSig,Sign,Ver).

To see that the probabilities differ by a negligible amount, note that the response returned to A in B’s
emulation is identical to the response returned to A in Nested-Exprβ,1(Ecca, A, k) unless Bad Extraction
Event occurs. Since we have by Lemma 4.10 that Bad Extraction Event occurs with at most negligi-
ble probability in Nested-Exprβ,z(Ecca, A, k) when z = 1, this immediately implies that the probability
that Forging Signature Event occurs in B’s simulation differs by at most a negligible amount from the
probability that Forging Signature Event occurs in Nested-Exprβ,z(Ecca, A, k).

15

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–115,
2001.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In ITCS,
pages 326–349, 2012.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among
notions of security for public-key encryption schemes. In CRYPTO, pages 26–45, 1998.

[BP04a] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In CRYPTO, pages 273–289, 2004.

[BP04b] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption without
random oracles. In ASIACRYPT, pages 48–62, 2004.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In EUROCRYPT,
pages 92–111, 1994.

[CDSMW08] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-box con-
struction of a non-malleable encryption scheme from any semantically secure one. In TCC,
pages 427–444, 2008.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-
based encryption. In EUROCRYPT, pages 207–222, 2004.

[CKS09] David Cash, Eike Kiltz, and Victor Shoup. The twin diffie-hellman problem and applica-
tions. J. Cryptology, 22(4):470–504, 2009.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J.
Comput., 30(2):391–437, 2000.

[Den06] Alexander W. Dent. The cramer-shoup encryption scheme is plaintext aware in the standard
model. In EUROCRYPT, pages 289–307, 2006.

[DN00] Ivan Damg̊ard and Jesper Buus Nielsen. Improved non-committing encryption schemes
based on a general complexity assumption. In CRYPTO, pages 432–450, 2000.

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes from
decryption errors. In EUROCRYPT, pages 342–360, 2004.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[GMM07] Yael Gertner, Tal Malkin, and Steven Myers. Towards a separation of semantic and cca
security for public key encryption. In TCC, pages 434–455, 2007.

[HJKS10] Kristiyan Haralambiev, Tibor Jager, Eike Kiltz, and Victor Shoup. Simple and efficient
public-key encryption from computational diffie-hellman in the standard model. In Public
Key Cryptography, pages 1–18, 2010.

16

[HK08] Goichiro Hanaoka and Kaoru Kurosawa. Efficient chosen ciphertext secure public key
encryption under the computational diffie-hellman assumption. In ASIACRYPT, pages
308–325, 2008.

[HLM03] Jonathan Herzog, Moses Liskov, and Silvio Micali. Plaintext awareness via key registration.
In CRYPTO, pages 548–564, 2003.

[HLW12] Susan Hohenberger, Allison B. Lewko, and Brent Waters. Detecting dangerous queries: A
new approach for chosen ciphertext security. In EUROCRYPT, pages 663–681, 2012.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols.
In CRYPTO, pages 408–423, 1998.

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC, pages 581–600,
2006.

[KMO10] Eike Kiltz, Payman Mohassel, and Adam O’Neill. Adaptive trapdoor functions and chosen-
ciphertext security. In EUROCRYPT, pages 673–692, 2010.

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function. Technical Report
SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

[MS09] Steven Myers and Abhi Shelat. Bit encryption is complete. In FOCS, pages 607–616, 2009.

[MSS12] Steven Myers, Mona Sergi, and Abhi Shelat. Blackbox construction of a more than non-
malleable cca1 encryption scheme from plaintext awareness. In SCN, pages 149–165, 2012.

[PSV06] Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Construction of a non-malleable
encryption scheme from any semantically secure one. In CRYPTO, pages 271–289, 2006.

[PW11] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM J.
Comput., 40(6):1803–1844, 2011.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
STOC, pages 387–394, 1990.

[RS10] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. SIAM J.
Comput., 39(7):3058–3088, 2010.

[Wee10] Hoeteck Wee. Efficient chosen-ciphertext security via extractable hash proofs. In CRYPTO,
pages 314–332, 2010.

17

	Introduction
	Our Assumptions
	Our Results
	Technical Overview
	Related Work

	Preliminaries
	CCA2 Security
	Plaintext Awareness for Multiple key Setup
	Weakly Simulatable Encryption Scheme
	PA1+–An Extension of Plaintext Awareness
	Strong One-Time Signature Scheme

	The Scheme
	Security Analysis
	Bad Extraction Event when z = 0
	Bad Extraction Event when z = 1
	Forging Signature Event when z = 1

