
New abstractions in applied pi-calculus and
automated verification of protected executions

Shiwei Xu
Wuhan Digital Engineering Institute

Wuhan 430074, China

Sergiu Bursuc
School of Computer Science

University of Bristol, UK

Julian P. Murphy
Centre for Secure Information Technologies

Queen’s University of Belfast, UK

Abstract—Protocols for the protected execution of programs,
like those based on a hardware root of trust, will become of
fundamental importance for computer security. In parallel to
such protocols, there is therefore a need to develop models and
tools that allow formal specification and automated verification
of the desired security properties. Still, current protocols lack
realistic models and automated proofs of security. This is due to
several challenges that we address in this paper.

We consider the classical setting of applied pi-calculus and
ProVerif, that we enrich with several generic models that allow
verification of protocols designed for a given computing platform.
Our contributions include models for specifying platform states
and for dynamically loading and executing protected programs.
We also propose a new method to make ProVerif terminate on
a challenging search space - the one obtained by allowing an
unbounded number of extensions and resets for the platform
configuration registers of the TPM.

We illustrate our methods with the case study of a protocol
for a dynamic root of trust (based on a TPM), which includes
dynamic loading, measurement and protected execution of pro-
grams. We prove automatically with ProVerif that code integrity
and secrecy of sealed data hold for the considered protocol.

I. INTRODUCTION

Motivation. Malware is one of the most important problems
that computer security research is facing today. The aim is to
ensure that the computing platforms are trustworthy and that
personal data is not lost to intruders. A hardware root of trust,
including dynamic measurement and protected execution, is a
promising concept in this context [19]. It relies on the idea that
hardware is more difficult to compromize than software and
therefore it can play a crucial role in a protocol for handling
sensitive data. When a secure computing platform is needed,
a special sequence of instructions allows for a trusted piece of
hardware to attest the integrity of the software to be run.

Still, from this basic idea to a secure design and imple-
mentation there is a long way to go, as various attacks show
[14], [27]. In particular, we need models and tools that allow
automated verification of desired properties against trusted
computing protocols and implementations.

Protocols for protected execution open new and significant
challenges for automated verification. The most obvious of
them is the sheer size of platforms to be verified. Furthermore,
messages of such protocols consist not only of data, but also
of programs that can be supplied by an attacker or honest
participant to be executed on the platform. Modeling the
platform configuration registrers (PCR) of the trusted platform

module (TPM) [20] is another problem, because they can be
arbitrarily extended. Even the most efficient symbolic methods
struggle with the structure of the resulting search space [5],
[12].

Related work. Two papers that are particularly relevant in
this context are [9] and [12]. However, as we will discuss in
section II, both of them have limitations. Firstly, the analysis
of [9] is formal, but manual. We will also argue that, while
their approach is useful to discover flaws and to provide
initial guarantees, it is nevertheless too abstract. It relies on
axioms that are simply taken as granted, while we believe
the respective logical rules are not basic enough and should
be proved. Furthermore, we will argue that their security
definitions should also be made more precise. An orthogonal
issue is that [9] does not model the sealing functions of the
TPM, which are essential to keep secrets for the protected
programs.

The analysis of [12] is automated and their axioms are
derived from basic operations. In some sense, however, their
analysis of a (static) trusted boot is even more abstract than
the one in [9]: loaded programs are simply represented by
constants, with no associated computational content, and there
is only one honest program (one constant) and one dishonest
program (another constant). This is certainly not realistic.
Their security definitions do not cover code integrity for the
protected program. The number of extensions for the TPM
registers is bounded in order to make ProVerif terminate. All
this necessarily limits the type of applications and properties
that can be verified.

Our contributions.
1. We propose a generic model for platform states as terms

in applied pi-calculus. The read and write actions on platform
states are formalized as an equational theory in the algebra of
state terms. This model allows different level of abstractions
by simply refining the term that represents the platform state
and adding or removing access equations (section IV-A).

2. We propose a model for dynamically loaded and pro-
tected programs in applied pi-calculus. It is very simple and
does not require heavy encodings, being based on the classic
idea of processes as data. In the setting of protected execution,
we need in addition to take care that once a caller has loaded a
program, it can be certain to communicate and to allow certain
execution capabilities precisely to that program (section IV-B).
We further connect loaded programs to the corresponding

platform state by using additional equations to model their
execution abilities (section IV-C).

3. Relying on contributions 1 and 2, we model dynamic
measurement and protected execution in applied pi-calculus,
following the general structure of INTEL’s Trusted Execution
Technology and AMD’s Secure Virtual Machine. We rely
on reachability [5] and on correspondence assertions [6] to
formally express the desired security properties. This is the
first formal model that can take into account the attacks of
[14], [27] and where proposed solutions can be succesfully
verified (section V).

4. We propose a new abstraction to model the extension of
PCR registers of the TPM that allows automated verification
for a larger class of protocols than the one in [12]. Instead
of bounding the number of PCR extensions, we show how to
alter the model such that the structure of the search space is
simplified, without losing possible attacks or introducing false
attacks. The main idea is to notice that we can let the attacker
set the PCR to any value, as long as it is big enough (section
VI).

5. Putting it all together, we obtain the first automated
verification for a realistic model of dynamic measurement and
protected execution. We prove code integrity (the PCR values
correctly record the measurement of the platform) and secrecy
of sealed data (only a designated program can access data that
has been sealed for its use in a protected environment). This
is more than [9] and [12] prove, in a more realistic model,
and with a higher degree of automation (section VII).

II. RELATED WORK

A logic of secure systems [9]. A programming language
and a logic for expressing trusted computing properties are
proposed in [9]. Their setting is quite expressive and it allows
verification of protocols similar to the ones that we study in
this paper. They do not consider the seal/unseal functions of
the TPM, but we believe their language could be extended to
capture them. However, considering the complexity of proofs
involved, the lack of automation is a serious limitation of [9].
Further, more subtle, problems are related to the foundations
of their formal model. Firstly, there is no clear separation
between the operational semantics of programs and the logical
framework for proving security properties. Although not a
problem in itself, this can lead however to properties that are
taken for granted in the logical framework. Take the example
of the following axiom (section 3.2 in [9]):

` LateLaunch(m, I)@t ⊃ IsLocked(pcr, I)@t

It states that, whenever a late launch (in our terminology, a
dynamic root of trust) happens on thread I , the PCR is locked
for I . Yet, this is based on a protocol between the calling
thread and the TPM, and it will be true only if the attacker
can not interfere with that protocol. Hence, it should not be
an axiom. Similar arguments apply to other, more complex,
axioms present in [9].

We believe that the formal definition of code integrity
proposed in [9] should also be reviewed. It is stated as two

separate properties: a verifier can correctly read the PCR
values (section 4.1.3) and that a dynamic root of trust can
be executed as expected (section 4.2.1). In fact, these two
properties should be linked: the values recorded in the PCR
values should correctly reflect the dynamic root of trust.

On the other hand, we model the dynamic root of trust as a
process, outlining each execution step in the protocol, and we
express code integrity as a correspondence assertion in applied
pi-calculus, which takes into accout the relation between PCR
registers and the state of the platform.

TPM registers [12]. The analysis of [12] is automated with
ProVerif and is based on a Horn clause model. They show that
Microsoft’s Bitlocker protocol preserves the secrecy of some
data sealed against a static sequence of PCR values. However,
their setting is quite abstract and can only be considered as
a first step towards a more detailed analysis. For instance,
because they do not have a model of dynamically loaded
programs, they can only verify a static root of trust with a
particular execution chain. Furthermore, there is no way to
express a program that has access to some data in a protected
environment. This entails that, in order to preserve the security
property in their model, there is no way for the attacker to
obtain a state with an expected PCR value (which is possible
by simply letting the platform execute the expected honest
programs). In fact, there is no model of state, and thus code
integrity properties can not be expressed either. Our models
address these issues.

An interesting result shown in [12] is that, for a class of
Horn clauses, it is sound to bound the number of extensions
of PCR registers. Since our model is in applied pi-calculus,
we can not directly rely on their result, and it is not clear if
their syntactic or semantic criteria on Horn clauses would hold
in a more general setting. We propose a different approach:
instead of decreasing the power of the attacker, we propose to
carefully increase it in a way that allows ProVerif to make an
efficient abstraction, while avoiding false attacks.

Information-flow security and the TPM. [15] presents a
secure compiler for translating programs and policies into
cryptographic implementations, distributed on several ma-
chines equipped with TPMs. They do not consider the problem
of how to secure the source program in the first place, which
may already involve the TPM. Their model is computational
and quite specific. Our approach is symbolic and we can rely
on existing verification tools, while it could be instantiated in
any computational setting.

Unbounded search space. Several works are similar in spirit
to our reduction result for ProVerif, but technically they are
all based on principles that can not be translated to PCR
registers. In [23], it is shown that, for a class of Horn clauses,
verification of protocols with unbounded lists can be reduced
to verification of protocols with lists containing a single
element. In [8], it is shown that to analyse routing protocols
it is sufficient to consider topologies with at most four nodes.
These are strong results, based on the fact that the elements
of a list or the nodes in a route are handled uniformly by the
protocol.

Similar results, in a different context, are shown in [17],
[16]. Their reductions are based on the principle of data inde-
pendence for memory stores. Their results are complementary
to ours and can be seen as a guarantee that, once loaded with
a dynamic root of trust, the protected program (a supervisor
in their case) can properly enforce a desired security policy.

In [21] and respectively [2], it is shown how to handle
an unbounded number of Diffie-Hellman exponentiations and
respectively re-encryptions in ProVerif. Surprisingly, the un-
derlying associative-commutative properties of Diffie-Hellman
help in [21], while [2] can rely on the fact that a re-encryption
does not change the semantics of a ciphertext.

Another case where an unbounded number of operations
is problematic is file sharing [7]. In order to obtain an
automated proof, [7] assumes a bound on the number of access
revocations, without providing justifications for soundness. A
sound abstraction for an unbounded number of revocations,
in a more general setting, is proposed in [22]. Still, it is
specialized to databases and it seems to rely on the same
principle as several results mentioned above: it does not matter
what the data is, it only matters to what set it belongs.

Models with state [3]. Applied pi-calculus is extended with
an explicit notion of persistent state in [3]. While verification
of protocols relying on TPM are among their motivations, it
is not present in their case studies. This illustrates the difficult
balance between expressiveness and efficiency. We believe
however that our abstractions could be combined with theirs
to perform automated verification of more applications.

III. PRELIMINARIES

A. Dynamic root of trust (DRT) protocols

We consider a computer platform equipped with a TPM
and a CPU which supports the technology of dynamic mea-
surement and protected execution, for instance Intel’s Trusted
Execution Technology (TXT) or AMD Secure Virtual Machine
(SVM). In the following, we sketch the main ideas of the
functionality and the desired security properties for these
platforms.

1) Trusted platform module: In the context of a dynamic
root of trust, the platform configuration registers (PCRs) of
the TPM play a fundamental part. Their role is to store the
measurement of loaded programs and in this way to provide
evidence about the state of the platform. The application
interface of the TPM allows the PCRs to be reset only by some
privileged instruction of the CPU or by a system reset. On the
other hand, they can be extended at any time by software. If a
PCR records a value p and is extended with a value v, the new
value of the PCR is h((p, v)), i.e. the result of applying a hash
function to the concatenation of p and v. When a program is
loaded, the measurement (i.e. application of a hash function)
of its binary code is extended into a PCR. A sequence of such
extensions will result in a PCR value which demonstrates that
a particular sequence of programs was run. Secret information
can be sealed against a set of PCR values, and can only be
unsealed by the TPM when its PCRs record the specified value.
This allows a loaded program to have access to sensitive data

only if the PCRs attest that the platform is in the expected
configuration. For simplicity and without loss of generality,
we assume that there is only one PCR.

2) Dynamic measurement and protected execution: Assume
a program, that we will call DRTPP (called measured launch
environment on INTEL and secure kernel on AMD), needs to
be loaded in a secure environment. The first entry point of the
DRT protocol is a privileged instruction of the CPU, that we
will call DRTCPU (called GETSEC[SENTER] on INTEL and
SKINIT on AMD). The basic assumption here is that there is
no way for the attacker to compromise the code of DRTCPU,
which is protected by hardware. DRTCPU resets the PCR to a
specific constant pd marking the start of a protected execution.
It is the only process that has the ability to perform such a
reset. To help with the establishment of a protected environ-
ment, DRTCPU then loads and executes another program, that
we will call DRTINIT (called SINIT authenticated code module
on INTEL and secure loader on AMD). A powerful software
attacker could in principle compromise DRTINIT, and that is
why DRTCPU extends its measurement into the TPM. Finally,
DRTINIT creates a protected environment for DRTPP, extends
its measurement into the TPM and loads it.

The execution sequence can be summarized as follows: 1)
The DRTCPU function receives a DRT request containing the
DRTINIT code and the DRTPP code. The PCR is first reset
to pd and then it is extended with the measurement of the
DRTINIT code. The communication between the CPU and
the TPM is performed on a dedicated private channel named
locality 4. 2) The system interrupts are disabled. This ensures
that no device with direct memory access privileges can inter-
fere with the dynamic root of trust. 3) The DRTINIT program
is loaded and it computes the measurement of the DRTPP

program, extending it into the PCR. The communication
between DRTINIT and the TPM is performed on the private
channel locality 2. DRTINIT also allocates protected memory
for the execution of DRTPP and invokes it. 4) The execution
of DRTPP can start. It can establish further protections for
its memory space and re-enable interrupts once appropriate
interrupt handlers are set. Furthermore, the DRTPP program
can now request the TPM to unseal data that has been sealed
against the current PCR value, and have access to that data in
a protected environment. The communication between DRTPP

and the TPM is performed on the private channel locality 2.
5) Before ending its execution, the DRTPP program extends
the PCR with a dummy value, to record that the platform state
is not to be trusted any more.

3) System management interrupts and software transfer
monitor: For efficiency reasons, when a system interrupt
is handled, all physical memory can be accessed by the
system management interrupt (SMI) handler. In particular, if
a dynamic root of trust is running when the interrupt request
is received, the SMI handler could access the memory of the
protected program DRTPP. Therefore, it is important that the
SMI handler can not be compromised by an intruder, and that
is why it is stored in a protected memory area called SMRAM.

However, as is shown in [14] and [27], in the context of

a larger system these security safeguards can be bypassed by
making use of the CPU caching mechanism. Roughly, these
attacks work by noticing that the protection of the SMRAM
is not carried on to its cached contents. Then, the attacker can
first cache the code of the SMI handler (e.g. by performing an
interrupt), then modify the cached version, and finally write
back to the main memory a compromised version of the SMI
handler.

A possible protection against such attacks, that we also
adopt in this paper at an abstract level, is a software transfer
monitor (STM) [18]. It also resides in the SMRAM, but it
can not be cached while a DRT is running (special registers
of the CPU should ensure that), and its role is to protect
regions of memory from the SMI handler. As part of this
solution, the STM code is also measured and extended into
the PCR by the DRTCPU program, in order to ensure that it
is not compromised. We are not aware whether this solution
is currently implemented by INTEL or AMD.

4) Security goals: Let us summarize the two main security
goals of the dynamic root of trust. Assume given an honest
DRTINIT program Pinit , an honest STM program Pstm and an
honest DRTPP program Ppp .

Code integrity: In any execution of the platform, if the
measurements recorded in the PCR value of the TPM cor-
respond to the sequence (pd, h(Pinit), h(Pstm), h(Ppp)), then
the platform is indeed running a dynamic root of trust for the
protected execution of Ppp in the context of Pinit and Pstm .

Secrecy of sealed data: Any secret data that
is sealed only against a PCR value recording
(pd, h(Pinit), h(Pstm), h(Ppp)), is only available to the
program Ppp , in any execution of the platform.

B. Applied pi-calculus and ProVerif

The ProVerif calculus [5], [6] is a language for modelling
distributed systems and their interactions. It is a dialect of
applied pi calculus [1], [24]. In this section, we briefly review
the basic notions of applied pi-calculus and ProVerif.

1) Terms and equational theories: We assume given an in-
finite set of names, a, b, c, k, n . . ., an infinite set of variables,
x, y, z, . . . and a possibly infinite signature F . A signature is
a set of function symbols, each with an associated arity. Then,
names and variables are basic terms and new terms can be
built by applying a function symbol f ∈ F to names, variables
and other terms. Thus, if t1, . . . , tn are terms and f ∈ F is of
arity n (fact denoted by f/n subsequently), then f(t1, . . . , tn)
is a term. We define top(f(t1, . . . , tn)) = f . The set of terms
(also called messages) built from a set of names N , a set of
variables X and a signature F is denoted by T (F ,X ,N).
The set of messages that do not contain names is denoted by
T (F ,X). Terms without variables are called ground. For a
term t, we denote by fn(t) the names that occur in t and by
st(t) the subterms of t.

Furthermore, F is split into a set of public functions
Fpub and a set of private functions Fpriv : F = Fpub ∪
Fpriv ,Fpub ∩ Fpriv = ∅. Public functions can be applied by
anyone, including the attacker, whereas the private functions

can be applied only as specified by the protocol. When Fpriv

is not explicitly specified, we assume that all functions are
public.

A substitution σ is a partial function from the set of
variables to the set of terms. The application of a substitution
σ to a term u (resp. a proces P) is the term uσ, called an
instance of u, (resp. the process Pσ, called an instance of P)
obtained by replacing every variable x of u (resp. of P) with
the corresponding term xσ. The domain of a substitution σ is
denoted by dom(σ), and its range is denoted by ran(σ). We
say that a substitution σ′ extends σ if dom(σ) ⊆ dom(σ′) and
∀x ∈ dom(σ). xσ′ = xσ.

We consider a special set of names Υ = {ε, ε1, ε2, . . .}
that will be used to specify contexts. A context is a term
C in T (F ,X ,Υ), denoted by C[ε1, . . . , ε1], when fn(C) ∩
Υ = {ε1, . . . , εn}. An instance of a context C[ε1, . . . , εn] is
obtained by replacing each name εi with a term ti, for all
1 ≤ i ≤ n, and is denoted by C[t1, . . . , tn].

The semantics of terms is given by a set E of equations
u1 = v1, . . . , un = vn, where u1, . . . , un, v1, . . . , vn are terms
with variables. The set of equations should capture the logical
properties of algorithms that are modeled by function symbols.
Then, two terms u, v are equal, denoted by u =E v (or simply
u = v when E is clear from the context), if one term can be
derived from the other by applying any number of times some
of the given equations [4], [13]. A pair formed of a signature
and a set of equations, (F , E), will be called an equational
theory. E will also be called an equational theory when F is
clear from the context.

ProVerif specifics. ProVerif has a set of special symbols that
allows the construction/destruction of tuples: for all n, one can
derive (t1, . . . , tn) from t1, . . . , tn, and conversely. We will
assume the presence of this symbol implicitly throughout the
paper.

2) Processes and operational semantics: Processes of the
calculus are built according to the grammar given in figure
1, where u, v are terms, n is a name and x is a variable.
The operational semantics of these processes is quite standard
and we refer to [6], [24] for formal details. Let us explain
informally the less obvious constructs. Replication allows the
creation of any number of instances of a process: formally, !P
is equivalent with P |!P . The process let u = v in P else Q
executes as follows: if there is a substitution σ such that uσ =
v, then Pσ is executed; otherwise, Q is executed. The frame
element {u} represents a message u that has been previously
sent to the attacker on a public channel. We define the frame
of a process P , denoted by fr(P), to be the union of all the
frame elements of P .

Names that are introduced by a new construct are called
bound or private, and they represent the creation of fresh and
secret data. Variables that are introduced in the term x of an
input or the term u of a let construct are called bound, and they
represent the reception or computation of fresh data. Names
and variables that are not bound are called free, or public.
We denoted by fv(P) and respectively fn(P) the set of free
variables and respectively free names of P .

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
new n;P name restriction
in(v, x);P message input on v
out(v, u);P message output on v
{u} frame element
if u = v then P else Q conditional
let u = v in P else Q term evaluation

Fig. 1. Process algebra

The result of applying several execution steps to a process
P is called a trace of P , denoted by P w−→ Q, where Q is the
process obtained after the trace is executed and w is a sequence
of labels recording the actions (e.g. input on channel c, output
on channel c) that have determined the trace. All messages
sent on public channels in the trace P w−→ Q are recorded in
fr(Q) - the frame of Q.

ProVerif specifics. ProVerif allows a syntactic sugar that
we will use in the specification of our case study. We can
write a process of the form in(v, (A1, . . . , An));P where each
Ai is either a variable, or an expression of the form = ti,
for some term ti. Let us define φ(Ai) = Ai, if Ai is a
variable, and φ(Ai) = ti if Ai is of the form = ti. Then,
the process described above is an abbreviation for the process
in(v, x); let x = (φ(A1), . . . , φ(An)) in P . This allows us to
specify filters on tuples received on a channel v.

3) Security properties: In this paper, we will rely on
secrecy properties [5] and on correspondence assertions [6].
First, we define the computational power of the attacker.

Deducibility. Assume given an equational theory (F , E).
The ability of an attacker to obtain new knowledge by per-
forming operations on known messages is captured by the
notion of deducibility. For a set of terms T and a term t,
we define the deducibility relation T `E t (or simply T ` t
when E is clear from the context) as being true if and only if
• there exists a term t′ ∈ T such that t =E t

′ or
• there are terms t1, . . . , tn such that T `E t1, . . . , T `E
tn and a function symbol f ∈ Fpub such that
f(t1, . . . , tn) =E t

Secrecy. For any term t and process P , the ability of an
attacker to deduce t by interacting with P is captured by the
formula P |=E t, or simply P |= t when E is clear from
the context. By definition, P |= t is true when there exists
an execution trace P w−→ Q such that fr(Q) ` tσ, for some
substitution σ. The formula P 6|= t is true when P |= t is false.
Thus, if P 6|= t is true, then t is kept secret in any execution
of P .

Correspondence assertions. In this paper we only need
a simplified version of correspondence assertions, that we
explain in the following. A (simple) correspondence assertion
is a formula of the form P |=E t u = v, for some terms

u, v, t. It is satisfied if, whenever the attacker can deduce t by
interacting with P , it is the case that u equals v. Formally, we
have P |=E t u = v if and only if for any execution trace
P

w−→ Q and substitution σ such that fr(Q) `E tσ, we have
uσ′ =E vσ

′, for some substitution σ′ that extends σ.

IV. PLATFORM STATES AND PROTECTED PROGRAMS IN
APPLIED PI-CALCULUS

In this section we present our proposed generic models
of platform execution (subsection IV-A) and of protected,
dynamically loaded programs (section IV-B). We also link the
two models, by showing how to assign execution capabilities
to loaded programs (section IV-C).

A. Platform execution as an equational theory
Definition 1: A state structure is a pair (F ,S), where F =

Fstruct ∪ Fdata is a signature and S is a term such that
• Fstruct ⊆ Fpriv and
• S ∈ T (Fstruct ,X)

A term ts for which there are substitutions σ, θ such that
tsσ = Sθ is called a state term. �

The idea is that the term S represents the structure of a
platform state. Its symbols are assumed to be private so that
an attacker can not arbitrarily construct platforms states, but
only reach them following the specification of the platform
(via equations and interactions with other agents, as shown
below). The variables of S represent the mutable elements of
the platform state, and the attacker or other agents may be
able to modify them. A particular state is represented by a
ground instance of S. A state term ts represents the set of
states formed of all its ground instances.

Example 1: Consider the state structure where

Fstruct = {state/3, cpu/2, ram/1, tpm/1}
Fdata = {f/1, a/0, b/0, c/0}
S = state(cpu(x1, x2), ram(x3), tpm(x4))

Here, S represents a state where two CPU registers have values
x1, x2, a zone of the RAM memory has value x3 and a PCR
register of the TPM has value x4.

The term state(cpu(a, f(a)), ram(f(f(b))), tpm(c)) repre-
sents a particular platform state, while state(y1, ram(x2), y2)
and state(y1, y2, tpm(b)) are state terms. �

Definition 2: An equational theory (Fget , Eget) provides
read access for a state structure (Fstruct ∪ Fdata ,S), if each
equation in Eget is of the form:

Cget [tstate] = t

where tstate is a state term, Cget [ε] is a context in T (Fget ∪
Fdata ,X , {ε}) and t ∈ st(tstate). �

This way, for any substitution σ, the context Cgetσ[ε]
represents the actions and credentials that allow the access
to the part tσ of the platform state tstateσ.

Example 2: Continuing example 1, the following equations
can be part of Eget :
get cpu(state(cpu(x1, x2), y1, y2), (cpu acc, one)) = x1

get ram(state(y1, ram(x), y2)) = x
get pcr(state(y1, y2, tpm(x))) = x

where cpu acc/0 ∈ Fpriv
get . Thus, the read access to CPU is

restricted, while the access to RAM and TPM is public. �
Definition 3: An equational theory (Fset , Eset) provides

write access for a state structure (Fstruct ∪ Fdata ,S) if each
equation in Eset is of the form

Cset [tstate] = t′state

where tstate , t′state are state terms and Cset [ε] is a context in
T (Fset ∪ Fdata ,X , {ε}). �

This way, for any substitution σ, the context Csetσ[ε]
represents the actions, credentials and update values that alllow
the modification of the platform state from tstateσ to t′stateσ.

Example 3: Continuing example 2, we can have the fol-
lowing equations as part of Eset :

set cpu(state(cpu(x1, x2), y1, y2), (cpu acc, one), xv) =
state(cpu(xv, x2), y1, y2)

set pcr(state(y1, y2, tpm(x)), tpm acc, xv) =
state(y1, y2, tpm(xv))

where Fpriv
set = Fpriv

get ∪ {tpm acc/0}. Thus, while the read
access to the TPM is public, the write access is restricted by
the private constant tpm acc. �

Platform execution. Now, as we will see in section V, the
participants of a protocol executing on a platform can simply
obtain a platform state by reading the corresponding term on
a public channel, modify the platform state according to their
capabilities, and update the platform state by transmiting the
new term on a public channel.

B. Protected programs as protected data

Higher-order process calculi. We have argued in the intro-
duction and illustrated in preliminaries that we need a model
for dynamically loaded programs, in order to have a faithful
representation of the dynamic root of trust. It seems then that
we need to make use of higher-order process calculi, similar
to the ones in e.g. [26], [25]. Then, we would have a rule of
the form:

out(c,Q) | in(c,X).P → P | Q

In fact, it has been shown [26], [25] that such behavior
can be encoded in standard first-order process calculi. The
same should be the case for higher-order applied pi-calculus.
However, this kind of behaviour is not sufficient to model
what we want in terms of program protection. For instance,
once a program Q is “loaded”, there is no guarantee that Q is
executed and not an arbitrary program Q′. Indeed, we have

Q′ | out(c,Q) | in(c,X).P → P | Q′ | Q

and there is no way in the model to make a difference between
Q and Q′. Furthermore, the “loaded” program Q should get
something in return, like privileged access to some elements
of the platform state.

Desired functionality. Informally, we would like to have a
rule of the form

out(c,Q) | in(c,X).P → P [Q]

where the semantics of P [Q] would capture the properties
that we hinted at above: there is a particular channel that allows
P to communicate with Q and (possibly another channel) that
allows Q to have access to the platform state. While this
is interesting in theory, we believe an encoding at the first
order level is possible, following the same lines as [26], [25].
Therefore, we propose directly a first-order model, so that we
can rely on ProVerif for automated verification. We leave a
precise link between the following model and a higher order
calculus out of the scope of this paper.

Protected and dynamically loaded programs. We consider a
new public function symbol fprog/1 and an infinite signature
of private constants FP , containing a different constant nP
for every possible process P .

Definition 4: For a process P , free variables x1, . . . , xn ∈
fv(P) and a public name c, we define the process

P x1,...,xn
prog,c = out(c, fprog(nP)); in(nP , (x1, . . . , xn));P

where nP is the constant from FP that corresponds to P . �
Intuitively, the term fprog(nP) is a public and unique

identifier for the program P (for instance, fprog(nP) may be
computed from the source code of P). On the other hand, the
constant nP represents a private entry point for the program P .
It will be used for communication between loaded instances
of P and the loader. The variables x1, . . . , xn represent the
parameters that the program P expects to receive after loading.

Definition 5: An equational theory (Fprog , Eprog) models
program access if Fpub

prog = {fprog/1}, Fpriv
prog = {fentry/1}

and Eprog = {fentry(fprog(x)) = x} �
The idea is that a trusted loader of programs (the CPU in

our case) will have access to the private function fentry . Eprog
will then permit the loader to gain access to the private entry
point of any program. Now, for a program P to be loaded, the
first step is to replace P with P x1,...,xn

prog,c , allowing the loader to
obtain nP . Next, the loader will prepare parameters t1, . . . , tn
for P and send them on the private channel nP , that is now
shared between the loader and the loaded program P .

This model achieves dynamical loading of programs (any
program can play the role of P) and their protected execution
(by relying on the private channel that is set up during
loading). Furthermore, if we consider a state structure as
introduced in section IV-A, we can now store identifiers of
programs in the platform state and we can be certain that, if
the loader is honest, then the identity prog(nP) stored in the
platform state indeed corresponds to the program running on
the platform.

Example 4: Continuing example 3, let us model a program
that, once loaded, gets access to the TPM and sets its PCR to
a particular value f(a). For simplicity, we assume the loaded
program is stored in one of the CPU registers.

P = out(c, fprog(nP)); in(nP , (xpf state , xtpm acc));
let x′pf state = set pcr(xpf state , xtpm acc , f(a)) in
out(c, x′pf state)

Q = in(c, xp); in(c, xpf state)
let x′pf state = set cpu(xpf state , (cpu acc, one), xp) in
let xentry = fentry(xp) in
out(xentry , (x

′
pf state , tpm acc)); out(c, x′pf state)

C. Platform states and loaded programs

Looking back at examples 1-4, we may note that the access
to the TPM is modeled too liberally. Indeed, once a process
gets the TPM access in a state, it can use it to access the TPM
in any state. One way to solve this problem is to model the
TPM access with a term that contains more information, and
not simply with a constant. Yet, in this subsection we propose
another model, which allows concise specifications of loaded
program abilities. A context whose instances are state terms
will be called a state context.

Definition 6: Let (F ,S) be a state structure and
(Fprog , Eprog) be an equational theory that models program
access. We say that an equational theory models loaded
program abilities if it is defined by a set of equations of the
form:

Cget [C[fprog(x1), . . . , fprog(xn)], x1, . . . , xn] = t
Cset [C[fprog(x1), . . . , fprog(xn)]), x1, . . . , xn] = ts

where C is a state context, Cset , Cget are contexts, t is a term
in st(C[fprog(x1), . . . , fprog(xn)]) and ts is a state term. �

The idea is that, if the programs fprog(x1), . . . , fprog(xn)
have been loaded in certain locations of the platform state
(specified by the context C), then these programs can access
or write some elements of the platform state by relying on
their private entry points, and possibly some other private data
specified by Cget , Cset .

We use a conjunction of entry points because in some cases
one program of the platform state may monitor another pro-
gram and prevent it from accessing some protected memory.
In that case, an intruder needs to control both programs in
order to modify the respective portion of the platform state.

Example 5: Continuing example 4, instead of having Q
send tpm acc to P , we may rely on the following equation
to allow P to modify the contents of the TPM only while it
is loaded in the first of the CPU registers:

set pcr(state(cpu(fprog(x), y), y1, tpm(y2)), x, xv) =
state(cpu(fprog(x), y), y1, tpm(xv))

V. FORMAL MODELS FOR THE CASE STUDY

A. Attacker model, assumptions and simplifications

We assume the presence of a powerful attacker who controls
the operating system and is able to execute a dynamic root of
trust any number of times with any programs. In particular, it
can compromise the DRTINIT program and, by relying on the
CPU cache, it can compromise the STM and the SMI handler.
It can furthermore use the compromised STM and SMI handler
to access protected memory. The attacker has access to all
TPM functions, and is able to perform any number of static
PCR resets and extend the PCR any number of times with any
data. It can request the unseal of any data, which will only be
unsealed if the values of the PCR permit it.

To achieve the desired security properties, we assume that
the attacker can not compromise the CPU and the TPM - this
is the fundamental DRT assumption. In particular, only the
CPU can execute a dynamic reset of the PCR. Furthermore,
the attacker can not compromise the STM while a dynamic
root of trust is running. As usual, we assume that cryptography
can not be broken.

For simplicity, and without loss of generality, we omit the
so called TPM authdata, which permits users to authenticate to
the TPM. This only means that we extend the attacker’s power,
by providing all authdata to the attacker. We also ommit some
functions of the TPM that are not relevant for our purposes
and have been handled elsewhere, such as those for loading,
certifying and wrapping keys [12], [11].

We have abstract models of memory and of the CPU cache:
we only model locations where our elements of interest lie, and
we express by equations how these can be changed, directly
or by flushing the cache.

B. Model of data

We consider

Fpub
data = { ps/0, pd/0, true/0, false/0,

h/1, senc/2, sdec/2, seal/2}

Fpriv
data = {unseal/2} and the set of equations Edata :

sdec(x, senc(x, y)) = y
unseal(seal(xpcr, xval), xpcr) = xval

The constant pd (resp. ps) represents the result of a dynamic
(resp. static) PCR reset. A dynamic reset is especially relevant
for our purposes, because it marks the start of a dynamic root
of trust. The functions senc and sdec, and the corresponding
equation, model symmetric key encryption. We use a free
symbol h to represent a hash function. To model sealing and
unsealing functions of the TPM, we have the the symbols seal
and unseal . Anyone can seal a value, while the corresponding
equation and unseal ∈ Fpriv ensure that only the TPM can
unseal it by providing the PCR values that have been used for
sealing.

C. Model of the platform

1) State structure: As instance of definition 1, we consider
the state structure defined by (Fstruct∪Fdata ,S), where Fdata

is defined above and

Fstruct = {state/4, tpm/1, cpu/2, drt/3, smram/2}
S = state(tpm(xpcr), cpu(xint , xcache),

drt(xinit , xpp , xlock), smram(xstm , xsmi))

where xpcr stands for the value of the PCR register of
the TPM; xint represents a register of the CPU showing if
interrupts are enabled; xcache represents the contents of the
CPU cache; xlock is showing if a dynamic root of trust is
running; xinit represents the DRTINIT program; xpp represents
the protected program DRTPP; located in SMRAM, xsmi is
the SMI handler and xstm is the STM program.

Fig. 2. Equations for modifying the platform state

reset pcr(state(tpm(y), x1, x2, x3), tpm acc, ps)
= state(tpm(ps), x1, x2, x3)

reset pcr(state(tpm(y), x1, x2, x3), tpm acc, pd)
= state(tpm(pd), x1, x2, x3)

extend pcr(state(tpm(y), x1, x2, x3), tpm acc, v)
= state(tpm(h((y, v))), x1, x2, x3)

set int(state(x1, cpu(y1, y2), x2, x3), cpu acc, v)
= state(x1, cpu(v, y2), x2, x3)

cache(state(x1, cpu(y1, y2), x2, x3), v)
= state(x1, cpu(y1, v), x2, x3)

flush stm(state(x1, cpu(y1, y2), drt(w1, w2, false),
smram(z1, z2)))

= state(x1, cpu(y1, v), drt(w1, w2, false)
smram(y2, z2)))

flush smi(state(x1, cpu(y1, y2), x2, smram(z1, z2)))
= state(x1, cpu(y1, y2), x2, smram(z1, y2))

set init(state(x1, x2, drt(y1, y2, y3), x3), cpu acc, v)
= state(x1, x2, drt(v, y2, y3), x3)

set pp(state(x1, x2, drt(y1, y2, y3), x3), cpu acc, v)
= state(x1, x2, drt(y1, v, y3), x3)

set lock(state(x1, x2, drt(y1, y2, y3), x3), cpu acc, v)
= state(x1, x2, drt(y1, y2, v), x3)

2) Read access: The read access is universal: we sim-
ply assume that any agent who has access to a plat-
form state can read any of its components. Let WS =
{pcr, int, cache, init, pp, lock, stm, smi}. As instance of def-
inition 2, we consider the equational theory (Fget , Eget), where

Fget = {get w/1 | for all w ∈ WS}
Eget = {get w(S) = xw | for all w ∈ WS}

and all symbols of Fget are public.
3) Write access: As instance of definition 3, we

have the equational theory (Fset , Eset), where Fpriv
set =

{cpu acc/0, tpm acc/0} and Eset is defined in figure 2.
The private constants cpu acc and tpm acc allow only the
CPU and the TPM to change certain components of the
state. Anyone can cache a value and then request the cache
to be copied into the SMRAM. However, our equation for
flush stm ensures that the STM can be modified in this way
only if a DRT is not running. We can modify the equation for
flush stm to allow changing the STM in any state, and then
we recover the attacks of [14], [27] in our model.

4) Abilities of loaded programs: Furthermore, some com-
ponents of the state can also be changed by other programs
running on the platform. To model this ability, we rely on
an instance of definition 6 described in figure 3, where the
symbol prog/1 plays the role of fprog . The DRTINIT program
can modify the DRTPP program. The DRTPP program can
set/unset the DRT lock and enable/disable interrupts. If the
interrupts are enabled, the STM and the SMI handler together
can modify the protected program and the DRT lock.

Fig. 3. Abilities of loaded programs

set pp(state(x1, x2, drt(prog(y1), y2, y3), x3), y1, v)
= state(x1, x2, drt(prog(y1), v, y3), x3)

set pp(state(x, cpu(true, z), drt(y1, y2, y3),
smram(prog(z1), prog(z2))), (z1, z2), v)

= state(x, cpu(true, z), drt(y1, v, y3),
smram(prog(z1), prog(z2)))

set lock(state(x1, x2, drt(y1, prog(y2), y3), x3), y2, v)
= state(x1, x2, drt(y1, prog(y2), v), x3)

set lock(state(x, cpu(true, z), drt(y1, y2, y3),
smram(prog(z1), prog(z2))), (z1, z2), v)

= state(x, cpu(true, z), drt(y1, y2, v),
smram(prog(z1), prog(z2)))

set int(state(x1, cpu(y, z), drt(z1, prog(z2), true), x2),
z2, v)

= state(x1, cpu(v, z), drt(z1, prog(z2), true), x2)

D. Processes for the dynamic root of trust

We use a public channel os to communicate platform
states and any other messages that may be intercepted and
modified by the intruder. We use the program access signature
{prog/1, get entry/1} to model loading of programs and
access to their entry points as described in definitions 4
and 5. Corresponding to locality 4, a private name cpu tpm
models the secure channel between the CPU and the TPM.
Corresponding to locality 2, a private function tpm ch/1
models the ability of the CPU to establish a private channel
between a running program and the TPM. Generally, these
channels will be of the form tpm ch(prog(t)) and the CPU
will send this term both to the program represented by prog(t)
(on channel t) and to the TPM (on channel cpu tpm). We also
use message tags that should be clear from the context. We
describe the actions of each process in comments.

1) The CPU role: The process DRTCPU, specifying the
execution of a dynamic root of trust on the CPU, is defined in
figure 4. Note that the measurement extended in to the TPM
includes not only the DRTINIT program, but also the running
STM, to ensure that it is not compromised. The process
also establishes a shared private channel tpm ch(drt init)
between DRTINIT and TPM. This will be used by DRTINIT

to securely extend the PCR with the measurement of DRTPP.
After the DRTINIT program has measured the DRTPP program
and loaded it into memory, the CPU gets back the new plat-
form state and sets up the private channel for communication
between the loaded DRTPP and the TPM.

2) The DRTINIT role: We specify the behaviour of an
honest DRTINIT program, relying on the process EXPINIT from
figure 5. We assume a private constant exp init ∈ FP to be
its private entry point. Note that we make use of the special
equation that allows the running DRTINIT program to set the
DRTPP program.

3) An example DRTPP program: We illustrate the execu-
tion of a DRTPP program with an example. Furthermore, this

Fig. 4. The DRTCPU process

(*** Receive a DRT request ***)
in(os, (= drt req, drt init, drt pp, pf state))
if get lock(pf state) = false then
(*** Disable interrupts and set the DRT lock ***)
let s′0 = set int(pf state, cpu acc, false) in
let s0 = set lock(s′0, cpu acc, true) in
(*** Reset the PCR ***)
new nonce; out(cpu tpm, pcr reset req, nonce, s0);
in(cpu tpm, pcr reset resp,= nonce, s1);
(*** Extend the PCR with the measurement ***)
let m = (h(drt init), h(get stm(pf state))) in
out(cpu tpm, (pcr extend req, nonce, s1,m));
in(cpu tpm, (= pcr extend resp,= nonce, s2));
(*** Load DRTINIT and establish TPM access ***)
let s3 = set init(s2, cpu acc, drt init) in
let einit = get entry(drt init) in
out(einit, (drt req, nonce, s3, tpm ch(drt init), drt pp));
out(cpu tpm, (drt channel, tpm ch(drt init))));
in(einit, (= drt resp,= nonce, new state));
(*** Establish TPM channels for the loaded DRTPP ***)
let epp = get entry(get pp(new state)) in
out(epp, (drt start, new state, tpm ch(prog(epp))));
out(cpu tpm, (drt channel, tpm ch(prog(epp))));
out(cpu tpm, (drt start, new state, tpm ch(prog(epp))))

Fig. 5. The EXPINIT process: an honest DRTINIT program

out(os, prog(exp init)));
(*** Receive DRTPP and TPM channel from the CPU ***)
in(exp init, (= drt req, nonce0, pf state, tpmc, drt pp));
(*** Measure and extend DRTPP into the PCR ***)
let m = h(drt pp) in new nonce;
out(tpmc, (pcr extend req, nonce, pf state,m));
in(tpmc, (= pcr extend resp,= nonce, ext state));
(*** Load DRTPP on the platform state ***)
let new state = set pp(ext state, exp init, drt pp) in
(*** Pass the control back to CPU ***)
out(exp init, (drt resp, nonce0, new state)));
(*** Make the new platform state public ***)
out(os, new state)

will allow us to verify that secret data that is sealed for use
by a particular program remains secret. Assume our DRTPP

program has the public identity prog(exp pp) and private
entry point exp pp ∈ FP . We consider a fresh symmetric
key kpp and assume that this key has been sealed against
the expected DRTPP, the expected DRTINIT and the expected
STM (with identity prog(exp stm)). This is represented by

Fig. 6. The EXPPP process: an example DRTPP program

out(os, prog(exp pp)));
(*** Receive TPM access from the CPU ***)
in(exp pp, (= drt start, pf state0, tpmc));
(*** Re-enable interrupts ***)
let pf state = set int(pf state0, exp pp, true) in
out(os, pf state);
(*** Unseal the key kpp and decrypt the private message ***)
in(os, xseal); in(os, xenc);
out(tpmc, (tag unseal, xseal)); in(tpmc, (= tag plain, xk));
let mess = sdec(xk, xenc) in out(os,mess);
(*** Ending the execution ***)
new n; out(tpmc, (pcr extend req, n, pf state, zero));
in(tpmc, (= pcr extend resp,= n, exts));
let ends = set lock(exts, exp pp, false) in out(os, ends)

the term

seal(h((h((pd,
(h(prog(exp init)), h(prog(exp stm))))),
h(prog(exp pp)))),

kpp))

which we assume publicly available. Recall that pd repre-
sents a reset constant which can only be the initial value of
the PCR when the CPU requests a new dynamic root of trust.
This will be ensured by the TPM process below.

We also assume that some private message hellopp has been
encrypted with kpp : senc(kpp , hellopp) is publicly available.
Now, in the context of a dynamic root of trust with the
expected parameters, the example program prog(exp pp) will
be able to unseal the key kpp and get access to hellopp . We
assume that it will send this message on a public channel.
This way, we can verify both the secrecy of kpp and, by
showing that hellopp is not secret, the correct execution of
prog(exp pp).

The example DRTPP program is modeled by the process
EXPPP in figure 6. After re-enabling interrupts, the program
receives a sealed blob and the encrypted private message from
the operating system, unseals the blob relying on the TPM to
obtain kpp . It then decrypts the ciphertext to obtain the value
hellopp , which it outputs back to the operating system. Before
the execution of EXPPP ends, not only the DRT lock is set
to false, but also the PCR is extended with a dummy value in
order to leave the PCR in a state which is not to be trusted
anymore.

4) The TPM role: First we define generic functions for
reseting and extending the PCR value. The requests come on
a channel ch, which will be instantiated to different values
depending on whether the request comes from the CPU, from
some running DRT programs, or from the operating system.
The value to which the PCR is reset, rv, will also depend on
the context: only the CPU can reset the PCR to the specific
value pd marking a dynamic root of trust. Reset requests from

Fig. 7. Reset and extend functions of the TPM

TPMRESET =
let (ch, rv) = (cpu tpm, pd) in !PCRRESET |
let (ch, rv) = (os, ps) in !PCRRESET

TPMEXTEND =
let ch = cpu tpm in !PCREXTEND |
let ch = os in !PCREXTEND |
!(in(cpu tpm, (= drt channel, tpmc));
let ch = tpmc in !PCREXTEND)

Fig. 8. The TPMUNSEAL process

(*** Private unseal on tpmc for the running DRTPP ***)
!in(cpu tpm, (= drt start, pf state, tpmc));
!(in(tpmc, (= tag unseal, blob));
let value = unseal(blob, get pcr(pf state)) in
out(tpmc, (tag plain, value))
) |
(*** Public unseal ***)
!(in(os, (tag unseal, pf state, blob));
if get lock(pf state) = false then (
let value = unseal(blob, get pcr(pf state)) in
out(os, (tag plain, value)))).

other parties will result in a PCR value of ps.

PCRRESET =
in(ch, (= pcr reset req, nonce, st));
let new st = reset pcr(st, tpm acc, rv) in
out(ch, (pcr reset resp, nonce, new st))

PCREXTEND =
in(ch, (= pcr extend req, nonce, st, v));
let new st = extend pcr(st, tpm acc, v) in
out(ch, (pcr extend resp, nonce, new st))

Then, we have

TPM = !TPMRESET | !TPMEXTEND | !TPMUNSEAL

where TPMRESET, TPMEXTEND are defined in figure 7 and
TPMUNSEAL in figure 8.

Note that the unseal process has two parts. The first part
represents the unseal functionality that is available for a
running DRTPP program. For this, the TPM first receives
from the CPU on the cpu tpm channel the corresponding
platform state and the channel tpmc for communicating with
the protected program. Subsequently, it can handle any number
of unseal requests on the channel tpmc, as long as the PCR
values of sealed blobs match those recorded in the platform
state. On the other hand, the second part of the unseal process
allows the attacker to unseal any blob in any state, as long as
the PCR values match and, crucially, if there is no dynamic
root of trust running in that state.

Fig. 9. The DRT process

new kpp ; new hellopp ; out(os, senc(kpp , hellopp));
out(os,
seal(h((h((pd,

(h(prog(exp init)), h(prog(exp stm))))),
h(prog(exp pp)))),
kpp))

out(os, prog(exp stm));
(*** Initial state ***)
in(os, xstm); in(os, xsmi);
out(os, state(tpm(ps), cpu(true, null),

drt(null, null, false), smram(xstm , xsmi));
(*** Run a DRT with any loaded programs ***)
in(os, drt init); in(os, drt pp); in(os, pf state);
out(os, (drt req, drt init, drt pp, pf state));
(!DRTCPU | !EXPINIT | !EXPPP | TPM)

5) Execution of the platform: To model the execution of
the platform, we put all these processes together to obtain
the DRT process in figure 9. We create a private key and
a private message for the protected program and publish the
sealed key and the encrypted message. We output the identity
of the honest STM program to the attacker, but we assume
the attacker does not obtain its entry point. The attacker can
load into the initial state of the platform any STM and any
SMI handler, for instance at system reboot. We show explicitly
how the attacker can request a dynamic root of trust with any
DRTINIT program and any DRTPP program.

E. Security properties in the formal model

1) Reachability: The reachability of a state in the platform
can be expressed as a (non-)secrecy property: a state is reach-
able when a corresponding term state(ttpm , tcpu , tdrt , tsmram)
can be obtained by the attacker after interacting with the
process DRT. We can express this as a formula of the form
DRT |= state(ttpm , tcpu , tdrt , tsmram).

We verify the adequacy of our model by checking that
an expected DRT state can been reached (running the DRT
programs EXPINIT,EXPPP and the expected STM):

DRT |=
state(tpm(h((h((pd,

(h(prog(exp init)), h(prog(exp stm))))),
h(prog(exp pp))))), cpu(true, x),

drt(prog(exp init), prog(exp pp), true),
smram(prog(exp stm), prog(y)))

and that the program EXPPP has succeeded to unseal the key
kpp and thus can output the private message hellopp on the
public channel os: DRT |= hellopp .

2) Code integrity: We say that the trusted platform ensures
code integrity if the measurement contained in the PCR value
correctly reflects the state of the platform. Specifically, we
require that whenever a dynamic root of trust is active with

a PCR value of pd extended with the expected measurements
h(prog(exp init)), h(prog(exp stm)) and h(prog(exp pp)),
then only the corresponding DRTPP, DRTINIT and STM are
running on the platform, and they can not be modified. This
can be expressed by the following correspondence assertion:

DRT |=
state(tpm(h((h((pd,

(h(prog(exp init)), h(prog(exp stm))))),
h(prog(exp pp))))), cpu(x, y),

drt(xinit , xpp , true), smram(xstm , xsmi))
 (xinit , xpp , xstm) =

(prog(exp init), prog(exp pp), prog(exp stm))

Note that we ensure the property only for honest programs.
Indeed, if any of DRTPP,DRTINIT or STM is dishonest, they
could use their privileges to reach a platform state that does not
reflect the PCR values. This is fine, because the PCR values
will correctly record the identity of the first dishonest program
in the chain of trust. In particular, our property shows that
dishonest DRT programs can not make the PCR values record
the measurement of honest programs.

3) Secrecy of sealed data: We also verify that secret data
sealed for EXPPP, i.e. the key kpp , stays secret:

DRT 6|= kpp

VI. ABSTRACTION OF PCR EXTENSIONS

ProVerif does not terminate for the equational theory that
we propose in section V. The main reason is the equation that
allows an unbounded number of PCR extensions, reflecting
the same problem as the one first noticed in [12]. In this
section, we propose a general way to replace this equation
with a set of equations that can simulate the same behaviour,
while simplifying the abstraction task for ProVerif.

For simplicity of our soundness proofs and without much
loss of generality, we assume that all the values to be extended
into the PCR are available to the attacker. This is the case in
all applications that we are aware of. In our case study, these
values are either public program identities, or other values
chosen by the attacker.

A. Intuitions and definitions

Notation. A term of the form h((. . . h((t0, t1))), . . . , tn))
will be denoted by pcr(t0, . . . , tn), and pcr(t0) is t0. We
define length(pcr(t0, . . . , tn)) = n.

Proposed abstraction. For a given natural number nb, we
would like the following to hold in the equational theory

extend pcr(state(tpm(t1), t2, t3, t4), tpm acc, v) =
state(tpm(h((t1, v))), t2, t3, t4)

if and only if length(t1) < nb
extend pcr(state(tpm(t1), t2, t3, t4), tpm acc, v) =

state(tpm(v), t2, t3, t4)
if and only if length(t1) ≥ nb and length(v) > nb

Intuitively, the first equality means that the PCR can be
extended normally only a constant number of times, given by
the bound nb. Note however that the second equality allows

the PCR to be set to any value whose length is higher than
the bound nb. This means that, if any party wants to extend
the PCR value say nb +n times, it can simply use the second
equation by supplying the desired final value of the PCR. Since
we assume that all the values extended into the PCR are public,
anyone can obtain the desired final extended value and set it
as the current PCR value (via the TPM).

The abstraction is tight. The chain of PCR extensions that
leads to a desired protected configuration is obviously finite,
and its length will give us the value of the bound nb. For
instance, in our case study from section V, the desired PCR
value has length 2:

pcr(p0, (h(prog(exp init)), h(prog(exp stm))),
h(prog(exp pp)))

If we would allow the PCR to be set to any value whose
length is smaller or equal to nb, we would have a false attack
in the formal model, and the abstraction would not be useful.
Indeed, the attacker would for instance be able to unseal any
data that is sealed for a protected configuration of length nb.
However, it is not helpful for the attacker to set the PCR to
any value whose length is bigger than nb, since there is no
way to decrease the PCR and thus violate a security property.

The abstraction is sound. Formally, we will show in section
VI-B that any state (and thus any attack) that is reachable in
the initial model, is also reachable in the abstracted model,
by simulating the normal PCR extension using the newly
introduced equations.

The abstraction is simpler to verify. In presence of the
extend equation in the original model, ProVerif does not
terminate because it is unable to make an abstract reasoning
about the introduction of the term h((y, v)) in the right hand
side of the equation. On the other hand, in presence of the
equational theory that we propose as replacement, we will let
ProVerif deduce that the actual value of h((y, v)) does not
matter after a certain point.

Encoding the abstraction in the equational theory. Given a
bound nb ≥ 1, we simply replace the extend pcr equation
from section V:

extend pcr(state(tpm(y), x1, x2, x3), tpm acc, v)
= state(tpm(h((y, v))), x1, x2, x3)

with the set of equations Ebound ∪ Eany . The set Ebound is
formed of equations:

extend pcr(state(tpm(pcr(v0, . . . , vi)), x1, x2, x3),
tpm acc, v)

= state(tpm(pcr(v0, . . . , vi, v)), x1, x2, x3)

for all 0 ≤ i < nb, where v0 ∈ {ps, pd} and v1, . . . , vi, v
are variables. The reason v0 is a constant is to ensure that the
length of the extended PCR value is exactly i. The set Eany
is formed of the single equation

extend pcr(state(tpm(pcr(y0, . . . , ynb
)), x1, x2, x3),

tpm acc, (v0, . . . , vnb+1))
= state(tpm(pcr(v0, . . . , vnb+1)), x1, x2, x3)

where yi, vi and xi are variables, for all i. Therefore, if
an agent intends to reach a PCR value of pcr(t0, . . . , tn),
with n > nb, it will use (through the TPM) the equa-
tion in Eany with values v0 = pcr(t0, . . . , tn−nb−1), v1 =
tn−nb

, . . . , vnb+1 = tn.

B. Soundness proofs

Our abstraction should be sound in a general setting, but
to keep the paper concise we only prove it for the particular
model presented in section V. The equational theory of section
V is denoted by E1 and the equational theory of this section
is denoted by E2. For a set of terms T , we denote by pcrv(T)
the set of values that have been extended into the PCRs of the
set T , formally defined in appendix A.

First we show that our abstraction is sound at the term
deducibility level. As mentioned above, we provide to the
abstracted theory the set of values that have been extended
into the PCR:

Lemma 1: For any nb ≥ 0, set of terms T and term t, we
have

T `E1 t =⇒ T, pcrv(T) `E2 t

Proof sketch (details in appendix A): We do the proof by
induction on the number of derivation steps in T `E1 t. The
non-trivial case is when the function symbol f that is applied
in the last derivation step is extend pcr , with arguments
state(tpm(u1), u2, u3, u4), tpm acc and a term t3, to derive
state(tpm(h((u1, t3))), u2, u3, u4). Then, we consider two
subcases: when length(u1) < nb, we apply an equation from
Ebound ⊆ E2; when length(u1) ≥ nb, we apply the equation
from Eany ⊆ E2, by relying also on pcrv(T) to obtain any
desired PCR value. �

Now we extend the result at the process level. The DRT
process ensures that all values extended into the PCR are
public, and we can rely on lemma 1 for the proof.

Proposition 1: For all nb ≥ 2 and term t, we have

DRT |=E1 t =⇒ DRT |=E2 t

Proof sketch (details in appendix A): We prove that for any
trace DRT

w−→E1 P , we have
1) DRT

w−→E2 P
2) for all term u, fr(P) `E1 u =⇒ fr(P) `E2 u
3) for all term v in pcrv(fr(P)), fr(P) `E2 v

From definitions, the points 1 and 2 will allow us to conclude
the proposition. We also note that the point 2 follows from
lemma 1 combined with point 3, so it is sufficient to show
points 1 and 3. We do the proof by induction on the length of
the trace DRT

w−→E1 P . The point 3 follows easily from the
fact that any value extended into the PCR can be traced to a
request coming from the attacker, relying also on the point 2
of the induction hypothesis to switch from E1 to E2.

To prove the point 1, we consider all the possible cases for
the last atomic action in the trace DRT

w−→E1 P . When the last
action is an output on a public channel or an internal commu-
nication on a private channel, it can be trivially matched in the
theory E2. When it is an input on a public channel, we rely on

the point 2 of the induction hypothesis to deduce that the same
term can be provided by the attacker in presence of E2. The
most difficult case is when the last action is an equality test
performed internally in a process Q, and where moreover the
function extend pcr has been used. In that case, if the PCR
value is higher than nb, we show that Eany ⊆ E2 can be used,
by relying on the point 3 of the induction hypothesis. The
assumption nb ≥ 2 helps us to deduce that it is the attacker
who is trying to extend the PCR above the bound nb, which
is helpful to construct a different trace leading to the same
process. �

VII. VERIFICATION RESULTS

The ProVerif code for the DRT process and the security
properties defined in section V is available in appendix B
and online. It uses the equational theory E2 obtained from
E1, from section V, by following the abstraction from section
VI with nb = 2. The verification of every property terminates
in less than 10 minutes, returning the expected result. From
these results (implying there is no attack modulo E2) and from
proposition 1 (implying there is no attack modulo E1), we
derive:

Theorem 1: The DRT process satisfies, modulo E1, the
property of code integrity, defined in section V-E2, and the
property of sealed data secrecy, defined in section V-E3. �

We also show that our models indeed encode the desired
functionality, by verifying the reachability properties defined
in section V-E1. Note that we can not rely on proposition
1 to transfer reachability results from E2 to E1. We would
need completeness in order to do that (which should be true
if properly stated). However, it is sufficient to check the trace
returned by ProVerif to convince ourselves that the states are
indeed reachable in the original model. In fact, since they
correspond to the standard execution of the protocol, these
traces can even be derived by hand without any difficulty.
Similarly, we are able to discover the attacks of [14], [27] in
our model, when we allow the STM to be modified arbitrarily.

VIII. FUTURE WORK

While our model takes into account at an abstract level the
attacks and mitigations of [14], [27], further refinements and
soundness results are necessary in order to be able to conclude
that attacks such as these or as [29], [28] are not possible in
practice. We need to develop models that are abstract enough
to allow clear specifications and automated reasoning, and
realistic enough to capture for instance implementation flaws.

Another direction of research is to extend the methods
proposed in this paper to the protection of programs without a
hardware root of trust. The challenge there is that the platform
state is even more open to intrusions from a software attacker.

We think the abstraction of PCR registers that we have
presented in section VI is an instance of a more general result,
whose exploration would be fruitful for future applications,
helping to resolve the tension between an exploding search
space and its automated analysis.

REFERENCES

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure com-
munication. In Proceedings of the 28th ACM Symposium on Principles
of Programming Languages (POPL’01), pages 104–115, January 2001.

[2] M. Arapinis, S. Bursuc, and M. D. Ryan. Reduction of equational
theories for verification of trace equivalence: Re-encryption, associativity
and commutativity. In Degano and Guttman [10], pages 169–188.

[3] M. Arapinis, E. Ritter, and M. D. Ryan. StatVerif: Verification of
Stateful Processes. In CSF, pages 33–47. IEEE Computer Society, 2011.

[4] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge
University Press, 1998.

[5] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog
rules. In Computer Security Foundations Workshop (CSFW’01), 2001.

[6] B. Blanchet. Automatic verification of correspondences for security
protocols. Journal of Computer Security, 17(4):363–434, 2009.

[7] B. Blanchet and A. Chaudhuri. Automated formal analysis of a protocol
for secure file sharing on untrusted storage. In IEEE Symposium on
Security and Privacy, pages 417–431. IEEE Computer Society, 2008.

[8] V. Cortier, J. Degrieck, and S. Delaune. Analysing routing protocols:
Four nodes topologies are sufficient. In Degano and Guttman [10], pages
30–50.

[9] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A logic of secure systems
and its application to trusted computing. In Security and Privacy, 2009
30th IEEE Symposium on, pages 221–236. IEEE, 2009.

[10] P. Degano and J. D. Guttman, editors. Principles of Security and
Trust - First International Conference, POST 2012, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012, Proceedings,
volume 7215 of Lecture Notes in Computer Science. Springer, 2012.

[11] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel. A formal analysis
of authentication in the TPM. In P. Degano, S. Etalle, and J. Guttman,
editors, Revised Selected Papers of the 7th International Workshop on
Formal Aspects in Security and Trust (FAST’10), volume 6561 of LNCS,
pages 111–125, Pisa, Italy, September 2010. Springer.

[12] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel. Formal analysis
of protocols based on TPM state registers. In Proceedings of the 24th
IEEE Computer Security Foundations Symposium (CSF’11), pages 66–
82, Cernay-la-Ville, France, June 2011. IEEE Computer Society Press.

[13] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of
Theoretical Computer Science, Volume B: Formal Models and Sematics
(B), pages 243–320. 1990.

[14] L. Duflot, O. Grumelard, O. Levillain, and B. Morin. ACPI and
SMI handlers: some limits to trusted computing. Journal in computer
virology, 6(4):353–374, 2010.

[15] C. Fournet and J. Planul. Compiling information-flow security to
minimal trusted computing bases. In G. Barthe, editor, ESOP, volume
6602 of Lecture Notes in Computer Science, pages 216–235. Springer,
2011.

[16] J. Franklin, S. Chaki, A. Datta, J. M. McCune, and A. Vasudevan.
Parametric verification of address space separation. In Degano and
Guttman [10], pages 51–68.

[17] J. Franklin, S. Chaki, A. Datta, and A. Seshadri. Scalable parametric
verification of secure systems: How to verify reference monitors without
worrying about data structure size. In IEEE Symposium on Security and
Privacy, pages 365–379. IEEE Computer Society, 2010.

[18] D. Grawrock. Dynamics of a Trusted Platform: A Building Block
Approach. Intel Press, 2009.

[19] Trusted Computing Group. TCG Architecture Overview, Specification
revision 1.4, 2007. www.trustedcomputinggroup.org.

[20] Trusted Computing Group. TPM main specification, 2011.
www.trustedcomputinggroup.org.

[21] R. Küsters and T. Truderung. Using ProVerif to Analyze Protocols
with Diffie-Hellman Exponentiation. In Proceedings of the 22nd IEEE
Computer Security Foundations Symposium (CSF 2009), pages 157–171.
IEEE Computer Society, 2009.

[22] S. Mödersheim. Abstraction by set-membership: verifying security
protocols and web services with databases. In E. Al-Shaer, A. D.
Keromytis, and V. Shmatikov, editors, ACM Conference on Computer
and Communications Security, pages 351–360. ACM, 2010.

[23] M. Paiola and B. Blanchet. Verification of security protocols with lists:
From length one to unbounded length. In Degano and Guttman [10],
pages 69–88.

[24] M. D. Ryan and B. Smyth. Applied pi calculus. In V. Cortier
and S. Kremer, editors, Formal Models and Techniques for Analyzing
Security Protocols, Cryptology and Information Security Series. IOS
Press, 2011.

[25] D. Sangiorgi. From pi-calculus to higher-order pi-calculus - and back.
In M.-C. Gaudel and J.-P. Jouannaud, editors, TAPSOFT, volume 668
of Lecture Notes in Computer Science, pages 151–166. Springer, 1993.

[26] B. Thomsen. A calculus of higher order communicating systems.
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 143–154. ACM, 1989.

[27] R. Wojtczuk and J. Rutkowska. Attacking INTEL trusted execution
technology. Black Hat DC, 2009.

[28] R. Wojtczuk and J. Rutkowska. Attacking INTEL TXT via SINIT code
execution hijacking. Invisible Things Lab, 2009.

[29] R. Wojtczuk, J. Rutkowska, and A. Tereshkin. Another way to circum-
vent INTEL trusted execution technology. Invisible Things Lab, 2009.

APPENDIX A
SOUNDNESS PROOFS

For simplicity of proofs, we orient each equation l = r
in E1 and E2 from left to right, obtaining a rewrite rule
l → r. It is easy to see that we obtain this way two
convergent (i.e. terminating and confluent) rewrite systems,
R1 and respectively R2, that represent E1 and respectively
E2. We also let Rbound and Rany be the rewrite systems that
correspond to Ebound and Eany respectively. The application
of a rewrite rule from a rewrite system R to a term u in order
to obtain a term v is denoted by u →R v. If zero, one or
more rewrite steps are applied to obtain v from u, we denote
this by u→∗R v. A term is in normal form if no rewrite rule
can be applied to it. We refer to [4], [13] for more details on
rewriting.

Now, for a set of terms in normal form T and a term in
normal form t, we have T `Ei t if and only if:
• Base case: either t ∈ T
• Derivation step: or there is a public function sym-

bol f and a set of terms t1, . . . , tn such that T `Ei
t1, . . . , T `Ei tn and f(t1, . . . , tn)→∗Ri

t

for all i ∈ {1, 2}
For a set of terms T , we denote by pcrv(T) the set of values

that have been extended into the PCRs of the set T . Formally,
we have
• pcrv({t1, . . . , tn}) = pcrv(t1) ∪ . . . ∪ pcrv(tn)
• pcrv(f(t1, . . . , tn)) = pcrv(t1) ∪ . . . ∪ pcrv(tn),

if f 6= tpm
• pcrv(tpm(t)) = pcrv1(t)
• pcrv1(h((t1, t2))) = {t2} ∪ pcrv1(t1) ∪ pcrv(t2)
• pcrv1(t) = {t} ∪ pcrv(t), if top(t) 6= h

Lemma 1: For any nb ≥ 0, set of terms T and term t, we
have

T `E1 t =⇒ T, pcrv(T) `E2 t

Proof: Without loss of generality, we assume that the terms
in T and the term t are in normal form. We do the proof by
induction on the number of derivation steps used to deduce
T `E1 t. If t ∈ T , then we can immediately conclude from
definitions that T, pcrv(T) `E2 t.

Assume now that T `E1 t1, . . . , T `E1 tn and
f(t1, . . . , tn) →∗R1

t, for some terms in normal form

t1, . . . , tn. By induction hypothesis, we have T, pcrv(T) `E2
t1, . . . , T, pcrv(T) `E2 tn. Note also that the shape of rewrite
rules in R1 ensures that there is at most one rewrite step in the
rewriting sequence f(t1, . . . , tn)→∗R1

t. We consider several
cases:

Case when then number of rewrite steps in
f(t1, . . . , tn) →∗R1

t is zero: if f is any other symbol than
extend pcr , we can conclude immediately, because if no rule
in R1 can be applied, then no rule in R2 can be applied.
In the case of the extend pcr symbol, we note that the left-
hand side of the extend rule in R1 is more general than the
left-hand side of any rule in Rbound or Rany . Therefore, if
t = extend pcr(t1, t2, t3) can not be reduced using R1, it can
not be reduced using R2 either, and we can conclude T `E2 t.

Case when f = extend pcr : then n = 3 and we
have t1 = state(tpm(u1), u2, u3, u4), t2 = tpm acc and
t = state(tpm(h((u1, t3)), u2, u3, u4). We distinguish two
subcases depending on the PCR length of u1:

Subcase when length(u1) < nb: this means the PCR value
has not reached the extension bound yet and we can continue
to extend it normally, using the rules in Ebound . Note that,
because the PCR value in a state can be set or modified
only through the reset pcr and extend pcr functions, we
must have u1 = pcr(s0, . . . , si) for some s0 ∈ {ps, pd},
some terms s1, . . . , si and i < nb. Therefore, using a
rewrite rule in Rbound , we have extend pcr(t1, t2, t3) →R2

state(tpm(h((u1, t3))), u2, u3, u4) = t. Thus, we can con-
clude T, pcr(T) `E2 t.

Subcase when length(u1) ≥ nb: this means the PCR value
has reached the extension bound and we can use the extend
rule in Rany to set the PCR to any value. To this end, we
have to first recover the desired components of the final PCR
value, either from the set pcr(T) or from previously deduced
terms. Assume u1 = pcr(s0, . . . , sm), for some s0 ∈ {ps, pd}
and some terms s1, . . . , sm, with m ≥ nb. Since the PCR of
any state can only be modified via reset pcr or extend pcr ,

• either there exists an index l, 0 ≤ l ≤ m, such that
pcr(s0, . . . , sl) ∈ pcrv(T) and sl+1, . . . , sm have been
consequently used as the paramater of a PCR extension
during the derivation of T `E1 t1.

• or there has been a PCR reset to s0 and s1, . . . , sm have
been subsequently used as as the paramater of a PCR
extension during the derivation of T `E1 t1.

For the values si that have been used as parameters for the
PCR extension during the derivation of T `E1 t1, we have
T `E1 si, using a smaller number of derivation steps. There-
fore, we can apply the induction hypothesis to deduce that
T, pcrv(T) `E2 si. Recall also that, by induction hypothesis,
we have T, pcrv(T) `E2 t3. In both cases outlined above, we
can therefore deduce that T, pcrv(T) `E2 pcr(s0, . . . , sm, t3).

Now, we can apply the extend pcr equation from Eany to

deduce:

extend pcr(t1, t2, pcr(s0, . . . , sm, t3))
→R2 state(tpm(pcr(s0, . . . , sm, t3)), u2, u3, u4)
= state(tpm(h((u1, t3))), u2, u3, u4)) = t

and we can conclude T, pcrv(T) `E2 t.
Any other case: let l→ r ∈ R1 be the rule that is applied

in the rewrite step f(t1, . . . , tn) →R1
t. Since t1, . . . , tn are

in normal form, we deduce that the rewrite rule l → r is
applied at the top of the term, and therefore top(l) = f .
Since f 6= extend pcr , we deduce that l → r ∈ R2 and
thus f(t1, . . . , tn)→R2

t and we can conclude. �
Proposition 1: For all nb ≥ 2 and term t, we have

DRT |=E1 t =⇒ DRT |=E2 t

Proof sketch: Without loss of generality, we assume that
constructed terms are always put in normal form before any
other action that involves them. For a process or term A
we denote by A{t1 7→ t2} the process or term obtained by
replacing all occurences of t1 in A by t2. For two sets of
terms T1, T2, we write T1 ` T2 if for all t ∈ T2, we have
T1 ` t.

We prove that for any trace DRT
w−→E1 P we have:

1) DRT
w−→E2 P

2) for all term u, fr(P) `E1 u =⇒ fr(P) `E2 u
3) for all term v in pcrv(fr(P)), fr(P) `E2 v

From definitions, the points 1 and 2 will allow us to conclude
the proposition. Note that the point 2 follows from lemma 1
and the point 3, so it is sufficient to show points 1 and 3. We
proceed by induction on the length of the trace DRT

w−→E1 P .
Base case: In this case, we have P = DRT and the point 1

is immediate. Moreover, fr(P) is empty and the point 3 also
trivially holds.

Induction step: Assume now DRT
w′

−→E1 P ′
α−→E1 P , for

some process P ′ and some atomic transition α. By induction
hypothesis, we have

1) DRT
w−→E2 P ′

2) for all term u′, fr(P ′) `E1 u′ =⇒ fr(P ′) `E2 u′
3) for all term v′ in pcrv(fr(P)), fr(P) `E2 v′

We consider the possible cases for the action α: it can be an
output, an input or an internal action τ of P ′ (communication
on a private channel, an assignement via let, or an if test).

Case α = out(w, s): we obviously have P ′
α−→E2 P ,

thus the point 1. Note that fr(P) = fr(P ′) ∪ {s} and
thus pcrv(fr(P)) = pcrv(fr(P ′)) ∪ pcrv(s). By induction
hypothesis, we have fr(P ′) `E2 pcrv(fr(P ′)), thus to show
the point 3 we only have to show that fr(P) `E2 pcrv(s).
Now, the only process who can extend PCR values is the
TPM: all the values v in pcrv(s) are either in {ps, pd} or
have been previously received by the TPM on a public or on
a private channel. In the former case, we can conclude from
the point 2 of the induction hypothesis. In the latter case, from
the design of honest programs, the value v can only be equal to
(h(p1), h(p2)) or h(p3), for some DRTINIT program identity
p1, STM program identity p2 and DRTPP program identity

p3. Then, p1,p2,p3 are available to the attacker, and therefore
so is the value v.

Case α = in(w, x): then P = P ′{x 7→ s}, for some term
s that is deducible by the attacker from the frame of P ′, i.e.
fr(P ′) `E1 s, and is sent on some channel w. Then, from the
point 2 of the induction hypothesis, we have fr(P ′) `E2 s and
thus the term s can be sent on channel w in presence of E2
as well. Therefore, we deduce P ′ α−→E2 P and we conclude
the point 1. The point 3 follows immediately from induction
hypothesis, because fr(P) = fr(P ′).

Case α = τ : we have fr(P ′) = fr(P), so the point 3 is
immediate. When τ represents communication on a private
channel, the point 1 also trivially holds. The cases of a let
assignement and of an if test are similar, so let us consider
only the former. Then, we have P ′ = C[let t1 = t2 in Q]
and P = C[Qσ], for some process context C[], terms t1, t2,
process Q and substitution σ such that t1σ =E1 t2σ. If the
function extend pcr does not occur in t1 and in t2 or if it
only occurs with a term different from tpm acc as a second
argument, we can easily deduce that t1σ =E2 t2σ, and we can
conclude.

Otherwise, it must be the case that let t1 = t2 in Q is a
subprocess of the PCREXTEND process, with t1 = new st and
t2 in place of extend pcr(st, tpm acc, v):

let new st = extend pcr(st, tpm acc, v) in Q

Then t1 is a variable and

t2 = extend pcr(state(tpm(s0, . . . , sn), s′, s′′, s′′′),
tpm acc, tv)

where tv is the term to be extended into the PCR. If
n is smaller than the PCR bound nb, we can easily de-
duce t1σ =E2 t2σ, by relying on the corresponding equa-
tion from Ebound . Otherwise, let us take one step back in
the process PCREXTEND to the input action that supplied
state(tpm(s0, . . . , sn), s′, s′′, s′′′) and tv , that is

in(ch, (= pcr extend req, nonce, st, v));

(Recall that this is a syntactic sugar collating an in-
put and a let, but we can treat it as an atomic action
in our proof). Note that ch is either one of cpu tpm ,
tpm ch(prog(exp pp)), tpm ch(prog(exp init)) or a pub-
lic channel. In fact, by definition of CPUDRT,EXPINIT and
EXPPP, they have control of a measured platform state and
would never attempt to extend the PCR above the bound nb.
Hence, ch must be a public channel.

Let P0 be the process that makes the input transition on ch
and P1 be the resulting process. We have P w1−−→ P0

in(ch,.)−−−−→
P1

w2−−→ P ′. From the point 3 of the induction hypothesis, we
have fr(P0) `E2 s0, . . . , fr(P0) `E2 sn. Furthemore, we have
fr(P0) `E1 tv , because tv was supplied on a public channel
as a value to be extended into the PCR. From the point 2 of
the induction hypothesis, we deduce fr(P0) `E2 tv . Therefore,
we have fr(P0) `E2 t′v , where t′v = pcr(s0, . . . , sn, tv). Thus,

we have P0
in(ch,.)−−−−→E2 P1{tv 7→ t′v}. Furthermore, since the

value v is local to the process PCREXTEND, the replacement
of tv with t′v does not affect any other transitions: we have
P1{tv 7→ t′v}

w2−−→ P ′{tv 7→ t′v}. Now, we can rely on the
equation Eany to deduce that

t2{tv 7→ t′v}σ =
extend pcr(state(tpm(s0, . . . , sn), s′, s′′, s′′′), tpm acc, t′v)σ
=E2 state(pcr(s0, . . . , sn, tv), s

′, s′′, s′′′)σ = t2σ

Therefore, we have P ′{tv 7→ t′v}
τ−→E2 P and we can

conclude DRT
w−→E2 P . �

APPENDIX B
PROVERIF CODE FOR THE CASE STUDY

The ProVerif code for our case studies is presented
on the following pages and is also available online at
https://www.dropbox.com/s/7d8vpp3m8umklba/drt-csf2013.pi

Comments are starting with (* and ending with *).

(***
ABBREVIATIONS:
DRT - DYNAMIC ROOT OF TRUST
DRT_INIT - THE SINIT (INTEL) OR SLB (AMD) PROGRAM
DRT_PP - THE PROTECTED PROGRAM: MLE(INTEL) OR SK(AMD)
***)
param reconstructTrace = false.
(*CHANNELS*)
free os. (* PUBLIC CHANNEL FOR THE OPERATING SYSTEM CONTROLLED BY THE INTRUDER *)
private free cpu_tpm. (* PRIVATE CHANNEL FOR THE COMMUNICATION BETWEEN CPU AND TPM *)
private fun tpm_ch/1. (* tpm_ch(x) - PRIVATE CHANNEL USED BY A PROGRAM x TO COMMUNICATE WITH TPM *)
(*CRYPTO*)
fun h/1. (* HASH FUNCTION *)
fun senc/2. (* SYMMETRIC KEY ENCRYPTION *)
reduc sdec(x,senc(x,y)) = y.
fun ps/0. (* STATIC RESET VALUE OF THE PCR *)
fun pd/0. (* DYNAMIC RESET VALUE OF THE PCR *)
fun false/0. fun true/0. (* BOOLEAN VALUES *)
(* TPM SEAL/UNSEAL*)
fun seal/2.
private reduc unseal(seal(xpcr,xvalue), xpcr) = xvalue.

(* STATE STRUCTURE: state(tpm(PCR),cpu(INT,CACHE), drt(INIT,PP,LOCK),smram(STM,SMI) *)
private fun state/4. private fun tpm/1. private fun cpu/2. private fun drt/3. private fun smram/2.

(* PRIVATE CONSTANTS FOR THE PRIVILEGED ACCESS THAT THE CPU AND TPM HAVE TO THE PLATFORM STATE *)
private fun cpuAccess/0. private fun tpmAccess/0.

(* ABSTRACTION FOR DYNAMICALLY LOADING PROGRAMS*)
fun program/1. private reduc getENTRY(program(x)) = x.

(*** ACCESSING THE PLATFORM STATE ***)
reduc getPCR (state(tpm(y),x1,x2,x3)) = y. reduc getINT(state(x1,cpu(y1,y2),x2,x3)) = y1.
reduc getCACHE(state(x1,cpu(y1,y2),x2,x3)) = y2. reduc getINIT(state(x1,x2,drt(y1,y2,y3),x3)) = y1.
reduc getPP(state(x1,x2,drt(y1,y2,y3),x3)) = y2. reduc getLOCK(state(x1,x2,drt(y1,y2,y3),x3)) = y3.
reduc getSTM (state(x1,x2,x3,smram(y1,y2))) = y1. reduc getSMIH (state(x1,x2,x3,smram(y1,y2))) = y2.

(*** MODIFYING THE PLATFORM STATE + ABILITIES OF LOADED PROGRAMS ***)
(* TPM *)
reduc resetPCR (state(tpm(y),x1,x2,x3),tpmAccess,pd) =state(tpm(pd),x1,x2,x3);

resetPCR (state(tpm(y),x1,x2,x3),tpmAccess,ps) =state(tpm(ps),x1,x2,x3).
reduc extendPCR(state(tpm(pd),x1,x2,x3), tpmAccess, value) =state(tpm(h((pd,value))),x1,x2,x3);

extendPCR(state(tpm(ps),x1,x2,x3), tpmAccess, value) =state(tpm(h((ps,value))),x1,x2,x3);
extendPCR(state(tpm(h((pd,y1))),x1,x2,x3), tpmAccess, value) =
state(tpm(h((h((pd,y1)),value))),x1,x2,x3);
extendPCR(state(tpm(h((ps,y1))),x1,x2,x3), tpmAccess, value) =
state(tpm(h((h((ps,y1)),value))),x1,x2,x3);
extendPCR(state(tpm(h((h((y0,y1)),y2))),x1,x2,x3), tpmAccess, (v0,v1,v2,v3)) =
state(tpm(h((h((h((v0,v1)),v2)),v3))),x1,x2,x3).

(* CPU *)
reduc setINT(state(x1,cpu(y1,y2),x2,x3),cpuAccess,value) = state(x1,cpu(value,y2),x2,x3);

setINT(state(x1,cpu(y1,y2),drt(z1,program(z2),true),x2),z2,value) =
state(x1,cpu(value,y2),drt(z1,program(z2),true),x2).

reduc cache(state(x1,cpu(y1,y2),x2,x3),value) = state(x1,cpu(y1,value),x2,x3).
reduc flush_smi(state(x1,cpu(y1,y2),x2,smram(z1,z2))) = state(x1,cpu(y1,y2),x2,smram(z1,y2)).
reduc flush_stm(state(x1,cpu(y1,y2),drt(w1,w2,false),smram(z1,z2))) =

state(x1,cpu(y1,y2),drt(w1,w2,false),smram(y2,z2)).
(* TO OBTAIN THE ATTACK, ADD THE EQUATION: *)
(* flush_stm(state(x1,cpu(y1,y2),x2,smram(z1,z2))) = state(x1,cpu(y1,y2),x2,smram(y2,z2)). *)

(* DRT *)
reduc setINIT(state(x1,x2,drt(y1,y2,y3),x3),cpuAccess,value) =state(x1,x2,drt(value,y2,y3),x3).
reduc setPP(state(x1,x2,drt(y1,y2,y3),x3),cpuAccess,value) =state(x1,x2,drt(y1,value,y3),x3);

setPP(state(x1,x2,drt(program(y1),y2,y3),x3),y1,value)=state(x1,x2,drt(program(y1),value,y3),x3);
setPP(state(x1,cpu(true,z),drt(y1,y2,y3),smram(program(z1),program(z2))),(z1,z2),value)
=state(x1,cpu(true,z),drt(y1,value,y3),smram(program(z1),program(z2))).

reduc setLOCK(state(x1,x2,drt(y1,y2,y3),x3),cpuAccess,value) =state(x1,x2,drt(y1,y2,value),x3);
setLOCK(state(x1,x2,drt(y1,program(y2),true),x3),y2,value)

=state(x1,x2,drt(y1,program(y2),value),x3);
setLOCK(state(x, cpu(true,z),drt(y1,y2,y3),smram(program(z1),program(z2))),(z1,z2),value)

=state(x,cpu(true,z),drt(y1,y2,value),smram(program(z1),program(z2))).

(** MESSAGE TAGS **)
free drt_request,drt_response,pcr_extend_request,pcr_extend_response,

pcr_reset_request,pcr_reset_response, drt_start, tag_unseal, tag_plain, drt_channel.
(* FUNCTION FOR CREATING NONCES *)
private fun fnonce/1.
(** DRT PROCESSES **)
let DRT_CPU = (* GET A DRT REQUEST FROM THE OPERATING SYSTEM *)

in(os, (=drt_request, drt_init, drt_pp, pf_state));
(* ONLY ACCEPT THE REQUEST IF NOT ALREADY RUNNING A DYNAMIC ROOT OF TRUST *)
if getLOCK(pf_state) = false then (
(* DISABLE INTERRUPTS *)
let s0’=setINT(pf_state,cpuAccess, false) in
(* UPDATE THE LOCK *)
let s0 = setLOCK(s0’, cpuAccess, true) in
(* RESET THE PCR *)
(* DESIRED CODE: *)
(* new nonce; *)
(* CLASSIC ABSTRACTION THAT RUNS FASTER: NONCES ARE A FUNCTION OF THEIR CONTEXT *)
let nonce = fnonce((drt_init,drt_pp, getSTM(pf_state))) in
out(cpu_tpm, (pcr_reset_request, nonce, s0));
in(cpu_tpm, (=pcr_reset_response,=nonce,s1));
(* EXTEND THE PCR WITH THE MEASUREMENT *)
let measurement = (h(drt_init),h(getSTM(pf_state))) in
out(cpu_tpm, (pcr_extend_request, nonce, s1, measurement));
in(cpu_tpm, (=pcr_extend_response, =nonce,s2));
(* LOAD DRT_INIT AND ESTABLISH TPM CHANNELS *)
let s3 = setINIT(s2,cpuAccess, drt_init) in
out(cpu_tpm, (drt_channel, tpm_ch(drt_init)));
let entry_init = getENTRY(drt_init) in
out(entry_init, (drt_request, nonce, s3, tpm_ch(drt_init), drt_pp));
(* THE drt_init PROGRAM HAS MEASURED AND SET UP THE drt_pp PROGRAM*)
in(entry_init, (=drt_response, =nonce, new_state));

(* SETUP TPM CHANNELS FOR THE LOADED DRT_PP *)
let entry_pp = getENTRY(getPP(new_state)) in
out(entry_pp, (drt_start, new_state, tpm_ch(program(entry_pp))));
out(cpu_tpm, (drt_channel, tpm_ch(program(entry_pp))));
out(cpu_tpm, (drt_start, new_state, tpm_ch(program(entry_pp))))

).

(* THE TWO EQUATIONS BELOW TOGETHER WITH THE CACHE PROCESS ARE A CONSEQUENCE OF EQUATIONS
FOR cache, flush_smi AND flush_stm. WRITING THEM EXPLICITLY HELPS PROVERIF
TERMINATE 5 MINUTES FASTER *)
reduc setSTM (state(x1,x2,x3,smram(y1,y2)),cpuAccess,value)=state(x1,x2,x3,smram(value,y2)).
reduc setSMIH(state(x1,x2,x3,smram(y1,y2)),cpuAccess,value)=state(x1,x2,x3,smram(y1,value)).
let CACHE =

(in(os, (pf_state,xsmi));
let new_state = setSMIH(pf_state,cpuAccess, xsmi) in
out(os, new_state)) |
(in(os,(pf_state,xstm));
if getLOCK(pf_state) = false then
let new_state = setSTM(pf_state,cpuAccess,xstm) in
out(os, new_state)).

private fun expected_init/0.
let EXPECTED_INIT = out(os, program(expected_init));

(* RECEIVE DRT_PP AND TPM ACCESS FROM THE CPU *)
in(expected_init, (=drt_request, nonce0, pf_state, tpmc, drt_pp));
(* MEASURE AND EXTEND DRT_PP INTO THE PCR *)
let measurement = h(drt_pp) in
(* DESIRED CODE: *)
(* new nonce; *)
(* CLASSIC ABSTRACTION THAT RUNS FASTER: NONCES ARE A FUNCTION OF THEIR CONTEXT *)
let nonce = fnonce(drt_pp) in
out(tpmc, (pcr_extend_request,nonce, pf_state, measurement));
in(tpmc, (=pcr_extend_response,=nonce, ext_state));
(* LOAD DRT_PP ON THE PLATFORM STATE *)
let new_state = setPP(ext_state,expected_init, drt_pp) in
(* PASS THE CONTROL BACK TO THE CPU *)
out(expected_init, (drt_response, nonce0, new_state));
(* MAKE THE NEW PLATFORM STATE PUBLIC *)
out(os, new_state).

private fun expected_pp/0.
let EXPECTED_PP = (* DECRYPT A SEALED BLOB, RELYING ON COMMUNICATION WITH TPM*)
out(os, program(expected_pp));
in(expected_pp, (=drt_start,pf_state0,tpmc));
(* RE-ENABLE INTERRUPTS *)
let pf_state = setINT(pf_state0,expected_pp,true) in
out(os,pf_state);
(* UNSEAL THE KEY AND DECRYPT THE PRIVATE MESSAGE *)
in(os,xSealedBlob); in(os,xEncBlob);
out(tpmc,(tag_unseal,xSealedBlob));
in(tpmc,(=tag_plain,xSymKey));
let xMessage = sdec(xSymKey,xEncBlob) in
out(os,xMessage);
(* ENDING THE EXECUTION: THE LOCK IS SET TO FALSE AND THE PCR VALUE IS DESTROYED *)
(*new nonce; *)
(* ABSTRACTION THAT RUNS FASTER *)
let nonce = fnonce(drt_pp) in
out(tpmc, (pcr_extend_request, nonce, pf_state, zero));
in(tpmc, (=pcr_extend_response, =nonce, ext_state));
let end_state = setLOCK(ext_state,expected_pp,false) in
out(os,end_state).

let TPM = !TPM_RESET | !TPM_EXTEND | !TPM_UNSEAL.
let TPM_RESET = let (channel, reset_type) = (cpu_tpm,pd) in !PCR_RESET |

let (channel, reset_type) = (os,ps) in !PCR_RESET.
let PCR_RESET = in(channel, (=pcr_reset_request, nonce, pf_state));

let new_state = resetPCR(pf_state,tpmAccess,reset_type) in
out(channel, (pcr_reset_response, nonce, new_state)).

let TPM_EXTEND = let channel = cpu_tpm in !PCR_EXTEND |
let channel = os in !PCR_EXTEND |
!in(cpu_tpm, (=drt_channel, drtc)); let channel = drtc in !PCR_EXTEND.

let PCR_EXTEND= in(channel, (=pcr_extend_request,nonce,pf_state,value));
let new_state = extendPCR(pf_state,tpmAccess,value) in
out(channel, (pcr_extend_response,nonce,new_state)).

let TPM_UNSEAL =
(* PRIVATE UNSEAL ON LOC2 FOR THE RUNNING DRT_PP *)
!in(cpu_tpm, (=drt_start, pf_state, tpmc));
!(in(tpmc,(=tag_unseal, blob));

let value = unseal(blob,getPCR(pf_state)) in
out(tpmc,(tag_plain,value))

) |

(* PUBLIC UNSEAL *)
!(in(os, (tag_unseal, pf_state, blob));

if getLOCK(pf_state) = false then
let value = unseal(blob, getPCR(pf_state)) in out(os,(tag_plain,value))).

(* QUERIES *)
(*A. THE EXPECTED STATE HAS BEEN REACHED *)
query attacker:state(tpm(h((h((pd,(h(program(expected_init)),h(program(expected_stm))))),

h(program(expected_pp))))), cpu(true,x),
drt(program(expected_init),program(expected_pp),true),
smram(program(expected_stm),program(y))).

(* QUERY RESULT: FALSE => THE ATTACKER HAS THE TERM *)

(*B. THE PROTECTED PROGRAM SUCCESFULLY DECRYPTS THE PRIVATE MESSAGE
USING THE SEALED KEY AND MAKES IT PUBLIC*)
query attacker:hello_pp.
(* QUERY RESULT: FALSE => THE ATTACKER HAS THE TERM *)

(*C. WHENEVER THE EXPECTED PCR IS SET, THE PLATFORM HAS THE EXPECTED STATE *)
query attacker:state(tpm(h((h((pd,(h(program(expected_init)),h(program(expected_stm))))),

h(program(expected_pp))))), cpu(x,y),
drt(xi,xp,true), smram(xstm,xsmih))

==> (xi,xp,xstm)=(program(expected_init),program(expected_pp),program(expected_stm)).
(*QUERY RESULT: TRUE => THE ASSERTION IS VALID *)

(*D. THE ATTACKER DOES NOT HAVE ACCESS TO THE SEALED KEY *)
query attacker:k_pp.
(* QUERY RESULT: TRUE => THE ATTACKER DOES NOT HAVE k_pp *)

(* THE MAIN PROCESS *)
free null.
private fun expected_stm/0.
private free k_pp. (* SECRET KEY WHICH SHOULD ONLY BE KNOWN BY THE PROTECTED PROGRAM *)
private free hello_pp. (* PRIVATE MESSAGE ENCRYPTED WITH k_pp *)
process (* ENCRYPTED PRIVATE MESSAGE FOR PP *)
out(os,senc(k_pp,hello_pp));
(*ASSUME THAT THE BLOB SEALING THE SECRET KEY IS PUBLIC*)
out(os,seal(h((h((pd,(h(program(expected_init)),h(program(expected_stm))))),

h(program(expected_pp)))),k_pp));

out(os, program(expected_stm));
(* INITIAL STATE LOADED UPON A SYSTEM RESET *)
in(os,(xInitStm,xInitSmih));
out(os, state(tpm(ps),cpu(true,null),drt(null,null,false),smram(xInitStm,xInitSmih)));
(* REQUESTING A DYNAMIC ROOT OF TRUST WITH ANY LOADED PROGRAMS *)
in(os, drt_init); in(os,drt_pp); in(os,pf_state);
out(os, (drt_request, drt_init, drt_pp, pf_state));
(*EXECUTING THE DRT PROCESSES *)
(!DRT_CPU | !CACHE | !EXPECTED_INIT | !EXPECTED_PP | TPM)

