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Abstract

Chosen Distribution Attacks (CDA) were introduced by Bellare et al. (Asiacrypt ’09) to model
attacks where an adversary can control the distribution of both messages and random coins used in an
encryption scheme. One important restriction in their definition is that the distributions chosen by the
adversary cannot depend on the public key being attacked, and they show that some restriction of this
form is necessary (for the same reasons that secure deterministic encryption is impossible if we allow
arbitrary dependence between the plaintext distributionsand the public key).

Subsequently Raghunathanet al. (Eurocrypt ’13) showed how to relax this restriction by allowing
the message/randomness distributions to depend on the public key as long as the distributions belong to
a family of bounded size fixed before the public key is known.

We extend the definition further to what we call Strong ChosenDistribution Attacks where the mes-
sage/randomness distributions may depend on the public keyas long as certain entropy conditions are
satisfied. Our security model comes from a natural model of attack where an adversary infiltrates the
encryption system and installs a trojan program prior to knowing the public key, and subsequently is
allowed limited communication with the trojan program.

We present secure constructions in the standard and random oracle models both with and without
decryption oracles (corresponding to CPA or CCA security).We also prove that our definition simulta-
neously generalizes previous definitions in this line of work.
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1 Introduction

The classical notion of semantic security for public-key encryption schemes [GM84] asks that it must be
infeasible for a computationally-bounded adversary to compute any information about a plaintext from its
ciphertext and the corresponding public encryption key. This notion canonly be reached by a probabilistic
encryption scheme.

In theoretical models, the process of generating randomness is generallyassumed to behave perfectly, giving
the users access to sequences of independent and uniform bits. Unfortunately, it turns out to be extremely
difficult to obtain perfect randomness in practice. Indeed, the physicalsources that produce randomness
often have non-uniform or even unknown distributions. Moreover, even if some processing is done on the
randomness in order to give it a better quality, there will be many scenarios inwhich an attacker could be
able to recover some useful information.

For several probabilistic encryption schemes, using weak randomness can lead to catastrophic attacks in
particular when the used randomness has little or even no min-entropy. For instance, ElGamal encryption
scheme [Gam85] and all hybrid encryption schemes are vulnerable to plaintext recoveryattacks when the
randomness used is predictable. It seems therefore desirable to construct encryption schemes in such a
way that using weak randomness will have as little as possible impact on the security of the scheme. In
[BBN+09], Bellare, Brakerski, Naor, Ristenpart, Segev, Shacham and Yilek introduced the idea to provide
two tiers of security: with good randomness the scheme achieves the classical semantic security notion but
when it is fed with bad randomness, it achieves some weaker but still useful notion of security.

Formally, Bellareet al. asked that security is guaranteed as long as the joint distribution of the message
and randomness (chosen by the adversary) has sufficiently high min-entropy and called this notionIn-
distinguishability under a Chosen Distribution Attack(CDA). Their definition is inspired by the one for
deterministic encryption from [BBO07] and one important restriction in their definition is that the mes-
sage/randomness distribution cannot depend on the public key being attacked. For this reason, we will call
their notionweakCDA. In particular, weak CDA does not encompass standard semantic security. One way
to view their model is that there is a “sharp” threshold between when randomness is perfect (where mes-
sages can depend arbitrarily on the public key) and when randomness is imperfect (where there can beno
dependence between the message/randomness distribution and the public key).

Bellareet al. proposed several constructions from any public-key encryption in therandom oracle model.
Following previous work on deterministic encryption [BFOR08,BFO08], they also proposed a construction
in the standard model relying on the notion of lossy trapdoor function introduced by Peikert and Waters
[PW11]. Subsequent work on deterministic encryption also implies analogous strenghened results on weak
CDA security [BS11,FOR12,Wee12], where those papers consider auxiliary input and correlated message
distributions.

Recently, Raghunathan, Segev and Vadhan [RSV13b] showed how to relax the restriction that the mes-
sage/randomness distribution be independent of the public key. They allowthe adversary to pick a family of
distributions before seeing the public key, where the family must be of bounded size, and then they permit
the message/randomness distribution used by the adversary to be chosen depending on the public key, as
long as the distribution belongs to this previously fixed family. In a related work, Birrel et al. [BCPT13]
study the question of randomness-dependent message security where the adversary can select the message
to be encrypted depending both on the random coins and the public key; they show positive results when
one can assume that the amount of dependence on the random coins is limited.
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The goal of this paper is to extend the definition further to what we callStrong Chosen Distribution Attacks
where the message/randomness distributions may depend on the public key aslong as certain entropy con-
ditions are satisfied. In particular, we will present a definition that simultaneously generalizes the previous
definitions,i.e. a scheme secure in our model will be simultaneously secure against chosenplaintext at-
tacks, (weak) chosen distribution attacks, randomness-dependent messages, etc. In particular, we provide a
“smooth” tradeoff between perfect and imperfect randomness: when the randomness is perfect the message
can depend arbitrarily on the public key, while security is preserved evenwhen the message/randomness
have imperfect entropy, and the amount of dependence on the public keydegrades in a smooth, graceful
manner rather than in a sharp way as in [BBN+09].

1.1 Our model and definition

Our adversary is divided in several components and one may conceptually view its attack as proceeding in
several phases in sequence:

Infiltration The adversary installs an interactive algorithmRand on the target system. This occurs prior to
any information about the public key being revealed. The programRand is a trojan that sits between
the target system’s encryption function and its source of randomness: each time the target system
tries to encrypt a message, the trojan feeds it some (potentially adversariallybiased) random coins.
Furthermore,Rand is interactive, and so in later phases it may communicate with an outside system
who may exert control over the distribution of the modified random coins.

Revelation The adversary is allowed to learn some (possibly limited) amount of informationRev(pk) about
the public key.

Query The adversary creates an interactive message generating algorithmMesg that, using (possibly lim-
ited) communication with theRand algorithm installed in the infiltration phase, generates a message
distribution (that may be correlated to the randomness distribution generated by Rand because of the
communication). Samples drawn from this message/randomness distribution arethen encrypted by
the target system and sent to the adversary. The adversary may adaptively use the results of these
encryptions to generate a newMesg and repeat the attack to see more ciphertexts, and this may be
repeated a polynomial number of times.

Distinguishing The adversary runs a distinguisherDist and guesses whether the ciphertexts he saw during
the query phase were encryptions of message-randomness pairs drawn from the distribution he cre-
ated, or whether they are encryptions of independent and uniform message-randomness pairs. In this
phase the distinguisher may know the entire public key.

In the above scenario, it is known that if the message-randomness distribution may depend arbitrarily on
the public key, then security is impossible [BBN+09,BBO07]. Our main contribution is a set of conditions
that are both necessary and sufficient, and also simultaneously generalizes all of the previous definitions
studied in the literature [GM84, BBN+09, BCPT13, RSV13a]. Informally speaking, we use the following
three entropy conditions:

1. From the point of view of the randomness-generating algorithmRand, there must be significant en-
tropy in the public key.

2. From the point of view of message-generating algorithmMesg, there must be significant entropy
in the ciphertext (this may come either from the public key, or from the randomcoins used in the
encryption).
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3. Knowing the code of the algorithmsMesg,Rand, there must still be significant entropy in the mes-
sages they produce.

At an intuitive level it is clear that these three conditions are necessary: the first condition is necessary
because ifRand knows the public key then it can always generate random coins so that a plaintext of a
single bitb encrypts to, say, a ciphertext whose first bit isb (this is possible assuming the ciphertexts look
uniform; if not, one can still show similar attacks by using hash functions to randomize the predicate that
will revealb). In a similar fashion, the second condition is necessary because ifMesg knows both the public
key and the random coins to be used, it can choose its messagem so that the first bit of them equals, say,
the first bit of the encryption ofm. The third condition is necessary because otherwise an attacker would
know with significant confidence the message/randomness used to generate a ciphertext, and (knowing the
public key) can just compute the encryption itself to see whether the resulting ciphertext matches the one
that it is supposed to distinguish.

We show that using an appropriate formalization of these three conditions (seeDefinition 3.2), they turn out
to besufficientas well. At a high level, to achieve the first entropy condition we restrict the communication
that may flow from the public-key revelation algorithm to the randomness-generating algorithmRand. This
is well-motivated by reality, since communication from the trojan program to the outside world may be
noticed by the target system if there is too much of it, while a small amount of communication may pass
unnoticed. To achieve the second entropy condition we require that, conditioned on the transcript of the
interaction betweenMesg,Rand, there remains large entropy in the randomness thatRand outputs. To
achieve the third entropy condition, we require that conditioned on what anobserver can see, there remains
large entropy in the message/randomness generated by the interaction ofMesg,Rand.

1.2 Our results

We construct schemes in the standard and random oracle models that satisfy our new definition of Strong
Chosen Distribution Attack security. As described above, in our notion of security we require that certain
random variables including the public key, the message distribution, and the random coin distribution each
have significant entropy from the attacker’s point of view. Our randomoracle construction has essentially
optimal parameters,i.e. it only requires that public key, randomness, and messages have super-logarithmic
entropy from the adversary’s point of view, which is the best one can hope for. Our standard model con-
struction has good parameters except for the public key, and improving thisdependence is an interesting
open question; we discuss the quality of the parameters of our standard model construction inSection 6.

Our random-oracle model construction follows the well-known “encrypt-with-hash” paradigm [BBO07],
where we take an existing encryption scheme and modify it so that instead of feeding it random coins
directly, we use the random oracle applied to the public key, message, and random coins to obtain “hashed”
random coins that we then use in the original encryption. We note that to achieve our security notion we
will require that the original scheme be not only semantically secure but alsoanonymous[BBDP01], i.e. the
ciphertexts do not leak information about the public key being used; this is similar to the anonymity required
in the adaptively secure constructions of [BBN+09].

Our standard-model constructions are based on the scheme of Raghunathanet al. [RSV13a], namely we
apply at-wiseδ-dependent permutation to the message and random coins, and then apply alossy trapdoor
function. However, in order to prove security we cannot use their analysis directly. Roughly, the main
technical lemma of [RSV13a] shows that applying at-wiseδ-dependent permutation and then a lossy func-
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tion is a good extractor with high probability forall sources simultaneouslyin some family of high-entropy
sources, where the family is of bounded size. In our application, it turns out that the family of sources is
much too large to be handled by the theorems of [RSV13a] and so we prove stronger versions of their techni-
cal lemmas relying on the particular structure of the sources we encounter,which will in turn prove security
for our scheme. In addition, we improve on the key length in the CCA scheme ascompared to [RSV13a]
(seeSection 5.3for details).

We also prove that our definition simultaneously generalizes all the previousdefinitions in this line of work,
including the definition of Raghunathanet al. [RSV13a], the (weak) chosen-distribution-attack model and
hedged encryption model of Bellareet al. [BBN+09], and the randomness-dependent message security
model of Birrell et al. [BCPT13]. (These models in turn generalize previous notions such as those of
[MS09,HO10].) Thus, our definition is the strongest achievable definition to date in this line of work.

2 Preliminaries

For a positive integeri we define[i] = {1, . . . , i}. LetS be any set andT be any positive integer; for a vector
v ∈ ST we letv[i] denote the sub-vector inSi given byv[i] = (v1, . . . , vi). For vectorsm ∈ ({0, 1}n)T , r ∈
({0, 1}ℓ)T , we let(mr)i = (mi, ri) and(mr)[i] = ((m1, r1), . . . , (mi, ri)). For stringsmi, ri ∈ {0, 1}∗ we
letmi ‖ ri or simplymiri denote their concatenation.

We let bold-faced variables such asx denote random variables, while normal variables such asx denote a
particular value thatx may take. We letsupp(x) denote its support,i.e. the set of elements on whichx has
non-zero probability. All logarithms are base2 unless otherwise stated. The min-entropy function is defined
asH∞(x) = minx∈supp(x) log(1/Pr[x = x]). Let m be a random variable overST , then we say thatm
is aκ source if for alli ∈ [T ], H∞(mi) ≥ κ, and we say thatm is aκ-block-wise-source if for alli ∈
[T ],m[i−1] ∈ supp(m[i−1]) it holds thatH∞(mi | m[i−1] = m[i−1]) ≥ κ. The statistical distance between
two random variablesX andY over a finite domainΩ is∆(X,Y) = 1

2

∑
ω∈Ω |Pr[X = ω]− Pr[Y = ω]|.

A functionε : N→ [0, 1] is negligible ifε(k) = k−ω(1) and is overwhelming ifε(k) = 1− k−ω(1).

We will use the following standard lemma [Vad12, Lemma 6.30]:

Lemma 2.1(Chain rule for min-entropy). Letx,y be random jointly distributed random variables, and such
that |supp(x)| = s. Then for allt ≥ 0, it holds thatPry←Ry[H∞(x | y = y) < H∞(x)−⌊log s⌋−t] ≤ 2−t.

2.1 Lossy trapdoor functions

Lossy trapdoor functions were first defined in [PW11] and have found numerous applications in the recent
years. They consists of two families of functions: functions in one family areinjective and can be efficiently
inverted using a trapdoor while functions in the other family are ”lossy” (i.e. the size of their image is
significantly smaller than the size of their domain). One requires that the description of randomly chosen
function from the family of injective functions and from the family of lossy functions are computationally
indistinguishable.

Definition 2.2. A family of (n, a)-lossy trapdoor functions is defined by two probabilistic polynomial-time
algorithmsLGen0, LGen1 satisfying the following properties:

1. LGen0(1k) samples a circuitf0 takingn = n(k) bits of input and producingn′ ≥ n bits of output.
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We identifyf0 with the function{0, 1}n → {0, 1}n′
that it computes. It holds that the image off0

has size at most2a.

2. LGen1(1k) samples a pair of circuits(f1, g1) wheref1 takesn bits of input and producesn′ bits of
output, whileg1 takesn′ bits of input and producesn bits of output, and for allx ∈ {0, 1}n, it holds
thatg1(f1(x)) = x.

3. The two random variablesf0 andf1 are computationally indistinguishable.

The notion ofR-lossy trapdoor function family was introduced by Raghunathan, Segev and Vadhan in
[RSV13a]. It generalizes the previous notion in such a way that instead of having only two branches (a lossy
branch and an injective branch) they have many branches, some of which are injective and some of which are
lossy. To achieve this property, theR-lossy trapdoor functions take as input an additional argument, called a
tag, which is a binary string of appropriate length with no particular structure. The tags are partitioned into
two subsets: injective tags, and lossy tags.

The partitioning of the tags is defined by a binary relationR ⊂ K × T and the key-generation algorithm
receives as input an initializationK ∈ K that partitions the set of tagsT so thatt ∈ T is lossy if and only if
(K, t) ∈ R.

Definition 2.3. A family of R-(n, a)-lossy trapdoor functions is defined by a probabilistic polynomial-time
algorithmsKGen which takes as input a keyK ∈ K and samples a pair of circuits(f, g) wheref takesn
bits of input and a tagt ∈ T and producesn′ bits of output, whileg takesn′ bits of input and a tagt ∈ T
and producesn bits of output, such that:

1. if (K, t) ∈ R, f(·, t) has size at most2a.

2. if (K, t) /∈ R, it holds thatg(f(x, t), t) = x for all x ∈ {0, 1}n.

3. For every polynomial time adversaryA, there is a negligible functionnegl(k) such that

AdvKGen(A, k) := |Pr[R-LossyKGen0 (A, k) = 1]− Pr[R-LossyKGen1 (A, k) = 1]| ≤ negl(k).

where forb ∈ {0, 1}, the random experimentR-LossyKGenb (A, k) is define as follows:

R-LossyKGenb (A, k) := (K0,K1, state)
R←− A1(1

k)

(f, g)
R←− KGen(1k,Kb)

b′
R←− A2(f, state)

Output b′

These functions turn out to be particularly suitable to constructing encryption schemes secure against
chosen-ciphertext attacks where an adversary is given access to a decryption oracle. In this scenario, the
security reduction must be able to answer the decryption queries of the adversary but should not be able to
obtain any unknown information from the challenge ciphertext. An approach to reach this security level is to
(secretly) partition the ciphertext space into two subsets so that in the security proof the decryption queries
corresponds to injective tags while the challenge ciphertext corresponds to a lossy tag (with non-negligible
probability).

The notion of admissible hash functions, introduced to prove the full security of some identity-based en-
cryption schemes, was introduced by Boneh and Boyen in [BB04] to realize this secret partition.
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Let ν ∈ N. For K ∈ {0, 1,⊥}ν , we define the partitioning functionPK : {0, 1}ν → {Lossy, Inj} as
follows:

PK(y) :=

{
Lossy if Ki ∈ {yi,⊥}, ∀i ∈ {1, . . . , ν}

Inj otherwise.

For anyu < ν, we denoteKu,ν the uniform distribution over{0, 1,⊥}ν conditioned on exactlyu position
having⊥ values (such that for anyK sampled according toKu,ν , #{y ∈ {0, 1}ν , PK(y) = Lossy} = 2u).

Definition 2.4 (Admissible hash functions). LetH = {Hk}k∈N be a hash-function ensemble where each
h ∈ Hk is a polynomial-time computableh : {0, 1}n(k) → {0, 1}ν(k). We say thatH is an admissi-
ble hash-function ensemble if for everyh ∈ H, there exists an efficiently recognizable setUnlikelyh ⊂
∪q∈N({0, 1}n(k))q of string tuples such that the following two properties hold:

1. For every PPT algorithmA, there exists a negligible functionnegl(k) satisfying

Pr[(x0, . . . , xq) ∈ Unlikelyh] ≤ negl(k)

whereh
R←− Hk and(x0, . . . , xq)

R←− A(1k, h).

2. For every polynomialq = q(k), there exists a polynomialΓ = Γ(k) and an efficiently computable
u = u(k) such that, for everyh ∈ Hk and(x0, . . . , xq(k)) /∈ Unlikelyh with x0 /∈ {x1, . . . , xq}, we
have

Pr
K

R←−Ku,ν

[PK(h(x0)) = Lossy ∧ PK(h(x1)) = · · · = PK(h(xq(k))) = Inj] ≥ 1

Γ(k)
.

Boneh and Boyen [BB04] proved that the existence of admissible hash function is implied by collision-
resistant hash functions.

We will use a collection ofR-lossy trapdoor function in conjunction with admissible hash function where
the relationR = RBM is defined by a keyK ∈ {0, 1,⊥}ν such that fort ∈ {0, 1}ν ∈ RBM if and only if
Ki ∈ {ti,⊥}, ∀i ∈ {1, . . . , ν} (i.e. PK(ti) = Lossy).

2.2 t-wiseδ-dependent permutations

Definition 2.5. Letπ be a random variable over permutations{0, 1}n → {0, 1}n. We say thatπ is at-wise
δ-dependent permutations if for allx1, . . . , xt ∈ {0, 1}n, it holds that

∆((π(x1), . . . ,π(xt)), (π
∗(x1), . . . ,π

∗(xt))) ≤ δ

whereπ∗ is a truly random permutation{0, 1}n → {0, 1}n.

There exist efficiently constructiblet-wiseδ-dependent permutations with key lengthO(nt+log(1/δ)) and
that are efficiently computable and invertible given the key [KNR09].
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2.3 Crooked leftover hash lemma

We will strengthen the following “average-case” crooked leftover hashlemma proved by [RSV13a]:

Lemma 2.6 ( [RSV13a]). Let f : {0, 1}n → {0, 1}n′
be (n, a)-lossy andπ be a t-wise δ-dependent

permutation over{0, 1}n satisfyingt ≥ 8 even andδ ≤ 2−nt. For all ε ∈ (0, 1) and random variables
(x,y) over{0, 1}m × {0, 1}n such that for allx ∈ supp(x) it holds that

H∞(y | x = x) ≥ a+ 2 log(1/ε) + 2 log t+Θ(1)

Then with probability≥ 1− 2a−t+1/ε over the choice ofπ
R← π it holds that

∆((x, f(π(y))), (x, f(un))) ≤ ε

3 Strong Chosen Distribution Attack Security

An intuitive view of and motivation for our definition were presented inSection 1.1. We now proceed for-
mally to define our model. Define the “real-or-random” oracleRoR as follows. The oracle is parameterized
by pk, mode ∈ {real, random}, and an integerT given in unary. TheRoR oracle takes input two interactive
algorithmsMesg andRand. (In our security game,Rand will be fixed once and for all at the start, while the
adversary may query many differentMesg during the course of the security game.)

After executingMesg andRand interactively with each other, the output ofRand is a vector ofT random bit
stringsr1, . . . , rT and the output ofMesg is a vector ofT messagesm1, . . . ,mT and an additional “hint”
stringξ.

• RoRpk(Mesg;Rand, random, 1T ) runsMesg andRand interactively with each other to determineξ
(it throws away all the other outputs). It then samples(m′i, r

′
i)i∈[T ] uniformly and independently and

outputs(ξ,Encpk(m′1; r
′
1), . . . ,Encpk(m

′
T ; r
′
T )).

• RoRpk(Mesg;Rand, real, 1T ) executesMesg andRand interactively with each other. Letξ,m1, . . . ,mT

be the output ofMesg andr1, . . . , rT be the output ofRand. Output(ξ,Encpk(m1; r1), . . . ,Encpk(mT ; rT )).

Definition 3.1 (ROR-SCDA game). Let (Gen,Enc,Dec) be a public-key encryption system with security
parameterk. An adversary in theROR-SCDA game is defined by a sequence of integersTk = poly(k)
and tuples of circuitsAk = (Randk,Revk,Queryk,Distk) for k ∈ N. The game is defined as follows for
mode ∈ {real, random}:

ROR-SCDAmode
A (k) game

(pk, sk)
R← Gen(1k)

τ = Query
RoRpk(·;Randk,mode,Tk)
k (Revk(pk))
OutputDistk(τ, pk)

AdvAROR-SCDA(k) = |Pr[ROR-SCDAreal
A (k) = 1]− Pr[ROR-SCDArandom

A (k) = 1]|
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MappingDefinition 3.1onto the description ofSection 1.1, first theRandk algorithm is fixed without know-
ing pk (infiltration), and thenQueryk is given some information about the public keyRevk(pk) (revelation).
Queryk can make queries to theRoR oracle and output some stateτ (query phase). FinallyDistk getsτ and
the entire public keypk and outputs a bit (distinguishing phase).

DefineS(Rand) =
⋃

Mesg supp(〈Mesg,Rand〉), namely the set of transcripts thatRand could possibly
produce when interacting with an arbitraryMesg. For σ ∈ S(Mesg,Rand), definerσ to be the random
variable over vectors of random coins distributed according to whatRand would generate conditioned on
transcriptσ.

Since security is impossible if we allow arbitrary attackers in theROR-SCDA game, we will restrict our
attention to certain profiles of actors, which will be constrained along the linesdescribed inSection 1.1.

Definition 3.2. An attackerA = (Rand,Rev,Query,Dist) has a(block-wise) attack profileΠ = (α, β, κ)
for a scheme(Gen,Enc,Dec) if the following hold. Letρ denote the outputRev and letσ denote the
transcript of communication betweenMesg andRand. Let p denote the length ofρ andc denote the length
of σ (we assumew.l.o.g. that these lengths are the same over all possible random coins). It must hold that:

1. H∞(pk)−min(p, c) ≥ α.

2. If p > H∞(pk)− α then for allσ ∈ S(Rand), it must hold thatrσ is a (block-wise)β-source.

3. For anyMesg queried byQuery on inputρ = Rev(pk), let (ξ,m, r) be the outputs ofMesg andRand.
Viewing (m, r) as a vector where(m, r)i = (mi, ri), it holds that(m, r) is a (block-wise)κ-source
conditioned onρ, ξ for all ξ and furthermore for everym in the support ofm, it holds thatmi 6= mj

for all i 6= j ∈ [T ].

We say thatA has profileΠ with probability1−η if the second condition holds for allMesg with probability
1− η over the choice ofσ and the third condition holds for allMesg with probability1− η over the choice
of ξ. (A has profileΠ if it has profileΠ with probability1.)

Definition 3.3 (ROR-SCDA security). A scheme(Gen,Enc,Dec) is defined to be(Π(k), η(k), ε(k, s))-
ROR-SCDA-(block-wise)-secure ifAdvAROR-SCDA(k) ≤ ε(k, s) for all adversaries(Ak)k∈N with circuit
sizes and having attack profileΠ(k) with probability 1 − η(k). It is simply Π(k)-ROR-SCDA-(block-
wise)-secure if for any negligibleη(k) it is (Π(k), η(k), ε(k, s))-ROR-SCDA-(block-wise)-secure where
ε(k, kc) is negligible ink for any constantc.

Definition 3.4 (Chosen ciphertext security). TheROR-SCDCA game (strong chosen distribution and chosen
ciphertext security) is identical to theROR-SCDA game except the adversary (in any of its sub-algorithms) is
also allowed access to aDec′ oracle that answers all decryption queries except for the ciphertexts previously
output byRoR. (Π, η, ε)-ROR-SCDCA-(block-wise)-security is defined as(Π, η, ε)-ROR-SCDA-(block-
wise)-security except using theROR-SCDCA security game.

Because of the following proposition, when constructing schemes we aim to prove that they are secure for
profiles withα, β, κ as small as possible andη as large as possible.

Proposition 3.5. If a schemeE is (Π, η, ε)-ROR-SCDA-(block-wise)-secure for some profileΠ = (α, β, κ),
then it is also(Π′, η′, ε)-secure for anyΠ′ = (α′, β′, κ′) whereα′ ≥ α, β′ ≥ β, κ′ ≥ κ andη′ ≤ η.
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4 Relation with other security notions

We now prove that(Π, η, ε)-security implies previous notions of security. To make our results as strongas
possible, in the following theorems we setΠ = (α, β, κ) whereα, β, κ are as large as possible andη is as
small as possible, sinceProposition 3.5implies that security for smaller values ofα, β, κ and larger values
of η is even stronger.

4.1 Indistinguishability under CPA attacks

In [GM84], Goldwasser and Micali formalized the notion ofindistinguishabilityfor public-key encryption
schemes which asserts that it must be infeasible for a probabilistic polynomial-time adversary to compute
any information about a plaintext from its ciphertext and the corresponding public encryption key. This
security notion can be formalized with the followingreal-or-randomdefinition:

Definition 4.1. For everys : N → N and ε : N × N → [0, 1], a public-key encryption schemeE =
(Gen,Enc,Dec) is ε(·, ·)-IND-CPA secure if for every adversaryA = (A1,A2) a pair of circuits of size
at mosts(k), the ensembles{IND-CPAEreal(A, k)}k∈N and{IND-CPAErandom(A, k)}k∈N areε(k, s(k))-close
where

IND-CPAEmode(A, k) := (pk, sk)
R←− Gen(1k)

r
R←− R

(m, state)
R←− A1(1

k, pk)
if mode = real, C ← Encpk(m, r)

if mode = random,m′
R←−M, C ← Encpk(m

′, r)

b
R←− A2(C, state)

Output b

Lemma 4.2. Let s : N → N andε : N × N → [0, 1]. LetE = (Gen,Enc,Dec) be a public-key encryption
system with security parameterk, message spaceM = {0, 1}n(k) and randomness spaceR = {0, 1}ℓ(k). If
E is (Π(·), 0, ε(·, ·))-ROR-SCDA-(block-wise)-secure withΠ(k) = (H∞(pk), ℓ(k), ℓ(k)) thenE is ε(·, ·)-
IND-CPA-secure.

Proof. Assume for contradiction that there exists an adversaryB = (B1,B2) thatε-breaks theIND-CPA-
security ofE .

We will construct an adversaryA = (Rand,Rev,Query,Dist) for theROR-SCDA game withT = 1 as
follows:

• Rand generates uniform random bits always.

• Rev is the identity function.

• Query getspk and runsB1 on pk; B1 outputs a messagem and some statestate. Query makes a
singleRoR query whereMesg outputs the fixed messagem. Query outputs the resulting ciphertextC
as well asstate.

• Dist outputsB2(C, state).

9



Since there is no communication betweenMesg andRand, it holds thatc = 0. ThereforeH∞(pk) −
min(p, c) = H∞(pk). Moreover, the randomness output byRand is a ℓ-source and the pair(m, r) is
a ℓ-source conditioned onρ (there is no hintξ). Therefore, the adversaryA satisfies the attack profile
(H∞(pk), ℓ, ℓ) = Π.

Finally, the advantage ofA in theROR-SCDA game is identical to the advantage ofB in the IND-CPA
game.

4.2 (Weak) CDA Security

In a setting where randomness is bad, the previous notion is no longer achievable. In [BBN+09], Bellare,
Brakerski, Naor, Ristenpart, Segev, Shacham and Yilek asked that security is guaranteed as long as the
joint distribution of the message and randomness has sufficiently high min-entropy and called this notion
Indistinguishability under a Chosen Distribution Attack(CDA).

We work again in the “real-or-random” model. The adversary is given access to an oracleRoR that is
parametrized bypk,mode ∈ {real, random}, and a sampling algorithmMR. Then we defineRoRpk(MR;mode)
as follows: (m, r) are distributions over vectors of lengthT = poly(k) sampled according toMR. If
mode = real then output(Encpk(m1; r1), . . . ,Encpk(mT ; rT )). Otherwise, sample(m′i, r

′
i)i∈[T ] uniformly

and independently and output(Encpk(m
′
1; r
′
1), . . . ,Encpk(m

′
T ; r
′
T )).

Definition 4.3. Let (Gen,Enc,Dec) be a public-key encryption system with security parameterk. An ad-
versary in theROR-WCDA game is a pair of algorithmsA = (Query,Dist). The game is defined as follows
for mode ∈ {real, random}:

ROR-WCDAmode
A (k) game

(pk, sk)
R← Gen(1k)

τ = Query
RoRpk(·;mode)
k (1k)

OutputDist(τ, pk)

AdvAROR-WCDA(k) = |Pr[ROR-WCDAreal
A (k) = 1]− Pr[ROR-WCDArandom

A (k) = 1]|

Definition 4.4 (ROR-WCDA security). A scheme(Gen,Enc,Dec) is (κ(·), ε(·, ·))-ROR-WCDA-(block-
wise)-secure ifAdvAROR-WCDA(k) ≤ ε(k, s) for all adversaries(Ak)k∈N consisting ofAk = (Queryk,Distk)
where each algorithm is a circuit of size at mosts and for anyMR queried byQueryk, the corresponding
distribution(m, r) is a (block-wise)κ(k)-source and for everym in the support, all the messages inm are
distinct.

Lemma 4.5. Let s, κ : N → N and ε : N × N → [0, 1]. Let E = (Gen,Enc,Dec) be a public-key
encryption system with security parameterk, message spaceM = {0, 1}n(k) and randomness spaceR =
{0, 1}ℓ(k). If E is (Π(·), 0, ε(·, ·))-ROR-SCDA-(block-wise)-secure withΠ(k) = (H∞(pk), ℓ(k), κ(k)) then
E is (κ(·), ε(·, ·))-ROR-WCDA-(block-wise)-secure.

Proof. Assume for contradiction that there exists an adversaryB = (Query′,Dist′) thatε-breaks theROR-WCDA-
security ofE . Suppose thatQuery′ makes queriesMR that sample vectors of lengthT = poly(k).

We will construct an adversaryA = (Rand,Rev,Query,Dist) for theROR-SCDA game with the sameT as
Query′ as follows:
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• Rand receives inputr fromMesg and outputsr.

• Rev is a constant function, revealing nothing about the public key.

• Query runsQuery′ and for each queryMR made byQuery′, Query constructsMesg that samples
fromMR to produce(m, r). Mesg outputsm and sendsr to Rand. Query forwards the response
of the oracle back toQuery′ and continues. WhenQuery′ is done,Query outputs whateverQuery′

outputs.

• Dist runsDist′ and outputs whatever it outputs.

Observe thatp = |ρ| = 0 sinceRev reveals nothing. ThereforeH∞(pk) − min(p(k), c(k)) = H∞(pk).
Moreover, sincep = 0, the second entropy condition ofDefinition 3.2is vacuously satisfied. Finally, the dis-
tribution of message/randomness output byMesg andRand is the distribution output byDist and is therefore
aκ(k)-(block-wise)-source. Therefore, the adversaryA satisfies the attack profile(H∞(pk), ℓ(k), ℓ(k)) =
Π(k).

Finally, the advantage ofA in theROR-SCDA game is identical to the advantage ofB in theROR-WCDA

game.

4.3 Randomness-Dependent Message Security

In [BCPT13], Birell, Chung, Pass and Telang formalizedrandomness-dependent message securityof en-
cryption schemes. In this setting, the message to be encrypted may be selectedas a function (chosen by the
adversary) of the randomness used to encrypt this particular message.They proposed the following notion
of bounded strong randomness-dependent message BSRDM) security:

Definition 4.6. For everys, a, q : N → N andε : N × N → [0, 1], a public-key encryption schemeE =
(Gen,Enc,Dec) is a-boundedq-strongε-BSRDM-CPA-secure if for every adversaryA = (A1,A2,A3) a
triple of a circuits of size at mosts(k), the ensembles{BSRDM-CPAEreal(A, k)}k∈N and{BSRDM-CPAErandom(A, k)}k∈N
areε(k, t(k))-close where

BSRDM-CPAEmode(A, k) := (pk, sk)
R←− Gen(1k)

(f, state1)
R←− A1(1

k, pk)

r
R←− {0, 1}ℓ(k)

(m, state2)
R←− A2(f(r), state1)

if mode = real, C ← Encpk(m, r)

if mode = random,m′
R←−M, C ← Encpk(m

′, r)

b∗
R←− A3(C, state2)

Output b∗

Here,f : {0, 1}ℓ(k) → {0, 1}q(k) is a function computed by a circuit of size at mosta(k).

Lemma 4.7. Let s, a, q : N → N and ε : N × N → [0, 1]. Let E = (Gen,Enc,Dec) be a public-key
encryption system with security parameterk, message spaceM = {0, 1}n(k) and random spaceR =
{0, 1}ℓ(k). If E is (Π(·), η(·), ε(·, ·))-ROR-SCDA-(block-wise)-secure withΠ(k) = (H∞(pk) − a− q, ℓ −
q − log(1/η), ℓ− q − log(1/η)) thenE is a-boundedq-strongε(·, ·)-BSRDM-CPA-secure.
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Proof. Assume for contradiction that there exists an adversaryB = (B1,B2,B3) thatε-breaks theBSRDM-CPA-
security ofE with leakage functionsf : {0, 1}ℓ → {0, 1}q computed by a circuit of size at mosta(k).

We will construct an adversaryA = (Rand,Rev,Query,Dist) with T = 1 in theROR-SCDA game as
follows:

• Rand expects to get a description of a circuitf . It samplesr uniformly, sendsf(r) back toMesg, and
outputsr.

• Rev is the identity function.

• Query receivespk and runsB1 onpk; B1 outputs a leakage functionf and some statestate1. Query
makes aRoR queryMesg, which contains a description ofB2, f, state1 and does the following:

1. Mesg sendsf to Rand and gets backf(r).

2. Mesg then runsB2(f(r), state1) which produces a messagem and a statestate2.

3. Mesg outputsm andξ = state2.

Query receives from theRoR oracle a ciphertextC andξ.

• Dist runsB3(C, ξ) and outputs whatever it outputs.

Observe that the communication betweenMesg,Rand is c(k) = a(k) + q(k) (the size of the description of
f and the size of its output). Observe thatp = |pk| and thereforeH∞(pk)−min(p(k), c(k)) = H∞(pk)−
a(k) − q(k). Moreover, becausef shrinks fromℓ to q bits, with probability1 − η it holds thatrσ is a
ℓ− q− log(1/η)-source, and with probability1− η the pair(m, r) is aℓ− q− log(1/η)-source conditioned
onρ, ξ. Therefore, the adversaryA satisfies the attack profile(H∞(pk)− a− q, ℓ− q − log(1/η), ℓ− q −
log(1/η)) = Π(k) with probability1− η.

Finally, the advantage ofA in theROR-SCDA game is identical to the advantage ofB in theBSRDM-CPA
game.

4.4 RSV Security

We use the sameRoR oracle as inSection 4.2. We consider only the single-query case as this is without loss
of generality for the RSV notion of adaptive security [RSV13a].

Definition 4.8. Let (Gen,Enc,Dec) be a public-key encryption system with security parameterk. A p-
bounded adversary in theROR-RSV game is a pair of algorithmsA = (Query,Dist) and an associated
family of distributionsF of size|F| ≤ 2p such that the single queryMR made byQuery satisfiesMR ∈
F . The game is defined as follows formode ∈ {real, random}:

ROR-RSVmode
A (k) game

(pk, sk)
R← Gen(1k)

τ = Query
RoRpk(·;mode)
k (pk)

OutputDist(τ, pk)

AdvAROR-RSV(k) = |Pr[ROR-RSVreal
A (k) = 1]− Pr[ROR-RSVrandom

A (k) = 1]|
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Definition 4.9 (ROR-RSV security). A scheme(Gen,Enc,Dec) is (κ(·), ε(·, ·))-ROR-RSV-(block-wise)-
secure againstp-bounded adversaries ifAdvAROR-RSV(k) ≤ ε(k, s) for all p-bounded adversaries(Ak)k∈N
consisting ofAk = (Queryk,Distk) where each algorithm is a circuit of size at mosts, andQueryk makes a
single query whose corresponding distribution(m, r) is a (block-wise)κ(k)-source and for everym in the
support, all the messages inm are distinct.

Remark 4.10. We comment that in fact the notion of “adaptivity” used in [RSV13a] is different than the
notion of adaptive security in the WCDA model or hedged encryption models of [BBN+09]. Although the
RSV notion allows the adversary to change its query distribution in each query based on the answers to
previous queries, all queries must come from thesamefamily of distributionsF of size |F| ≤ 2p. This
greatly limits how truly adaptive the reduction may be. In particular, adaptive security in the RSVdoes not
imply adaptive security in the WCDA model or hedged encryption model. In order to do so, one would
need to allow each adaptive query to be from adifferentfamily of distributions of size2p. Generalizing the
definition in this direction (namely by bounding the size of the family of distributionsthat each query comes
from but allowing different families for each query) is cumbersome, as it raises the question of how the
definition of the family of distributions may depend on theRoR answers previously seen by the adversary.
Therefore, since our SCDA definition subsumes both the adaptive WCDA /hedged models as well as the
RSV notion of security, as a nice side-effect it also offers a clean alternative generalization of the RSV
security definition to be “truly” adaptive.

Lemma 4.11.Lets, κ : N→ N andε : N×N→ [0, 1]. LetE = (Gen,Enc,Dec) be a public-key encryption
system with security parameterk, message spaceM = {0, 1}n(k) and randomness spaceR = {0, 1}ℓ(k).
If E is (Π(·), 0, ε(·, ·))-ROR-SCDA-(block-wise)-secure withΠ(k) = (H∞(pk) − p(k), ℓ(k), κ(k)) thenE
is (κ(·), ε(·, ·))-ROR-RSV-(block-wise)-secure againstp(k)-bounded adversaries.

Proof. Assume for contradiction that there exists ap(k)-bounded adversaryB = (Query′,Dist′) that ε-
breaks theROR-RSV-security ofE . Suppose thatQuery′ makes queriesMR that sample vectors of length
T = poly(k).

We will construct an adversaryA = (Rand,Rev,Query,Dist) for theROR-SCDA game with the sameT as
Query′ as follows:

• Rand receives inputr fromMesg and outputsr.

• Rev runsQuery′ and outputs the choice ofMR to query (this requires onlyp bits to describe).

• Query queriesRoR on theMR that is computed byRev. It forwards this response toQuery′ and
outputs whateverQuery′ outputs.

• Dist runsDist′ and outputs whatever it outputs.

Observe thatp = |ρ| is the same as thep-bound on theROR-RSV adversary. ThereforeH∞(pk) −
min(p(k), c(k)) ≥ H∞(pk) − p(k). Moreover, the second entropy condition ofDefinition 3.2is vacu-
ously satisfied. Finally, the distribution of message/randomness output byMesg andRand is the distribution
output byDist and is therefore aκ(k)-(block-wise)-source. Therefore, the adversaryA satisfies the attack
profile (H∞(pk)− p, ℓ(k), κ(k)) = Π(k).

Finally, the advantage ofA in theROR-SCDA game is identical to the advantage ofB in theROR-RSV
game.
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5 Constructions

5.1 Standard model

We now show that, using the high moment Crooked Leftover Hash Lemma of [RSV13a] and lossy trapdoor
functions, we can construct aROR-SCDA-blockwise-secure scheme in the standard model. The restriction
to block-sources is standard in deterministic encryption and security against chosen distribution attacks
(e.g.[BFOR08,BFO08,BBN+09,BS11,RSV13a]) and was recently shown by Wichs [Wic13] to be inherent
to our techniques.

5.1.1 Main tool

We start by giving our main technical theorem, which is a generalization of Theorem 4.6 from [RSV13a].

Theorem 5.1. For any ε, η ∈ (0, 1), for any(n + ℓ, a)-lossy functionf : {0, 1}n+ℓ → {0, 1}n′
, and for

π a t-wiseδ-dependent permutation over{0, 1}n+ℓ wheret = b+ n+ a+ log(T/ε) + log(T/η) + 1 and
δ ≤ 2−(n+ℓ)t, the following holds:
LetR = {r} be a family ofκ block-wise-sources of size|R| ≤ 2b wherer = (r1, . . . , rT ) and eachri is
over{0, 1}ℓ, and where

κ ≥ a+ 2 log(1/ε) + 2 log T + 2 log t+Θ(1)

Then with probability at least1 − η over the choice ofπ ∈ π, it holds that for all r ∈ R and all
m1, . . . ,mT ∈ {0, 1}n that:

∆
(
(f(π(m1r1)), . . . , f(π(mT rT ))), f(u

(1)
n+ℓ), . . . , f(u

(T )
n+ℓ)

)
≤ ε

where theu(i)
n+ℓ are independant uniform strings over{0, 1}n+ℓ.

We first remark that a naive application of Theorem 4.6 of [RSV13a] to the hypotheses ofTheorem 5.1
would result in a useless bound, since the family of distributions is of size2nT+b which is much larger
than whatt-wiseδ-dependent permutations can handle for thet ≪ nT . We are nevertheless able to prove
our result because our family of distributions, while large, has a very specific form, and we can apply the
analysis of [RSV13a] more carefully to take advantage of this special form.

To proveTheorem 5.1it is useful to define the following hybrids for eachi ∈ [T ]: (similar to those defined
in the proof of Theorem 4.6 of [RSV13a]):

Hi(m, r) = (m1r1, . . . ,mi−1ri−1, f(u
(i)
n+ℓ), . . . , f(u

(T )
n+ℓ)) (5.1)

Gi(m, r) = (m1r1, . . . ,mi−1ri−1, f(π(miri)), . . . , f(π(mT rT ))) (5.2)

LetHi(m, r)[i] (respectivelyGi(m, r)[i]) denote the firsti components of the vector.

The main ingredient in the proof ofTheorem 5.1is the following lemma:

Lemma 5.2. Given the hypotheses ofTheorem 5.1, for anyi ∈ [T ] it holds that

Pr[∃m ∈ {0, 1}in, r ∈ R s.t. ∆(Hi(m, r)[i], Gi(m, r)[i]) > ε/T ] < γ/T
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Proof. Observe that the firsti− 1 components of both distributions are identical, and also that in both cases
thei’th component is independent ofm1, . . . ,mi−1. Therefore we have that:

Pr[∃m ∈ {0, 1}in, r ∈ R s.t. ∆(Hi(m, r)[i], Gi(m, r)[i]) > ε/T ]

= Pr[∃mi ∈ {0, 1}n, r ∈ R s.t.

∆((r1, . . . , ri−1, f(π(miri))), (r1, . . . , ri−1, f(un+ℓ))) > ε/T ]

≤
∑

mi∈{0,1}n,r∈R

Pr[∆((r1, . . . , ri−1, f(π(miri))), (r1, . . . , ri−1, f(un+ℓ))) > ε/T ]

Now applyingLemma 2.6, we see that each term in the sum is bounded by2−n−bγ/T , and taking the sum
we get a bound ofγ/T .

Proof ofTheorem 5.1. By definition, proving the theorem is equivalent to proving that

Pr
π←Rπ

[∃m ∈ {0, 1}nT , r ∈ R s.t. ∆(H1(m, r), G1(m, r)) > ε] ≤ η

Clearly we cannot take a union bound over all them, r since there are too many possibilities ofm for us to
handle. However we can prove that for each intermediate hybrid we needto take only a union bound over a
singlemi and this will allow us to prove the theorem.

Our main claim is the following, which we prove by induction starting ati = T .

Claim 5.3. For eachi ∈ [T ], it holds that

Pr
π←Rπ

[∃m ∈ {0, 1}nT , r ∈ R s.t. ∆(Hi(m, r), Gi(m, r)) > ε(T−i+1)
T ] ≤ η(T−i+1)

T

The base casei = T is justLemma 5.2for the setting ofi = T . The inductive case is proved by splitting up
the expression into two parts:

Pr
π←Rπ

[∃m ∈ {0, 1}nT , r ∈ R s.t. ∆(Hi(m, r), Gi(m, r)) > ε(T−i+1)
T ]

= Pr[∃m ∈ {0, 1}in, r ∈ R s.t.

∆(((mr)[i−1], f(π(miri)), f(u
(i+1)
n+ℓ ), . . . f(u

(T )
n+ℓ)),

((mr)[i−1], f(u
(i)
n+ℓ), . . . , f(u

(T )
n+ℓ))) >

ε
T ]

+ Pr[∃m ∈ {0, 1}nT , r ∈ R s.t.

∆(((mr)[i−1], f(π(miri)), f(u
(i+1)
n+ℓ ), . . . f(u

(T )
n+ℓ)),

((mr)[i−1], f(π(miri)), . . . , f(π(mT rT )))) >
ε(T−i)

T ] (5.3)

≤ η
T + η(T−i)

T

The first term ofEquation 5.3is bounded byLemma 5.2because the coordinates after thei’th coordinate
are identical in both distributions and independent of the previous coordinates. The second term is by the
inductive hypothesis and the fact that the distance at thei’th coordinate cannot increase by applying the
functionf(π(·)) to the same random variablemiri in thei’th coordinate in both distributions.
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Fix any polynomiala(k), b(k). Fix any polynomialsn(k) (message length) andℓ(k) (randomness
length) such thatℓ(k) = ω(a(k)) and alsoa(k) = (n(k) + ℓ(k))Ω(1). Fix a family of (n + ℓ, a)-lossy
trapdoor functions. Fix anyT = kω(1) and sett = b + n + a + 2 log T + ω(log k). We define the
following public-key encryption:

Key generation : Gen(1k) runs the injective generation function for a(n + ℓ, a)-lossy trapdoor func-
tion family to generate(f, f−1). Gen(1k) also samplesπ ←R π from a t-wise δ-dependent
permutation over{0, 1}n+ℓ. The public key ispk = (f, π) and the private key issk = f−1.

Encryption : Encpk(m; r) = f(π(m‖r)) wherer ∈ {0, 1}ℓ(k).

Decryption : Decsk(c) = π−1(f−1(c))[n].

Algorithm 5.4. ROR-SCDA encryption in standard model

5.1.2 Definition and security of our scheme

Our scheme is essentially the same as the scheme of [RSV13a] with a longer key size, which seems necessary
to achieve our stronger notion of security. Our scheme is defined inAlgorithm 5.4.

Theorem 5.5. Fix any κ(k) ≥ a + 2 log t + ω(log k). The encryption system inAlgorithm 5.4is Π-
ROR-SCDA-blockwise-secure forΠ = (H∞(pk)− b, κ, κ).

Proof. We in fact prove that the scheme satisfies a somewhat stronger notion of security. Using this stronger
notion aids in our proof as it will allow us to reduce from the multi-query adaptive case to the single-query
non-adaptive case.

Intuitively, we will require the scheme to be secure even if the adversary seesf for free (wherepk = (f, π))
and even if we require that the ciphertexts are indistinguishable from random ciphertexts encrypted by(f, π′)
for an independent randomπ′ (rather than being encrypted by the same(f, π). This stronger requirement is
similar to anonymity (or key-privacy) [BBDP01] and is necessary to show that no additional information is
leaked about the permutationπ in the adaptive queries.

Formally, we define the oracleRoR′(f,π) as follows:

1. RoR′(f,π)(Mesg;Randk, real, T ) behaves identically toRoR(f,π)(Mesg,Randk, real, T ).

2. RoR′(f,π)(·;Randk, random, T ) behaves identically toRoR(f,π)(·,Randk, random, T ) (i.e. encrypting
uniformly chosen messages and randomness)exceptthat the encryption is performed using(f, π′) for
an independently and randomly chosenπ′ rather than using(f, π).

Definition 5.6 (ROR-SCDA′ game). An adversary in theROR-SCDA game is a sequence of integersTk =
poly(k) and tuples of algorithmsAk = (Randk,Revk,Queryk,Distk). The game is defined as follows for
mode ∈ {real, random}:
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(ROR-SCDA′)mode
A (k) game

(pk = (f, π), sk = f−1)
R← Gen(1k)

τ = Query
RoR′

(f,π)(·;Randk,mode,Tk)

k (f,Revk(pk))
OutputDistk(τ, pk)

AdvAROR-SCDA′(k) = |Pr[(ROR-SCDA′)realA (k) = 1]− Pr[(ROR-SCDA′)randomA (k) = 1]|

First observe that for everyA, there existsA′ of the same computational complexity such that

AdvAROR-SCDA(k) ≤ AdvAROR-SCDA′(k) + AdvA
′

ROR-SCDA′(k) (5.4)

The adversaryA′ emulatesA and for eachRoR query thatAmakes, callsRoR′ with uniformmessage/randomness
distributions and forwards the answers back to the emulatedA. A′ then runs the same distinguisher asA.
The above inequality holds by the triangle inequality, sinceA in gameROR-SCDA′ gets oracle answers
that are either real encryptions of the queried message distributions or else random messages encrypted with
(f, π′), whileA′ is the same as runningA with oracle answers that are either random messages encrypted
with (f, π′) or random messages encrypted with the true(f, π).

Next observe that one can reduce the case of many-queryROR-SCDA′ to the single-query case: consider any
adversaryA that makes at mostq = poly(k) queries to theRoR′ oracle. Consider single-query adversaries
A1, . . . ,Aq where for eachAi, all queries< i are answered according torandom mode and all queries> i
are answered according toreal mode, and thei’th query is sent to the actualRoR′ oracle. Observe that the
queries< i can be answered byAi because we give the query algorithmf for free and so it can sample
messages andπ′ on its own to compute random encryptions. Furthermore, observe thatAi can answer
queries> i because after its last/only query to the actualRoR′ oracle we may push the rest of the execution
of A into the distinguisher, where the adversary has full access topk = (f, π) and so it can compute real
encryptions by itself. Thus it holds that

max
efficientAmakingq queries

AdvAROR-SCDA′(k) ≤ q ·
(

max
efficientA making single query

AdvAROR-SCDA′(k)

)
(5.5)

Therefore fromEquation 5.4andEquation 5.5, to prove theROR-SCDA-security of the scheme it suffices
to show that the advantage of a single-query adversary in theROR-SCDA′ game is negligible.

The remainder of the proof breaks into two cases depending on the profileof the attacker. Our attacker is
a tuple of algorithmsAk = (Randk,Revk,Queryk,Distk), and we have the guarantee thatQueryk makes
exactly one query to theRoR oracle. In fact, we can also assume without loss of generality thatQueryk is
deterministic, since it can push all of its randomness into its single queryMesg. Also recall that the input
to Queryk is a stringρ of lengthp and thatσ denotes the communication betweenMesgk andRandk, and
c = |σ|. We distinguish the following two cases.

If p ≤ b: in this case the input toQueryk can be one of at most2b values, and therefore the output dis-
tribution (ξ,m, r) of the interaction ofMesg,Rand can be one of at most2b possible distributions.
Furthermore, by the third entropy condition ofDefinition 3.2, (m, r) form aκ-source, even when con-
ditioned on the values ofρ, ξ. The theorem follows by considering the following sequence of games:
G0 is just actualROR-SCDA′ security game inreal mode.
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G1 is like G0 exceptLGen0 is used to sample a lossy function instead ofLGen1. G0 andG1 are
indistinguishable because of the indistinguishability of lossy and injective functions sampled from
LGen0 andLGen1.

G2 is like G1 except theRoR oracle is inrandom mode.G1 andG2 are indistinguishable because of
Theorem 5.1: in G1 the distinguisher seesX1 = (f , ξ,π, f(π(m1r1)), . . . , f(π(mT rT ))) while inG2
the distinguisher seesX2 = (f , ξ,π, f(π′(u

(1)
n+ℓ)), . . . , f(π

′(u
(T )
n+ℓ))). Sincep ≤ b, this means there

are at most2b distinct possible inputs to〈Mesgk,Randk〉, (m, r) can be one of at most2b possible
distributions.

Furthermore, with overwhelming probability(m, r) is aκ-block-wise-source, even conditioned on
f, π, ξ. This holds because by the third entropy condition ofDefinition 3.3, (m, r) is aκ-block-wise-
source conditioned onρ, ξ with overwhelming probability overξ, and the only dependence that(f ,π)
have onm, r is throughρ, which is fixed. Therefore we can applyTheorem 5.1where them in the
hypothesis ofTheorem 5.1is empty and ther in its hypothesis is the(m, r) in our game. We deduce
thatX1 has negligible statistical distance to(f , ξ,π, f(un+ℓ)

T ), which is distributed identically to
X2 sinceπ′ is a permutation.

G3 is likeG2 exceptLGen1 is used to sample an injective function instead ofLGen0. Again this follows
by the security of lossy trapdoor functions.

We conclude by noting thatG3 is theROR-SCDA′ security game inrandom mode.

If p > b: in this case, the first entropy condition ofDefinition 3.2implies thatc ≤ b. Furthermore, the
second entropy condition implies thatrσ is a κ-block-wise-source with overwhelming probability
overσ. Security follows from the following sequence of games.G0 is just the actualROR-SCDA′

security game inreal mode.

G1 is like G0 exceptLGen0 is used to sample a lossy function instead ofLGen1. G0 andG1 are
indistinguishable because of the indistinguishability of lossy and injective functions sampled from
LGen0 andLGen1.

G2 is like G1 except theRoR oracle is inrandom mode.G1 andG2 are indistinguishable because of
Theorem 5.1: the view of the adversary inG1 is the tupleX1 = (f , ξ,π, f(π(m1r1)), . . . , f(π(mT rT )))

while the view of the adversary inG2 isX2 = (f , ξ,π, f(π′(u
(1)
n+ℓ)), . . . , f(π

′(u
(T )
n+ℓ))). Sinceπ′ is a

permutation for eachπ′ in its support, it holds thatX2 is distributedidenticallyto (f ,π, f(u(1)
n+ℓ), . . . , f(u

(T )
n+ℓ)).

Suppose now we revealm andσ to the adversary for free (this can only increase statistical distance,
so bounding the distance with this additional revealed information suffices).Since there are at most2b

possible transcriptsσ, rσ can be one of at most2b possible distributions, and due to the second entropy
condition ofDefinition 3.2and the fact thatβ = κ in our attacker profile, it holds that with overwhelm-
ing probability overσ, rσ is aκ-source. Lettingf(π(mr)) denotef(π(m1r1)) . . . f(π(mT rT )), we
want to bound:

∆((f , ξ,π, σ,m, f(π(mrσ))), (f , ξ,π, σ,m, f(un+ℓ)
T )) (5.6)

≤ E(f,ξ,π,σ,m)←R(f ,ξ,π,σ,m)

[
∆
(
f(π(mrσ) | ξ = ξ), f(un+ℓ)

T
)]

(5.7)

≤ E(f,π)←R(f ,π)

[
max
σ,m

∆
(
f(π(mrσ)), f(un+ℓ)

T
)]

(5.8)

We may remove the dependence onξ going fromEquation 5.7to Equation 5.8becauseξ is output by
Mesg, and the only wayMesg can influenceRand is through their communicationσ, and therefore the
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only dependence ofrσ on ξ is throughσ, which is already fixed. Finally, we can applyTheorem 5.1
and our choice oft large enough to say that for eachf , with overwhelming probability over the
choice ofπ ←R π, the statistical distance is negligible for all choices ofσ,m, and therefore the above
expression is negligible.

G3 is likeG2 exceptLGen1 is used to sample an injective function instead ofLGen0. Again this follows
by the security of lossy trapdoor functions.

We conclude by noting thatG3 is just theROR-SCDA′ security game inrandom mode.

5.2 From random oracle

We construct a scheme secure in the random oracle model. We explicitly only treat theROR-SCDA case;
theROR-SCDCA case (with a decryption oracle) is entirely analogous.

Although we would like our construction to work starting with anyIND-CPA scheme in the standard model,
this turns out to be impossible. We will need the starting scheme to be anonymous,i.e. ciphertexts do not
leak information about the public key.

Let ARoRpk(Mesg;mode) for mode ∈ {real, anon} be defined as follows: ifmode = real then it samples
m ←R Mesg and uniformr and outputsEncpk(m; r), else ifmode = anon it samples(pk′, sk′) ←R

Gen(1k) andm′, r′ uniform and outputsEncpk′(m
′; r′).

Definition 5.7 (ANON-CPA game). Fix a public-key cryptosystem(Gen,Enc,Dec). TheANON-CPA game
is defined as follows formode ∈ {real, anon} and for an adversaryA = (Mesg,Dist):

ANON-CPAmode
A game

(pk, sk)
R← Gen(1k)

mode
R← {real, anon}, c = ARoRpk(Mesg;mode)

OutputDist(pk, c)

Define
AdvAANON-CPA(k) = |Pr[ANON-CPAreal

A (k) = 1]− Pr[ANON-CPAanon
A (k) = 1]|

Definition 5.8 (ANON-CPA security). (RGen,REnc,RDec) is aε(k, s)-ANON-CPA secure scheme if it is
ε(k, s)-IND-CPA and in addition for any adversaryA computable in sizes it holds that

AdvAANON-CPA(k) ≤ ε(k, s)

We remark that one can construct schemes withANON-CPA security under standard assumptions [BBDP01].

Definition 5.9. Let (RGen,REnc,RDec) be anANON-CPA secure scheme where for security parameterk,
REnc usesℓ = ℓ(k) random bits. LetROℓ : {0, 1}∗ → {0, 1}ℓ be a random oracle withℓ-bit outputs. We
define(ROGen,ROEnc,RODec) where:

• ROGen = RGen.

• ROEncpk(m; r) = REncpk(m;ROℓ(pk ‖ m ‖ r)), wherer ∈ {0, 1}k.
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• RODecsk(c) = RDecsk(c).

Theorem 5.10. Suppose that(RGen,REnc,RDec) is a εREnc(k, s)-ANON-CPA-secure scheme. Then for
any functionκ(k), letΠ(k) = (κ(k), κ(k)−(H∞(pk)−p(k)), κ(k)), it holds that the scheme(ROGen,ROEnc,RODec)
defined inDefinition 5.9is (Π(k), η(k), ε(k, s))-ROR-SCDA-secure where

ε(k, s) ≤ 2sη(k) + 3s · εREnc(k, s) + (2s2 + 1)2−κ(k)/2+2

Proof. Fix any adversaryA = (A)k∈N against(ROGen,ROEnc,RODec) in theROR-SCDA game. Fixk, s
andp = p(k), c = c(k), κ = κ(k). For each of thes queries thatQuery may make, the probability that
the second or third entropy conditions ofDefinition 3.2are violated is at mostη, and so by a union bound
the probability that they are violated in any query is bounded by2sη(k). Therefore, in the remainder, we
condition on all entropy conditions holding.

GameG0 is ROR-SCDAreal
A (k).

GamesGmode
i for i ∈ [s] and mode ∈ {real, anon}. Let us assume without loss of generality thatQueryk

makess queries to theRoR oracle (if it makes fewer, just fill the remainder with dummy queries).

GameGreali is like Ganoni−1 (setGanon0 = G0) except that thei’th call to theRoR oracle is answered with an

altered oracleR̃oRpk(Mesg;Randk, real). In this oracle, if we letm be the message vector sampled by
an interaction ofMesg,Randk, and then the oracle encrypts it using the underlying encryption andfresh
randomness, i.e. it returns(REncpk(mi, r

′
i))i∈[T ] wherer′ is sampled independently and uniformly from

{0, 1}ℓ(k).
ForGanoni is just likeGreali except that thei’th oracle call to theRoR oracle is answered withT ciphertexts
sampled byARoRpk(un; anon), i.e. each ciphertext is a fresh encryption of uniformly randommq, rq using

a completely independently sampledpk′q
R← RGen(1k) for q ∈ [T ]. (So in gameGanons , all of theRoR are

answered with encryptions of randommq, rq each with independently chosenpk′q.)

Lemma 5.11. For eachi ∈ [s], Greali is ε′-indistinguishable fromGanoni−1 for

ε′ = (5s2 + 2) · 2−κ/2 + 2s · εREnc(k, s)

Proof. We claim that the only wayGreali andGanoni−1 can be distinguished is if inGreali the following bad event
occurs: if we letMesg be thej’th query made byQueryk and let(m, r) be the sampled vectors for this
query, it holds for someq ∈ [T ], thatRO(pk ‖ mq ‖ rq) is queried byQueryk, by Distk, or byMesg or
Randk during the interaction that produces(m, r). If the bad event does not occur,RO(pk ‖ mq ‖ rq) is
always queried exactly once during the entire game and so we may replace itby uniform randomness, which
is what is done iñRoRpk(Mesg;Randk, real).

We know that the number ofRO queries made by each ofQueryk, Distk, Mesg, andRandk is at mosts. Let
us examine eachRoR query made byQueryk. For thej’th query, say thatMesg is the query, and let(m, r)
be the resulting sample of message/randomness vectors andξ be the associated hint. Then we argue:

• The probability that for the sampled(m, r) for this query there existsq ∈ [T ] such thatRO(pk ‖ mq ‖
rq) was queried byQueryk prior to queryingMesg is at mostTs2−κ ≤ s22−κ. This is by a union
bound overq and becauseQueryk makes at mosts queries toRO and because we are guaranteed that
H∞(mq, rq) ≥ κ.
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• The probability that on this query,Mesg queriesRO(pk ‖ mq ‖ rq) during the sampling interaction
is at most2−κ/2 + s22−κ/2.

To deduce this fact, letρ = Revk(pk) and observe that conditioned onρ = ρ it holds thatpk is
independent ofσ, r, whereσ is the transcript betweenMesg,Randk andr is the randomness output
by Randk for the j’th query. This is because the only information aboutpk thatQueryk has before
thei’th query inGanoni−1 is ρ, since all the otherRoR queries are answered using fresh public keys.)

Similarly, for anyσ, conditioned onσ = σ it holds thatr is independent ofρ,pk. Therefore we may
write for eachq ∈ [T ]:

H∞(pk, rq | (ρ,σ) = (ρ, σ)) = H∞(pk | (ρ,σ) = (ρ, σ))

+ H∞(rq | (ρ,σ) = (ρ, σ))

= H∞(pk | ρ = ρ) + H∞(ri | σ = σ) (5.9)

We may then applyLemma 2.1to the first term (settingx = pk andy = ρ) to deduce that with
probability at least1− 2−κ/2 that we pickρ←R ρ such that

H∞(pk | ρ = ρ) ≥ H∞(pk)− p− κ/2

In this case, combining withEquation 5.9and the second entropy condition ofDefinition 3.3with our
choice ofβ, we conclude that

H∞(pk, rq | (ρ,σ) = (ρ, σ)) ≥ κ/2

Since the only dependence ofMesg onpk, r is throughρ,σ, therefore with probability at least1 −
2−κ/2 the entropy is high and in this case the probability thatMesgk makes the bad query is at most
Ts2−κ/2 ≤ s22−κ/2.

• The probability thatRandk queriesRO(pk ‖ mq ‖ rq) is≤ 2−κ/2 + s22−κ/2. This is essentially for
the same reason as the above point: sincemin(n, c) ≤ H∞(pk)− κ, it holds that with probability at
least1 − 2−κ/2 thatH∞(pk | σ = σ) ≥ κ/2, and in this case the probability thatRandk makes the
bad query is bounded bys22−κ/2.

• The probability thatQueryk queriesRO(pk ‖ mq ‖ rq) after queryingρ and none of the previous
queries were bad is at mosts ·εREnc(k, s)+s22−κ. To see this, observe that since none of the previous
queries were bad, in fact the encryptions ofm1, . . . ,mT were performed using true randomness, and
so we may replace the oracle’s response(ROEncpk(mq, rq))q∈[T ] with (REncpk(un, r

′
q)) and this

incurs at most asεREnc(k, s) change in probability. But in this latter case,Queryk has no information
about(m, r). By the third entropy condition ofDefinition 3.2, we know that(m, r) is aκ-source even
conditioned onρ, ξ, and so it follows that the probability thatQueryk makes a bad query is at most
Ts2−κ ≤ s22−κ.

• For the same reason as in the previous point, the probability thatDistk queriesRO(pk ‖ mq ‖ rq)
after queryingρ andnone of the previous queries were bad is at mosts · εREnc(k, s) + s22−κ.

Observing that2−κ < 2−κ/2 and collecting all these terms gives the bound onε′.

Claim 5.12. For eachi ∈ [s], Greali is s · εREnc(k, s)-indistinguishable fromGanoni .
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Proof. This follows from theANON-CPA-security of the original scheme: betweenGreali andGanoni the only
difference is that thei’th query is answered either by a real encryption usingpk or by an encryption of a
uniform message and randomness using a fresh random key. Since thei’th query consists of encryptions of
T ≤ s messages, the bound follows.

GamesGmode
i for mode ∈ {unif, random} are defined inductively as follows. Fori ∈ [s], Gunifi be like

Grandomi+1 (setGrandoms+1 = Ganons ) except that we answer thei’th RoR query withR̃oRpk(Mesg;Randk, random),
which samples random messages and encrypts them using the original scheme with the truepk and with uni-
form independent randomness.

The gameGrandomi is like Gunifi except that thei’th query is answered using the original random oracle
RoRpk(Mesg;Randk, random).

Claim 5.13. For all i ∈ [s], Gunifi is s · εREnc(k, s)-indistinguishable fromGrandomi+1 .

Proof. This follows from theANON-CPA-security of the original scheme: betweenGunifi andGrandomi+1 the
only difference is that thei’th query is either vector of encryptions of uniform messages by the realkeypk
or a vector of encryptions of uniform messages using a fresh independent random key.

Claim 5.14. For all i ∈ [s], Gunifi is ε′-indistinguishable fromGrandomi .

Proof. Proved identically to the proof ofLemma 5.11, noting that in the case of uniformly randomm′, r′,
the entropy conditions we use are trivially satisfied.

Finally, it is clear thatGrandom1 is justROR-SCDArandom
A (k). Combining all these claims, we get that the

distinguishing advantage is

AdvAROR-SCDA(k) ≤ 2s · η(k) + 2s · ε′ + 2s2 · εREnc(k, s)
≤ 2s · η(k) + 2s((4s2 + 2)2−κ/2 + s · εREnc(k, s)) + 2s · εREnc(k, s)
≤ 2s · η(k) + 4s2 · εREnc(k, s) + (8s3 + 4s)2−κ(k)/2

5.3 Chosen-ciphertext secure construction in the standardmodel

In this section, we present a scheme which is secure against chosen-ciphertext attack. It is essentially the
scheme of [RSV13a] and is detailed inAlgorithm 5.15.

Theorem 5.16. Fix any κ(k) ≥ 2a + 2 log t2 + ω(log k). The encryption system inAlgorithm 5.15is
Π-ROR-SCDCA-blockwise-secure forΠ = (H∞(pk)− b, κ, κ).

The security reduction is very close to the one given in [RSV13a]. We consider a sequence of games
G(i) obtained from the security gameROR-SCDCA by modifying the challenge ciphertext generation for
i ∈ {0, . . . , T} and modify these games intoG(i)0 , G(i)1 , . . . ,G(i)6 in a way very similar to [RSV13a].

We note that our construction works for slightly superpolynomialT becauset1, t2 depend onT logarith-
mically, and therefore our scheme satisfies security against all polynomialT (with no a priori bound on
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Fix any polynomialsa(k), b(k), n(k), ℓ(k) such thatℓ(k) = ω(a(k)) anda(k) = (n(k) + ℓ(k))Ω(1).
Fix a family of (n + ℓ, a)-lossy trapdoor functions. Fix superpolynomialT = kω(1) and setν =

√
a,

t1 = b+n+ν+2 log T+ω(log k), δ1 = 2−(n+ℓ)t1 , t2 = b+n+2a+2 log T+ω(log k), δ2 = 2−(n+ℓ)t2 .
We define the following public-key encryption:

Key generation : Gen(1k) samplesh : {0, 1}n+ℓ → {0, 1}ν from an admissible hash function family
H. Gen(1k) runs the injective generation function for a(n+ ℓ, a)-lossy trapdoor function family
to generate(f, f−1). Gen(1k) runs the generation function for aRBM -(n+ ℓ, a)-lossy trapdoor
function family with a uniformly chosen initialization parameterK to generate(g, g−1). Gen(1k)
also samplesπ1 ←R π from a t1-wiseδ1-dependent permutation over{0, 1}n+ℓ. andπ2 ←R π

from at2-wiseδ2-dependent permutation over{0, 1}n+ℓ. The public key ispk = (h, f, g, π1, π2)
and the private key issk = (f−1, g−1).

Encryption : Encpk(m; r) = (h(π1(m‖r)), f(π2(m‖r)), g(h(π1(m‖r)), π2(m‖r))) where r ∈
{0, 1}ℓ(k).

Decryption : Decsk(c1, c2, c3) = π−12 (f−1(c2))[n] if c1 = h(π1(π
−1
2 (f−1(c))) and c3 =

g(c1, f
−1(c2)). Decsk(c1, c2, c3) =⊥ otherwise.

Algorithm 5.15. ROR-SCDCA encryption in standard model

the polynomial). This is an improvement over [RSV13a], which obtain key size that islinear in T , and
therefore one can only achieve security againstT that is a polynomial fixed ahead of time.1 We are able
to improve this dependence by observing that at one step of the proof of security, [RSV13a] uses Lemma
4.5 of [RSV13a] (restated inLemma 2.6) but pays heavily due to the fact that this lemma requires the high
conditional entropy condition to hold always. We prove the following average-case version of Lemma 4.5
of [RSV13a], and note that this average-case version suffices for the proof of security, while allowing us to
save in the key size.

Theorem 5.17. For anyε, γ, η ∈ (0, 1), for any(n + ℓ, a)-lossy functionf : {0, 1}n+ℓ → {0, 1}n′
, and

for π a t-wiseδ-dependent permutation over{0, 1}n+ℓ wheret = b + a + log(1/ε) + log(1/η) + 1 and
δ ≤ 2−(n+ℓ)t, the following holds:
LetR = {(x,y)} be a family of sources of size|R| ≤ 2b satisfying that for all(x,y) ∈ R, it holds that
Pr

x
R
←x

[H∞(y | x = x) < κ] < γ whereκ = a+ 2 log(1/ε) + 2 log t+Θ(1).

Then with probability at least1− η over the choice ofπ ∈ π, it holds for all(x,y) ∈ R that:

∆((x, f(π(y))), (x, f(π(un+ℓ)))) ≤ ε+ γ

whereun+ℓ is an independant uniform string over{0, 1}n+ℓ.

Proof. Fix any particular(x,y) ∈ R. Define the eventLow(x) to be thosex whereH∞(y | x = x) < κ
and observe that by hypothesis, it holds thatPr[Low(x)] < γ.

1Earlier versions of [RSV13a] also claimed a dependence oflog T but this was in fact a typographical error, and the currently
available ePrint archive version contains the rectified dependence, which is linear inT .
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Observe that, for fixedπ

∆((x, f(π(y))), (x, f(u)))

≤ Pr[Low(x)] + ∆( (x, f(π(y)) | ¬Low(x)), (x, f(u) | ¬Low(x)) )
< γ + ∆( (x, f(π(y)) | ¬Low(x)), (x, f(u) | ¬Low(x)) )

By Lemma 2.6, it holds that with probability≥ 1− 2a−t+1/ε over the choice ofπ that

∆((x, f(π(y)) | ¬Low(x)), (x, f(u) | ¬Low(x))) ≤ ε

Plugging in our parameters gives

Pr
π

R
←π

[∆((x, f(π(y))), (x, f(u))) > γ + ε] ≤ 2−bη

Taking a union bound over all2b distributions implies the theorem.

We also note thatTheorem 5.17can also be plugged back into the proof of [RSV13a, Theorem 7.1] to obtain
a key size that is linear inlog T for their scheme.

5.3.1 Security proof forAlgorithm 5.15

Proof ofTheorem 5.16. We strengthen the security game in the same way as in the proof ofTheorem 5.5:
instead of the originalRoR oracle, we use the analogueRoR′ oracle fromTheorem 5.5: in real mode it
behaves just asRoR, while in random mode it encrypts random messages using the same lossy functions
f, g, h but with independentlychosen permutationsπ′1,π

′
2. Call the resulting gameROR-SCDCA′. As in

Theorem 5.5security inROR-SCDCA′ implies security inROR-SCDCA.

LetA = (Rev,Query,Mesg,Rand) be aROR-SCDCA′-adversary. We assume thatA always makes exactly
q queries (for some polynomialq(k)) decryption queries and thatMesg andRand always output vectors
(m∗, r∗) of lengthT (for some polynomialT (k)) in the security gameROR-SCDCA′. We assume (for
contradiction) thatA has advantageǫ for some non-negligible functionǫ(k).

For any polynomialq, security for adversaries makingq queries to theRoR′ oracle in theROR-SCDCA′

game is equivalent to security for adversaries making a single query to theRoR′ oracle, and so in the rest of
the proof we assume that the adversary makes only a singleRoR′ query (as in the proof ofTheorem 5.5).

We denote byc(1), . . .c(q) the random variable corresponding to these decryption queries and byc∗ =
(c∗1, . . . , c

∗
T ) the vector of random variables corresponding to the challenge ciphertext returned by theRoR′

oracle.

For i ∈ {0, . . . , T}, we consider the following sequence of gamesG(i) obtained from the security game
ROR-SCDCA′ by modifying the challenge ciphertext generation. In the real mode of theROR-SCDCA′

experiment, the oracleRoR′ is given the tuple(m∗, r∗) generated by the algorithmsMesg andRand and
outputs the ciphertextc∗ = (c∗1, . . . , c

∗
T ) = (Encpk(m

∗
1, r
∗
1), . . . ,Encpk(m

∗
T , r
∗
T )). In G(i), theRoR′ oracle

samples uniformuT−i+1, . . . , uT
R← {0, 1}n and sT−i+1, . . . , sT

R← {0, 1}ℓ and uniform independent
permutationsπ′1, π

′
2 and outputs the challenge ciphertext

c∗ = (c∗1, . . . , c
∗
T ) = (Encpk(m

∗
1, r
∗
1), . . . ,Encpk(m

∗
T−i, r

∗
T−i),Encpk′(u

∗
T−i+1, s

∗
T−i+1), . . . ,Encpk′(u

∗
T , s
∗
T )).
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wherepk′ = (f, g, h, π′1, π
′
2). In particular, we haveG(0) = (ROR-SCDCA′)real andG(T ) = (ROR-SCDCA′)random

and we will prove that
|Pr[G(i)(k) = 1]− Pr[G(i+1)(k) = 1]| (5.10)

is smaller thanǫ(k)/T (k) for all i ∈ {0, . . . , T − 1} and for a security parameterk large enough (and
therefore reach the contradiction).

In the following, we will modify the gamesG(i)(k) andG(i+1)(k) for i ∈ {0, . . . , T − 1}. We fix the value
of i ∈ {0, . . . , T − 1} and letj ∈ {i, i+ 1}.

GameG(j)0 (k) The gamesG(j)0 (k) for j ∈ {i, i + 1} are identical toG(j)(k) except that the initialization
parameterK is sampled fromKu,ν as for the polynomialu as promised to exist byDefinition 2.4.
Since no adversary can distinguish between different initialization parameters (Definition 2.3), it holds
that

|Pr[G(j)(k) = 1]− Pr[G(j)0 (k) = 1]| ≤ negl(k)

GameG(j)1 (k) The gamesG(j)1 (k) for j ∈ {i, i + 1} are identical toG(j)0 (k) except that they output0
whenever the tuple corresponding to(mT−i, rT−i) and the message/randomness pairs corresponding
to the decryption queries forms a bad sequence of inputs for the admissible hash functionh.

Let x∗ = π1(m
∗
T−i, r

∗
T−i) andxt = π1(Decsk(c

t)) for t ∈ {1, . . . , q}. The gamesG(j)1 (k) output

whateverG(j)0 (k) does when(x∗, x1, . . . , xq) /∈ Unlikelyh and aborts and outputs a random bit when
(x∗, x1, . . . , xq) ∈ Unlikelyh. Since the probability that(x∗, x1, . . . , xq) ∈ Unlikelyh is negligible,
we have readily

|Pr[G(j)0 (k) = 1]− Pr[G(j)1 (k) = 1]| ≤ negl(k).

GameG(j)2 (k) The gamesG(j)2 (k) for j ∈ {i, i+ 1} are obtained fromG(j)1 (k) by outputting the output of

G(j)1 (k) with probabilityΓ(k)−1 and aborting and outputting a random bit with probability1−Γ(k)−1
(whereΓ(k) is the probability from the admissible hash function definition). We have

Pr[G(j)2 (k) = 1] =
1

Γ
Pr[G(j)1 (k) = 1] +

(
1− 1

Γ

)
1

2

for j ∈ {i, i+ 1} and therefore

|Pr[G(i+1)
2 (k) = 1]− Pr[G(i)2 (k) = 1]| = 1

Γ
|Pr[G(i+1)

1 (k) = 1]− Pr[G(i)1 (k) = 1]|.

GameG(j)3 (k) This game executesG(j)1 (k) and then does the following if it did not abort. It samples an

independent initialization keyK ′
R← Ku,ν for theR-lossy trapdoor function family (in addition to the

actual keyK used in the key generation). We denotePartition
(j)
K,h the event in whichPK′(h(x∗)) =

Lossy andPK′(h(xt)) = Inj for t ∈ {1, . . . , q}. By definition of theROR-SCDCA′ security games,

x∗ /∈ {x1, . . . , xq} and we know thatPr[Partition(j)K′,h] ≥ Γ−1 since the game did not yet abort. Next

we approximate the actual probabilityPr[Partition(j)K′,h] by sampling⌈kS · Γ⌉ keys for theR-lossy
trapdoor function family (for some polynomialS(k) that will be determined at the end of the proof).

Using Hoeffding’s inequality, obtain an approximationp̃(j) of Pr[Partition(j)K′,h] such that

Pr

[
|Pr[Partition(j)K′,h]− p̃(j)| ≥ 1

S · Γ

]
≤ 1

2k
.
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Finally, if Partition(j)K′,h occurs then the game outputs the same as the output ofG(j)1 (k) with proba-

bility (Γp̃(j))−1). In all other cases it aborts and outputs a random bit. We have

|Pr[G(j)3 (k) = 1]− Pr[G(j)2 (k) = 1]| ≤ 1

Γ · S +
1

2k

GameG(j)4 (k) The gamesG(j)4 (k) for j ∈ {i, i + 1} are identical toG(j)3 (k) except that we replace the

eventsPartition(j)K′,h by the eventPartition(j)K,h. An adversary able to distinguish these games can be
used to distinguish initialization keys for theR-lossy trapdoor function family , so we have

|Pr[G(j)4 (k) = 1]− Pr[G(j)3 (k) = 1]| ≤ negl(k).

GameG(j)5 (k) In the gamesG(j)4 (k) for j ∈ {i, i + 1}, the decryption queries are answered using the
trapdoorg−1 for theR-lossy trapdoor functiong instead of the trapdoorf−1 for the lossy trapdoor
functionf . We have

Pr[G(j)5 (k) = 1] = Pr[G(j)4 (k) = 1]

for j ∈ {i, i+ 1}.

GameG(j)6 (k) In these final games, the key generation of the encryption scheme is modifiedby sampling
a lossy trapdoor functionf instead of an injective one. By the indistinguishability of the two setting
(and since the trapdoorf−1 is no longer used in gamesG(j)4 (k) for j ∈ {i, i+ 1}), we have

|Pr[G(j)6 (k) = 1]− Pr[G(j)5 (k) = 1]| ≤ negl(k).

We have

|Pr[G(i)(k) = 1]− Pr[G(i+1)(k) = 1]| ≤ |Pr[G(i)0 (k) = 1]− Pr[G(i+1)
0 (k) = 1]|+ negl(k)

≤ |Pr[G(i)1 (k) = 1]− Pr[G(i+1)
1 (k) = 1]|+ negl(k)

≤ Γ|Pr[G(i)2 (k) = 1]− Pr[G(i+1)
2 (k) = 1]|+ negl(k)

≤ 2
(
1
S + Γ

2k

)
+ Γ|Pr[G(i)3 (k) = 1]− Pr[G(i+1)

3 (k) = 1]|+ negl(k)

≤ 2
(
1
S + Γ

2k

)
+ Γ|Pr[G(i)4 (k) = 1]− Pr[G(i+1)

4 (k) = 1]|+ negl(k)

≤ 2
(
1
S + Γ

2k

)
+ Γ|Pr[G(i)5 (k) = 1]− Pr[G(i+1)

5 (k) = 1]|+ negl(k)

≤ 2
(
1
S + Γ

2k

)
+ Γ|Pr[G(i)6 (k) = 1]− Pr[G(i+1)

6 (k) = 1]|+ negl(k)

To conclude the proof, we need to prove that

|Pr[G(i)6 (k) = 1]− Pr[G(i+1)
6 (k) = 1]| (5.11)

is negligible in the security parameterk. Indeed, if this the case, it suffices to pickS(k) a polynomial large
enough such that

2

(
1

S
+

Γ

2k

)
+ negl(k) ≤ ǫ(k)

T (k)

for k sufficiently large (which is possible sinceǫ is non-negligible).

To prove that (5.11) is negligible, we analyze the gamesG(i)6 (k) andG(i+1)
6 (k). From the simulation, the out-

put of these two random experiments is a uniform bit if(x∗, x1, . . . , xq) ∈ Unlikelyh, or if (x∗, x1, . . . , xq) /∈
Unlikelyh and the eventPartition(j)K,h does not occur, or if the experiment aborts. Therefore, we considerthe
eventGood defined as the conjunction of these events:
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1. (x∗, x1, . . . , xq) /∈ Unlikelyh;

2. Partition(j)K,h;

3. the experiment does not abort.

The challenge ciphertextc∗ = (c∗1, . . . , c
∗
T ) in the two experimentsG(i)6 (k) andG(i+1)

6 (k) differs only on the

(T − i)-th position. InG(i)6 (k), c∗T−i is the encryption ofm∗T−i using random coinsr∗T−i whereas inG(i)6 (k)
it is the encryption ofuT−i using random coinssT−i and independent permutationsπ′1, π

′
2. More precisely,

c∗T−i is equal to

{
(ch, cf , cg) := (h(π1(mT−i‖rT−i)), f(π2(mT−i‖rT−i)), g(h(π1(mT−i‖rT−i)), π2(mT−i‖rT−i))), if j = i
(uh, uf , ug) := (h(π′1(uT−i‖sT−i)), f(π′2(uT−i‖sT−i)), g(h(π′1(uT−i‖sT−i)), π′2(uT−i‖sT−i))), if j = i+ 1

We denotech, cf , cg the random variables corresponding toch, cf , cg in G(i)6 (k) anduh,uf ,ug the random

variables corresponding touh, uf , ug in G(i)6 (k). We need to prove that the two distributions(ch, cf , cg) and
(uh,uf ,ug) are statistically close. We distinguish the following two cases.

If p ≤ b: we assumew.l.o.g. thatQueryk is deterministic, since it can always push any randomness it uses
into its queryMesg. In this case the input toQueryk can be one of at most2b values, and therefore
the output distribution(ξ,m, r) of the interaction ofMesg,Rand can be one of at most2b possible
distributions. Furthermore, by the third entropy condition ofDefinition 3.2, (m, r) form aκ-source,
even when conditioned on the values ofρ, ξ.

Note that sincemr is a κ-source with overwhelming probability, it holds that with overwhelming
probability over the choice of(mr)[T−i−1], it holds that

H∞
(
(m∗T−i, r

∗
T−i)|(mr)[T−i−1] = (mr)[T−i−1], ξ = ξ,ρ = ρ

)
≥ κ

Therefore,Theorem 5.17implies that, even givenρ, ξ, (mr)[T−i−1], it holds that for all2b possible
distributions ofch = h(π1(mT−i‖rT−i)), it is indistinguishable fromuh = h(π′1(u‖s)) for uniform
randomu, s of appropriate length and any value ofπ′1 since it is a permutation.

Furthermore, since the output ofh is of lengtha, we may applyLemma 2.1and deduce that with
overwhelming probability over the choice ofch that:

H∞
(
(m∗T−i, r

∗
T−i)|ch = ch, (mr)[T−i−1] = (mr)[T−i−1], ξ = ξ,ρ = ρ

)
≥ κ− ν − ω(log k)

Therefore,Theorem 5.17implies that, even givenρ, ξ, (mr)[T−i−1], ch, it holds that for all possible
2b choices of

(cf , cg) = (f(π2(mT−irT−i)), g(ch,π2(mT−irT−i)))

that it is indistinguishable from

(uf ,ug) = (f(π′2(u‖s)), g(ch,π′2(u‖s)))

whereu, s are independent randomness of appropriate length. We may applyTheorem 5.17because
x 7→ (f(x), g(ch, x)) is a shrinking function mappingn+ ℓ bits to2a bits.
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If p > b: in this case, the first entropy condition ofDefinition 3.2implies thatc ≤ b. Furthermore, the
second entropy condition implies thatrσ is a κ-block-wise-source with overwhelming probability
overσ.

G(i+1)
6 (k) is like G(i)6 (k) except the the(T − i)-th ciphertext output by theRoR′ oracle is uniform.

The view of the adversary inG(i)6 (k) is the tuple

Xi = (h, f ,g, ξ,π1,π2, c1, . . . , cT−i−1, (ch, cf , cg), cT−i+1, . . . , cT )

while its view inG(i+1)
6 (k) is the tuple

Xi+1 = (h, f ,g, ξ,π1,π2, c1, . . . , cT−i−1, (uh,uf ,ug), cT−i+1, . . . , cT )

where
cj = (h(π1(mi‖ri), f(π2(mi‖ri),g(h(π1(mi‖ri)),π2(mi‖ri)))

for j ∈ {1, . . . , T − i− 1} and

cj = (h(π1(ui‖si), f(π2(ui‖si),g(h(π1(ui‖si)),π2(ui‖si)))

for j ∈ {T − i + 1, . . . , T}. The first(T − i + 1) components and the lasti components in both
distributions are identical.

Suppose now we revealm andσ to the adversary for free (this can only increase statistical distance,
so bounding the distance with this additional revealed information suffices).Since there are at most
2b possible transcriptsσ, rσ can be one of at most2b possible distributions, and due to the second
entropy condition ofDefinition 3.2and the fact thatβ = κ in our attacker profile, it holds that with
overwhelming probability overσ, rσ is aκ-source. We want to bound

∆((Xi,σ,m), (Xi+1,σ,m))

which, since all coordinates ofXi, Xi+1 are identical after theT − i’th coordinate, is bounded by the
distance between(r[T−i−1], ch, cf , cg) and(r[T−i−1],uf ,ug,uh) conditioned on the knowledge of
f, g, h, ξ, π1, π2, σ,m.

It therefore actually suffices then to bound

E(f,g,h,π1,π2)

[
max
σ,m

{
∆
(
(r[T−i−1], ch, cf , cg | fghπ1π2σm), (r[T−i−1],uh,uf ,ug | fghπ1π2σm)

)}]

(Notice we may ignoreξ for the same reason as in the proof ofTheorem 5.5, i.e. because the only
wayMesg can influenceRand is through their communicationσ, and therefore the only dependence
of rσ on ξ is throughσ, which is already fixed.)

Observe that, given thatσ is fixed,r is independent ofm, and thereforer, cf , cg, ch,uf ,ug,uh are
independent ofmj for j 6= i. Therefore it suffices to bound

E(f,g,h,π1,π2)

[
max
σ,mi

{
∆
(
(r[T−i−1], ch, cf , cg | fghπ1π2σmi), (r[T−i−1],uh,uf ,ug | fghπ1π2σmi)

)}]

Therefore there are only2n+b possible distributions, one for each choice ofmi andσ.

We may conclude the argument by applyingTheorem 5.17as in the previous case ofp ≤ b.
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6 Discussion and Open Questions

Our definition of Strong CDA security is asecond-degreeassumption in the terminology of Bellareet al.
[BHK13] due to the fact that the adversary is split into several components and they only have limited
communication between them. We show, nevertheless, that our notion is achievable under standardfirst-
degreeassumptions. This is due to the fact that the kind of separation we have introduced between the
different parts of the adversary areinformation-theoretic(by bounding communication or entropy), rather
than computational.

One could conceivably relax our model to allow for the kind of computationalseparation between parts
of the adversary, as used in the definition of UCE’s [BHK13]. However, it is unlikely that the proofs of
security we have presented for our standard-model construction extend to such a relaxed definition, as UCE-
type security seem hard to achieve from standard “first-degree” assumptions such as the ones we have used.
On the other hand, the random oracle construct we presented would naturally extend; indeed even in its
present form the use of the random oracle can be replaced with UCE’s toachieve security in the standard
model (under the assumption of the existence of UCE’s).

Another interesting open question is whether one can improve the parametersof our standard model con-
struction. Our construction requiresH∞(pk)−b entropy in the public key fromRand’s point of view (in the
first entropy condition ofDefinition 3.2), which, observing thatH∞(pk) = Ω(kb) from the construction of
t-wiseδ-dependent permutations, is a strong requirement. It would be very interesting to construct schemes
where this entropy requirement is smaller, perhaps matching the minimalω(log k) requirement we obtain in
the random oracle model, or at least achievingkε for arbitrarily small constantsε.
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