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Abstract

Chosen Distribution Attacks (CDA) were introduced by Bedlat al. (Asiacrypt '09) to model
attacks where an adversary can control the distributiorot Inessages and random coins used in an
encryption scheme. One important restriction in their didin is that the distributions chosen by the
adversary cannot depend on the public key being attackedthay show that some restriction of this
form is necessary (for the same reasons that secure deisimencryption is impossible if we allow
arbitrary dependence between the plaintext distributiomsthe public key).

Subsequently Raghunathahal. (Eurocrypt '13) showed how to relax this restriction by aling
the message/randomness distributions to depend on thie gaplas long as the distributions belong to
a family of bounded size fixed before the public key is known.

We extend the definition further to what we call Strong Chd3gtribution Attacks where the mes-
sage/randomness distributions may depend on the publiakéyng as certain entropy conditions are
satisfied. Our security model comes from a natural modeltatktwhere an adversary infiltrates the
encryption system and installs a trojan program prior towking the public key, and subsequently is
allowed limited communication with the trojan program.

We present secure constructions in the standard and randieie anodels both with and without
decryption oracles (corresponding to CPA or CCA securiiy® also prove that our definition simulta-
neously generalizes previous definitions in this line ofkvor
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1 Introduction

The classical notion of semantic security for public-key encryption schd@&84] asks that it must be
infeasible for a computationally-bounded adversary to compute any infiomabout a plaintext from its
ciphertext and the corresponding public encryption key. This notiorongnbe reached by a probabilistic
encryption scheme.

In theoretical models, the process of generating randomness is geasgliyped to behave perfectly, giving
the users access to sequences of independent and uniform bitstudately, it turns out to be extremely
difficult to obtain perfect randomness in practice. Indeed, the physamaices that produce randomness
often have non-uniform or even unknown distributions. Moreovezndf/some processing is done on the
randomness in order to give it a better quality, there will be many scenarigkiaih an attacker could be
able to recover some useful information.

For several probabilistic encryption schemes, using weak randomardead to catastrophic attacks in
particular when the used randomness has little or even no min-entropy. Sk@née, EIGamal encryption
scheme Gam83 and all hybrid encryption schemes are vulnerable to plaintext recatéagks when the
randomness used is predictable. It seems therefore desirable to cbesituyption schemes in such a
way that using weak randomness will have as little as possible impact on tinétyset the scheme. In
[BBNT09], Bellare, Brakerski, Naor, Ristenpart, Segev, Shacham and Yilekdunted the idea to provide
two tiers of security: with good randomness the scheme achieves the dlassi@atic security notion but
when it is fed with bad randomness, it achieves some weaker but stilll nsgtion of security.

Formally, Bellareet al. asked that security is guaranteed as long as the joint distribution of the raessag
and randomness (chosen by the adversary) has sufficiently high mnopgrand called this notion-
distinguishability under a Chosen Distribution Atta@BDA). Their definition is inspired by the one for
deterministic encryption fromBBO07] and one important restriction in their definition is that the mes-
sage/randomness distribution cannot depend on the public key beingedtté&ak this reason, we will call
their notionweakCDA. In particular, weak CDA does not encompass standard semantigtge©ne way

to view their model is that there is a “sharp” threshold between when raneksria perfect (where mes-
sages can depend arbitrarily on the public key) and when randomnessiganigwhere there can
dependence between the message/randomness distribution and the piblic ke

Bellareet al. proposed several constructions from any public-key encryption imatheéom oracle model.
Following previous work on deterministic encryptiddHOR08BFOO09, they also proposed a construction

in the standard model relying on the notion of lossy trapdoor function intedily Peikert and Waters
[PW1]. Subsequent work on deterministic encryption also implies analogougktread results on weak
CDA security BS11, FOR12 Weel2, where those papers consider auxiliary input and correlated message
distributions.

Recently, Raghunathan, Segev and VadHR8V13§ showed how to relax the restriction that the mes-
sage/randomness distribution be independent of the public key. Theythbadversary to pick a family of
distributions before seeing the public key, where the family must be of bauside, and then they permit
the message/randomness distribution used by the adversary to be ckhpsedidg on the public key, as
long as the distribution belongs to this previously fixed family. In a related wBirkel et al. [BCPT13
study the question of randomness-dependent message security whadvéinsary can select the message
to be encrypted depending both on the random coins and the public kgyshbe positive results when
one can assume that the amount of dependence on the random coins is limited.



The goal of this paper is to extend the definition further to what weStating Chosen Distribution Attacks
where the message/randomness distributions may depend on the publiddey as certain entropy con-
ditions are satisfied. In particular, we will present a definition that simulizsigg@eneralizes the previous
definitions,i.e. a scheme secure in our model will be simultaneously secure against ghlaggext at-
tacks, (weak) chosen distribution attacks, randomness-dependesggassetc. In particular, we provide a
“smooth” tradeoff between perfect and imperfect randomness: wigaratfdomness is perfect the message
can depend arbitrarily on the public key, while security is preserved @fem the message/randomness
have imperfect entropy, and the amount of dependence on the publaekesides in a smooth, graceful
manner rather than in a sharp way asBBN™09].

1.1 Our model and definition

Our adversary is divided in several components and one may conlttepiew its attack as proceeding in
several phases in sequence:

Infiltration The adversary installs an interactive algoritRand on the target system. This occurs prior to
any information about the public key being revealed. The prodram is a trojan that sits between
the target system’s encryption function and its source of randomnesh:tieze the target system
tries to encrypt a message, the trojan feeds it some (potentially advershigsgd) random coins.
FurthermoreRand is interactive and so in later phases it may communicate with an outside system
who may exert control over the distribution of the modified random coins.

Revelation The adversary is allowed to learn some (possibly limited) amount of informBtiefpk) about
the public key.

Query The adversary creates an interactive message generating algbftigrihat, using (possibly lim-
ited) communication with th&and algorithm installed in the infiltration phase, generates a message
distribution (that may be correlated to the randomness distribution genesaktht because of the
communication). Samples drawn from this message/randomness distributitremrencrypted by
the target system and sent to the adversary. The adversary mayaljapsie the results of these
encryptions to generate a néMesg and repeat the attack to see more ciphertexts, and this may be
repeated a polynomial number of times.

Distinguishing The adversary runs a distinguishgist and guesses whether the ciphertexts he saw during
the query phase were encryptions of message-randomness pairsfadsawthe distribution he cre-
ated, or whether they are encryptions of independent and uniformagesandomness pairs. In this
phase the distinguisher may know the entire public key.

In the above scenario, it is known that if the message-randomness distribnay depend arbitrarily on
the public key, then security is impossibBgNT09, BBO07]. Our main contribution is a set of conditions
that are both necessary and sufficient, and also simultaneously geee@linf the previous definitions
studied in the literatureGM84, BBN*T09, BCPT13 RSV134. Informally speaking, we use the following
three entropy conditions:

1. From the point of view of the randomness-generating algorRand, there must be significant en-
tropy in the public key.

2. From the point of view of message-generating algoritfiesg, there must be significant entropy
in the ciphertext (this may come either from the public key, or from the randaims used in the
encryption).



3. Knowing the code of the algorithndesg, Rand, there must still be significant entropy in the mes-
sages they produce.

At an intuitive level it is clear that these three conditions are necessagyfirgh condition is necessary
because ifRand knows the public key then it can always generate random coins so tHainéegt of a
single bitb encrypts to, say, a ciphertext whose first bib i&his is possible assuming the ciphertexts look
uniform; if not, one can still show similar attacks by using hash functions tdamize the predicate that

will reveal b). In a similar fashion, the second condition is necessary becalgagfknows both the public

key and the random coins to be used, it can choose its messagdhat the first bit of then equals, say,

the first bit of the encryption ofr. The third condition is necessary because otherwise an attacker would
know with significant confidence the message/randomness used totgemeiphertext, and (knowing the
public key) can just compute the encryption itself to see whether the resuiphgrtext matches the one
that it is supposed to distinguish.

We show that using an appropriate formalization of these three conditieeB¢$inition 3.2, they turn out

to besufficientas well. At a high level, to achieve the first entropy condition we restrict tiencunication
that may flow from the public-key revelation algorithm to the randomnesergéing algorithmmRand. This

is well-motivated by reality, since communication from the trojan program to thsidmuworld may be
noticed by the target system if there is too much of it, while a small amount of comatiom may pass
unnoticed. To achieve the second entropy condition we require thatijtioored on the transcript of the
interaction betweerMesg, Rand, there remains large entropy in the randomness Raatl outputs. To
achieve the third entropy condition, we require that conditioned on whabserver can see, there remains
large entropy in the message/randomness generated by the interadlesgoRand.

1.2 Our results

We construct schemes in the standard and random oracle models that @atisew definition of Strong
Chosen Distribution Attack security. As described above, in our notioeairsty we require that certain
random variables including the public key, the message distribution, andridem coin distribution each
have significant entropy from the attacker’s point of view. Our randoatle construction has essentially
optimal parameters.e. it only requires that public key, randomness, and messages havelegaethmic
entropy from the adversary’s point of view, which is the best one cgoe ior. Our standard model con-
struction has good parameters except for the public key, and improvinggpendence is an interesting
open question; we discuss the quality of the parameters of our standaell ecoadtruction irSection 6

Our random-oracle model construction follows the well-known “encryijtitrlvash” paradigmBBOO07],
where we take an existing encryption scheme and modify it so that insteakdh§ it random coins
directly, we use the random oracle applied to the public key, messagearahoimn coins to obtain “hashed”
random coins that we then use in the original encryption. We note that tevacbur security notion we
will require that the original scheme be not only semantically secure buaatsoymou$BBDPO1], i.e. the
ciphertexts do not leak information about the public key being used; this is stmitae anonymity required
in the adaptively secure constructions BBN"09].

Our standard-model constructions are based on the scheme of Rgnetaal. [RSV134, namely we
apply at-wise §-dependent permutation to the message and random coins, and then bygsly @apdoor
function. However, in order to prove security we cannot use their aisatlirectly. Roughly, the main
technical lemma ofRSV134 shows that applying &wise j-dependent permutation and then a lossy func-



tion is a good extractor with high probability fail sources simultaneouslyg some family of high-entropy
sources, where the family is of bounded size. In our application, it tuhshat the family of sources is
much too large to be handled by the theorem$&R8Y 134 and so we prove stronger versions of their techni-
cal lemmas relying on the particular structure of the sources we encowhteh will in turn prove security
for our scheme. In addition, we improve on the key length in the CCA scheroenagared tolRSV134
(seeSection 5.3or details).

We also prove that our definition simultaneously generalizes all the predéfimstions in this line of work,
including the definition of Raghunatha al. [RSV134, the (weak) chosen-distribution-attack model and
hedged encryption model of Bellast al. [BBNT09], and the randomness-dependent message security
model of Birrell et al. [BCPT13. (These models in turn generalize previous notions such as those of
[MS09 HO1Q.) Thus, our definition is the strongest achievable definition to date in this finekx.

2 Preliminaries

For a positive integerwe defindi] = {1,...,:}. LetS be any set an@ be any positive integer; for a vector
v € ST we letvy;) denote the sub-vector i given byvy; = (v1, ..., v;). For vectorsn € ({0,1}™)7,r €
({0, 1397, we let(mr); = (my, r;) and(mr); = ((ma,r1), ..., (mq, ;). For stringsm;,r; € {0,1}* we
let m; || r; or simplym;r; denote their concatenation.

We let bold-faced variables such mglenote random variables, while normal variables such dsnote a
particular value thak may take. We letupp(x) denote its support,e. the set of elements on whichhas
non-zero probability. All logarithms are ba®einless otherwise stated. The min-entropy function is defined
asHoo(x) = mingequpp(x) log(1/ Pr[x = z]). Letm be a random variable ovet’, then we say thain

is ar source if for alli € [T], Hw(m;) > k, and we say thain is a x-block-wise-source if for alf

[T, m;—q) € supp(my;_y)) it holds thatHo, (m; | mj;_y; = m};_y) > «. The statistical distance between
two random variableX andY over a finite domaif2 is A(X,Y) = 3 3" .o | Pr[X = w] — Pr[Y = ]|
Afunctione : N — [0, 1] is negligible ife(k) = k() and is overwhelming if (k) = 1 — k=« (),

We will use the following standard lemm¥dd12 Lemma 6.30]:

Lemma 2.1(Chain rule for min-entropy)Letx, y be random jointly distributed random variables, and such
that [supp(x)| = s. Thenfor allt > 0, it holds thatPr,. .y [Heo(x | y = y) < Hoo(x)— [logs] —t] <27

2.1 Lossy trapdoor functions

Lossy trapdoor functions were first defined PVJ1] and have found numerous applications in the recent
years. They consists of two families of functions: functions in one familyrgeetive and can be efficiently
inverted using a trapdoor while functions in the other family are "los$¥. (the size of their image is
significantly smaller than the size of their domain). One requires that theigtiserof randomly chosen
function from the family of injective functions and from the family of lossy dtians are computationally
indistinguishable.

Definition 2.2. A family of (n, a)-lossy trapdoor functions is defined by two probabilistic polynomial-time
algorithmsLGeng, LGen; satisfying the following properties:

1. LGeng(1¥) samples a circuif, takingn = n(k) bits of input and producing’ > n bits of output.
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We identify f, with the function{0, 1} — {0,1}" that it computes. It holds that the image faf
has size at mo“.

2. LGen, (1%) samples a pair of circuitf;, g1) where f, takesn bits of input and produces’ bits of
output, whileg; takesn’ bits of input and produces bits of output, and for al: € {0,1}", it holds
thatg: (f1(z)) = =.

3. The two random variablds andf; are computationally indistinguishable.

The notion ofR-lossy trapdoor function family was introduced by Raghunathan, Segéwadhan in
[RSV134. It generalizes the previous notion in such a way that instead of hawiygwo branches (a lossy
branch and an injective branch) they have many branches, some ¢f arkimjective and some of which are
lossy. To achieve this property, thielossy trapdoor functions take as input an additional argument, called a
tag, which is a binary string of appropriate length with no particular structuhe. tigs are partitioned into
two subsets: injective tags, and lossy tags.

The patrtitioning of the tags is defined by a binary relatonc K x 7 and the key-generation algorithm
receives as input an initializatiald € K that partitions the set of tags so thatt € T is lossy if and only if
(K,t) € R.

Definition 2.3. A family of R-(n, a)-lossy trapdoor functions is defined by a probabilistic polynomial-time
algorithmsKGen which takes as input a kelf € X and samples a pair of circuitg, g) where f takesn

bits of input and a tag € 7 and produces’ bits of output, whileg takesrn’ bits of input and a tag € 7
and produces bits of output, such that:

1. if (K,t) € R, f(-,t) has size at mog”.

2. if (K,t) ¢ R, it holds thatg(f(x,t),t) = z forallz € {0,1}".

3. For every polynomial time adversa# there is a negligible functiomegl(k) such that
AdviCen( A k) := | Pr[R-LossyC®" (A, k) = 1] — Pr[R-LossyX®®"(A, k) = 1] < negl(k).

where forb € {0, 1}, the random experimefR-Lossyt°®" (A, k) is define as follows:

R-LossyKC®"(A, k) = (Ky, K}, state) il Aq(1F)
(f.9) <" KGen(1¥, Ky)

b & Aa(f, state)
Output v’

These functions turn out to be particularly suitable to constructing encrygtthemes secure against
chosen-ciphertext attacks where an adversary is given accesstwygtibn oracle. In this scenario, the
security reduction must be able to answer the decryption queries of tkesady but should not be able to
obtain any unknown information from the challenge ciphertext. An appramaeach this security level is to
(secretly) partition the ciphertext space into two subsets so that in thatggmoof the decryption queries
corresponds to injective tags while the challenge ciphertext corresgoradlossy tag (with non-negligible
probability).

The notion of admissible hash functions, introduced to prove the full #ga@frsome identity-based en-
cryption schemes, was introduced by Boneh and BoyeBB0Y] to realize this secret partition.

5



Letr € N. For K € {0,1, L}", we define the partitioning functiofx : {0,1}* — {Lossy,Inj} as

follows:
Lossy if K; € {y;, L},Vie{l,...,v}
Inj otherwise

Prc(y) == {

For anyu < v, we denoteC, , the uniform distribution ove{0, 1, L} conditioned on exactly. position
having_L values (such that for ani sampled according t&,, ,, #{y € {0,1}", Pk (y) = Lossy} = 2%).

Definition 2.4 (Admissible hash functions).et H = {# }ren be a hash-function ensemble where each
h € My is a polynomial-time computable : {0,1}"*) — {0,1}*(%). We say that{ is an admissi-
ble hash-function ensemble if for evehy € 7, there exists an efficiently recognizable $ktlikely;, C
Ugen ({0, 1}7(k))4 of string tuples such that the following two properties hold:

1. For every PPT algorithm, there exists a negligible functioregl(k) satisfying

Pr[(zo,...,z4) € Unlikely,] < negl(k)

whereh <~ H,, and(zy, . . . ,Tq) L A@F, B).

2. For every polynomiad = ¢(k), there exists a polynomidl = T'(k) and an efficiently computable
u = u(k) such that, for every, € H;, and(xo, ..., zqx)) ¢ Unlikely, with zg ¢ {z1,..., 2.}, we
have

1
Ig’r [P (h(zg)) = Lossy A Pg(h(z1)) =--- = Pr (M) = Inj| > @
K4 Ku,u

Boneh and BoyenHBO04] proved that the existence of admissible hash function is implied by collision-
resistant hash functions.

We will use a collection ofR-lossy trapdoor function in conjunction with admissible hash function where
the relationR = RBM is defined by a key< € {0, 1, L}* such that for € {0,1}¥ € RPM if and only if
K; € {t;, L},Vie{1,...,v} (i.e. Px(t;) = Lossy).

2.2 t-wised-dependent permutations

Definition 2.5. Let 7w be a random variable over permutatidiis1}™ — {0, 1}". We say thatr is at-wise
d-dependent permutations if for all, . .., x; € {0, 1}", it holds that

A (@), oy mw(@e)), (77 (21), - 7w (24))) <0
wherer* is a truly random permutatiof0, 1} — {0, 1}".

There exist efficiently constructibtewise j-dependent permutations with key lengint +log(1/6)) and
that are efficiently computable and invertible given the KeMR09].



2.3 Crooked leftover hash lemma

We will strengthen the following “average-case” crooked leftover heastma proved byRSV134:

Lemma 2.6 ( [RSV13§). Let f : {0,1}" — {0,1}" be (n,a)-lossy andm be at-wise 5-dependent
permutation over0, 1}" satisfyingt > 8 even and < 27", For all ¢ € (0,1) and random variables
(x,y) over{0, 1} x {0,1}" such that for allz: € supp(x) it holds that

Ho(y | x=2) > a+2log(1/e) +2logt + O(1)
Then with probability> 1 — 2¢~t+1 /< over the choice of & 7 it holds that

A, f(7(y), (%, f(an))) < €

3 Strong Chosen Distribution Attack Security

An intuitive view of and motivation for our definition were presentedserction 1.1 We now proceed for-
mally to define our model. Define the “real-or-random” oreRtdR as follows. The oracle is parameterized
by pk, mode € {real,random}, and an integef” given in unary. ThékoR oracle takes input two interactive
algorithmsMesg andRand. (In our security gameRand will be fixed once and for all at the start, while the
adversary may query many differéviesg during the course of the security game.)

After executingMesg andRand interactively with each other, the output®dénd is a vector ofl’ random bit
stringsry, ..., rp and the output oMesg is a vector ofl’ messages, ..., my and an additional “hint”
stringé&.

e RoR,i(Mesg; Rand, random, 17) runs Mesg andRand interactively with each other to determige
(it throws away all the other outputs). It then sampleg, r;);c () uniformly and independently and

outputs(&, Encpi (mf; 7)), . . ., Encp(m/y; 7).
e RoRk(Mesg; Rand, real, 17 executedMesg andRand interactively with each other. L&t my, ..., mr
be the output oMesg andr, . . ., rr be the output oRand. Output(&, Encpi(mi;71), . . ., Encox(mr;rr)).

Definition 3.1 (ROR-SCDA game) Let (Gen, Enc, Dec) be a public-key encryption system with security
parameterc. An adversary in th&ROR-SCDA game is defined by a sequence of integérs= poly (k)
and tuples of circuitsd;, = (Randg, Revy, Query,, Dist;) for & € N. The game is defined as follows for
mode € {real, random}:

ROR-SCDA™°% (k) game

(pk, sk) & Gen(1%)
S QueryII:oRpk(-;Randk,mode,Tk)(Revk (pk))

OutputDisty (7, pk)

AdvRor.scpa (k) = | Pr[ROR-SCDA'S! (k) = 1] — Pr[ROR-SCDA™°™ (k) = 1]|



MappingDefinition 3.1onto the description dbection 1.1first theRandy algorithm is fixed without know-
ing pk (infiltration), and therQuery,, is given some information about the public Kegv, (pk) (revelation).

Query;, can make queries to tiR oracle and output some stat€query phase). Finallpist; getst and

the entire public keypk and outputs a bit (distinguishing phase).

Define S(Rand) = [Uyese SuPP((Mesg, Rand)), namely the set of transcripts thBand could possibly

produce when interacting with an arbitrak§esg. Foro € S(Mesg, Rand), definer, to be the random

variable over vectors of random coins distributed according to \Rhad would generate conditioned on
transcripto.

Since security is impossible if we allow arbitrary attackers in R@R-SCDA game, we will restrict our
attention to certain profiles of actors, which will be constrained along thediessribed irSection 1.1

Definition 3.2. An attacker4 = (Rand, Rev, Query, Dist) has a(block-wise) attack profilél = («a, 3, k)
for a schemg Gen, Enc, Dec) if the following hold. Letp denote the outpuRev and leto denote the
transcript of communication betwedfiesg andRand. Let p denote the length gf andc denote the length
of o (we assumav.l.0.g.that these lengths are the same over all possible random coins). It nfdighdio

1. Ho(pk) — min(p, c) > a.
2. If p > Hoo(pk) — a then for allo € S(Rand), it must hold that,, is a (block-wise)3-source.

3. For anyMesg queried byQuery on inputp = Rev(pk), let (£, m, r) be the outputs dflesg andRand.
Viewing (m, r) as a vector wherém, r); = (m,, r;), it holds that(m, r) is a (block-wise):-source
conditioned orp, ¢ for all £ and furthermore for eveny: in the support oin, it holds thatm; # m;
foralli # 5 € [T].

We say thaid has profilell with probability 1 —» if the second condition holds for @llesg with probability
1 — n over the choice o and the third condition holds for dlllesg with probability 1 — n over the choice
of £. (A has profilell if it has profileIT with probability 1.)

Definition 3.3 (ROR-SCDA security) A scheme(Gen, Enc, Dec) is defined to bgTl(k), n(k),e(k, s))-
ROR-SCDA-(block-wise)-secure ifAdvior.scpa (k) < e(k,s) for all adversarieg.Ag)ren With circuit
size s and having attack profil€l(k) with probability 1 — n(k). It is simply I1(k)-ROR-SCDA-(block-
wise)-secure if for any negligible(k) it is (II(k), n(k), e(k, s))-ROR-SCDA-(block-wise)-secure where
e(k, k°) is negligible ink for any constant.

Definition 3.4 (Chosen ciphertext securityJheROR-SCDCA game (strong chosen distribution and chosen
ciphertext security) is identical to tiROR-SCDA game except the adversary (in any of its sub-algorithms) is
also allowed access toec’ oracle that answers all decryption queries except for the ciphertext®psly
output byRoR. (II, 5, £)-ROR-SCDCA-(block-wise)-security is defined d3I, n, ¢)-ROR-SCDA-(block-
wise)-security except using tiR®OR-SCDCA security game.

Because of the following proposition, when constructing schemes we ainove fhat they are secure for
profiles witha, 5, k as small as possible amdas large as possible.

Proposition 3.5. If a scheme is (11, , £)-ROR-SCDA-(block-wise)-secure for some proflle= («, 53, k),
then itis also(Il’, 1/, )-secure for anyl’ = (o, §’, k") wherea/ > o, 8’ > 8,k > kandny’ <.



4 Relation with other security notions

We now prove thatll, n, )-security implies previous notions of security. To make our results as sa®ng
possible, in the following theorems we dét= («, 5, k) wherea, 3,  are as large as possible ands as
small as possible, sinderoposition 3.5mplies that security for smaller values of 3, x and larger values
of n is even stronger.

4.1 Indistinguishability under CPA attacks

In [GM84], Goldwasser and Micali formalized the notioninflistinguishabilityfor public-key encryption

schemes which asserts that it must be infeasible for a probabilistic polynime&hkdversary to compute
any information about a plaintext from its ciphertext and the correspgnalitblic encryption key. This
security notion can be formalized with the followinggl-or-randomdefinition:

Definition 4.1. For everys : N — N ande : N x N — [0,1], a public-key encryption schent& =
(Gen, Enc, Dec) is (-, -)-IND-CPA secure if for every adversat = (A;,.42) a pair of circuits of size
at mosts(k), the ensembleSIND-CPAL (A, k) }rew and{IND-CPAE, ... (A, k) }ren aree(k, s(k))-close
where
IND-CPAS_, (A, k) := (pk,sk) <> Gen(1F)
R

r<— TR

(m, state) %il A; (1%, pk)

if mode = real, C' < Encpi(m, 1)

if mode = random, m’ %ia M, C « Encpi(m/,r)

b Ao (C, state)

Output b

Lemma4.2. Lets : N — Nande : N x N — [0, 1]. Let€ = (Gen, Enc, Dec) be a public-key encryption
system with security parametermessage spacet = {0, 1}"(*) and randomness spae = {0, 1}*). If
& is (I1(+), 0,&(-, -))-ROR-SCDA-(block-wise)-secure withl (k) = (Hoo(pk), £(k), £(k)) then& is (-, -)-
IND-CPA-secure.

Proof. Assume for contradiction that there exists an adverfaey (5;, B2) thats-breaks thdND-CPA-
security of€.

We will construct an adversatl = (Rand, Rev, Query, Dist) for the ROR-SCDA game withT' = 1 as
follows:

e Rand generates uniform random bits always.
e Rev is the identity function.

e Query getspk and runsB; on pk; By outputs a message and some statetate. Query makes a
singleRoR query whereMesg outputs the fixed message Query outputs the resulting ciphertekt
as well astate.

e Dist outputsBy(C, state).



Since there is no communication betweldesg and Rand, it holds thatc = 0. ThereforeH (pk) —
min(p,c) = Hy(pk). Moreover, the randomness output Bynd is a /-source and the paitm,r) is

a ¢-source conditioned op (there is no hint). Therefore, the adversany satisfies the attack profile
(Hoo (pk), ¢, ¢) = 11.

Finally, the advantage aoft in the ROR-SCDA game is identical to the advantage ®fin the IND-CPA
game. |

4.2 (Weak) CDA Security

In a setting where randomness is bad, the previous notion is no longevaeiein BBN*09], Bellare,
Brakerski, Naor, Ristenpart, Segev, Shacham and Yilek asked thatitgels guaranteed as long as the
joint distribution of the message and randomness has sufficiently high mwpgrand called this notion
Indistinguishability under a Chosen Distribution Atta@RDA).

We work again in the “real-or-random” model. The adversary is givaaesge to an oracl®oR that is
parametrized byk, mode € {real, random}, and a sampling algorithov{R. Then we defin®oR (MR ; mode)
as follows: (m, r) are distributions over vectors of lengih = poly(k) sampled according ta1R. If
mode = real then outputEnck(1m1;71), . . ., Encp(mr; 7). Otherwise, samplem;, r});cpr) uniformly

and independently and outplncyk (m}; 7)), . . . , Encpx(m/p; 77)).

Definition 4.3. Let (Gen, Enc, Dec) be a public-key encryption system with security paraméteAn ad-
versary in theROR-WCDA game is a pair of algorithmd = (Query, Dist). The game is defined as follows
for mode € {real, random}:

ROR-WCDAT % (k) game

(pk, sk) & Gen(1*)
T = Query]SORpk(';mOde)(lk)

OutputDist(r, pk)

Advgor-wepa (k) = | Pr[ROR-WCDA'$?' (k) = 1] — Pr[ROR-WCDA'{"™™ (k) = 1]

Definition 4.4 (ROR-WCDA security) A scheme(Gen, Enc, Dec) is (k(-), (-, -))-ROR-WCDA-(block-
wise)-secure i dviior wepa (k) < e(k, s) for all adversarie§ Ay, ) xew consisting ofd;, = (Query,, Disty,)
where each algorithm is a circuit of size at mestnd for anyMR queried byQuery,,, the corresponding
distribution(m, r) is a (block-wise):(k)-source and for every: in the support, all the messagesinare
distinct.

Lemma 4.5. Lets,x : N - Nande : Nx N — [0,1]. LetE = (Gen,Enc,Dec) be a public-key
encryption system with security parametemessage spack! = {0, 1}"™*) and randomness spa@® =
{0, 1} 1f £is (T1(-), 0, (-, -))-ROR-SCDA-(block-wise)-secure witi (k) = (H. (pk), £(k), x(k)) then
Eis (k(+),e(+,-))-ROR-WCDA-(block-wise)-secure.

Proof. Assume for contradiction that there exists an adverSagy(Query’, Dist’) thate-breaks th&ROR-WCDA-
security of€. Suppose thaQuery’ makes queries 1R that sample vectors of lengifi = poly (k).

We will construct an adversatt = (Rand, Rev, Query, Dist) for theROR-SCDA game with the sam€ as
Query’ as follows:
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e Rand receives input from Mesg and outputs-.
e Rev is a constant function, revealing nothing about the public key.

e Query runsQuery’ and for each queryI’R made byQuery’, Query constructsMesg that samples
from MR to produce(m,r). Mesg outputsm and sends to Rand. Query forwards the response
of the oracle back t®Query’ and continues. WheQuery’ is done,Query outputs whateveQuery’
outputs.

¢ Dist runsDist’ and outputs whatever it outputs.

Observe thap = |p| = 0 sinceRev reveals nothing. Therefold., (pk) — min(p(k), c(k)) = Hoo(pk).
Moreover, since = 0, the second entropy condition DEfinition 3.2is vacuously satisfied. Finally, the dis-
tribution of message/randomness outpuMmysg andRand is the distribution output bist and is therefore
ar(k)-(block-wise)-source. Therefore, the adversdrgatisfies the attack profildl (pk), £(k), ((k)) =
TI().

Finally, the advantage ofl in the ROR-SCDA game is identical to the advantage®fn the ROR-WCDA
game. |

4.3 Randomness-Dependent Message Security

In [BCPT13, Birell, Chung, Pass and Telang formalizeshdomness-dependent message secafign-
cryption schemes. In this setting, the message to be encrypted may be sateatieohction (chosen by the
adversary) of the randomness used to encrypt this particular meSdageproposed the following notion
of bounded strong randomness-dependent message BSRDM) security

Definition 4.6. For everys,a,q : N — N ande : N x N — [0, 1], a public-key encryption schende =

(Gen, Enc, Dec) is a-bounded-stronge-BSRDM-CPA-secure if for every adversamt = (A1, A2, A3) a

triple of a circuits of size at most k), the ensembleEBSRDM-CPAE,_ (A, k) }ren and{BSRDM-CPAE, ;. (A4, k) }ren
ares(k,t(k))-close where

BSRDM-CPA (A, k) := (pk,sk) <- Gen(1¥)
(f,stater) <= A (1%, pk)
r & {0,110
(mn, states) & As(f(r),stater)
if mode = real, C' < Encpi(m, 1)
if mode = random, m’ <% M, C' + Encpk(m/, )

b L A3(C, states)
Output b*

Here,f : {0,1}(®) — {0,1}9(%) is a function computed by a circuit of size at masgt).

Lemma 4.7. Lets,a,q : N — Nande : N x N — [0,1]. Let€ = (Gen, Enc, Dec) be a public-key
encryption system with security parametermessage spacét! = {0, 1}”(’f) and random spac® =
{0, 1340 If £is (TI(-), n(-), £(, -))-ROR-SCDA-(block-wise)-secure with (k) = (Hyo (pk) — a — ¢, —
q —log(1/n),¢ — q —log(1/n)) then& is a-bounded;-stronge (-, -)-BSRDM-CPA-secure.
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Proof. Assume for contradiction that there exists an adverBary (53, B2, B3) thate-breaks th@d8SRDM-CPA-
security of€ with leakage functiong : {0,1}* — {0, 1}? computed by a circuit of size at mastk).

We will construct an adversarlt = (Rand, Rev, Query, Dist) with 7" = 1 in the ROR-SCDA game as
follows:

e Rand expects to get a description of a circiitlt samples- uniformly, sendsf () back toMesg, and
outputsr.

e Rev is the identity function.

e Query receivespk and runs3; onpk; By outputs a leakage functiohand some statetate;. Query
makes eRoR queryMesg, which contains a description &, f, state; and does the following:

1. Mesg sendsf to Rand and gets bacl(r).

2. Mesg then runsB,(f(r), state;) which produces a messageand a statetate;.
3. Mesg outputsm and¢ = states.

Query receives from th&®oR oracle a ciphertext’ and¢.

e Dist runsB3(C, &) and outputs whatever it outputs.

Observe that the communication betwééesg, Rand is ¢(k) = a(k) + q(k) (the size of the description of
f and the size of its output). Observe that |pk| and thereforél, (pk) — min(p(k), ¢(k)) = Hoo (pk) —
a(k) — q(k). Moreover, becaus¢ shrinks from/ to ¢ bits, with probabilityl — # it holds thatr, is a
¢ —q—log(1/n)-source, and with probability — n the pair(m, r) is al — ¢ — log(1/n)-source conditioned
onp, ¢. Therefore, the adversayy satisfies the attack profildl. (pk) —a — q,¢ — g — log(1/n), ¢ — q —
log(1/n)) = II(k) with probability 1 — .

Finally, the advantage ofl in the ROR-SCDA game is identical to the advantage®fn the BSRDM-CPA
game. |

4.4 RSV Security

We use the samiRoR oracle as irSection 4.2 We consider only the single-query case as this is without loss
of generality for the RSV notion of adaptive securiBgV134.

Definition 4.8. Let (Gen, Enc, Dec) be a public-key encryption system with security paraméteA p-
bounded adversary in tHROR-RSV game is a pair of algorithmgl = (Query, Dist) and an associated
family of distributionsF of size|F| < 2P such that the single quertyIR made byQuery satisfiesSMR €
F. The game is defined as follows ferode € {real, random}:

ROR-RSVT°% (k) game

(pk, sk) & Gen(1%)

= Query,SORpk(';mOde) (pk)

OutputDist(r, pk)

Advior.rsy (k) = | Pr[ROR-RSV'S? (k) = 1] — Pr[ROR-RSV73"M (k) = 1]|
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Definition 4.9 (ROR-RSV security) A scheme(Gen, Enc, Dec) is ((-), (-, -))-ROR-RSV-(block-wise)-
secure againgi-bounded adversaries dvior.rsy (k) < (k, s) for all p-bounded adversarigsiy,)xen
consisting of4;, = (Query,,, Dist;) where each algorithm is a circuit of size at mesandQuery; makes a
single query whose corresponding distributien, r) is a (block-wise):(k)-source and for eveny: in the
support, all the messagesrimare distinct.

Remark 4.10. We comment that in fact the notion of “adaptivity” used R§V134 is different than the
notion of adaptive security in the WCDA model or hedged encryption mod¢BRBN*09]. Although the
RSV notion allows the adversary to change its query distribution in eacly dpasied on the answers to
previous queries, all queries must come from shenefamily of distributionsF of size|F| < 2P. This
greatly limits how truly adaptive the reduction may be. In particular, adaptigergy in the RSWVdoes not
imply adaptive security in the WCDA model or hedged encryption model. leram do so, one would
need to allow each adaptive query to be froufifferentfamily of distributions of size?. Generalizing the
definition in this direction (namely by bounding the size of the family of distributtbaseach query comes
from but allowing different families for each query) is cumbersome, asises the question of how the
definition of the family of distributions may depend on tReR answers previously seen by the adversary.
Therefore, since our SCDA definition subsumes both the adaptive WQig8iged models as well as the
RSV notion of security, as a nice side-effect it also offers a clean aligengeneralization of the RSV
security definition to be “truly” adaptive.

Lemma4.11.Lets, x : N — Nande : NxN — [0, 1]. Let€ = (Gen, Enc, Dec) be a public-key encryption
system with security parametky message spac&t = {0,1}**) and randomness spade = {0, 1}*(*).

If £is (II(+), 0, (-, -))-ROR-SCDA-(block-wise)-secure withl(k) = (Hoo (pk) — p(k), £(k), x(k)) then&
is (k(+),e(+, -))-ROR-RSV-(block-wise)-secure againgtk)-bounded adversaries.

Proof. Assume for contradiction that there existg(@)-bounded adversary = (Query’, Dist’) that -
breaks theROR-RSV-security of€. Suppose thaQuery’ makes queries MR that sample vectors of length
T = poly(k).

We will construct an adversany = (Rand, Rev, Query, Dist) for theROR-SCDA game with the sam@ as
Query’ as follows:

e Rand receives input from Mesg and outputs-.
e Rev runsQuery’ and outputs the choice @f1R to query (this requires only bits to describe).

e Query queriesRoR on the MR that is computed byev. It forwards this response tQuery’ and
outputs whateveQuery’ outputs.

e Dist runsDist’ and outputs whatever it outputs.

Observe thap = |p| is the same as thg-bound on theROR-RSV adversary. Thereforél,(pk) —
min(p(k),c(k)) > Hoo(pk) — p(k). Moreover, the second entropy condition@éfinition 3.2is vacu-
ously satisfied. Finally, the distribution of message/randomness outpdiédgyandRand is the distribution
output byDist and is therefore &(k)-(block-wise)-source. Therefore, the adversdrgatisfies the attack
profile (Ho (pk) — p, £(k), k(k)) = T1(k).

Finally, the advantage ofl in the ROR-SCDA game is identical to the advantage ®fin the ROR-RSV
game. |
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5 Constructions

5.1 Standard model

We now show that, using the high moment Crooked Leftover Hash LemniRS) 134 and lossy trapdoor
functions, we can constructROR-SCDA-blockwise-secure scheme in the standard model. The restriction
to block-sources is standard in deterministic encryption and security agdéiosen distribution attacks
(e.g.[BFOR0§BFO08BBN*09,BS11,RSV13§) and was recently shown by Wich#/jc13] to be inherent

to our techniques.

5.1.1 Main tool

We start by giving our main technical theorem, which is a generalization @Em 4.6 fromRSV134.

Theorem 5.1. For anye, 7 € (0,1), for any (n + £, a)-lossy functionf : {0,1}"¢ — {0,1}", and for
7 a t-wised-dependent permutation ovéd, 11"+ wheret = b+ n + a + log(T/e) + log(T/n) + 1 and
§ < 2-(+0t the following holds:
LetR = {r} be a family ofs block-wise-sources of siz&| < 2° wherer = (ry,...,r7) and eachr; is
over{0, 1}, and where

k> a+2log(l/e) 4+ 2logT + 2logt + O(1)

Then with probability at least — 7 over the choice ofr € =, it holds that for allr € R and all
my,...,mp € {0,1}" that:

A ((frmirn)),..., fr(mrer)), fl)), o f@ll))) <

where theuSJ)r[ are independant uniform strings ovo, 1}~
We first remark that a naive application of Theorem 4.6 R$Y/133 to the hypotheses ofheorem 5.1
would result in a useless bound, since the family of distributions is of ZiZe® which is much larger
than whatt-wise §-dependent permutations can handle forithe nT. We are nevertheless able to prove
our result because our family of distributions, while large, has a vergifspéorm, and we can apply the
analysis of RSV134 more carefully to take advantage of this special form.

To proveTheorem 5.1t is useful to define the following hybrids for ea¢ke [T]: (similar to those defined
in the proof of Theorem 4.6 oHSV133):

Hi(m,r) = (mir,...,mi_irieg, f0,), .., fa)) (5.1)
Gi(ma I‘) = (m1r17 sy My—1Y4-1, f(ﬂ(miri))a SRR f(ﬂ(mTrT)» (52)

Let H;(m,r)p; (respectivelyG;(m, r)(;) denote the first components of the vector.
The main ingredient in the proof @heorem 5.1s the following lemma:

Lemma 5.2. Given the hypotheses ®heorem 5. lfor any: € [T7] it holds that

Pr[3m € {0,1}"",r € R s.t. A(H;(m, ), Gi(m, 1)) > ¢/T] <~/T
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Proof. Observe that the firgt— 1 components of both distributions are identical, and also that in both cases
thei'th component is independent ofy, ..., m;_1. Therefore we have that:
Pr[3m € {0,1}",r € R s.t. A(H;(m, r)i), Gi(m,r)) > ¢/T]
= Pr[3m; € {0,1}",r € R s.t.
A((ry, ... v, f(m(mari))), (v1, .. et f(Unge))) > €/T]
< Z Pr[A((rlw"7ri—17f(7r(miri)>)7(rlv"'vri—hf(un-i-f))) > E/T]
m;€{0,1}",reR
Now applyingLemma 2.6 we see that each term in the sum is bounded 3y /7, and taking the sum
we get a bound of /T |
[ |

Proof of Theorem 5.1 By definition, proving the theorem is equivalent to proving that

Pr [3m € {0,1}"T r € R s.t. A(Hi(m,r),G1(m,r)) >¢] <7

T<—RT

Clearly we cannot take a union bound over all ther since there are too many possibilitiesreffor us to
handle. However we can prove that for each intermediate hybrid wetoeaakie only a union bound over a
singlem; and this will allow us to prove the theorem.

Our main claim is the following, which we prove by induction starting at7".
Claim 5.3. For eachi € [T, it holds that

Pr [3m € {0,1}"T,r € R s.t. A(H;(m,r),Gi(m,r)) > E(T}”l)] < "(T}i+1)

T<—RTC -

The base case= T'is justLemma 5.Zor the setting of = 7". The inductive case is proved by splitting up
the expression into two parts:

WEgﬂ[Elm e {0,113 r € R s.t. A(H;(m,r),Gi(m,r)) > M]
=Pr[3m € {0,1}'"",r € R s.t.
A(((mr) gy, S r(mirs), fag (), f@),
((mx) iy, FQp), o ) > £
+Pr[@m e {0,131 r € R s.t.
A((mr)iay, f(w(max), falf ), ),
(mr) iy, F(x(mar)), - .-, f(m(marr)))) > ) (5.3)
< 44200
The first term ofEquation 5.3s bounded byLemma 5.2because the coordinates after itith coordinate
are identical in both distributions and independent of the previous caiedin The second term is by the

inductive hypothesis and the fact that the distance at’'thecoordinate cannot increase by applying the
function f (7 (-)) to the same random variabte;r; in thei’th coordinate in both distributions. |
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Fix any polynomiala(k),b(k). Fix any polynomialsn(k) (message length) andlk) (randomness
length) such that(k) = w(a(k)) and alsau(k) = (n(k) + £(k))*D). Fix a family of (n + ¢, a)-lossy

trapdoor functions. Fix anf’ = k“() and sett = b+ n + a + 2log T + w(logk). We define the
following public-key encryption:

Key generation : Gen(1¥) runs the injective generation function foa + ¢, a)-lossy trapdoor func-
tion family to generatd f, f~1). Gen(1¥) also samplesr < = from at-wise §-dependent
permutation ovef0, 1}"*¢. The public key ipk = (f, ) and the private key isk = f~1.

Encryption : Encyy(m;r) = f(m(m|r)) wherer € {0, 1}¢(),
Decryption : Decgc(c) = 1 (f71(¢)) -

Algorithm 5.4. ROR-SCDA encryption in standard model

5.1.2 Definition and security of our scheme

Our scheme is essentially the same as the schen&df134 with a longer key size, which seems necessary
to achieve our stronger notion of security. Our scheme is defin&tyrithm 5.4

Theorem 5.5. Fix any (k) > a + 2logt + w(logk). The encryption system ilgorithm 5.4is II-
ROR-SCDA-blockwise-secure fdil = (Ho (pk) — b, , k).

Proof. We in fact prove that the scheme satisfies a somewhat stronger noticquafysdJsing this stronger
notion aids in our proof as it will allow us to reduce from the multi-query adaptase to the single-query
non-adaptive case.

Intuitively, we will require the scheme to be secure even if the adversagfdor free (wherepk = (f, 7))

and even if we require that the ciphertexts are indistinguishable frononanibhertexts encrypted iy, ')

for an independent randomi (rather than being encrypted by the safifier). This stronger requirement is
similar to anonymity (or key-privacyHBDPO0]] and is necessary to show that no additional information is
leaked about the permutatianin the adaptive queries.

Formally, we define the oracl%oR’(f’ﬂ) as follows:

1. RoR’(fﬂr)(l\/Iesg; Randy, real, T') behaves identically tRoR ;) (Mesg, Randy, real, T').

2. Roszﬂr)('; Randy, random, T') behaves identically t&oR (-, Randy, random, T) (i.e. encrypting
uniformly chosen messages and randomnessgpthat the encryption is performed usiag =’) for
an independently and randomly chosémather than usingf, 7).

Definition 5.6 (ROR-SCDA’ game) An adversary in th&OR-SCDA game is a sequence of integis=
poly (k) and tuples of algorithmsl;, = (Randg, Revy, Query,,, Dist;). The game is defined as follows for
mode € {real, random}:
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(ROR-SCDA’)mo% (%) game
(pk = (f: 7T)7 sk = fﬁl) £ Gen(lk)

RoR’, . (-;Randy,mode,T]
T = Queryk0 (s (iRandi mode k)(f, Revy(pk))

OutputDisty (7, pk)

Advior scpa (k) = | Pr[(ROR-SCDA')’§?! (k) = 1] — Pr[(ROR-SCDA')"3"*°™ (k) = 1]|
First observe that for every, there existsd’ of the same computational complexity such that
AdV'élOR_SCDA(k) S AdV'éOR_SCDA/(]C) + AdVéc,)R_SCDA/(k) (54)

The adversaryl’ emulates4 and for eachRoR query that4 makes, callRoR’ with uniformmessage/randomness
distributions and forwards the answers back to the emuldted’ then runs the same distinguisher.4s

The above inequality holds by the triangle inequality, sintin gameROR-SCDA’ gets oracle answers

that are either real encryptions of the queried message distributiongsartfom messages encrypted with

(f, =), while A’ is the same as running with oracle answers that are either random messages encrypted
with (f, 7") or random messages encrypted with the f{rfier).

Next observe that one can reduce the case of many-Q@RySCDA’ to the single-query case: consider any
adversaryA that makes at most = poly(k) queries to th&RoR’ oracle. Consider single-query adversaries
Ay, ..., A, where for eactd;, all queries< i are answered according tandom mode and all queries ¢

are answered according teal mode, and thé'th query is sent to the actuoR’ oracle. Observe that the
queries< ¢ can be answered hyl; because we give the query algorithfrfor free and so it can sample
messages and’ on its own to compute random encryptions. Furthermore, observe4thaan answer
queries> i because after its last/only query to the ackalR’ oracle we may push the rest of the execution
of A into the distinguisher, where the adversary has full accesk te (f,7) and so it can compute real
encryptions by itself. Thus it holds that

A / < q- ~ , :
eﬁicientArnIﬁlaE?(}i?\gq queriesAdVROR'SCDA (k) = ¢ (efﬁcientA mrgilkzi%r% single querg/AdVROR'SCDA (k)> (5 5)
Therefore fromEquation 5.4andEquation 5.5to prove theROR-SCDA-security of the scheme it suffices

to show that the advantage of a single-query adversary iR€HeSCDA’ game is negligible.

The remainder of the proof breaks into two cases depending on the mifile attacker. Our attacker is
a tuple of algorithmsA4;, = (Randg, Revg, Query,, Dist;), and we have the guarantee tatery, makes
exactly one query to thRoR oracle. In fact, we can also assume without loss of generalityQbety,, is
deterministic, since it can push all of its randomness into its single ddesy. Also recall that the input
to Query,, is a stringp of lengthp and thats denotes the communication betwedeasg;, andRand;, and

¢ = |o|. We distinguish the following two cases.

If p < b: in this case the input tQuery, can be one of at mo’ values, and therefore the output dis-
tribution (¢, m, r) of the interaction oMesg, Rand can be one of at mog possible distributions.
Furthermore, by the third entropy condition@éfinition 3.2 (m, r) form ax-source, even when con-
ditioned on the values of, £&. The theorem follows by considering the following sequence of games:
Go is just actuaROR-SCDA' security game imeal mode.
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G, is like Gy exceptLGeng is used to sample a lossy function insteadL&kn;. Gy and G, are
indistinguishable because of the indistinguishability of lossy and injectivetifums sampled from
LGeng andLGen;.

G, is like G; except theRoR oracle is inrandom mode. G; andG. are indistinguishable because of
Theorem 5.1in G; the distinguisher seés; = (f, &, m, f(w(myry)),..., f(7w(mpry))) while in G,
the distinguisher seeX, = (f, &, f(ﬂ/(“&)re)% cee f(”/(qu)e)))- Sincep < b, this means there
are at mosR? distinct possible inputs toMesg,., Randy,), (m,r) can be one of at mog possible

distributions.

Furthermore, with overwhelming probabilifyn, r) is a x-block-wise-source, even conditioned on
f,m, & This holds because by the third entropy conditio®efinition 3.3 (m, r) is ax-block-wise-
source conditioned op, £ with overwhelming probability ovef, and the only dependence tliéit )
have onm, r is throughp, which is fixed. Therefore we can appifyheorem 5..where them in the
hypothesis offheorem 5.1s empty and the in its hypothesis is thém, r) in our game. We deduce
that X, has negligible statistical distance b, &, 7, f(u,,.¢)”), which is distributed identically to
X, sincen’ is a permutation.

Gs is like Gy exceptLGen; is used to sample an injective function instead Gén,. Again this follows
by the security of lossy trapdoor functions.

We conclude by noting thal; is theROR-SCDA’ security game imandom mode.

If p > b: in this case, the first entropy condition Definition 3.2implies thatc < b. Furthermore, the
second entropy condition implies that is a k-block-wise-source with overwhelming probability
overo. Security follows from the following sequence of gamés. is just the actuaROR-SCDA’
security game imeal mode.

G is like Gy exceptLGeng is used to sample a lossy function insteadLGkn;. Gy and G; are
indistinguishable because of the indistinguishability of lossy and injectivetifums sampled from
LGeng andLGen;.

G, is like G; except theRoR oracle is inrandom mode. G; andG, are indistinguishable because of
Theorem 5.1the view of the adversary i is the tupleX; = (f, &, 7, f(7(mry)), ..., f(7(mzry)))

while the view of the adversary i@ is X, = (f, &, 7, f(w’(ufjlﬁ)), ce f(Tr’(ug_)g))). Sincer’ is a
permutation for each’ in its support, it holds thaX,, is distributeddenticallyto (f, =, f(uglg), ce f(ug)g)).

Suppose now we reveah ando to the adversary for free (this can only increase statistical distance,
so bounding the distance with this additional revealed information suffi8@®)e there are at mogt
possible transcripts, r, can be one of at mog&t possible distributions, and due to the second entropy
condition ofDefinition 3.2and the fact that = « in our attacker profile, it holds that with overwhelm-
ing probability overs, r, is ak-source. Letting (7w (mr)) denotef (7w (m;ry)) ... f(7w(myry)), we
want to bound:

A((f, & m, 0,m, f(mw(mry))), (f, €, 7 0,m, f(un+g)T)) (5.6)
< E(f,f,ﬂ,a,m)<—R(f,§,7r,0',m) [A (f(ﬂ—(mra) ’ 5 = 6)7 f(un+€)T)] (57)
< By myepitm) |maxA (f(w(mr,)), f (wpre)") (5.8)

We may remove the dependenceéogoing fromEquation 5.0 Equation 5.&ecausg is output by
Mesg, and the only wayMesg can influencékand is through their communicatiarn, and therefore the
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only dependence af, on¢ is througho, which is already fixed. Finally, we can appljeorem 5.1
and our choice of large enough to say that for eagh with overwhelming probability over the
choice ofr < 7, the statistical distance is negligible for all choicesofn, and therefore the above
expression is negligible.

Gs is like Gy exceptlLGen; is used to sample an injective function instead Gén,. Again this follows
by the security of lossy trapdoor functions.

We conclude by noting thad; is just theROR-SCDA’ security game imandom mode.

5.2 Fromrandom oracle

We construct a scheme secure in the random oracle model. We explicitly eatyttieROR-SCDA case;
theROR-SCDCA case (with a decryption oracle) is entirely analogous.

Although we would like our construction to work starting with diD-CPA scheme in the standard model,
this turns out to be impossible. We will need the starting scheme to be anonyineoefhertexts do not
leak information about the public key.

Let ARoRk(Mesg; mode) for mode € {real,anon} be defined as follows: ifnode = real then it samples
m < Mesg and uniformr and outputsEncpi(m;r), else if mode = anon it samples(pk’, sk’) <
Gen(1%) andm/, r" uniform and output&nc,,/ (m'; 1”).

Definition 5.7 (ANON-CPA game) Fix a public-key cryptosysterfGen, Enc, Dec). TheANON-CPA game
is defined as follows fomode € {real, anon} and for an adversaryl = (Mesg, Dist):

ANON-CPAT°% game
(pk, sk) 2 Gen(1%)

mode & {real,anon}, ¢ = ARoRx(Mesg; mode)
OutputDist(pk, ¢)

Define
AdviA“NON_CPA(k:) = |Pr[ANON—CPA“ja'(k) = 1] — Pr[ANON-CPA¥}°"(k) = 1]|

Definition 5.8 (ANON-CPA security) (RGen, REnc, RDec) is ac(k, s)-ANON-CPA secure scheme if it is
e(k, s)-IND-CPA and in addition for any adversayy computable in size it holds that

Advanon-cpa(k) < e(k, s)

We remark that one can construct schemes Witl® N-CPA security under standard assumptioBBPPO]].

Definition 5.9. Let (RGen, REnc, RDec) be anANON-CPA secure scheme where for security paramkter
REnc uses! = /(k) random bits. LeRO, : {0,1}* — {0, 1}’ be a random oracle witkbit outputs. We
define(ROGen, ROEnc, RODec) where:

e ROGen = RGen.

e ROEnc,i(m;r) = REncyk(m; ROy(pk || m || ), wherer € {0, 1}*.
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e RODecgk(c) = RDecg(c).

Theorem 5.10. Suppose thatRGen, REnc, RDec) is a sRE"¢(k, s)-ANON-CPA-secure scheme. Then for
any functiorn(k), letII(k) = (k(k), x(k)—(Hoo (Pk)—p(k)), k(k)), it holds that the schem{@®OGen, ROEnc, RODec)
defined inDefinition 5.9is (I1(k), n(k), e(k, s))-ROR-SCDA-secure where

e(k,s) < 2sn(k) + 3s - eRE(k, ) + (252 + 1)27"(k)/2+2

Proof. Fix any adversaryl = (A)xcn against ROGen, ROEnc, RODec) in theROR-SCDA game. Fixk, s
andp = p(k),c = ¢(k),x = k(k). For each of the queries thaQuery may make, the probability that
the second or third entropy conditions Définition 3.2are violated is at mosj, and so by a union bound
the probability that they are violated in any query is bounde@d)(k). Therefore, in the remainder, we
condition on all entropy conditions holding.

Game G is ROR-SCDA'$! (k).

GamesgMmede for i € [s] and mode € {real,anon}. Let us assume without loss of generality tatery,,
makess queries to thd&roR oracle (if it makes fewer, just fill the remainder with dummy queries).

GamegG'! is like G2"S" (setGa"" = G,) except that the'th call to the RoR oracle is answered with an

altered oracldﬁpk(Mesg; Randg, real). In this oracle, if we letn be the message vector sampled by
an interaction ofMesg, Randy, and then the oracle encrypts it using the underlying encryptionfrastl
randomnessi.e. it returns(REncpx(m;, }));cr) Wherer’ is sampled independently and uniformly from
{0,1}4(k),

For G2mon is just like Gr*! except that the'th oracle call to theRoR oracle is answered witli' ciphertexts
sampled byARoRi(u,; anon), i.e. each ciphertext is a fresh encryption of uniformly randery r, using

a completely independently samplpkij] & RGen(1%) for ¢ € [T]. (So in gamegz2™", all of the RoR are
answered with encryptions of randem,, , each with independently choseky,.)

Lemma 5.11. For eachi € [s], G is ¢-indistinguishable frong2"s" for
e = (552 +2)- 272 4 2. REMC( )

Proof. We claim that the only wag'' andG2"$" can be distinguished is if ig/*®' the following bad event
occurs: if we letMesg be thej’'th query made byQuery, and let(m,r) be the sampled vectors for this
query, it holds for someg € [T, thatRO(pk || my || r4) is queried byQuery,,, by Dist, or by Mesg or
Rand;, during the interaction that producés:, ). If the bad event does not occlRO (pk || mq || 74) iS
always queried exactly once during the entire game and so we may regigaeiform randomness, which

is what is done irRoR i (Mesg; Randy, real).

We know that the number &fO queries made by each Qfuery,,, Dist;, Mesg, andRandy, is at mosts. Let
us examine eacRoR query made byQuery,. For thej’'th query, say thaMesg is the query, and letm, r)
be the resulting sample of message/randomness vectogstanthe associated hint. Then we argue:

e The probability that for the samplédh, =) for this query there existg € [T'] such thaRO(pk || my ||
r4) Was queried byQuery,, prior to queryingMesg is at mostI’s2~* < s*27%. This is by a union
bound ovel; and becausQuery,, makes at most queries taRO and because we are guaranteed that
Hoo(mg, ry) > k.
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e The probability that on this querilesg queriesRO(pk || m, || ) during the sampling interaction
is at mos /2 4 §227+/2,
To deduce this fact, lep = Revi(pk) and observe that conditioned @gn= p it holds thatpk is
independent o&, r, whereo is the transcript betweelesg, Rand;, andr is the randomness output
by Randy, for the j'th query. This is because the only information abpitthat Query, has before
the'th query inG2"9" is p, since all the otheRoR queries are answered using fresh public keys.)

Similarly, for anyo, conditioned oro- = ¢ it holds thatr is independent o, pk. Therefore we may
write for eachy € [T7):

Hoo(pk,rq | (p,0) = (p,0)) = Huo(Pk | (p,0) = (p, 0))
+Hoo(rq | (p,0) = (p, )
=Ha(Pk | p=p) + Hoo(ri | 0 = 0) (5.9)

We may then applyemma 2.1to the first term (settingk = pk andy = p) to deduce that with
probability at least — 27%/2 that we pickp < p such that

Heo(Pk | p = p) > Hoo(Pk) —p — K/2

In this case, combining witkquation 5.9and the second entropy condition@éfinition 3.3with our
choice of3, we conclude that

Hao(pk,rq | (p.0) = (p,0)) > #/2

Since the only dependence Miesg on pk, r is throughp, o, therefore with probability at leadt—
27/2 the entropy is high and in this case the probability thiatg;, makes the bad query is at most
Ts2r/2 < §297K/2,

e The probability thaRand;, queriesRO(pk || m,, || r,) is < 27%/2 4 s227%/2_ This is essentially for
the same reason as the above point: sinagn, ¢) < Hy,(pk) — &, it holds that with probability at
leastl — 27%/2 thatH.,(pk | o = ) > /2, and in this case the probability thaand;, makes the
bad query is bounded by?2—"/2,

e The probability thaQuery,, queriesRO(pk || m, || r,) after queryingp and none of the previous
queries were bad is at mosteRE¢ (k. s) 45227, To see this, observe that since none of the previous
gueries were bad, in fact the encryptionsiof, . . ., mp were performed using true randomness, and
so we may replace the oracle’s respofiBOEnc, (g, 7¢))qer) With (REncp(uy,,7;)) and this
incurs at most asRE"°(k, s) change in probability. But in this latter cas@yery,, has no information
about(m, r). By the third entropy condition ddefinition 3.2 we know tha{m, r) is ak-source even
conditioned orp, &, and so it follows that the probability th&tuery, makes a bad query is at most
Ts2~F < g227K,

e For the same reason as in the previous point, the probabilityDisgt queriesRO(pk || mq || 74)
after querying» andnone of the previous queries were bad is at mostit"°(k, s) 4 5227,

Observing tha2—" < 27%/2 and collecting all these terms gives the boundon [

Claim 5.12. For eachi € [s], G*® is s - eREn¢(k, s)-indistinguishable frong2"".
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Proof. This follows from theANON-CPA-security of the original scheme: betw@jﬁa' andg:"°" the only
difference is that theé'th query is answered either by a real encryption ugiigor by an encryption of a
uniform message and randomness using a fresh random key. Sinité tngery consists of encryptions of
T < s messages, the bound follows. [

GamesgG™mede for mode € {unif, random} are defined inductively as follows. Fore [s], G*"f be like

grandem (setgrandom — ganen) except that we answer thith RoR query withRoR, (Mesg; Randy, random),

WhICh samples random messages and encrypts them using the origimaksetik the trugok and with uni-
form independent randomness.

The gameg{a”d"m is like gy"if except that the’'th query is answered using the original random oracle
RoRk(Mesg; Randj,, random).

Claim 5.13. For all i € [s], G'"f is s - eREne(k, s)-indistinguishable frongra7dem,
Proof. This follows from theANON-CPA-security of the original scheme: betwegff'f andG2™ the

only difference is that théth query is either vector of encryptions of uniform messages by thekesgbk
or a vector of encryptions of uniform messages using a fresh indeperehdom key. |

Claim 5.14. For all i € [s], G'"f is ¢’-indistinguishable frongrandem.

Proof. Proved identically to the proof dfemma 5.11 noting that in the case of uniformly randamy’, r’,
the entropy conditions we use are trivially satisfied. |

Finally, it is clear thaigj2"®°™ is justROR-SCDA" "™ (k). Combining all these claims, we get that the
distinguishing advantage is
AdVROR SCDA(]C) < 2s - T](k) + 2s - 5 + 25 REnc(k S)
< 2s- (k) + 2s((4s? +2)272 + 5. eREC (k. 5)) + 25 - £RE(k, )
< 2s-n(k) + 45 - eREC(k, 5) + (853 + 45)27 1K)/

5.3 Chosen-ciphertext secure construction in the standarchodel

In this section, we present a scheme which is secure against chosenteip attack. It is essentially the
scheme ofIRSV133 and is detailed irAlgorithm 5.15

Theorem 5.16. Fix any (k) > 2a + 2logts + w(log k). The encryption system ilgorithm 5.15is
IT-ROR-SCDCA-blockwise-secure fdl = (Hoo (pk) — b, K, k).

The security reduction is very close to the one givenR$Y134. We consider a sequence of games
G obtained from the security ganiROR- SCDCA by modlfylng the challenge ciphertext generation for

i € {0,...,T} and modify these games mﬂé gl . g6 in a way very similar toRSV133.

We note that our construction works for slightly superpolynorfiidiecause, to depend oril” logarith-
mically, and therefore our scheme satisfies security against all polyn@(aith no a priori bound on
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Fix any polynomialsu(k), b(k), n(k), £(k) such that’(k) = w(a(k)) anda(k) = (n(k) + £(k))*D.
Fix a family of (n + ¢, a)-lossy trapdoor functions. Fix superpolynomial= x~(!) and setv = /a,
t1 = b+n+v+2log THw(logk), §; = 2~ 01ty = bn+2a+2log T+w(logk), dy = 2+t
We define the following public-key encryption:

Key generation : Gen(1*) samples: : {0, 1} — {0, 1}” from an admissible hash function family
H. Gen(1¥) runs the injective generation function fof@+ ¢, a)-lossy trapdoor function family
to generatd f, f~1). Gen(1*) runs the generation function forR?M-(n 4 ¢, a)-lossy trapdoor
function family with a uniformly chosen initialization paramef€rto generatég, g—*). Gen(1%)
also samples; < 7 from at;-wise ¢;-dependent permutation ovéo, 1}"“. andmy <+ ™
from at,-wise s»-dependent permutation ovgl, 1}"+¢. The public key ipk = (h, £, g, 71, m2)
and the private key isk = (f~1, g7 1).

Encryption : Encp(m;r) = (h(mi(m|r)), f(ma(m|r)), g(h(mi(m|r)), m2(m|r))) wherer ¢
{0, 1}¢0),

Decryption : Decg(c1,c2,c3) = W;l(f_l(CQ))[n] if ¢ = h(ﬂ'l(ﬂ';l(f_l(c))) and c3 =
g(cl, fﬁl(CQ)). DeCSk(Cl,CQ, 03) =_1 otherwise.

Algorithm 5.15. ROR-SCDCA encryption in standard model

the polynomial). This is an improvement ovd®$V133, which obtain key size that isnear in 7, and
therefore one can only achieve security agaifighat is a polynomial fixed ahead of timeWe are able

to improve this dependence by observing that at one step of the proetuofity, RSV134 uses Lemma
4.5 of [RSV134 (restated inLemma 2.6 but pays heavily due to the fact that this lemma requires the high
conditional entropy condition to hold always. We prove the following ayerease version of Lemma 4.5
of [RSV134, and note that this average-case version suffices for the proetafisy, while allowing us to
save in the key size.

Theorem 5.17.For anye, v, € (0,1), for any (n + ¢, a)-lossy functionf : {0,1}"t¢ — {0,1}", and
for 7 a t-wise §-dependent permutation ovée, 1} wheret = b + a + log(1/¢) + log(1/n) + 1 and
§ < 20t the following holds:

LetR = {(x,y)} be a family of sources of siz&| < 2’ satisfying that for all(x,y) € R, it holds that
Prxgx[Hoo(y | x =) < k] < ywherex = a+ 2log(1/e) + 2logt + O(1).

Then with probability at least — n over the choice of € 7, it holds for all (x,y) € R that:

A((x, f(7(y)), (%, f(7(anie)))) < e+

whereu,, ,, is an independant uniform string ovéd, 1}

Proof. Fix any particulanx,y) € R. Define the eventow(x) to be thoser whereH . (y | x = z) < k
and observe that by hypothesis, it holds thafl_ow(x)]| < ~.

Earlier versions of RSV134 also claimed a dependencelof T" but this was in fact a typographical error, and the currently
available ePrint archive version contains the rectified dependenagh igHinear inT'.
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Observe that, for fixee

A, (7 (y)), (%, f(w)))
< Prilow(x)] + A((x, f(n(y)) | ~Low(x)), (x, f(u) | ~Low(x)) )

<7 + A((x, f(m(y)) [ "Low(x)), (x, f(u) | ~Low(x)) )

By Lemma 2.6it holds that with probability> 1 — 2¢=t+1 /< over the choice of- that

A((x, f(m(y) | ~Low(x)), (%, f(u) | ~Low(z))) <&

Plugging in our parameters gives

Pr [A((x, f(n(y))), (x, f(w))) > 7y +e] <27

e
Taking a union bound over & distributions implies the theorem. |

We also note thatheorem 5.1¢an also be plugged back into the proofB§V13a Theorem 7.1] to obtain
a key size that is linear ilvg T" for their scheme.

5.3.1 Security proof for Algorithm 5.15

Proof of Theorem 5.16 We strengthen the security game in the same way as in the prddfeafrem 5.5
instead of the originaRoR oracle, we use the analogieR’ oracle fromTheorem 5.5 in real mode it
behaves just aRoR, while in random mode it encrypts random messages using the same lossy functions
f, g, h but with independentlhosen permutations’, . Call the resulting gamBOR-SCDCA’. As in
Theorem 5.%ecurity inROR-SCDCA’ implies security irROR-SCDCA.

Let. A = (Rev, Query, Mesg, Rand) be aROR-SCDCA’-adversary. We assume thédtalways makes exactly
q queries (for some polynomigl(k)) decryption queries and thédesg and Rand always output vectors
(m*,r*) of lengthT' (for some polynomiall'(k)) in the security gam&OR-SCDCA’. We assume (for
contradiction) thatd has advantagefor some non-negligible functiog(%).

For any polynomial;, security for adversaries makingqueries to theRoR’ oracle in theROR-SCDCA'
game is equivalent to security for adversaries making a single query Rofeoracle, and so in the rest of
the proof we assume that the adversary makes only a dRagtequery (as in the proof 6fheorem 5.5

We denote by, ...c(@ the random variable corresponding to these decryption queries antl by
(¢f,...,ch) the vector of random variables corresponding to the challenge ciphegtarned by th&RoR’
oracle.

Fori € {0,...,T}, we consider the following sequence of gangé8 obtained from the security game
ROR-SCDCA’ by modifying the challenge ciphertext generation. In the real mode oR@®®-SCDCA'
experiment, the oraclBoR’ is given the tuplgm*, r*) generated by the algorithmdesg andRand and
outputs the ciphertext' = (ci,...,c%) = (Encp(mi,r5), ..., Encpp(mi, r3)). In G@), theRoR’ oracle
samples uniformuy_; 1, ..., ur ¥id {0,1}™ and sp—j4+1,..., ST ¥id {0,1}* and uniform independent
permutationsr}, 75 and outputs the challenge ciphertext

¢ = (c1,... ep) = (Bncp(miy, r7), . Encpi(my_g, rp;), Encpw (up_iy 1, 57—i41), - - -, Encpe (ur, 57))-
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wherepk’ = (f, g, h, 7, 7). In particular, we havg(®) = (ROR-SCDCA’)"' andG(") = (ROR-SCDCA’)random
and we will prove that

| Pr[GD (k) = 1] — Pr[GHV (k) = 1]] (5.10)
is smaller thare(k)/T'(k) for all i € {0,...,7 — 1} and for a security parametérlarge enough (and
therefore reach the contradiction).

In the following, we will modify the gameg”) (k) andg\+) (k) for i € {0,...,T — 1}. We fix the value
ofi €{0,...,T—1}andletj € {i,i+ 1}.

Gamegéj)(k) The gamegéj)(k) for j € {i,i + 1} are identical taz") (k) except that the initialization
parametet is sampled fromC, , as for the polynomial: as promised to exist bpefinition 2.4
Since no adversary can distinguish between different initialization paresx@efinition 2.3, it holds
that

| Pr[GW (k) = 1] — Pr[G{ (k) = 1]| < negl(k)

Gameggj)(k) The gameﬁ@(k:) for j € {i,i + 1} are identical togéj)(k) except that they outpui
whenever the tuple corresponding(ter_;, rr—;) and the message/randomness pairs corresponding
to the decryption queries forms a bad sequence of inputs for the admiszadbldunctiom.

Letz* = m(mk_,,r5_,) andzy = mi(Decy(c?)) fort € {1,...,q}. The gamegy)(k:) output
whatevergéj)(k) does wher(z*, z1, ..., z,) ¢ Unlikely, and aborts and outputs a random bit when

(x*,21,...,24) € Unlikely,. Since the probability thatz*, z1,...,z,) € Unlikely, is negligible,
we have readily

| Pr(G (k) = 1] — Pr[GY (k) = 1]| < negl(k).

Gamegéj)(k) The gameﬁéj)(k) for j € {i,7 + 1} are obtained fror@fj)(k) by outputting the output of
g{])(k) with probabilityI'(k)~! and aborting and outputting a random bit with probabilityI’ (k) !
(whereT'(k) is the probability from the admissible hash function definition). We have

Prigg’ (k) = 1) = 5 Prigf (k) = 1] + (1 ) ;> :

for j € {i,i+ 1} and therefore

| Prigs ™ (k) = 1] = Pr(GS (k) = 1]| = = | Pr[G\ ) (k) = 1] — PG (k) = 1]].

Gameg?(,j)(k) This game execute@%j)(k:) and then does the following if it did not abort. It samples an

independent initialization ke’ pia K., for theR-lossy trapdoor function family (in addition to the
actual keyK used in the key generation). We denﬁt&tition%?h the event in whichPg (h(z*)) =
Lossy and P/ (h(x;)) = Inj fort € {1,...,q}. By definition of theROR-SCDCA’ security games,
x* ¢ {z1,..., 24} and we know thaPr[Partition%h] > I'~! since the game did not yet abort. Next
we approximate the actual probabiIBt[Partition%’h] by sampling[£S - I'| keys for theR-lossy
trapdoor function family (for some polynomi&l(k) that will be determined at the end of the proof).

Using Hoeffding’s inequality, obtain an approximatipt) of Pr[Partition%? ») such that
Pr |Pr[Partition(j2 ] —p9)| > 1 < i
K’k —S.T| ~ 2k
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Finally, if Partition%? ;, occurs then the game outputs the same as the out;ﬁft")(ﬁc) with proba-
bility (I'51))~1). In all other cases it aborts and outputs a random bit. We have

1 1

[PrlGy (k) = 1] = PrlGy (k) = 1]| < 55 + 5

Gamegf)( k) The gameﬁ ( ) for j € {i,i + 1} are identical tog ( ) except that we replace the

eventsPartltlonEK, by the evenPartutlon%)h An adversary able to distinguish these games can be
used to dlstlngwsh initialization keys for tﬂélossy trapdoor function family , so we have

| Pr(GY (k) = 1] — Pr[GY (k) = 1]| < negl(k).

Gamegéj)(k) In the gameﬁf)(k:) for j € {i,i + 1}, the decryption queries are answered using the
trapdoorg—! for the R-lossy trapdoor functiom instead of the trapdoof~—! for the lossy trapdoor
function f. We have

Prg (k) = 1] = Pr[g{ (k) = 1]
forj € {i,i+ 1}.

Gamegéj)(k) In these final games, the key generation of the encryption scheme is mdwifeinpling
a lossy trapdoor functioif instead of an injective one. By the indistinguishability of the two setting
(and since the trapdogfi—! is no longer used in gameéj)(k) for j € {i,i+ 1}), we have

| Pr(GY (k) = 1] — Pr[GY (k) = 1]| < negl(k).

We have
|Prig@ (k) = 1] - Pr[G0+D (k) = 1]| < |Pr[G) (k) = 1] — PGy " (k) = 1] + negl (k)

< |Pr[G{" (k) = 1] — Pr[g{"™ " (k) = 1]| + negl(k)
< T|Pr[GY (k) = 1] — Pr[Gy ™ (k) = 1]| + negl(k)
< 2(5+g) + T Pr[%ﬁ”(k) = 1] — Pr[Gy " (k) = 1]| + negl(k)
< 2(L+ %)+ 1|Pe(G (k) = 1] — Prig{™ (k) = 1]| + negl(k)
< 2(5+ %) +TPr[Gl (k) = 1] — Pr[G{ T (k) = 1]| + negl(k)
< 2(5+ %) + PGl (k) = 1] — Pr[G{ ™ (k) = 1]| + negl(k)

To conclude the proof, we need to prove that

1Pr[¢ (k) = 1] — Pr[g{HY (k) = 1]] (5.11)

is negligible in the security parameter Indeed, if this the case, it suffices to piskk) a polynomial large

enough such that
1 T e(k)
2 <S + 2k) + negl(k) < )

for k sufficiently large (which is possible sinegs non-negligible).

To prove that$.11) is negligible, we analyze the gam@é@ (k) andgéi“) (k). From the simulation, the out-
put of these two random experiments is a uniform biif, z1, . .., z,) € Unlikely,, orif (z*, z1,...,2,) ¢

Unlikely;, and the even‘t)artltlon%)h does not occur, or if the experiment aborts. Therefore, we cortsider
eventGood defined as the conjunction of these events:

26



1. (2%, 21,...,24) ¢ Unlikelyy;
2. Partition?/,

3. the experiment does not abort.

The challenge ciphertext = (c},. .., c}) inthe two experimentéGZ)(k:) andgé’+1)(k) differs only on the
(T —i)-th position. Ingéi)(k), c_; is the encryption ofn’._; using random coins}._, whereas irgéi)(k:)
it is the encryption ofi;_; using random coins;_; and independent permutations 75. More precisely,
cr_; is equal to

{ (cnycpeq) = (h(mi(mr—illrr—:)), f(m2(mr—illrr—i)), g(h(m1(mr—illrr—i)), 72 (mo—illrr—:))), if j =i
(un,up,ug) = (h(my(ur—illsT—i)), f(m5(ur—illsT—i)), g(h(7) (ur—illsT—:)), Ty (ur—illsT—i))), if j =i +1

We denotecy,, ¢y, c, the random variables corresponding:tocy, ¢, in géi)(k) anduy, uy, u, the random

variables corresponding g,, u ¢, ug in gé“ (k). We need to prove that the two distributidrsg, cs, c,) and
(up,uy, uy) are statistically close. We distinguish the following two cases.

If p <b: we assumev.l.o.g.thatQuery, is deterministic, since it can always push any randomness it uses
into its queryMesg. In this case the input tQuery, can be one of at mogf values, and therefore
the output distributior{¢, m, r) of the interaction oMesg, Rand can be one of at mog’ possible
distributions. Furthermore, by the third entropy conditiorDeffinition 3.2 (m, r) form ax-source,
even when conditioned on the valuesof.

Note that sincanr is a x-source with overwhelming probability, it holds that with overwhelming
probability over the choice dfinr);_;_yj, it holds that

Hoo ((m%fia rp_)|(mr)p_i = (mr)gr_i1,§=¢&p= P) 2K

Therefore,Theorem 5.17mplies that, even givep, &, (mr)r_;_y), it holds that for all2? possible
distributions ofc;, = h(m1(my_;||rr—;)), itis indistinguishable fronu;, = h(7] (u||s)) for uniform
randomu, s of appropriate length and any valuef since it is a permutation.

Furthermore, since the output afis of lengtha, we may applyLemma 2.1and deduce that with
overwhelming probability over the choice ef that:

Hoo ((m:}—z‘a rr_;)|en = ch, (mr)[T—i—l] = (mr)[T—i—1}7£ =& p= P) >k —v—w(logk)

Therefore,Theorem 5.17mplies that, even givep, &, (mr)r_;_1), cx, it holds that for all possible
2b choices of
(cy,cg) = (f(me(mr_irry)), g(cp, m2(mr_ir7_;)))

that it is indistinguishable from

(uy, ug) = (f(m3(ulls)), g(cn, m5(ulls)))

whereu, s are independent randomness of appropriate length. We may @ppbrem 5.1'because
x +— (f(x), g(en, x)) is a shrinking function mapping + ¢ bits to2a bits.
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If p > b: in this case, the first entropy condition Definition 3.2implies thatc < b. Furthermore, the
second entropy condition implies tha is a x-block-wise-source with overwhelming probability
overo.

géi“)(k:) is like gg)(k:) except the théT" — 7)-th ciphertext output by thBoR’ oracle is uniform.
The view of the adversary iﬁéi)(k) is the tuple

X;=(hf g & m,m,c1,...,cr—i—1,(Ch,Cf,Cqy),CT—it1,...,CT)
while its view ing{""") (k) is the tuple

Xi-‘rl = (h7 f7 g, 57 ™, 72,C1y. ., CT—i—1, (uh7 uf7 ug)7 CT—j415--+, CT)
where
c; = (h(7ry (my||r;), £ (o (myl|r;), g(h(7wy (my||r;)), w2 (my|r;)))
forje{l,...,T—i—1}and
c; = (h(mi(ulls;), f(ma(wills;), g(h(mi(uil|si)), m2(uil[si)))
forj e {T'—i+1,...,T}. Thefirst(T' — ¢ + 1) components and the lastomponents in both
distributions are identical.

Suppose now we reveah ando to the adversary for free (this can only increase statistical distance,
so bounding the distance with this additional revealed information suffi&@sge there are at most

2% possible transcripts, r, can be one of at moP possible distributions, and due to the second
entropy condition oDefinition 3.2and the fact that = « in our attacker profile, it holds that with
overwhelming probability oves, r,, is ax-source. We want to bound

A((Xj,0,m), (Xj41,0,m))

which, since all coordinates df;, X, are identical after th& — i'th coordinate, is bounded by the
distance betweefr;_;_1), cp, ¢f, ¢g) and(rip_;_1), uy, ug, uy) conditioned on the knowledge of
f’g?hJS?ﬂ-l?ﬂ-QJU?m'

It therefore actually suffices then to bound

E(f,g,hﬂ'rl ,T2) %’1%’{( {A ((r[T—i—l]a Ch,Cf,Cqy ‘ fghﬂ'lT('QO'm), (r[T—i—l] y Up, Uf, Uy ‘ fghﬂ'lﬂ'QO'm)) }

(Notice we may ignore for the same reason as in the proofldfeorem 5.5i.e. because the only
way Mesg can influenceRand is through their communicatiosm, and therefore the only dependence
of r, on¢ is througho, which is already fixed.)

Observe that, given that is fixed,r is independent ofn, and thereforer, cy, ¢y, cj, ur, ug, uy, are
independent ofn; for j # i. Therefore it suffices to bound

E(fy,h,frmz) max {A ((r[Tfifl]aChacfacg | fghmimaom;), (I‘[Tfiq],uh,uf,ug | fgh7717T20m¢))}

Therefore there are onB*** possible distributions, one for each choicenafando.
We may conclude the argument by applyifigeorem 5.17&s in the previous case pf< b.
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6 Discussion and Open Questions

Our definition of Strong CDA security is second-degreassumption in the terminology of Bellaet al.
[BHK13] due to the fact that the adversary is split into several components apaitie have limited
communication between them. We show, nevertheless, that our notion isaubkiemder standariist-
degreeassumptions. This is due to the fact that the kind of separation we haveuogwdetween the
different parts of the adversary ardormation-theoretiqby bounding communication or entropy), rather
than computational.

One could conceivably relax our model to allow for the kind of computatiseghration between parts
of the adversary, as used in the definition of UCEB$K13]. However, it is unlikely that the proofs of
security we have presented for our standard-model constructiordextsach a relaxed definition, as UCE-
type security seem hard to achieve from standard “first-degreeigmns such as the ones we have used.
On the other hand, the random oracle construct we presented wouldllyaéxtend; indeed even in its
present form the use of the random oracle can be replaced with UCEhieve security in the standard
model (under the assumption of the existence of UCE’s).

Another interesting open question is whether one can improve the parametensstandard model con-
struction. Our construction requirék, (pk) — b entropy in the public key frorRand’s point of view (in the
first entropy condition oDefinition 3.2, which, observing thall, (pk) = ©2(kb) from the construction of
t-wise §-dependent permutations, is a strong requirement. It would be verystiteyéo construct schemes
where this entropy requirement is smaller, perhaps matching the minifiag) &) requirement we obtain in
the random oracle model, or at least achievifdor arbitrarily small constants.
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