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Abstract. In many pairing-based protocols more than one party is in-
volved, and some or all of them may be required to calculate pairings.
Commonly it is the pairing calculation itself which takes most time.
However some parties may be better equipped than others in terms of
computational power. By exploiting the bilinearity property there are
established ways to off-load the pairing calculation to an untrusted third
party. Here we observe that this third party may in fact be one of the
other participants in the protocol. In this way a protocol may be “un-
balanced” by shifting the computational load from one participant to
another, which may be an advantage in some circumstances. In this pa-
per we focus on some simple key exchange protocols. Surprisingly we
find that unbalancing a key exchange protocol can endow it with the
property of full forward secrecy, even if it did not originally possess it.
Finally we show that a new condition on the choice of pairing-friendly
curve can help to minimize the overall computation.

1 Introduction

The bilinearity property of the pairing construct lies at the heart of its extraordi-
nary flexibility, and is the reason that so many novel protocols and constructs are
made possible using it. One downside is that the pairing calculation is relatively
expensive compared to, say, a standard elliptic curve point multiplication. How-
ever Chevalier-Mames at al. [6] have shown that the pairing calculation can in all
circumstances be safely offloaded to an untrusted device, and its calculation sub-
stituted by some point multiplications and exponentiations. Furthermore there
is a range of choices for the optimal method to achieve the offloading, depending
on the particular circumstances that apply.

Consider for example two-party pairing-based identity-based key exchange
protocols, such as those considered by Chen, Cheng and Smart [4]. All of them
require each of the parties to calculate a pairing. However all of them can in
principle be “unbalanced” by using a suitable method from [6], resulting in a
protocol where one party now calculates more than one pairing, and the other
does not calculate any. But this has to done carefully if the full benefit is to be
obtained.



2 Pairings

A type-1 pairing [7] on an elliptic curve is a mapping G1 × G1 → GT , where
G1 and GT are groups of a prime order q, G1 are points on a pairing friendly
elliptic curve over the base field Fp, for p a prime or a prime power, and GT are
elements in the cyclotomic subgroup embedded in the finite extension field Fpk .
Typically a distortion map in conjunction with a supersingular curve is exploited
to implement a type-1 pairing. By “pairing-friendly” we mean that the curve has
a relatively small embedding degree k, in fact restricted to be less than or equal
to 6 for a supersingular curve.

A type-3 pairing is a mapping G1 × G2 → GT . Again all groups are of a
prime order q. For a typical pairing-friendly type-3 curve G1 are points on the
curve over the base field Fq, G2 are points on a degree t twist of the curve over
a relatively small extension field Fqk/t , and GT are elements in the cyclotomic
subgroup embedded in the finite extension field Fpk .

The bilinearity property ensures that for both types of pairing e(aP,Q) =
e(P, aQ) = e(P,Q)a where a ∈ Fq. For type-1 pairings we have an additional
symmetry property e(P,Q) = e(Q,P )

We will limit the scope of this research by only considering key exchange
protocols that work on type-3 pairings. Our view would be that protocols which
work only on a type-1 pairing, may not have a long-term future.

3 McCullagh-Barreto Key Exchange

We start with this simple protocol from McCullagh and Barreto [11]. A trusted
authority (TA) has generated a master secret s, and made public the points
P ∈ G1, sP ∈ G1, and Q ∈ G2 where P and Q are fixed points of order q. Alice
and Bob have been issued with private keys Sa = 1/(s +H(IDa))Q ∈ G2 and
Sb = 1/(s + H(IDb))Q ∈ G2 respectively, where IDa and IDb are Alice and
Bob’s identities, and H(.) is a suitable hash function.

Alice - identity IDa

Generates random x < q

IDa →

b = H(IDb)

A = x(bP + sP )→

k = e(xB, Sa)

Bob - identity IDb

Generates random y < q

← IDb

a = H(IDa)

← B = y(aP + sP )

k = e(yA, Sb)

Table 1. McCullagh-Barreto

The shared key is e(P,Q)xy. We assume that the protocol finishes with a
standard key confirmation step, where the parties hash their mutual key with
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transmitted values and pass such values in both directions so that both parties
are satisfied that they have the same key, without revealing it to an eavesdrop-
per. We also assume that all values received are checked for the correct group
membership [4], and that if this is not the case the protocol will fail.

The cost of this protocol is P + 3M1, where M1 is the cost of a point
multiplication in G1 and P is the cost of the pairing. The cost of the pairing
clearly stands out as the major contributor.

Our next move is to consider ideas from [6], and offload the pairing calculation
from Alice to Bob, which we will call the assisting party. While in [6] many
scenarios are considered, here we will try to use the simplest method. So if the
pairing e(P,Q) is to be calculated, and P is public and Q a secret, then P and
rQ (where r is randomly generated) are passed to the third party who responds
with e(P, rQ), and the pairing value is recovered as e(P, rQ)1/r.

We also take the opportunity to simplify the protocol and combine some
steps. Observe that the non-secret parameter to Alice’s pairing B which was
transmitted by Bob to Alice, can now be used directly by Bob. This brings us
to our final version of the unbalanced protocol.

Alice - identity IDa

Generates random r, x < q

IDa →

b = H(IDb)

A = x(bP + sP )→

R = rSa →

k = gx/r

Bob - identity IDb

Generates random y < q

← IDb

a = H(IDa)

B = y(aP + sP )

← g = e(B,R)

k = e(yA, Sb)

Table 2. Unbalanced McCullagh-Barreto Protocol

The cost of the protocol for Alice is now E + 2M1 + M2, where E is the
cost of an exponentiation in GT and M2 is the cost of a point multiplication in
G2. For Bob the cost is 2P + 3M1. Clearly, for Alice at least, unbalancing has
worked.

This protocol suffers from vulnerability to a Key Compromise Impersonation
attack (KCI) [15], whereby if Bob has stolen Alice’s private key, not only can
he masquerade as Alice to any third party, he can also pretend to be any third
party and complete the key exchange with Alice. This is clearly undesirable.
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3.1 Assisting party impersonation attack

What if Bob as the assisting party passes back to Alice a pairing value specially
concocted so that Bob can complete the key exchange without having possession
of a valid secret key?

Now there is clearly no point in Bob just transmitting a random value for g of
the correct order. The joint key is calculated directly from this pairing value, and
so if it is wrong the protocol will simply fail in a way indistinguisable from any
other cause of protocol failure and this will be caught by the key confirmation
step. However Bob might plausibly come up with values for C and D such that
g = e(C,D)x/r is a value that he too can calculate without possessing his own
legitimate private key.

However to cancel the effect of r, Bob must set D = R (as this is the only
multiple of r in his possession). Similarly the only value Bob knows, where he
also knows its multiple times x (required as g is raised to the power of x) is
bP + sP . So using these values Bob can succeed by sending g = e(bP + sP,R),
in which case Alice calculates gx/r = e(A,Sa), which Bob can also calculate if
he knows Alices private key, without knowing Sb. But we are already aware that
this protocol suffers from the KCI vulnerability, so this does not constitute a
new attack.

4 McCullagh and Barreto second protocol

To counter the KCI vulnerability McCullagh and Barreto came up with a second
protocol [11]. This is immune to a KCI attack. The secret keys are computed in
the same way, and the protocol differs only in the way in which the final key is
calculated.

Alice - identity IDa

Generates random x < q

IDa →

b = H(IDb)

A = x(bP + sP )→

k = e(P,Q)x.e(B,Sa)

Bob - identity IDb

Generates random y < q

← IDb

a = H(IDa)

← B = y(aP + sP )

k = e(P,Q)y.e(A,Sb)

Table 3. McCullagh-Barreto Protocol 2

The compute cost for each participant is P + E + 2M1, assuming that the
pairing value e(P,Q) is precalculated. See Table 3. The shared key this time is
e(P,Q)x+y. Next is our unbalanced version of this protocol (Table 4).
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Alice - identity IDa

Generates random r, x < q

IDa →

b = H(IDb)

A = x(bP + sP )→

R = rSa →

k = (e(P,Q)xr.g)1/r

Bob - identity IDb

Generates random y < q

← IDb

a = H(IDa)

B = y(aP + sP )

← g = e(B,R)

k = e(P,Q)y.e(A,Sb)

Table 4. Unbalanced McCullagh-Barreto Protocol 2

Now the cost for Alice is 2E + 2M1 +M2, and for Bob is E + 2P + 2M1.

4.1 Assisting party impersonation attack

Bob might plausibly come up with values for C and D such that
e(P,Q)x.e(C,D)1/r is a value that he too can calculate, without possessing his
own legitimate private key. However to cancel the effect of r, again Bob must set
D = R, which implies that Bob must know Alice’s private key in order to suc-
ceed. But since KCI resistance is now assumed, this must be allowed. However
Bob still cannot calculate a suitable value for C as he has no way of controlling
Alice’s random choice of x.

5 Chen-Kudla protocol

Next we consider protocol 2 from [5]. This protocol as described will only work
with a type-1 pairing. However by moving from a peer-to-peer key exchange
context to a client-server context, where client identities are mapped to G1 and
servers to G2, we can implement it on a type-3 pairing. This context is of par-
ticular interest as it is quite likely that a client will have less compute power
than a server, so unbalancing may be particularly useful. If we reasonably as-
sume that each server and its clients are associated with a different TA master
secret, then there is a redundancy in having both a unique server identity and a
unique master secret associated with it. So instead we introduce a system wide
constant Q ∈ G2 and differentiate between servers using only the uniqueness of
the master secret. In this case the protocol is only “identity-based” as far as the
clients are concerned, but we consider this as a realistic option. A client secret
for Alice is calculated by the TA as Sa = s.H1(IDa) ∈ G1, where IDa is Alice’s
identity, and H(.) is a hash function which hashes an identity string to an elliptic
curve point in G1. The server secret is calculated as Ss = s.Q ∈ G2,
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Alice - identity IDa

Generates random x < q

IDa →

A = H(IDa)

Wa = xA→

k = e(Sa,Ws + xQ)

Server

Generates random y < q

A = H(IDa)

←Ws = yQ

k = e(Wa + yA, Ss)

Table 5. Chen-Kudla Protocol

The agreed key is e(A,Q)s(x+y). The cost for both parties is P +M1 +M2.
To unbalance this protocol we assume that the client can precalculate the

pairing e(Sa, Q). Then the protocol proceeds as follows.

Alice - identity IDa

Generates random r, x < q

IDa →

A = H(IDa)

R = rSa →

Wa = xA→

k = (e(Sa, Q)xr.g)1/r

Server

Generates random y < q

A = H(IDa)

← g = e(yR,Q)

k = e(Wa + yA, Ss)

Table 6. Unbalanced Chen-Kudla

Now the cost for Alice is 2E +2M1, and the cost for the server is 2P+2M1.

5.1 Assisting party impersonation attack

The analysis for this protocol is similar to that for the second McCullagh-Barreto
protocol. A false Server with no secret Ss, even if it is in possession of Alice’s
private key, cannot control the value of g to force Alice to compute a key which
he can also calculate, as he has no way of controlling Alice’s random choice of
x.
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6 Forward Security

In each of the protocols described above extra measures must be taken to ensure
support for full forward secrecy. Recall that full forward secrecy requires that
if all communications are recorded and if sometime in the future all secrets are
revealed (including TA secrets), then it should still not be possible to calculate
the keys used to protect the past communications.

For the first McCullagh-Barreto protocol full forward secrecy is achieved by
implementing on a type-3 pairing [11]. The second McCullagh-Barreto protocol
does not support full forward secrecy at all, and is even vulnerable if TA secrets
remain intact but both of Alice’s and Bob’s personal secrets are revealed. The
Chen-Kudla protocol requires the explicit inclusion of a Diffie-Hellman compo-
nent in order to achieve full forward secrecy.

However it turns out that by simply unbalancing these protocols as described
above, this is sufficient to achieve full forward secrecy without taking any further
action. The reason is quite simple in all cases – an ephemeral value required
by Bob or the Server to calculate the pairing for Alice no longer needs to be
transmitted to Alice. So it is no longer available to a potential attacker.

7 Precomputation

Virtually all pairing based protocols can benefit from extensive precomputation
[12]. Fixed system-wide parameters can be precomputed on, as can individual
private keys. For example for the McCullagh-Barreto protocols considered above
the computation of B = y(aP + sP ) can be calculated as B = (ya)P + y.sP
where P and sP are system wide constants. Secret keys can be precomputed
on, both for point multiplication and when they appear as a constant input
to the pairing. In the second McCullagh-Barreto protocol and the Chen-Kudla
protocol a significant speed-up can be obtained by precomputing multiples of a
fixed pairing value.

8 Working in GT

Unbalancing will only pay off if we can optimise the exponentiation in GT , which
now substitutes for the pairing calculation. Here we focus on the specific case
of BN curves [2]. This popular family of pairing-friendly curves with embedding
degree k = 12 is defined over the field Fp, where

p = 36x4 + 36x3 + 24x2 + 6x+ 1

Further we initially consider a particular BN curve generated from the pop-
ular choice of parameter x = −408000000000000116, which produces a 254-bit
prime p corresponding closely to the standard AES-128 bit level of security.
This curve supports a pairing friendly group of prime order q = p + 1 − t, and
t = 6x2 + 1 is the trace of the Frobenius of the associated elliptic curve. The
sparseness of x speeds up the pairing calculation.
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8.1 Exponentiation

For Alice the pairing calculation has been swapped for a general exponentiation
in GT . At first glance the best algorithm would appear to be that proposed
by Galbraith and Scott [8]. However if the pairing value is to be immediately
consumed to produce a protocol outcome, this approach may not be optimal.
Instead it is faster to compress the pairing value as described in [13] to an element
in Fp4 , and then use trace-based methods as originally proposed for the XTR
crypto scheme [14], a possibility not fully explored in [8]. For BN curves the
XTR based method ([14] section 3.1) costs approximately 9 Fp multiplications
per exponent bit. So an exponentiation in GT can cost just twice as much as a
point multiplication in G1, which is in sharp contrast with the much poorer ratio
recently reported in Table 4 of [3]. The non-trace-based method used there (from
[8]), despite having access to a better times-4 decomposition of the exponent,
costs nearly twice as much. Furthermore the XTR method requires much less
space, and so would appear to be a better choice for a constrained environment.

8.2 Sub-Group membership

There is a simple BN-curve-specific trick that somewhat speeds up a sub-group

membership test (which tests gq
?
= 1) in GT . For a BN curve this test becomes

gq = g(p+1−t) ?
= 1

which reduces to the condition that

gp
?
= g6x

2

This last can be quickly tested using the Frobenius to calculate gp, and an
exponentiation to a very sparse 128-bit exponent.

8.3 Small Subgroup Attacks

Consider the extension field Fp12 . In fact relatively few of its elements will be
in the pairing friendly group of prime order q. The possible group orders in this
field are the divisors of p12 − 1. We have

p12 − 1 = (p6 − 1).(p2 + 1).((p4 − p2 + 1)/q).q

where p4−p2+1 = Φ12(p) is the 12-th cyclotomic polynomial. In fact it is easy
to check that an element g is of order Φ12(p), as this can be done at almost no
cost using the Frobenius. However how can we be sure that an element is in fact
of order q and not of an order which is some other small divisor of (p4−p2+1)/q,
the component in the context of pairings often referred to as the “hard part of
the final exponentiation”?

For the popular choice of x = −408000000000000116 many such
small subgroups exist. In this case (p4 − p2 + 1)/q has a factorisation
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13.3793.29173.716953.569360689.C205. So in this regard this is a particularly
poor choice.

Consider now the protocol of Table 2 implemented using this curve. An entity
purporting to be Bob, but without possession of Bob’s secret key, transmits an
element g of order 13 to Alice. Alice quickly confirms that this is indeed a member
of the cyclotomic sub-group, and raises it to a large power to determine the key.
But of course this just results in another element from the small group of size 13,
all of which Bob has enumerated off-line. From the key confirmation hash, Bob
can quickly determine which one Alice has calculated, and they use the same
key. The protocol has failed.

Clearly this can be prevented by Alice first fully checking the order of g as
shown above. But this has a small but significant cost associated with it.

9 “GT-Strong” Curves

As pointed out by Lim and Lee [10] in a different context, an alternative solution
is to simply make sure that no small subgroups exist, in which case a membership
test is redundant. This can, for example, be achieved by choosing the BN curve
parameter such that (p4−p2+1)/q is a prime, clearly much greater than q. In fact
this is not hard to do, at the sacrifice of the extremely low Hamming weight for
x. We call a pairing-friendly curve chosen with this extra feature “GT-strong”.
For example x = −400080600000408116 is a nice choice. This value can be used
as a drop-in replacement for the value above in contexts where this feature is
deemed to be desirable. We observe however that such a choice may negatively
impact on some assumptions used to set pairing calculation records [1].

As an aside we note that for parameterised pairing friendly curves there is
the possibility that the hard part of the final exponentiation represented as a
polynomial in the parameter x may have a polynomial factorisation, and hence
might never represent primes. For a BN curve this polynomial is

46656x
12

+139968x
11

+241056x
10

+272160x
9
+225504x

8
+138672x

7
+65448x

6
+23112x

5
+6264x

4
+1188x

3
+174x

2
+6x+1

which is irreducible. This may not necessarily the case, but for the great
majority of pairing friendly curves it is true, and certainly for all of the currently
fashionable curves that we have tested.

10 Implementation

In the following table we show the cost in field multiplications for the considered
protocols as implemented on a BN curve, with and without unbalancing. We
fully exploit any possibilities for precomputation, precomputing and storing 256
multiples of constants where possible. In all cases we use the optimal R-ate
pairing [9].

As can be seen unbalancing approximately halves the workload for one of
the parties, while doubling it for the other. Note that we have not attempted
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to perform the modifications required to support full forward secrecy for the
balanced versions of the protocols.

Table 7. Number of field multiplications

Protocol Balanced Unbalanced (Alice) Unbalanced (Bob/Server)

McCullagh-Barreto 1 12400 5604 24278

McCullagh-Barreto 2 13081 7885 25026

Chen-Kudla 13955 6346 26040
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