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Abstract

While standard notions of security suffice to protect any message supplied by an adversary, in some
situations stronger notions of security are required. One such notion is n-circular security, where ci-
phertexts Enc(pk1, sk2), Enc(pk2, sk3), . . . , Enc(pkn, sk1) should be indistinguishable from encryptions of
zero.

In this work we prove the following results for n-circular security, based upon recent candidate con-
structions of indistinguishability obfuscation [GGH+13b, CLT13]:

• For any n there exists an encryption scheme that is IND-CPA secure but not n-circular secure.
• There exists a bit encryption scheme that is IND-CPA secure, but not 1-circular secure.
• If there exists an encryption system where an attacker can distinguish a key encryption cycle from

an encryption of zeroes, then in a transformed cryptosystem there exists an attacker which recovers
secret keys from the encryption cycles.

Our last result is generic and applies to any such cryptosystem.
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1 Introduction

The classical notion of secure encryption, due to Goldwasser and Micali [GM84] demands that random
encryptions of two messages submitted by the adversary should be indistinguishable. However this security
notion makes no guarantees about the security of encrypting messages which the adversary is unable to
generate - indeed this was observed by Goldwasser and Micali. Of particular interest is when an adversary
can receive encryptions of messages which depend upon the secret key. The resulting notion of security
against key dependent message attacks was first studied by Black et al [BRS01].

A particularly prominent special case of KDM security, introduced by Camenisch and Lysyanskaya [CL01],
is n-circular security. Let pk1, . . . , pkn be public keys. An encryption scheme is said to be n-circular secure,
if an adversary is unable to distinguish Enc(pk1, sk2),Enc(pk2, sk3), . . . ,Enc(pkn, sk1) from corresponding zero
encryptions. Camenisch and Lysyanskaya used circular secure encryption to build an anonymous credentials
scheme with “all or nothing” sharing [CL01]. In fact, circular security for n ≥ 1 arises naturally in many
other applications. A common scenario is when a disk utility is used to encrypt a partition on which
the secret key has carelessly been stored. Another situation is Gentry’s “bootstrapping” of a somewhat
homomorphic encryption to a fully homomorphic encryption [Gen09]. In this case the decryption circuit
associated with the secret key is encrypted and published in the public parameters and used to “refresh”
a ciphertext periodically. Finally, circular security is used in formal methods to prove the soundness of
symbolic protocols [ABHS05, Lau02].

There have been several postive results on circular security and more generally KDM security. In the
random oracle model, Black et al. [BRS01] and independently Camenisch and Lysyanskaya [CL01] gave
constructions for KDM secure encryption. Some time later Boneh, Hamburg, Halevi and Ostrovsky gave
the first construction of circular secure encryption in the standard model [BHHO08]. Their construction
provided instantiations of n-circular secure encryption for arbitrary n and in fact provided security for a
broader class of key dependent messages - namely all affine functions of the secret key. Continuing in this
vein, Applebaum et al [ACPS09] presented efficient constructions for affine functions under the LWE and
LPN assumptions - the former for public key encryption and both for symmetric key encryption. Later
works [HH09, BG10, BHHI10, BGK11, App11, MTY11, BV11, ASP12] focussed on extending the class of
functions and improving efficiency of the constructions.

While there have been many positive advances for circular secure encryption and related functionalities,
fewer negative results are known. One fundamental question is whether it might be possible that circular
security is implied by semantic security? If this held, then it would have important consequences for the
design of cryptographic primitives. In particular, an affirmative answer for any n would imply a method to
construct secure fully homomorphic encryption from mildly or leveled homomorphic encryption. For small
n concrete negative results are known. Indeed for n = 1, a folklore counterexample exists. For n = 2, Acar
et al. [ABBC10] presented a counterexample under the SXDH assumption. Cash et al. [CGH12] showed
how to strengthen this result, with a counterexample for n = 2 under a weaker definition of circular security.
Despite these advances, for n > 2 the problem has largely remained open.

A related question is whether bit-by-bit encryption might suffice for protecting the secret key, i.e. ensure
1-circular security. Again there is partial negative information in that Rothblum [Rot13] has showed, inter-
estingly, that if there exist l-multilinear groups of order p, with p ≤ 2l, in which the SXDH assumption holds,
then there exists a semantically secure encryption scheme which is not 1-circular secure. Unfortunately, ex-
isting candidates for multilinear group schemes [GGH13a, CLT13] do not meet the SXDH requirement.1

Consequently there are no existing candidates for the Rothblum counterexample. As Rothblum observes, if
bit by bit encryption implied circular security, this would give another avenue for utilizing Gentry’s boot-
strapping.

1One interesting question is whether there is a simple modification of Rothblum’s candidate construction and proof that can
be modified to work under the current multilinear candidates. Neither we nor the author of the construction are aware of any
such modification [Rot14].
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1.1 Our Contribution

We present the following results:

Counterexample for n-circular security We construct an encryption scheme that is IND-CPA secure
but not n-circular secure.

Bit encryption counterexample We construct a bit encryption scheme that is IND-CPA secure, but not
circular secure.

Key recovery from n-circular insecurity Suppose there exists an IND-CPA secure encryption system
where there exists an adversary that can distinguish an encryption cycle from the encryption of zeroes.
We show how to transform this into an IND-CPA security cryptosystem where the adversary can recover
the secret keys from the encryption cycle.

Both the constructions utilize the recent construction of indistinguishability obfuscation for polynomial
sized circuits by Garg et al. [GGH+13b]. An indistinguishability obfuscation of a program g is a program
iO(g) with a weaker security guarantee: if two programs g and g′ have the same input-output behavior, then
iO(g) and iO(g′) are computationally indistinguishable. As argued by [GGH+13b, SW13], indistinguisha-
bility obfuscation is the weakest definition of obfuscation, and unlike black box obfuscation, there are no
known impossibility results for indistinguishability obfuscation.

Counterexample for n-circular security: We begin by giving intuition for our encryption scheme. Let
us consider any IND-CPA secure encryption scheme PKE = (Keygen,Encrypt,Decrypt). We show how this
encryption scheme can by modified by providing some auxiliary information as part of the ciphertext, so
that the scheme is n-circular insecure, and at the same time, remains IND-CPA secure. We approach the
problem in two steps. We first design an approach that works with black box obfuscation. Then we design
new techniques to move our construction and proof of security to use indistinguishability obfuscation.

To construct our counterexample we begin with a standard encryption system and then modify the
encryption algorithm. When encrypting a message m, in addition to the PKE ciphertext c, we also give out
a cycle detection program gm which can be used to detect whether a cycle is present or not. The program
gm has m hardwired, takes n inputs c1, . . . , cn, and works as follows: It decrypts, if possible, c2 using m to
obtain m2, c3 using m2 to obtain m3 and so on. If any decryption fails, it aborts and outputs 0. If it reaches
the end of cycle, it outputs 1.

Let us consider a polynomial time adversary who is given n ciphertexts ct1, . . . , ctn, where each cti
consists of a PKE ciphertext ci and a program gi. The adversary runs program g1 with inputs c1, . . . , cn.
If these are encryptions of secret keys sk2, . . . , skn, sk1 respectively, then g1 runs to completion outputting
1, else it outputs 0. Therefore, using this additional information, we can detect whether there is a cycle or
not. However, this scheme in itself is not IND-CPA secure since gm may leak the value m. Therefore, as
part of the ciphertext, we publish black box obfuscation of gm: O(gm). One can then argue that black box
obfuscation ensures that the value m is not leaked, and hence it is IND-CPA secure.

Unfortunately, as shown by [BGI+01], it is not possible to achieve general black box obfuscation even
for simple functionalities;2 therefore, we modify our construction so as to use the weaker indistinguishability
obfuscation. Our key idea is to have a set of valid and invalid public keys for each secret key such that the
valid and invalid public keys are computationally indistinguishable from just the public key, but validity is
discernible given a secret key. In our system we use such keys. In addition, at the end of the cycle detection
program, we add a validity check, to ensure that pk1 is a valid public key corresponding to mn.

While this modification still ensures that the scheme is n-circular insecure, we need to prove IND-CPA
security. Our proof of this proceeds in two hybrid steps. First, since the valid and invalid keys are indis-
tinguishable, the real IND-CPA security game is computationally indistinguishable from one in which we
substitute in invalid public keys for the real ones. Next, we observe that these invalid public keys must
necessarily fail the validity check at the end of the cycle detection program, and therefore the program

2It is of course possible that black box obfuscation is obtainable for this particular functionality. However, we view obtaining
our negative result under indistinguishability obfuscation as an important goal.
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always outputs 0. Therefore, instead of outputting obfuscation of the cycle detection program, if we output
the obfuscation of a program that always outputs 0, the two hybrids remain indistinguishable by property of
indistinguishability obfuscation. Finally, a program that always aborts leaks no information about m, and
therefore the scheme is IND-CPA secure.

One potential view of this is as a novel and extreme application of punctured programming [SW13]. Once
we alter the keys to be invalid, we can completely gut the obfuscated program to be one that simply outputs
0. In indepedent and concurrent work Boneh and Zhandry [BZ13] apply a notion similar to our invalid/valid
key structure (although do not use that terminology) to building multi-party key exchange, broadcast and
traitor tracing systems. An important contribution of both papers is that they demonstrate the power of
altering the structure of public keys in combination with indistinguishability obfuscation.

Bit encryption counterexample: We now consider the problem of bit encryption. We first observe that
the aforementioned ‘chasing the cycle’ technique cannot be used for bit encryption. However, in this case,
all encryptions use the same public key. As a result, we can now give out useful auxiliary cryptographic
material as part of the public key. Here we again use the valid-invalid public keys technique. In particular,
we modify the Keygen algorithm. Suppose we have a Keygen algorithm for a valid-invalid PKE system as
described above that outputs pk, sk. Let pk′ be the part of pk used for checking whether pk is a valid public
key corresponding to sk, and sk′ the part of sk used for decrypting ciphertexts. Now consider the program
gpk′,sk′

that has pk′, sk′ hardwired, and takes l inputs c1, . . . , cl. Program gpk′,sk decrypts each of the inputs
using sk′ and checks (using pk′) whether pk is a valid public key corresponding to the resulting string. In
our modified encryption scheme, in addition to pk, we also give out an indistinguishability obfuscation of
program gpk′,sk′

.
Clearly, this encryption scheme is not bit circular secure. To prove IND-CPA security, we use similar

hybrids as before. In the first hybrid experiment, we switch from valid to invalid public keys. Since the valid
and invalid public keys are computationally indistinguishable, these hybrid experiments are computationally
indistinguishable. Finally, we output an obfuscation of a program that always aborts, thereby ensuring that
no information about the secret key sk is leaked by the program obfuscation.

Key recovery from n-circular insecurity: One interesting question posed in the setting of circular
security is what is the right definition of security. While preventing against cycle detection is seemingly the
strongest notion, in many applications such as Gentry’s bootstrapping it might be sufficient if the system
remained semantically secure (for other messages) in the presence of a key cycle, even if the key cycle
itself were detectable. Likewise, a counterexample for such a weaker notion of security would be a stronger
result. Cash et al. [CGH12] improved upon the work of Acar et al. [ABBC10] by giving a such a stronger
counterexample which allowed for an attacker to completely recover private keys for the case of key cycles
of length two.

The key-recovery from cycles technique of Cash et. al. was tailored specifically to the case of bilinear
maps. In this work, we show that if for any n there exists an encryption system where an attacker can
distinguish a key encryption cycle from a encryption of zeroes, then we can create a transformed cryptosystem
where there exists an attacker which recovers secret keys from the encryption cycles. Thus, for obtaining a
strong key recovery counterexample, one only needs to work to obtain a cycle detection counterexample.

Our methods here are in spirit similar to Rothblum’s result in [Rot13] for the bit encryption case. When
encrypting a message, we also publish a hint for each bit of the message, indicating whether the bit is 0 or
1. To determine the bit, we use the cycle detection algorithm. As a consequence, this hint works if and only
if we have a cycle of secret keys, therefore ensuring both IND-CPA security and key recovery.

Relation to [MO13] On October 2013, we initially posted the results contained within this paper which
include: a construction of a public key encryption scheme that is IND-CPA secure but not n-circular secure,
the construction of a bit encryption scheme that is IND-CPA secure but not 1-circular secure and a transfor-
mation of an encryption scheme in which key cycles can be distinguished from encryption of zeroes into one
which secret keys can be recovered from encryption cycles. Our last result is completely generic.
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Concurrently and independently Marcedone and Orlandi [MO13] showed how to construct a public key
encryption scheme that is IND-CPA secure but not n-circular secure using the virtual black box [BGI+01]
notion of obfuscation. Subsequently, in February 2014, the authors added a result showing an analogous
counterexample using indistinguishability obfuscation, thus matching one of the results contained in this
work.

2 Preliminaries

Definition 1 (Public Key Encryption). A public key encryption scheme PKE is a set of three algorithms
(Keygen, Encrypt, Decrypt) satisfying the following properties :

• Key Generation Keygen(1λ) is a randomized algorithm that takes as input the security parameter λ
and outputs public key pk and secret key sk.

• Encryption Encrypt(pk,m) is a randomized algorithm that takes as input a public key pk, message
m and outputs a ciphertext ct.

• Decryption Decrypt(sk, ct) is a deterministic algorithm that takes as input a secret key sk, a ciphertext
ct and outputs m.

For correctness, we require that for all m,

Pr[Decrypt(sk,Encrypt(pk,m)) 6= m : (pk, sk)← Keygen(1λ)] ≤ negl(λ).

A public key cryptosystem is called a bit encryption scheme if its message space is {0, 1}.

We define various security notions for public key cryptosystems.

Definition 2 (IND-CPA Security). Let PKE = (Keygen,Encrypt,Decrypt) be a public key cryptosystem.
Consider the following game between challenger C and adversary A :

IND-CPA :

1. C computes (pk, sk)← Keygen(1λ) and sends pk to A.
2. A sends challenge plaintext messages m0,m1 such that |m0| = |m1| to C.
3. C chooses a bit b $← {0, 1}, computes ct← Encrypt(pk,mb) and sends ct to A.
4. A outputs a bit b′

The advantage of A is AdvA = Pr[b = b′]− 1
2 .

PKE is said to be IND-CPA secure if for all PPT algorithms A, AdvA ≤ negl(λ).

2.1 Circular Security

Definition 3 (n-Circular Security [CL01]). Let PKE = (Keygen,Encrypt,Decrypt) be a public key cryp-
tosystem. Consider the following game between challenger C and adversary A :

n-Circular Security :

1. C computes (pki, ski)← Keygen(1λ) for 1 ≤ i ≤ n
2. C chooses a bit b $← {0, 1}.

• If b = 0, C computes yi = Encrypt(pki, sk(i mod n)+1) for 1 ≤ i ≤ n
• Else C computes yi = Encrypt(pki, 0

|sk(i mod n)+1|) for 1 ≤ i ≤ n
3. C sends (pk1, . . . , pkn, y1, . . . , yn) to A.
4. A outputs b′.
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The advantage of A is AdvA = Pr[b = b′]− 1
2 .

PKE is said to be n-circular secure if for all PPT algorithms A, AdvA ≤ negl(λ)

A weak notion of circular security was defined in [CGH12] as follows :

Definition 4 (n-Weak Circular Security). Let PKE = (Keygen,Encrypt,Decrypt) be a public key cryptosys-
tem. Consider the following game between challenger C and adversary A :

n-Weak Circular Security :

1. C computes (pki, ski)← Keygen(1λ) for 1 ≤ i ≤ n.
Next, it computes yi = Encrypt(pki, sk(i mod n)+1) for 1 ≤ i ≤ n.
It sends (pk1, . . . , pkn, y1, . . . , yn) to A.

2. A sends challenge plaintext messages m0,m1 such that |m0| = |m1| and j ∈
[1, n] to C

3. C chooses a bit b $← {0, 1} and sends Encrypt(pkj ,mb) to A.
4. A outputs b′

The advantage of A is AdvA = Pr[b = b′]− 1
2 .

PKE is said to be n-weak circular secure if for all PPT algorithms A, AdvA ≤ negl(λ)

Definition 5 (n-Circular Security with respect to Key Recovery). Let PKE = (Keygen,Encrypt,Decrypt)
be a public key cryptosystem. Consider the following game between challenger C and adversary A :

n-Circular Security with respect to Key Recovery :

1. C computes (pki, ski)← Keygen(1λ) for 1 ≤ i ≤ n.
Next, it computes yi = Encrypt(pki, sk(i mod n)+1) for 1 ≤ i ≤ n.
It sends (pk1, . . . , pkn, y1, . . . , yn) to A.

2. A outputs sk′1.

The advantage of A is AdvA = Pr[sk1 = sk′1].
PKE is said to be n-circular secure with respect to key recovery if for all PPT algorithms A, AdvA ≤ negl(λ)

Remark. If a public key encryption scheme is n-circular secure, then it is also n-weak circular secure.
Similarly, if a scheme is n-weak circular secure, then it is also n-circular secure with respect to key recovery.

The notion of circular security can be extended to bit encryption schemes. The following definition is
actually equivalent to Definition 3 in the case that n = 1, but will be slightly more convenient to work with.

Definition 6 (1-Circular Security of Bit-by-bit Encryption). Let PKE = (Keygen,Encrypt,Decrypt) be a bit
encryption scheme. Consider the following game between challenger C and adversary A :

1-Circular Security of Bit-by-bit Encryption :

1. C chooses b $← {0, 1}. C generates the public key and secret key (pk, sk) ←
Keygen(1λ) and sends pk to A.

2. For a polynomial number of queries

(a) A queries for encryption of jthi bit of sk.
(b) If b = 1, C sends ct← Encrypt(pk, skji). Else C sends ct← Encrypt(pk, 0).

3. A outputs b′

The advantage of A is AdvA = Pr[b = b′]− 1
2 .

PKE is said to be bit circular secure if for all PPT algorithms A, AdvA ≤ negl(λ)
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Rothblum in [Rot13] showed that this notion of bit circular security, which he called circular security with
respect to indistinguishability of oracles, is equivalent to the seemingly stronger notion where the adversary
must extract the entire secret key, given encryptions of the secret key bits. Therefore, it suffices to restrict
our attention to this notion of bit circular security.

2.2 Indistinguishability Obfuscation

Next, we recall the definition of indistinguishability obfuscation from [GGH+13b, SW13]

Definition 7. (Indistinguishability Obfuscation) A uniform PPT machine iO is called an indistinguishability
obfuscator for a circuit class {Cλ} if it satisfies the following conditions:

• (Preserving Functionality) If for all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that C ′(x) = C(x) where C ′ ← iO(λ,C)]

• (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT distinguisher (Samp,D),
there exists a negligible function negl(·) such that the following holds: if for all security parameters
λ ∈ N,Pr[∀x,C0(x) = C1(x) : (C0;C1;σ)← Samp(1λ)] > 1− negl(λ), then

|Pr[D(σ, iO(λ,C0)) = 1 : (C0;C1;σ)← Samp(1λ)]−
Pr[D(σ, iO(λ,C1)) = 1 : (C0;C1;σ)← Samp(1λ)]| ≤ negl(λ)

In a recent work, [GGH+13b] showed how indistinguishability obfuscators can be constructed for the
circuit class P/poly.

3 Counter Example for n-Circular Security

In this section, we describe how to build for any n, a cryptosystem PKE that is IND-CPA secure, but not
n-circular secure.

Let PKEA = (KeygenA,EncryptA,DecryptA) be a public key encryption scheme with message space
MA = {0, 1}2l, key space KA ⊆ {0, 1}l and ciphertext space CA. Let G : {0, 1}l → {0, 1}2l be a PRG family.
We construct cryptosystem PKE = (Keygen, Encrypt, Decrypt) as follows:

• Keygen(1λ): Let (skA, pkA) ← KeygenA(1λ). Let r $← {0, 1}l and t = G(r). Set sk = (skA, r). Set
pk = (pkA, t).

• Encrypt(pk,m, r): Parse pk = (pkA, t). Let C ← EncryptA(pkA,m).
Let CycleFind be a circuit defined as follows :

CycleFind :
Inputs : C1, . . . , Cn ∈ CA
Constants : m, t, 0w for an appropriately chosen w

1. Parse m = (sk2, r).
2. For i=2 to n

(a) Let (sk(i mod n)+1, r(i mod n)+1) = DecryptA(ski, Ci) or output ⊥ if
DecryptA fails.

3. If G(r1) = t output 1, else output ⊥.

The circuit CycleFind takes as input n ciphertexts C1, . . . , Cn, and has constants m, t, 0w hardwired,
where the length of the zero padding w is chosen appropriately.
Compute obfuscation of circuit CycleFind as O ← iO(λ,CycleFind). The ciphertext ct = (C,O).

• Decrypt(sk, ct): Parse sk = (skA, r) and ct = (C,O). Output DecryptA(skA, C). String O is ignored.

Correctness follows immediately from the correctness of the original scheme PKEA.
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3.1 The Attack

Proposition 1. The above construction is n-circular insecure.

Proof. We construct a polynomial time adversary A that breaks the n-circular security of the above con-
struction as follows. A receives (pk1, . . . , pkn, y1, . . . , yn) from the challenger. A parses yi as (Ci,Oi) where
Oi is a circuit. A outputs the value b ← O1(C1, . . . , Cn). By construction this is 1 iff (y1, . . . , yn) is an
encryption cycle with respect to PKE .

3.2 IND-CPA Security

In order to show that our construction is IND-CPA secure, we construct a series of hybrid experiments as
follows.

Game 0: IND-CPA Game

1. Choose r $← {0, 1}l and set t = G(r).
2. Let (skA, pkA)← KeygenA(1λ).
3. Let sk = (skA, r) and pk = (pkA, t).
4. Suppose A sends m0,m1 : |m0| = |m1|.
5. Choose b $← {0, 1}.
6. Let C = EncryptA(pkA,mb).
7. Let O = iO(λ,CycleFind) where CycleFind is the circuit described above.
8. Let ctb = (C,O). Send ctb to A.
9. Let b′ ← A2(δ, ctb).

A wins if b = b′ and has advantage AdvA = Pr[b = b′]− 1/2.

Game 1: This game proceeds identically as the IND-CPA game, except we modify Step 1 as follows.
1. Choose r

$← {0, 1}l and choose t
$← {0, 1}2l. Note that r is information theoretically hidden in this

experiment.

Game 2: This game proceeds identically as Game 1, except we modify Step 7 as follows.
Let CycleReject be the following circuit:

CycleReject :
Inputs : C1, . . . , Cn ∈ CA
Constants : 0w

′

1. Output ⊥

The circuit CycleReject takes as input n ciphertexts C1, . . . , Cn, has zero padding of length w′. The
constant w in circuit CycleFind and w′ in circuit CycleReject are chosen such that the size of circuits CycleFind
and CycleReject are equal.
Let O = iO(λ,CycleReject).

Proposition 2. Suppose that there exists a polynomial time adversary A such that Game0AdvA−Game1AdvA =
ε. Then there exists a polynomial time adversary B who distinguishes the output of G from random with
advantage εPRG = ε.

Proof. The only modification is that t is computed as random 2l-bit string rather than the output of G. The
algorithm B is defined as follows :

7



1. B receives t ∈ {0, 1}2l from PRG Challenger C, where t is either a pseudorandom string generated by
G or a truly random string.

2. B computes (skA, pkA)← KeygenA(1λ). It sets pk = (pkA, t) and sends it to A.
3. A sends challenge messages m0,m1.
4. B chooses b $← {0, 1}. It sets C = EncryptA(pkA,mb). Next, it defines circuit CycleFind, which has mb

and t hard-wired. Therefore, B can define CycleFind, and hence compute O ← iO(λ,CycleFind). Hence
it sets ct = (C,O) and sends it to A.

5. A outputs a bit b′. If (b = b′) B outputs that the string was pseudorandom. Else B outputs the string
was random.

If C sends an output of G, then this experiment corresponds to Game 0. If C sends a truly random string
t, then this corresponds to Game 1. Therefore, if A can distinguish between Game 0 and Game 1 with
advantage ε, then B distinguishes a pseudorandom string form a truly random string with advantage ε.

Proposition 3. Suppose that there exists a polynomial time adversary A such that Game1AdvA - Game2AdvA
= ε. Then there exists a polynomial time adversary B who breaks the indistinguishability obfuscation with
advantage εiO = ε.

Proof. Recall that B should comprise a pair of adversaries (Samp,D) as in Definition 2.2. We construct
these adversaries as follows.
Samp(1λ) :

1. Choose r $← {0, 1}l and t
$← {0, 1}2l.

2. Let (skA, pkA)← KeygenA(1λ).
3. Let sk = (skA, r) and pk = (pkA, t).
4. Let (m0,m1)← A(pk) : |m0| = |m1|.
5. Choose b $← {0, 1}.
6. Let CycleFind be the circuit described in our construction with constants (mb, t, 0w) hardwired.

Let CycleReject be the circuit described in Game 2 with constant 0w
′

hardwired.
7. Output (g0 = CycleFind, g1 = CycleReject).
8. Set σ = (b,m0,m1, pk).

D(σ, iO(λ, gz)) :

1. Let C = EncryptA(pkA,mb), let O = iO(λ, gz).
2. Let ct = (C,O).
3. Let b′ ← A(ct, pk).
4. D guesses 1 if b = b′.

We first prove that B produces circuits g0, g1 which are equivalent on all inputs, with overwhelming prob-
ability. Observe that with overwhelming probability t is not in the range of G since t

$← {0, 1}2l and
hence CycleFind(x) outputs ⊥ for all x. Thus Samp produces circuits CycleReject and CycleFind which are
equivalent on all inputs with overwhelming probability, by the random choice of t.

All that remains is to show AdvB = ε. Let pz = Pr[D(σ, iO(λ, gz)) = 1] for z = 0, 1. Note that
g0 = CycleFind, hence when z = 0 the event b = b′ occurs iff A wins Game 1. Similarly g1 = CycleReject,
hence when z = 1, the event b = b′ occurs iff A wins Game 2. Then p0 = 1/2 + Game1AdvA, while
p1 = 1/2 +Game2AdvA. Thus AdvB = p0 − p1 = Game1AdvA −Game2AdvA = ε.

Finally, we need to show that any polynomial time adversary has only negligible advantage in Game 2.
This follows from the fact that PKEA is IND-CPA secure.

Proposition 4. If there exists a polynomial time adversary A with non negligible advantage ε in Game 2,
then there exists a polynomial time algorithm B that can break the IND-CPA security of PKEA with advantage
εA = ε.
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Proof. Suppose A has advantage ε in Game 2. We define B as follows :

1. B receives pkA from the IND-CPA Challenger C. It chooses t $← {0, 1}2l and sends public key pk =
(pkA, t) to A.

2. A sends challenge messages m0,m1, which are passed on to C, and receives ciphertext C.
3. B computes O ← iO(λ,CycleReject) and sends ciphertext ct = (C,O) to A.
4. A sends bit b′, which B passes on to C.

Note that if A wins Game 2, then B wins the IND-CPA game. Hence the result follows.

The advantage of any polynomial time IND-CPA adversary against PKE is at most εPRG + εiO + εA.
Therefore we have the following theorem.

Theorem 1. Assuming that G is a secure PRG family, iO is an indistinguishability obfuscator and PKEA
is an IND-CPA secure encryption scheme, PKE is IND-CPA secure but not n-circular secure.

4 Counter Example for 1-Circular Security of Bit-by-bit Encryp-
tion

In this section, we describe a bit encryption scheme that is IND-CPA secure, but is not 1-circular secure.
Let PKEA = (KeygenA,EncryptA,DecryptA) be a bit encryption cryptosystem with key space KA ⊆ {0, 1}l.
LetG : {0, 1}l → {0, 1}2l be a PRG. We construct a bit encryption cryptosystem PKE = (Keygen,Encrypt,Decrypt)
as follows :

• Keygen(1λ) : Let (pkA, skA) ← KeygenA(1λ). Choose r $← {0, 1}l and compute t = G(r). Define a
circuit BitCycleFind as follows :

BitCycleFind :
Inputs : C1, . . . , Cl ∈ CA
Constants : skA, t, 0w for an appropriately chosen w

1. For i = 1 to l
(a) Let xi = DecryptA(skA, Ci) or output ⊥ if DecryptA fails.

2. Let x = x1 . . . xl. If G(x) = t output 1, else output ⊥.

The circuit takes as input l ciphertexts, and has constants skA, t and 0w hardwired. As in the multi-bit
encryption, the zero padding is required for the security proof.
Compute obfuscation of circuit BitCycleFind as O ← iO(λ,BitCycleFind). Set pk = (pkA, t, O) and
sk = (skA, r).

• Encrypt(pk,m) : Parse pk = (pkA, t, O). Compute ciphertext ct← EncryptA(pkA,m).

• Decrypt(sk, ct) : Parse sk = (skA, r). Output Decrypt(skA, ct).

The correctness of PKE follows directly from the correctness of PKEA.

4.1 The Attack

Proposition 5. The above construction is not bit circular secure.

Proof. We construct a polynomial time adversary A that breaks the bit circular security of the above
construction as follows. A receives public key pk = (pkA, t, O). Next, it queries for encryptions of the last
l bits of the secret key, and receives ct1, . . . , ctl. A outputs b = O(ct1, . . . , ctl). By construction, it follows
that A outputs 1 iff the challenger outputs encryptions of the bits of the secret key sk.

9



4.2 IND-CPA Security

In this section, we show that our construction PKE = (Keygen,Encrypt,Decrypt) is IND-CPA secure.
As before we construct a sequence of hybrid experiments, and show that the outputs of the hybrid experiments
are computationally indistinguishable.

Game 0: IND-CPA

1. Choose r $← {0, 1}l and set t = G(r).
2. Let (pkA, skA)← KeygenA(1λ).
3. Let O = iO(λ,BitCycleFind) as described in the construction.
4. Let sk = (skA, r) and pk = (pkA, t, O). Send pk to A.

5. Choose b $← {0, 1}.
6. Let ctb ← EncryptA(pkA, b). Send ct to A.
7. Let b′ ← A(ctb).

A wins if b = b′ and has advantage AdvA = Pr[b = b′]− 1/2.

Game 1: This game proceeds identically as the IND-CPA game, except we modify Step 1 as follows.
1. Choose r

$← {0, 1}l and choose t
$← {0, 1}2l. Note that r is information theoretically hidden in this

experiment.

Game 2: This game proceeds identically as Game 1, except we modify Step 3 as follows.
Let BitCycleReject be the following circuit:

BitCycleReject :
Inputs : C1, . . . , Cl ∈ CA
Constants : 0w

′

1. Output ⊥

The circuit BitCycleReject takes as input l ciphertexts C1, . . . , Cl, has zero padding of length w′. The
constants w in circuit BitCycleFind and w′ in circuit BitCycleReject are chosen such that |BitCycleFind| =
|BitCycleReject|
Let O = iO(λ,BitCycleReject).

The proofs of the following indistinguishability results are similar to those of the previous section and
are included in Appendix A.

Proposition 6. Suppose that there exists a polynomial time adversary A such that Game0AdvA - Game1AdvA
= ε. Then there exists a polynomial time adversary B who distinguishes the output of G from random with
advantage εPRG = ε.

Proposition 7. Suppose that there exists a polynomial time adversary A such that Game1AdvA - Game2AdvA
= ε. Then there exists a polynomial time adversary B who breaks the indistinguishability obfuscation with
advantage εiO = ε.

Proposition 8. If there exists a polynomial time adversary A with non-negligible advantage ε in Game 2,
then there exists a polynomial time algorithm B that can break the IND-CPA security of PKEA with advantage
εA = ε.

Then, combining the above results, we have the following theorem.

Theorem 2. Assuming that G is a secure PRG family, iO is an indistinguishability obfuscator and PKEA
is an IND-CPA secure bit encryption scheme, PKE is IND-CPA secure but not 1-circular secure.
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5 Key Recovery From Circular Insecurity

In this section we show how to transform any IND-CPA encryption scheme which is n-circular insecure into
a new IND-CPA scheme which is n-circular insecure with respect to key recovery. An interesting point of
comparison is a result of Cash et al. [CGH12]. As described in the introduction their counterexample is
particular to a specific construction for n = 2 length key cycles. We show how to generically ‘leap’ from any
cycle detection insecure construction to one which is insecure against key recovery, but maintains IND-CPA
security.

Our generic transformation proceeds in two steps. We begin with a IND-CPA encryption system that is
insecure against cycle detection attacks. That is there exists a polynomial p(·) and an infinite set S ⊆ N
where the advantage of the attacker is greater than 1/p(λ) for all λ ∈ S. We show that if such a system exists,
then there exists a cryptosystem with an attacker that has advantage of 1/2 − negl(λ) for all λ ∈ S. (i.e.
the probability of winning the game is 1 − negl(λ) for all λ ∈ S.) This effectively amplifies the probability
of winning within that restricted set. Our amplification technique is just a simple repetition.

Next, we show how such an amplified cycle detection encryption system can be transformed into one
where a key recovery attack is possible. Our approach is to create an encryption system where the encryption
algorithm will go through the message M bit by bit and encode each 1 as a M and each 0 and a string of
0’s. Then if there is a key cycle, the underlying cycle detection algorithm can recover the bits of M one by
one using the cycle detection algorithm/attacker of the underlying scheme.

5.1 A Circular Key Recoverable Cryptosystem

Amplification We first state our amplification lemma which is proved in Appendix B.1.

Claim 1. Let PKE ′A be an IND-CPA secure public key cryptosystem that is n-circular secure i.e. there exists a
polynomial time algorithm D′ and a polynomial p(·) such that for infinitely many λ ∈ N, AdvD′(λ) > 1/p(λ).
Then there exists an IND-CPA secure public key cryptosystem PKEA, which is constructed using PKE ′A as a
black box, for which there exists an n-circular security adversary D with advantage 1/2− negl(λ) (i.e. with
probability 1− negl(λ)) for all such λ ∈ N.

Our Transformation Let PKEA be an IND-CPA encryption scheme for which there exists an n-circular
security adversary D with AdvD(λ) ≥ 1/2 − negl(λ) for infinitely many λ ∈ N. Let MA = {0, 1}l be the
message space. For an l-bit message M , we will let M [i] denote the i-th bit of M where i ∈ [l]. We construct
an IND-CPA encryption scheme PKE which is n-circular insecure with respect to key recovery as follows.

IND-CPA n-Circular key recoverable PKE :
Inputs : IND-CPA n-Circular insecure PKEA.

• Keygen(1λ): Let (skA, pkA) ← KeygenA(1λ). Let sk = skA, pk = pkA. Out-
put (sk, pk).

• Encrypt(pk,M):

– Let CH = EncryptA(pk,M).
1. For i = 1 . . . l

Let Ci = EncryptA(pk,M) if M [i] = 1, else Ci = EncryptA(pk, 0|M |).
2. Output ct = (CH , C1, . . . , Cl).

• Decrypt(sk, ct): Compute M ← DecryptA(sk, CH) and M ′i ← DecryptA(sk, Ci)
for i = 1, . . . , l. If ∀i ∈ [l] M ′i = M ·M [i] output M , otherwise output ⊥.

The proof of the following claim is straightforward and is included in Appendix B.2.

Claim 2. PKE is IND-CPA secure if PKEA is IND-CPA .
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We now formally show that if the old cryptosystem PKEA is n-circular insecure, the new cryptosystem
PKE is n-circular insecure with respect to key recovery. We rely on the following result which is proved in
Appendix B.3. Claim 3 states that any circular security adversary can be used to distinguish an encryption
cycle from a modified encryption cycle in which a zero encryption has been substituted in the last position.
The proof utilizes a hybrid argument.

Claim 3. Let PKEA be an IND-CPA public key cryptosystem. Suppose that D has advantage AdvD(λ) in
the circular security game against PKEA. Then D distinguishes the following distributions with advantage
AdvD(λ)− negl(λ).

[pk1, . . . , pkn,EncryptA(pk1, sk2), . . . ,EncryptA(pkn−1, skn),EncryptA(pkn, sk1) : (pki, ski)← KeygenA(1λ)]

[pk1, . . . , pkn,EncryptA(pk1, sk2), . . . ,EncryptA(pkn−1, skn),EncryptA(pkn, 0
|sk1|) : (pki, ski)← KeygenA(1λ)]

Armed with the above claims we are now ready to prove the following lemma.

Lemma 1. Suppose there exists an algorithm D with advantage AdvD(λ) = 1/2− negl(λ) in the n-circular
security game against PKEA for infinitely many λ ∈ N. Then there exists an algorithm R with advantage
at least 1/2− negl(λ) in the n-circular key recovery security game against PKE for all such λ ∈ N.

Proof. Let D be an algorithm such with advantage in the n-circular security game against PKEA at least
1/2− negl(λ) for infinitely many λ ∈ N. Consider the following algorithm R interacting with the n-circular
security with respect to key recovery challenger C:

1. C runs (pki, ski)← Keygen(1λ).
2. C computes yi = Encrypt(pki, sk(i mod n)+1) for 1 ≤ i ≤ n.
3. C sends (pk1, . . . , pkn, y1, . . . , yn) to R.
4. R parses yi = (Ci,H , Ci,1, . . . Ci,l) for 1 ≤ i ≤ n.
5. R for j = 1 . . . l.

(a) Forms the vector wj = (C1,H , . . . , Cn−1,H , Cn,j).
(b) Lets sk1[j]← D(pk1, . . . , pkn, wj).

6. R output sk1.

Fix any such λ ∈ N. Note that Cn,j is either a random encryption of sk1 or 0. Note that D distinguishes
an n-encryption cycle from n zero encryptions with advantage at least 1/2− negl(λ). Thus Claim 3 implies
that D on input (pk1, . . . , pkn, wj) distinguishes whether Cn,j is an encryption of sk1 or 0 with advantage at
least AdvD′(λ)−negl(λ) = 1/2−negl(λ). Thus D fails to recover the j-th bit of sk1 with probability at most
negl(λ). Then R recovers sk1 correctly except with probability atmost n · negl(λ), which is negligible.

Combining Claim 1 and Lemma 1, we get the following theorem.

Theorem 3. Suppose there exists an algorithm D with non-negligible advantage in the n-circular security
game against PKE ′A for infinitely many λ ∈ N. Then there exists an algorithm R with advantage at least
1/2− negl(λ) in the n-circular key recovery security game against PKE for all such λ ∈ N.
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A Counter Example for 1-Circular Security of Bit-by-bit Encryp-
tion

Proposition 6. Suppose that there exists a polynomial time adversaryA such thatGame0AdvA -Game1AdvA
= ε. Then there exists a polynomial time adversary B who distinguishes the output of G from random with
advantage εPRG = ε.

Proof. In Game 0, t is an output of G, while in Game 1, t is a truly random 2l-bit string. The algorithm B
is defined as follows :

1. B receives t ∈ {0, 1}2l from PRG Challenger C, where t is either a pseudorandom string generated by
G or a truly random string.

14



2. B computes (pkA, skA) ← KeygenA(1λ). Next, it computes O = iO(λ,BitCycleFind) as described in
Game 0. It sets pk = (pkA, t, O) and sends it to A.

3. B chooses b $← {0, 1}. It sets ctb ← EncryptA(pkA, b) and sends it to A.
4. A outputs a bit b′. If (b = b′) B outputs that t was pseudorandom. Else B outputs that t was random.

Clearly, as shown in Proposition 2, if A wins the game with non negligible probability, then so does B.

Proposition 7. Suppose that there exists a polynomial time adversaryA such thatGame1AdvA -Game2AdvA
= ε. Then there exists a polynomial time adversary B who breaks the indistinguishability obfuscation with
advantage εiO = ε.

Proof. B comprises a pair of adversaries (Samp,D) as in Definition 7. We construct these adversaries as
follows.
Samp(1λ) :

1. Choose r $← {0, 1}l and t
$← {0, 1}2l.

2. Let (skA, pkA)← KeygenA(1λ).
3. Let BitCycleFind be the circuit described in our construction with constants (skA, t, 0w) hardwired and

BitCycleReject be the circuit described in Game 2 with constant 0w
′

hardwired.
4. Output (g0 = BitCycleFind, g1 = BitCycleReject).
5. Set σ = (pkA, t).

D(σ, iO(λ, gz)) :

1. Parse σ = (pkA, t). Set pk = (pkA, t, iO(λ, gz))

2. Let b $← {0, 1}. ct← EncryptA(pkA, b).
3. Let b′ ← A(pk, ct).
4. D guesses 1 if b = b′.

Note that since t is chosen uniformly at random, except with negligible probability, t is not in the range of
G. Hence BitCycleFind(x) outputs ⊥ for all x. Thus Samp produces circuits BitCycleReject and BitCycleFind
which are equivalent on all inputs with overwhelming probability, by the random choice of t.

Similar to the proof for Proposition 3, we can argue that if A distinguishes between the outputs of Game
1 and Game 2 with advantage ε, then B breaks the indistinguishability obfuscation with advantage ε.

Proposition 8. If there exists a polynomial time adversary A with non-negligible advantage ε in Game
2, then there exists a polynomial time algorithm B that can break the IND-CPA security of PKEA with
advantage εA = ε.

Proof. Suppose A has advantage ε in Game 2. We define B as follows :

1. B receives pkA, ct from the IND-CPA Challenger C. It chooses t
$← {0, 1}2l and computes O ←

iO(λ,BitCycleReject). It sends public key pk = (pkA, t, O) and ciphertext ct to A.
2. A sends bit b′, which B passes on to C.

Note that if A wins Game 2, then B wins the IND-CPA game. Hence the result follows.

B Key Recovery From Circular Insecurity

B.1

Claim 1. Let PKE ′A be an IND-CPA secure public key cryptosystem that is n-circular secure i.e. there
exists a polynomial time algorithm D′ and a polynomial p(·) such that for infinitely many λ ∈ N, AdvD′(λ) >
1/p(λ). Then there exists an IND-CPA secure public key cryptosystem PKEA, which is constructed using
PKE ′A as a black box, for which there exists an n-circular security adversary D with advantage 1/2−negl(λ)
(i.e. with probability 1− negl(λ)) for all such λ ∈ N.
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Proof. Let PKE ′A = (Keygen′A,Encrypt′A,Decrypt′A). Let t(λ) = λ · p(λ)2 be the amplification factor. We
now define PKEA = (KeygenA,EncryptA,DecryptA) as follows.

• KeygenA(1λ) : Compute t public key, secret key pairs. (pki, ski)
$← Keygen′A(1λ) for 1 ≤ i ≤ t. The

public key pk = (pk1, . . . , pkt) and the secret key is (sk1, . . . , skt).

• EncryptA(pk,m) : Parse pk = (pk1, . . . , pkt) and m = (m1, . . . ,mt) such that |mi| = |mj | for all i, j.

Compute t ciphertexts ct1, . . . , ctt, where cti
$← Encrypt′A(pki,mi). The ciphertext ct = (ct1, . . . , ctt).

• DecryptA(sk, ct) : Parse sk = (sk1, . . . , skt) and ct = (ct1, . . . , ctt). Output Decrypt′A(sk1, ct1).

IND-CPA security of PKEA follows from hybrid argument. We need to show that there exists an algorithm
D such that for infinitely many λ, AdvD(λ) > 1/2 − negl(λ) in the n-circular security game. Note that
each ciphertext cti consists of t ciphertexts (cti1, . . . , ctit), and for all 1 ≤ j ≤ t, either (ct1j , . . . , ctnj) is
an encryption cycle or an encryption of zeroes. By construction, it follows that each of these cycles is
independent, since we have t independent invocations of Keygen′A during KeygenA.
D is defined as follows :

D′ :

1. For 1 ≤ i ≤ t, compute di
$← D′(ct1i, . . . , ctni)

2. Output majority of {d1, . . . , dt}.

If we have an encryption cycle, then, for each 1 ≤ j ≤ t, we have Pr[D′(ct1i, . . . , ctni) = 1] > 1/2+1/p(λ).
Since we have t = λ · p(λ)2 invocations, using Chernoff bounds, it follows that Pr[D(ct1, . . . , ctn) = 1] >
1− negl(λ).
Similarly, if we have encryptions of zeroes, then for each 1 ≤ j ≤ t, Pr[D′(ct1i, . . . , ctni) = 1] < 1/2− 1/p(λ).
Using Chernoff bounds, we get that Pr[D(ct1, . . . , ctn) = 1] < negl(λ).

B.2

Claim 2. PKE is IND-CPA secure if PKEA is IND-CPA .

Proof. To prove this claim it will be convenient to define C0 =: CH and M [0] =: 1. Suppose that adversary
A has advantage ε(λ) in the IND-CPA game against PKE . We construct an adversary B which has advantage
ε(λ)/(l + 1) in the IND-CPA game against PKEA.

1. B receives pkA from the challenger and forwards it to A.
2. A makes some ciphertext queries to Encrypt which are answered using EncryptA.
3. B receives two l-bit message M0,M1 from A.
4. B chooses i∗ $← {0, . . . , l} and forms M ′0 = M0 ·M0[i∗] and M ′1 = M1 ·M1[i∗]. If M ′0 = M ′1 it aborts,

otherwise it sends M ′0 and M ′1 to the challenger.
5. B receives ct′b = EncryptA(M ′b) from the challenger.
6. B forms the ciphertext ct = (C0, . . . Cl) where

Ci =

 EncryptA(pk,M0 ·M0[i]) : i < i∗

ct′b : i = i∗

EncryptA(pk,M1 ·M1[i]) : i > i∗

and forwards ct to A.
7. B receives bit z from A.
8. Step 2 may be repeated.
9. B sends guess b′ = z to the challenger.
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Define for i = 0 . . . l, pi = Pr[b′ = 0|i∗ = i, b = 0] and qi = Pr[b′ = 0|i∗ = i, b = 1]. Since A has
advantage ε in the IND-CPA game against PKE , we have ε = 1/2 · (pl − q0). By inspection pi−1 = qi hence
ε = 1/2 · (

∑l
i=0(pi − qi)). Then ε = 1/2 · (

∑l
i=0 pi −

∑l
i=0 qi) = 1/2 · (Pr[b′ = 0|b = 0] − Pr[b′ = 0|b =

1]) · (l+ 1) = AdvB · (l+ 1). Thus B has advantage ε/(l+ 1) which is non-negligible if ε is non-negligible.

B.3

Claim 3. Let PKEA be an IND-CPA public key cryptosystem. Suppose that D has advantage AdvD(λ) in
the circular security game against PKEA. Then D distinguishes the following distributions with advantage
AdvD(λ)− negl(λ).

[pk1, . . . , pkn,EncryptA(pk1, sk2), . . . ,EncryptA(pkn−1, skn),EncryptA(pkn, sk1) : (pki, ski)← KeygenA(1λ)]

[pk1, . . . , pkn,EncryptA(pk1, sk2), . . . ,EncryptA(pkn−1, skn),EncryptA(pkn, 0
|sk1|) : (pki, ski)← KeygenA(1λ)]

Proof. In order to prove this result, we define n intermediate hybrid experiments Hj : 1 ≤ j ≤ n, and show
that D has overwhelming advantage in each of the hybrids. Hybrid Hj is defined as follows :

Hj :

1. C computes (pki, ski)← KeygenA(1λ) for 1 ≤ i ≤ n
2. C chooses a bit b $← {0, 1}.

• If b = 0, C computes yi = EncryptA(pki, sk(i mod n)+1) for 1 ≤ i ≤ n
• Else C computes yi = EncryptA(pki, sk(i mod n)+1) for i < j and yi =

EncryptA(pki, 0
|sk(i mod n)+1|) for i ≥ j

3. C sends (pk1, . . . , pkn, y1, . . . , yn) to D.
4. D outputs b′.

H1 corresponds to the n-circular security game, while Hn corresponds to the case where an encryption cycle
might be modified by substituting a zero encryption in the last position. Let AdvD(Hj) denote the advantage
of D in hybrid experiment Hj . Suppose AdvD(Hj) − AdvD(Hj+1) is non-negligible. Then there exists a
polynomial time adversary A that can break the IND-CPA security of PKE using D.

1. A receives public key pk from the IND-CPA challenger C.
2. A generates n− 1 public key, secret key pairs (pki, ski)

$← Keygen(1λ) for 2 ≤ i ≤ n.
3. A sends skj+1, 0|skj+1| as challenge messages to C and receives ct as the ciphertext.
4. A computes the remaining n− 1 ciphertexts (ct1, . . . , ctj−1, ctj+1, . . . , ctn) as in the hybrids, and then

runs D on this input.
5. Depending on the output of D, A sends its guess to C.

Note that the advantage of A is equal to AdvD(Hj)−AdvD(Hj+1). We have AdvD(H1) = ε. Therefore, the
advantages of D in each of the successive hybrids is ε − negl(λ), and in particular, its advantage in Hn is
ε− negl(λ).
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