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Abstract. We describe an implementation of fast elliptic curve scalar multiplication,
optimized for Diffie–Hellman Key Exchange at the 128-bit security level. The algorithms are
compact (using only x-coordinates), run in constant time with uniform execution patterns,
and do not distinguish between the curve and its quadratic twist; they thus have a built-
in measure of side-channel resistance. (For comparison, we also implement two faster but
non-constant-time algorithms.) The core of our construction is a suite of two-dimensional
differential addition chains driven by efficient endomorphism decompositions, built on curves
selected from a family of Q-curve reductions over Fp2 with p = 2127 − 1. We include
state-of-the-art experimental results for twist-secure, constant-time, x-coordinate-only scalar
multiplication.
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1 Introduction

In this paper, we discuss the design and implementation of state-of-the-art Elliptic Curve Diffie–
Hellman key exchange (ECDH) primitives for security level of approximately 128 bits. The major
priorities for our implementation are

1. Compactness: We target x-coordinate-only systems. These systems offer the advantages of
shorter keys, simple and fast algorithms, and (when properly designed) the use of arbitrary
x-values, not just legitimate x-coordinates of points on a curve (the “illegitimate” values
are x-coordinates on the quadratic twist). For x-coordinate ECDH, the elliptic curve exists
only to supply formulæ for scalar multiplications, and a hard elliptic curve discrete logarithm
problem (ECDLP) to underwrite a hard computational Diffie–Hellman problem (CDHP) on
x-coordinates. The users should not have to verify whether given values correspond to points
on a curve, nor should they have to compute any quantity that cannot be derived simply from
x-coordinates alone. In particular, neither a user nor an algorithm should have to distinguish
between the curve and its quadratic twist—and the curve must be chosen to be twist-secure.

2. Fast, constant-time execution: Every Diffie–Hellman key exchange is essentially comprised
of four scalar multiplications,5 so optimizing scalar multiplication P 7→ [m]P for varying P
and m is a very high priority. At the same time, a minimum requirement for protecting against
side-channel timing attacks is that every scalar multiplication P 7→ [m]P must be computed
in constant time (and ideally with the same execution pattern), regardless of the values of m
and P .

† This is the full version of the article to appear in EUROCRYPT 2014, LNCS, Vol. 8441, c©IACR.
5 We do not count the cost of authenticating keys, etc., here. In the static Diffie–Hellman protocol, two of

the scalar multiplications can be computed in advance; in this fixed-base scenario (where P is constant
but m varies) one can profit from extensive precomputations. For simplicity, in this work we concentrate
on the dynamic case (where P and m are variable).



Our implementation targets a security level of approximately 128 bits (comparable with
Curve25519 [3], secp256r1 [12], and brainpoolP256t1 [22]). The reference system with respect to
our desired properties is Bernstein’s Curve25519, which is based on an efficient, uniform differential
addition chain applied to a well-chosen pair of curve and twist presented as Montgomery models.
These models not only provide highly efficient group operations, but they are optimized for x-
coordinate-only operations, which (crucially) do not distinguish between the curve and its twist.
Essentially, well-chosen Montgomery curves offer compactness straight out of the box.

Having chosen Montgomery curves as our platform, we must implement a fast, uniform,
and constant-time scalar multiplication on their x-coordinates. To turbocharge our scalar
multiplication, we apply a combination of efficiently computable pseudo-endomorphisms and two-
dimensional differential addition chains. The use of efficient endomorphisms follows in the tradition
of [21], [34], [16], and [15], but to the best of our knowledge, this work represents the first use of
endomorphism scalar decompositions in the pure x-coordinate setting (that is, without additional
input to the addition chain).

Our implementation is built on a curve-twist pair (E , E ′) equipped with efficiently computable
endomorphisms (ψ, ψ′). The family of Q-curve reductions in [33] offer a combination of fast
endomorphisms and compatibility with fast underlying field arithmetic. Crucially (and unlike
earlier endomorphism constructions such as [16] and [15]), they also offer the possibility of twist-
secure group orders over fast fields. One of these curves, with almost-prime order over a 254-bit
field, forms the foundation of our construction (see §2). Any other curve from the same family
over the same field could be used with only very minor modifications to the formulæ below and
the source code for our implementations; we explain our specific curve choice in Appendix B. The
endomorphisms ψ and ψ′ induce efficient pseudo-endomorphisms ψx and ψ′

x on the x-line; we
explain their construction and use in §3.

The key idea of this work is to replace conventional scalar multiplications (m,x(P )) 7→ x([m]P )
with multiscalar multiexponentiations

((a, b), x(P )) 7−→ x([a]P ⊕ [b]ψ(P )) or x([a]P ⊕ [b]ψ′(P )) ,

where (a, b) is either a short multiscalar decomposition of a random full-length scalar m (that is,
such that [m]P = [a]P ⊕ [b]ψ(P ) or [a]P ⊕ [b]ψ′(P )), or a random short multiscalar. The choice of
ψ or ψ′ formally depends on whether P is on E or E ′, but there is no difference between ψ and ψ′

on the level of x-coordinates: they are implemented using exactly the same formulæ. Since every
element of the base field is the x-coordinate of a point on E or E ′, we may view the transformation
above as acting purely on field elements and not curve points.

From a practical point of view, the two crucial differences compared with conventional ECDH
over a 254-bit field are

1. The use of 128-bit multiscalars (a, b) in Z2 in place of the 254-bit scalar m in Z. We treat
the geometry of multiscalars, the distribution of their corresponding scalar values, and the
derivation of constant-bitlength scalar decompositions in §4.

2. The use of two-dimensional differential addition chains to compute x([a]P ⊕ [b]ψ(P ))
given only (a, b) and x(P ). We detail this process in §5.
We have implemented three different two-dimensional differential addition chains: one due

to Montgomery [25] via Stam [35], one due to Bernstein [4], and one due to Azarderakhsh and
Karabina [1]. Each offers a different combination of speed, uniformity, and constant-time execution.
We provide implementation details and timings for scalar multiplications based on each chain in §6.
The differential nature of these chains is essential in the x-coordinate setting, which prevents the
effective use of the vector chains traditionally used in the endomorphism literature (such as [36]).

A Magma implementation is publicly available at

http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/ ;

a complete mixed-assembly-and-C implementation6 is publicly available (in eBATS [9] format) at

http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz .

6 Version v04 (March 2014) of the code fixes the problems stated in [5].

http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/
http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz


2 The Curve

We begin by defining our curve-twist pair (E , E ′). We work over

Fp2 := Fp(i) , where p := 2127 − 1 and i2 = −1 .

We chose this Mersenne prime for its compatibility with a range of fast techniques for modular
arithmetic, including Montgomery- and NIST-style approaches. We build efficient Fp2-arithmetic
on top of the fast Fp-arithmetic described in [11]. Appendix A provides a complete description of
our arithmetic routines.

In what follows, it will be convenient to define the constants

u := 1466100457131508421 , v := 1
2 (p− 1) = 2126 − 1 , w := 1

4 (p+ 1) = 2125 .

The Curve E and its Twist E
′. We define E to be the elliptic curve over Fp2 with affine

Montgomery model
E : y2 = x(x2 +Ax+ 1) ,

where

A = A0 +A1 · i with

{

A0 = 45116554344555875085017627593321485421 ,
A1 = 2415910908 .

The element 12/A is not a square in Fp2 , so the curve over Fp2 defined by

E ′ : (12/A)y2 = x(x2 +Ax+ 1)

is a model of the quadratic twist of E . The twisting Fp4-isomorphism δ : E → E ′ is defined

by δ : (x, y) 7→ (x, (A/12)1/2y). The map δ1 : (x, y) 7→ (xW , yW ) = (12
A x + 4, 122

A2 y) defines an
Fp2 -isomorphism between E ′ and the Weierstrass model

E2,−1,s : y2
W = x3

W + 2(9(1 + si) − 24)xW − 8(9(1 + si) − 16)

of [33, Theorem 1] with

s = i(1 − 8/A2) = 86878915556079486902897638486322141403 ,

so E is a Montgomery model of the quadratic twist of E2,−1,s. (In the notation of [33, §5] we have
E ∼= E ′

2,−1,s and E ′ ∼= E2,−1,s.) These curves all have j-invariant

j(E) = j(E ′) = j(E2,−1,s) = 28 (A2 − 3)3

A2 − 4
= 26 (5 − 3si)3(1 − si)

(1 + s2)2
.

Group Structures. Using the SEA algorithm [29], we find that

#E(Fp2) = 4N and #E ′(Fp2) = 8N ′

where

N = v2 + 2u2 and N ′ = 2w2 − u2

are 252-bit and 251-bit primes, respectively. Looking closer, we see that

E(Fp2) ∼= (Z/2Z)
2 × Z/NZ and E ′(Fp2) ∼= Z/2Z × Z/4Z × Z/N ′Z .

Recall that every element of Fp2 is either the x-coordinate of two points in E(Fp2), the x-coordinate
of two points in E ′(Fp2), or the x-coordinate of one point of order two in both E(Fp2) and E ′(Fp2).
The x-coordinates of the points of exact order 2 in E(Fp2 ) (and in E ′(Fp2)) are 0 and − 1

2A ±
1
2

√
A2 − 4; the points of exact order 4 in E ′(Fp2) have x-coordinates ±1. Either of the points with

x-coordinate 2 will serve as a generator for the cryptographic subgroup E(Fp2)[N ]; either of the
points with x-coordinate 2 − i generate E ′(Fp2)[N ′].



Curve Points, x-Coordinates, and Random Bitstrings. Being Montgomery curves, both
E and E ′ are compatible with the Elligator 2 construction [6, §5]. For our curves, [6, Theorem 5]
defines efficiently invertible injective maps Fp2 → E(Fp2) and Fp2 → E ′(Fp2). This allows points on
E and/or E ′ to be encoded in such a way that they are indistinguishable from uniformly random
254-bit strings. Since we work with x-coordinates only in this article, a square root is saved when
computing the injection (see [6, §5.5] for more details).

The ECDLP on E and E
′. Suppose we want to solve an instance of the DLP in E(Fp2) or

E ′(Fp2). Applying the Pohlig–Hellman–Silver reduction [26], we almost instantly reduce to the
case of solving a DLP instance in either E(Fp2)[N ] or E ′(Fp2)[N ′]. The best known approach to
solving such a DLP instance is Pollard’s rho algorithm [27], which (properly implemented) can solve
DLP instances in E(Fp2)[N ] (resp. E ′(Fp2)[N ′]) in around 1

2

√
πN ∼ 2125.8 (resp. 1

2

√
πN ′ ∼ 2125.3)

group operations on average [10]. One might expect that working over Fp2 would imply a
√

2-factor
speedup in the rho method by using Frobenius classes; but this seems not to be the case, since
neither E nor E ′ is a subfield curve [37, §6].

The embedding degrees of E and E ′ with respect to N and N ′ are 1
50 (N − 1) and 1

2 (N ′ − 1),
respectively, so ECDLP instances in E(Fp2)[N ] and E(Fp2)[N ′] are not vulnerable to the Menezes–
Okamoto–Vanstone [23] or Frey–Rück [14] attacks. The trace of E is p2 + 1− 4N 6= ±1, so neither
E nor E ′ are amenable to the Smart–Satoh–Araki–Semaev attack [28], [30], [31].

While our curves are defined over a quadratic extension field, this does not seem to reduce
the expected difficulty of the ECDLP when compared with elliptic curves over similar-sized prime
fields. Taking the Weil restriction of E (or E ′) to Fp as in the Gaudry–Hess–Smart attack [18], for
example, produces a simple abelian surface over Fp; and the best known attacks on DLP instances
on simple abelian surfaces over Fp offer no advantage over simply attacking the ECDLP on the
original curve (see [32], [17], and [15, §9] for further discussion).

Superficially, E is what we would normally call twist-secure (in the sense of Bernstein [3] and
Fouque–Réal–Lercier–Valette [13]), since its twist E ′ has a similar security level. Indeed, E (and
the whole class of curves from which it was drawn) was designed with this notion of twist-security
in mind. However, twist-security is more subtle in the context of endomorphism-based scalar
decompositions; we will return to this subject in §4 below.

The Endomorphism Ring. Let πE denote the Frobenius endomorphism of E . The curve E is
ordinary (its trace tE is prime to p), so its endomorphism ring is an order in the quadratic field
K := Q(πE). (The endomorphism ring of an ordinary curve and its twist are always isomorphic,
so what holds below for E also holds for E ′.) We will see below that E has an endomorphism ψ
such that ψ2 = −[2]πE . The discriminant of Z[ψ] is the fundamental discriminant

DK = −8 · 5 · 397 · 10528961 · 6898209116497 · 1150304667927101

of K, so Z[ψ] is the maximal order in K; hence, End(E) = Z[ψ].
The safecurves specification [8] suggests that the discriminant of the CM field should have

at least 100 bits; our E easily meets this requirement, since DK has 130 bits. We note that well-
chosen GLS curves can also have large CM field discriminants, but GLV curves have tiny CM field
discriminants by construction: for example, the endomorphism ring of the curve secp256k1 [12]
(at the heart of the Bitcoin system) has discriminant −3.

Brainpool [22] requires the ideal class number of K to be larger than 107; this property is
never satisfied by GLV curves, which have tiny class numbers (typically ≤ 2) by construction. But
E easily meets this requirement: the class number of End(E) is

h(End(E)) = h(DK) = 27 · 31 · 37517 · 146099 · 505117 ∼ 1019 .



3 Efficient Endomorphisms on E, E
′, and the x-line

Theorem 1 of [33] defines an efficient endomorphism

ψ2,−1,s : (xW , yW ) 7−→
(−xp

W

2
− 9(1 − si)

xp
W − 4

,
yp

W√
−2

(−1

2
+

9(1 − si)

(xp
W − 4)2

))

of degree 2p on the Weierstrass model E2,−1,s, with kernel 〈(4, 0)〉. To avoid an ambiguity in the
sign of the endomorphism, we must fix a choice of

√
−2 in Fp2 . We choose the “small” root:

√
−2 := 264 · i . (1)

Applying the isomorphisms δ and δ1, we define efficient Fp2 -endomorphisms

ψ := (δ1δ)
−1ψ2,−1,sδ1δ and ψ′ := δψδ−1 = δ−1

1 ψ2,−1,sδ1

of degree 2p on E and E ′, respectively, each with kernel 〈(0, 0)〉. More explicitly: if we let

n(x) := Ap

A

(

x2 +Ax+ 1
)

, d(x) := −2x , s(x) := n(x)p/d(x)p ,

r(x) := Ap

A (x2 − 1) , and m(x) := n′(x)d(x) − n(x)d′(x) ,

then ψ and ψ′ are defined (using the same value of
√
−2 fixed in Eq. (1)) by

ψ : (x, y) 7−→
(

s(x) ,
−12v

Av
√
−2

ypm(x)p

d(x)2p

)

and

ψ′ : (x, y) 7−→
(

s(x) ,
−122v

√
−2

A2v

ypr(x)p

d(x)2p

)

.

Actions of the Endomorphisms on Points. Theorem 1 of [33] tells us that

ψ2 = −[2]πE and (ψ′)2 = [2]πE′ , (2)

where πE and πE′ are the p2-power Frobenius endomorphisms of E and E ′, respectively, and

P (ψ) = P (ψ′) = 0 , where P (T ) = T 2 − 4uT + 2p .

If we restrict to the cryptographic subgroup E(Fp2)[N ], then ψ must act as multiplication by
an integer eigenvalue λ, which is one of the two roots of P (T ) modulo N . Similarly, ψ′ acts on
E ′(Fp2)[N ′] as multiplication by one of the roots λ′ of P (T ) modulo N ′. The correct eigenvalues
are

λ ≡ − v
u

(mod N) and λ′ ≡ −2w

u
(mod N ′) .

Equation (2) implies that λ2 ≡ −2 (mod N) and λ′2 ≡ 2 (mod N ′). (Note that choosing the other
square root of −2 in Eq. (1) negates ψ, ψ′, λ, λ′, and u.)

To complete our picture of the action of ψ on E(Fp2) and ψ′ on E ′(Fp2), we describe its action
on the points of order 2 and 4 listed above:

(0, 0) 7−→ 0 under ψ and ψ′ ,
(

− 1
2A± 1

2

√
A2 − 4, 0

)

7−→ (0, 0) under ψ and ψ′ ,
(

1,± 1
2

√

A(A+ 2)/3
)

7−→
(

− 1
2A− 1

2

√
A2 − 4, 0

)

under ψ′ ,
(

−1,± 1
2

√

−A(A+ 2)/3
)

7−→
(

− 1
2A+ 1

2

√
A2 − 4, 0

)

under ψ′ .



Pseudo-endomorphisms on the x-line. One advantage of the Montgomery model is that it
allows a particularly efficient arithmetic using only the x-coordinate. Technically speaking, this
corresponds to viewing the x-line P1 as the Kummer variety of E : that is, P1 ∼= E/〈±1〉.

The x-line is not a group: if P and Q are points on E , then x(P ) and x(Q) determine the
pair {x(P ⊕Q), x(P ⊖Q)}, but not the individual elements x(P ⊕ Q) and x(P ⊖ Q). However,
the x-line inherits part of the endomorphism structure of E : every endomorphism φ of E induces
a pseudo-endomorphism7 φx : x 7→ φx(x) of P1, which determines φ up to sign; and if φ1 and φ2

are two endomorphisms of E , then

(φ1)x(φ2)x = (φ2)x(φ1)x = (φ1φ2)x = (φ2φ1)x .

Montgomery’s explicit formulæ for pseudo-doubling (DBL), pseudo-addition (ADD), combined
pseudo-doubling and pseudo-addition (DBLADD) on P1 are available in [7]. In addition to these,
we need expressions for both ψx and (ψ ± 1)x to initialise the addition chains in §5. Moving to
projective coordinates: write x = X/Z and y = Y/Z. Then the negation map on E is [−1] : (X :
Y : Z) 7→ (X : −Y : Z), and the double cover E → E/〈[±1]〉 ∼= P1 is (X : Y : Z) 7→ (X : Z). The
pseudo-doubling on P1 is

[2]x((X : Z)) =
(

(X + Z)2(X − Z)2 : (4XZ)
(

(X − Z)2 + A+2
4 · 4XZ

))

. (3)

Our endomorphism ψ induces the pseudo-endomorphism

ψx((X : Z)) =
(

Ap
(

(X − Z)2 − A+2
2 (−2XZ)

)p
: A(−2XZ)p

)

.

Composing ψx with itself, we confirm that ψxψx = −[2]x(πE )x.

Proposition 1. With the notation above, and with
√
−2 chosen as in Eq. (1),

(ψ ± 1)x(x) = (ψ′ ± 1)x(x)

=
2s2nd4p − x(xn)pm2pAp−1

2s(x− s)2d4pAp−1
∓ mp(xn)(p+1)/2

√
−2

A(p−1)/2(x− s)2d2p
. (4)

Proof. If P and Q are points on a Montgomery curve By2 = x(x2 +Ax+ 1), then

x(P ±Q) =
B (x(P )y(Q) ∓ x(Q)y(P ))2

x(P )x(Q) (x(P ) − x(Q))
2 .

Taking P = (x, y) to be a generic point on E (where B = 1), setting Q = ψ(P ), and eliminating y
using y2 = −Ap

2Adn yields the expression for (ψ±1)x above. The same process for E ′ (with B = 12
A ),

eliminating y with 12
A y

2 = −Ap

2Adn, yields the same expression for (ψ′ ± 1)x. ⊓⊔

Deriving explicit formulæ to compute the pseudo-endomorphism images in Eq. (4) is
straightforward. We omit these formulæ here for space considerations, but they can be found in
our code online. If P ∈ E , then on input of x(P ), the combined computation of the three projective
elements (Xλ−1 : Zλ−1), (Xλ : Zλ), (Xλ+1 : Zλ+1), which respectively correspond to the three affine
elements x([λ−1]P ), x([λ]P ), x([λ+1]P ), incurs 15 multiplications, 129 squarings and 10 additions
in Fp2 . The bottleneck of this computation is raising dn to the power of (p + 1)/2 = 2126, which
incurs 126 squarings. We note that squarings are significantly faster than multiplications in Fp2

(see Appendix A).

7 “Pseudo-endomorphisms” are true endomorphisms of P1. We use the term pseudo-endomorphism to
avoid confusion with endomorphisms of elliptic curves, and to reflect the use of terms like “pseudo-
addition” for basic operations on the x-line.



4 Scalar Decompositions

We want to evaluate scalar multiplications [m]P as [a]P ⊕ [b]ψ(P ), where

m ≡ a+ bλ (mod N)

and the multiscalar (a, b) has a significantly shorter bitlength8 than m. For our applications we
impose two extra requirements on multiscalars (a, b), so as to add a measure of side-channel
resistance:

1. both a and b must be positive, to avoid branching and to simplify our algorithms; and
2. the multiscalar (a, b) must have constant bitlength (independent of m as m varies over Z),

so that multiexponentiation can run in constant time.

In some protocols—notably Diffie–Hellman—we are not interested in the particular values of
our random scalars, as long as those values remain secret. In this case, rather than starting with
m in Z/NZ (or Z/N ′Z) and finding a short, positive, constant-bitlength decomposition of m, it
would be easier to randomly sample some short, positive, constant-bitlength multiscalar (a, b) from
scratch. The sample space must be chosen to ensure that the corresponding distribution of values
a+ bλ in Z/NZ does not make the discrete logarithm problem of finding a+ bλ appreciably easier
than if we started with a random m.

Zero Decomposition Lattices. The problems of finding good decompositions and sampling
good multiscalars are best addressed using the geometric structure of the spaces of decompositions
for E and E ′. The multiscalars (a, b) such that a+ bλ ≡ 0 (mod N) or a+ bλ′ ≡ 0 (mod N ′) form
lattices

L = 〈(N, 0), (−λ, 1)〉 and L′ = 〈(N ′, 0), (−λ′, 1)〉 ,
respectively, with a+ bλ ≡ c+ dλ (mod N) if and only if (a, b)− (c, d) is in L (similarly, a+ bλ′ ≡
c+ dλ′ (mod N ′) if and only if (a, b) − (c, d) is in L′).

The sets of decompositions of m for E(Fp)[N ] and E(Fp2)[N ′] therefore form lattice cosets

(m, 0) + L and (m, 0) + L′ ,

respectively, so we can compute short decompositions of m for E(Fp)[N ] (resp. E(Fp2)[N ′]) by
subtracting vectors near (m, 0) in L (resp. L′) from (m, 0). To find these vectors, we need ‖ · ‖∞-
reduced9 bases for L and L′.

Proposition 2 (Definition of e1, e2, e
′
1, e

′
2). Up to order and sign, the shortest possible bases

for L and L′ (with respect to ‖ · ‖∞) are given by

L = 〈 e1 := (v, u) , e2 := (−2u, v) 〉 and

L′ = 〈 e′1 := (u,w) , e′2 := (2u− 2w, 2w − u) 〉 .

Proof. The proof of [33, Prop. 2] constructs sublattices

〈ẽ1 := −2(v, u), ẽ2 := −2(2u, v)〉 ⊂ L
and

〈ẽ′1 := 2(2w,−u), ẽ′2 := 4(u,w)〉 ⊂ L′

with [L : 〈ẽ1, ẽ2〉] = 4 and [L′ : 〈ẽ′1, ẽ′2〉] = 8. We easily verify that e1 = − 1
2 ẽ2 and e2 = − 1

2 ẽ1 are
both in L; then, since 〈ẽ1, ẽ2〉 has index 4 in 〈e1, e2〉, we must have L = 〈e1, e2〉. Similarly, both

8 The bitlength of a scalar m is ⌈log2 |m|⌉; the bitlength of a multiscalar (a, b) is ⌈log2 ‖(a, b)‖∞⌉.
9 Reduced with respect to Kaib’s generalized Gauss reduction algorithm [20] for ‖ · ‖∞.



e′1 = 1
4 ẽ

′
2 and e′2 = 1

2 (ẽ′2 − ẽ′1) are in L′, and thus form a basis for L′. According to [20, Definition
3], an ordered lattice basis [b1,b2] is ‖ · ‖∞-reduced if

‖b1‖∞ ≤ ‖b2‖∞ ≤ ‖b1 − b2‖∞ ≤ ‖b1 + b2‖∞ .

This holds for [b1,b2] = [e2,−e1] and [e′1, e
′
2], so ‖e2‖∞ and ‖e1‖∞ (resp. ‖e′1‖∞ and ‖e′2‖∞) are

the successive minima of L (resp. L′) by [20, Theorem 5].10 ⊓⊔

In view of Proposition 2, the fundamental parallelograms of L and L′ are the regions of the
(a, b)-plane defined by

A :=
{

(a, b) ∈ R2 : 0 ≤ vb− ua < N, 0 ≤ 2ub+ va < N
}

and

A′ :=
{

(a, b) ∈ R2 : 0 ≤ ub− wa < N ′, 0 ≤ (2u− 2w)b− (2w − u)a < N ′
}

,

respectively. Every integer m has precisely one decomposition for E(Fp2)[N ] (resp. E ′(Fp2)[N ′]) in
any translate of A by L (resp. A′ by L′).

Short, Constant-Bitlength Scalar Decompositions. Returning to the problem of finding
short decompositions of m: let (α, β) be the (unique) solution in Q2 to the system αe1 + βe2 =
(m, 0). Since e1, e2 is reduced, the closest vector to (m, 0) in L is one of the four vectors ⌊α⌋e1 +
⌊β⌋e2, ⌊α⌋e1+⌈β⌉e2, ⌈α⌉e1+⌊β⌋e2, or ⌈α⌉e1+⌈β⌉e2 by [20, Theorem 19]. Following Babai [2], we
subtract ⌊α⌉e1 + ⌊β⌉e2 from (m, 0) to get a decomposition (ã, b̃) of m; by the triangle inequality,
‖(ã, b̃)‖∞ ≤ 1

2 (‖e1‖∞ + ‖e2‖∞). This decomposition is approximately the shortest possible, in
the sense that the true shortest decomposition is at most ±e1 ± e2 away. Observe that ‖e1‖∞ =
‖e2‖∞ = 2126 − 1, so (ã, b̃) has bitlength at most 126.

However, ã or b̃ may be negative (violating the positivity requirement), or have fewer than
126 bits (violating the constant bitlength requirement). Indeed, m 7→ (ã, b̃) maps Z onto (A −
1
2 (e1 + e2))∩Z2. This region of the (a, b)-plane, “centred” on (0, 0), contains multiscalars of every
bitlength between 0 and 126—and the majority of them have at least one negative component.
We can achieve positivity and constant bitlength by adding a carefully chosen offset vector from
L, translating (A − 1

2 (e1 + e2)) ∩ Z2 into a region of the (a, b)-plane where every multiscalar is
positive and has the same bitlength. Adding 3e1 or 3e2 ensures that the first or second component
always has precisely 128 bits, respectively; but adding 3(e1 + e2) gives us a constant bitlength of
128 bits in both. Theorem 1 makes this all completely explicit.

Theorem 1. Given an integer m, let (a, b) be the multiscalar defined by

a := m+ (3 − ⌊α⌉) v − 2 (3 − ⌊β⌉)u and b := (3 − ⌊α⌉) u+ (3 − ⌊β⌉) v ,

where α and β are the rational numbers

α := (v/N)m and β := −(u/N)m .

Then 2127 < a, b < 2128, and m ≡ a+bλ (mod N). In particular, (a, b) is a positive decomposition
of m, of bitlength exactly 128, for any m.

Proof. We have m ≡ a+ bλ (mod N) because (a, b) = (ã, b̃)+3(e1 +e2) ≡ (m, 0) (mod L), where
(ã, b̃) is the translate of (m, 0) by the Babai roundoff ⌊α⌉e1 + ⌊β⌉e2 described above. Now (ã, b̃)
lies in A − 1

2 (e1 + e2), so (a, b) lies in A + 5
2 (e1, e2); our claim on the bitlength of (a, b) follows

because the four “corners” of this domain all have 128-bit components. ⊓⊔
10 For the Euclidean norm, the bases [e1, e2] and [e′

1, 2e
′
1 − e′

2] are ‖ · ‖2-reduced, but [e′
1, e

′
2] is not.



Random Multiscalars. As we remarked above, in a pure Diffie–Hellman implementation it
is more convenient to simply sample random multiscalars than to decompose randomly sampled
scalars. Proposition 3 shows that random multiscalars of at most 127 bits correspond to reasonably
well-distributed values in Z/NZ and in Z/N ′Z, in the sense that none of the values occur more
than one more or one fewer times than the average, and the exceptional values are in O(

√
N).

Such multiscalars can be trivially turned into constant-bitlength positive 128-bit multiscalars—
compatible with our implementation—by (for example) completing a pair of 127-bit strings with
a 1 in the 128-th bit position of each component.

Proposition 3. Let B = [0, p]2; we identify B with the set of all pairs of strings of 127 bits.

1. The map B → Z/NZ defined by (a, b) 7→ a+ bλ (mod N) is 4-to-1, except for 4(p− 6u+ 4) ≈
4
√

2N values in Z/NZ with 5 preimages in B, and 8(u2 − 3u + 2) ≈ 1
5

√
N values in Z/NZ

with only 3 preimages in B.
2. The map B → Z/N ′Z defined by (a, b) 7→ a+ bλ′ (mod N ′) is 8-to-1, except for 8u2 ≈ 2

7

√
N ′

values with 9 preimages in B.

Proof (Sketch). For (1): the map (a, b) 7→ a+bλ (mod N) defines a bijection between each translate
of A∩Z2 by L and Z/NZ. Hence, every m in Z/NZ has a unique preimage (a0, b0) in A∩Z2, so it
suffices to count ((a0, b0)+L)∩B for each (a0, b0) in A∩Z2. Cover Z2 with translates of A by L; the
only points in Z2 that are on the boundaries of tiles are the points in L. Dissecting B along the edges
of translates of A and reassembling the pieces, we see that 8v−24u+20 < 4pmultiscalars in B occur
with multiplicity five, 8u2 − 24u+ 16 < p/9 with multiplicity three, and every other multiscalar
occurs with multiplicity four. There are therefore 4N+(8v−24u+20)−(8u2−24u+16) = (p+1)2

preimages in total, as expected. The proof of (2) is similar to (1), but counting ((a, b)+L′)∩B as
(a, b) ranges over A′. ⊓⊔

We note that in our online C code, the decomposition of the scalar k into k0 and k1 is not
implemented in constant time. Although there are known methods of achieving this, sampling k0

and k1 at random is certainly easier: in our code, these multiscalars can be selected at random by
simply commenting out the ‘#define DECOMPOSITION’ line.

Twist-Security with Endomorphisms. We saw in §2 that DLPs on E and its twist E ′ have
essentially the same difficulty, while Proposition 3 shows that the real DLP instances presented
to an adversary by 127-bit multiscalar multiplications are not biased into a significantly more
attackable range. But there is an additional subtlety when we consider the fault attacks considered
in [3] and [13]: If we try to compute [m]P for P on E , but an adversary sneaks in a point P ′ on the
twist E ′ instead, then in the classical context the adversary can derive m after solving the discrete
logarithm [m mod N ′]P ′ in E ′(Fp2). But in the endomorphism context, we compute [m]P as
[a]P ⊕ [b]ψ(P ), and the attacker sees [a + bλ′]P ′, which is not [m mod N ′]P ′ (or even [a + bλ
mod N ′]P ′); we should ensure that the values (a+ bλ′ mod N ′) are not concentrated in a small
subset of Z/N ′Z when (a, b) is a decomposition for E(Fp2)[N ]. This can be achieved by a similar
argument to that of Proposition 3: the map Z/NZ → Z/N ′Z defined by m 7→ (a, b) 7→ a + bλ′

(mod N ′) is a good approximation of a 2-to-1 mapping.

5 Two-Dimensional Differential Addition Chains

Addition chains are used to compute scalar multiplications using a sequence of group operations (or
pseudo-group operations). A one-dimensional addition chain computes [m]P for a given integer m
and point P ; a two-dimensional addition chain computes [a]P ⊕ [b]Q for a given multiscalar (a, b)
and points P and Q. In a differential addition chain, the computation of any ADD, P ⊕Q, is always
preceded (at some earlier stage in the chain) by the computation of its associated difference P ⊖Q.
The simplest differential addition chain is the original one-dimensional “Montgomery ladder” [24],
which computes scalar multiplications [m]P for a single exponent m and point P . Every ADD in the



Montgomery ladder is in the form [i]P⊕[i+1]P , so every associated difference is equal to P . Several
two-dimensional differential addition chains have been proposed, targeting multiexponentiations
in elliptic curves and other primitives; we suggest [4] and [35] for overviews.

In any two-dimensional differential chain computing [a]P ⊕ [b]Q for general P and Q, the input
consists of the multiscalar (a, b) and the three points P , Q, and P ⊖ Q. The initial difference
P ⊖ Q (or equivalently, the initial sum P ⊕ Q) is essential to kickstart the chain on P and Q,
since otherwise (by definition) P ⊕Q cannot appear in the chain. As we noted in §1, computing
this initial difference is an inconvenient obstruction to pure x-coordinate multiexponentiations on
general input: the pseudo-group operations ADD, DBL, and DBLADD can all be made to work on
x-coordinates (the ADD and DBLADD operations make use of the associated differences available in
a differential chain), but in general it is impossible to compute the initial difference x(P ⊖Q) in
terms of x(P ) and x(Q).

For our application, we want to compute x([a]P ⊕ [b]ψ(P )) given inputs (a, b) and x(P ).
Crucially, we can compute x(P ⊖ ψ(P )) as (ψ − 1)x(x(P )) using Proposition 1; this allows us to
compute x([a]P ⊕ [b]ψ(P )) using two-dimensional differential addition chains with input (a, b),
x(P ), ψx(x(P )), and (ψ − 1)x(x(P )).

We implemented one one-dimensional differential addition chain (Ladder) and three two-
dimensional differential addition chains (Prac, Ak, and Djb). We briefly describe each chain,
with its relative benefits and drawbacks, below.

(Montgomery) Ladder Chains. We implemented the full-length one-dimensional Montgomery
ladder as a reference, to assess the speedup that our techniques offer over conventional scalar
multiplication (It is also used as a subroutine within our two-dimensional Prac chain). Ladder

can be made constant-time by adding a suitable multiple of N to the input scalar.

(Two-dimensional) Prac Chains. Montgomery [25] proposed a number of algorithms for
generating differential addition chains that are often much shorter than his eponymous ladder.
His one-dimensional “PRAC” routine contains an easily-implemented two-dimensional subroutine,
which computes the double-exponentiation [a]P ⊕ [b]Q very efficiently. The downside for our
purposes is that the chain is not uniform: different inputs (a, b) give rise to different execution
patterns, rendering the routine vulnerable to a number of side-channel attacks. Our implementation
of this chain follows Algorithm 3.25 of [35]11: given a multiscalar (a, b) and points P , Q, and P−Q,
this algorithm computes d = gcd(a, b) and R = [a

d ]P ⊕ [ b
d ]Q. To finish computing [a]P ⊕ [b]Q, we

write d = 2ie with i ≥ q and e odd, then compute S = [2i]R with i consecutive DBLs, before finally
computing [e]S with a one-dimensional Ladder chain12.

Ak Chains. Azarderakhsh and Karabina [1] recently constructed a two-dimensional differential
addition chain which offers some middle ground in the trade-off between uniform execution and
efficiency. While it is less efficient than Prac, their chain has the advantage that all but one of the
iterations consist of a single DBLADD; this uniformity may be enough to thwart some simple side-
channel attacks. The single iteration which does not use a DBLADD requires a separate DBL and ADD,
and this slightly slower step can appear at different stages of the algorithm. The location of this
longer step could leak some information to a side-channel adversary under some circumstances, but
we can protect against this by replacing all of the DBLADDs with separate DBL and ADDs, incurring a
very minor performance penalty. A more serious drawback for this chain is its variable length: the
total number of iterations depends on the input multiscalar. This destroys any hope of achieving
a runtime that is independent of the input. Nevertheless, depending on the physical threat model,
this chain may still be a suitable alternative. Our implementation of this chain follows Algorithm
1 in [1].
11 We implemented the binary version of Montgomery’s two-dimensional Prac chain, neglecting the

ternary steps in [25, Table 4] (see also [35, Table 3.1]). Including these ternary steps could be significantly
faster than our implementation, though it would require fast explicit formulæ for tripling on Montgomery
curves.

12 In practice d is very small, so there is little benefit in using a more complicated chain for this final step.



Djb Chains. Bernstein gives the fastest known two-dimensional differential chain that is both
fixed length and uniform [4, §4]. This chain is slightly slower than the Prac and Ak chains,
but it offers stronger resistance against many side-channel attacks.13 If the multiscalar (a, b) has
bitlength ℓ, then this chain requires precisely ℓ − 1 iterations, each of which computes one ADD

and one DBLADD. In our context, Theorem 1 allows us to fix the number of iterations at 127. The
execution pattern of the multiexponentiation is therefore independent of the input, and will run
in constant time. It takes some work to organise the description in [4] into a concrete algorithm;
we give an algorithm specific to our chosen curve in Appendix C.

Operation Counts. Table 1 profiles the number of high-level operations required by each of our
addition chain implementations on E . We used the decomposition in Theorem 1 to guarantee
positive constant-bitlength multiscalars. In situations where side-channel resistance is not a
priority, and the Ak or Prac chain is preferable, variable-length decompositions could be used:
these would give lower operation counts and slightly faster average timings.

Table 1. Pseudo-group operation counts per scalar multiplication on the x-line for the 2-dimensional
Djb, Ak and Prac chains (using endomorphism decompositions) and the 1-dimensional Ladder. The
counts for Ladder and Djb are exact; those for Prac and Ak are averages, with corresponding standard
deviations, over 106 random trials (random scalars and points). In addition to the operations listed here,
each chain requires a final Fp2 -inversion to convert the result into affine form.

chain dim. endomorphisms #DBL #ADD #DBLADD

ψx, (ψ ± 1)x av. std. dev. av. std. dev. av. std. dev.

Ladder 1 — 1 — — — 253 —
Djb 2 affine 1 — 128 — 127 —
Ak 2 affine 1 — 1 — 179.6 6.7

Prac 2 projective 0.2 0.4 113.8 11.6 73.4 11.1

The Ladder and Djb chains offer some slightly faster high-level operations. In these chains,
the “difference elements” fed into the ADDs are fixed; if these points are affine, then this saves
one Fp2-multiplication for each ADD. In Ladder, the difference is always the affine x(P ), so these
savings come for free. In Djb, the difference is always one of the four values x(P ), ψx(x(P )),
or (ψ ± 1)x(x(P )), so a shared inversion is used to convert ψx(x(P )) and (ψ ± 1)x(x(P )) from
projective to affine coordinates. While this costs one Fp2-inversion and six-Fp2 multiplications, it
saves 253 Fp2 -inversions inside the loop.

6 Timings

Table 2 lists cycle counts for our implementations run on an Intel Core i7-3520M (Ivy Bridge)
processor at 2893.484 MHz with hyper-threading turned off, over-clocking (“turbo-boost”)
disabled, and all-but-one of the cores switched off in BIOS. The implementations were compiled
with gcc 4.6.3 with the -O2 flag set and tested on a 64-bit Linux environment. Cycles were counted
using the SUPERCOP toolkit [9].

The most meaningful comparison that we can draw is with Bernstein’s Curve25519 software.
Like our software, Curve25519 works entirely on the x-line, from start to finish; using the uniform
one-dimensional Montgomery ladder, it runs in constant time. Thus, fair performance comparisons
can only be made between his implementation and the two of ours that are also both uniform
and constant-time: Ladder and Djb. Benchmarked on our hardware with all settings as above,
Curve25519 scalar multiplications ran in 182,000 cycles on average. Looking at Table 2, we see that
using the one-dimensional Ladder on the x-line of E gives a factor 1.14 speed up over Curve25519,

13 It would be interesting to implement our techniques with Bernstein’s non-uniform two-dimensional
extended-gcd differential addition chain [4], which can outperform Prac (though it “takes more time
to compute and is not easy to analyse”).



Table 2. Performance timings for four different implementations of compact, x-coordinate-only scalar
multiplications targeting the 128-bit security level. Timings are given for the one-dimensional Montgomery
Ladder, as well as the two-dimensional chains (Djb, Ak and Prac) that benefit from the application of
an endomorphism and subsequent short scalar decompositions.

addition chain dimension uniform? constant time? cycles

Ladder 1 ✓ ✓ 159,000

Djb 2 ✓ ✓ 148,000

Ak 2 ✓ ✗ 133,000

Prac 2 ✗ ✗ 109,000

while combining an endomorphism with the two-dimensional Djb chain on the x-line of E gives a
factor 1.23 speed up over Curve25519.

While there are several other implementations targeting the 128-bit security level that give
faster performance numbers than ours, we reiterate that our aim was to push the boundary in the
arena of x-coordinate-only implementations.

Hamburg [19] has also documented a fast software implementation employing x-coordinate-only
Montgomery arithmetic. However, it is difficult to compare Hamburg’s software with ours: his is not
available to be benchmarked, and his figures were obtained on the Sandy Bridge architecture (and
manually scaled back to compensate for turbo-boost being enabled). Nevertheless, Hamburg’s
own comparison with Curve25519 suggests that a fair comparison between our constant-time
implementations and his would be close.

Acknowledgements We thank Joppe W. Bos for independently benchmarking our code on his
computer. The second author acknowledges that the notes of Appendix A grew from discussions
with Joppe W. Bos on an earlier work [11].
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A Efficient Arithmetic in Fp and Fp2

We access lower level integer arithmetic for efficient addition, subtraction, multiplication and
squaring operations in Fp and Fp2 where p = 2127 − 1, see §2. At this level, elements of Fp are
represented by integer values in the usual way, with the exception that the representation of 0
is not unique: 0 is allowed to be represented in “semi-reduced” form by the integers 0 and p.
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Semi-reduced values can be used in any chain of operations without causing an exception, since
all of our algorithms are designed to accept inputs and produce outputs in the interval [0, p].
The implementor should reduce each output into the range [0, p) at the very end of the target
computation, in order to satisfy unique representation field elements. This type of arithmetic
has already been exploited in earlier works, such as [11], but a thorough exposition has not yet
appeared.

We will be frequently referring back to the divisibility lemma of integers.

Lemma 1. Let u, v ∈ Z with v > 0. Then there exist unique q, r ∈ Z such that u = r + qv and
0 ≤ r < v. In particular, q = ⌊u/v⌋ and r = u− ⌊u/v⌋v where ⌊.⌋ is the floor function.

In what follows, the “mod 2128” and “mod 2256” operators, are included (even though they
are often unnecessary) to reinforce the fact that all arithmetic operations are being performed on an
unsigned integer arithmetic circuit over a 128-bit data type. We let ki denote the ith significant bit
of an integer k and use (ki, . . . , kj) to denote the integer formed by the bit-string that starts with
ki, continues with bits in order of increasing significance, and ends with kj (with 0 ≤ i ≤ j ≤ 127).
Although it is possible to provide much shorter arguments for sections A.1-5, we prefer to keep
the notes in longer format in order to assist easier verification.

It should be noted that all of the techniques in this section avoid branching. This is highly
desirable for an efficient implementation, especially on an architecture with pipelining capability.

A.1 Semi-reduced Addition modulo p

The operation (a+ b) mod p is replaced by Algorithm 1.

Input: a, b ∈ Z such that 0 ≤ a, b ≤ p.

Output: f ∈ Z such that f ≡ (a+ b) (mod p) and 0 ≤ f ≤ p.

c := (a+ b) mod 2128;1

d := (c0, c1, . . . , c126), e := (c127);2

f := (d+ e) mod 2128;3

return f ;4

Algorithm 1: Semi-reduced addition modulo p

– Line-1: Notice that 0 ≤ c = a+ b ≤ 2p < 2128.
– Line-2: Use Lemma 1 to write c = d + 2127e for integers 0 ≤ d < 2127 and e. There are two

cases to investigate:
• Case 1: Assume that a+ b ≤ p. The bounds on c and d imply that

⌊

0/2127
⌋

≤
⌊

c/2127
⌋

=
⌊

(d+ 2127e)/2127
⌋

=
⌊

d/2127
⌋

+
⌊

2127e/2127
⌋

= e ≤
⌊

p/2127
⌋

, so e = 0. Thus a + b ≡
d+ 2127e ≡ d+ 2127 · 0 ≡ d+ 0 ≡ d+ e (mod p).

• Case 2: Assume that a + b > p. Then p < c ≤ 2p. The bounds on c and d imply that
⌊

(p+ 1)/2127
⌋

≤ e ≤
⌊

2p/2127
⌋

, so e = 1. The bounds on c also imply that p − 2127 <
c − 2127 ≤ 2p − 2127 and we have d = c − 2127e = c − 2127, so 0 ≤ d < p. Thus a + b ≡
d+ 2127e ≡ d+ 2127 · 1 ≡ d+ 1 ≡ d+ e (mod p).

– Line-3: A semi-reduced output is given by f := (d+ e) mod 2128, observing that 0 ≤ f ≤ p.

A.2 Semi-reduced Subtraction modulo p

The operation (a− b) mod p is replaced by Algorithm 2.

– Line-1: Notice that 0 ≤ c < 2128.



Input: a, b ∈ Z such that 0 ≤ a, b ≤ p.

Output: f ∈ Z such that f ≡ (a− b) (mod p) and 0 ≤ f ≤ p.

c := (a− b) mod 2128;1

d := (c0, c1, . . . , c126), e := (c127);2

f := (d− e) mod 2128;3

return f ;4

Algorithm 2: Semi-reduced subtraction modulo p

– Line-2: Use Lemma 1 to write c = d + 2127e for integers 0 ≤ d < 2127 and e. There are two
cases to investigate:
• Case 1: Assume that a ≥ b. Then 0 ≤ c = a − b ≤ p. The bounds on c and d imply

that
⌊

0/2127
⌋

≤
⌊

c/2127
⌋

=
⌊

(d+ 2127e)/2127
⌋

= e ≤
⌊

p/2127
⌋

, so e = 0. Thus a − b ≡
d+ 2127e ≡ d− e (mod p).

• Case 2: Assume that a < b. Then c = 2128 +a− b and −p ≤ a− b < 0. So, 2127 < c < 2128.
The bounds on c and d imply that

⌊

(2127 + 1)/2127
⌋

≤ e ≤
⌊

(2128 − 1)/2127
⌋

, so e = 1.
The bounds on c also imply that 2127 − 2127 < c − 2127 < 2128 − 2127, and we have
d = c − 2127e = c − 2127. So, 0 < d ≤ p and d ≥ e. Thus a − b ≡ (2128 + a − b) − 2128 ≡
c− 2128 ≡ d+ 2127e− 2128 ≡ d− e (mod p).

Line-3: A semi-reduced output is given by f := (d− e) mod 2128, observing that 0 ≤ f ≤ p.

A.3 Semi-reduced Multiplication modulo p

The operation (ab) mod p is replaced by Algorithm 3.

Input: a, b ∈ Z such that 0 ≤ a, b ≤ p.

Output: f ∈ Z such that f ≡ (ab) (mod p) and 0 ≤ f ≤ p.

c := (ab) mod 2256;1

d := (c0, c1, . . . , c126), e := (c127, c128, . . . , c253);2

f := semi-add(d, e);3

return f ;4

Algorithm 3: Semi-reduced multiplication modulo p

– Line-1: Notice that 0 ≤ c = ab ≤ p2 < 2256.
– Line-2: Use Lemma 1 to write c = d + 2127e for integers 0 ≤ d < 2127 and e. The bounds on
c and d imply that

⌊

0/2127
⌋

≤
⌊

c/2127
⌋

=
⌊

(d+ 2127e)/2127
⌋

= e ≤
⌊

p2/2127
⌋

, so 0 ≤ e < p.
– Line-3: Noting that ab ≡ d+ 2127e ≡ d+ (2127 − 1)e+ e ≡ d+ pe+ e ≡ d+ e (mod p), that

0 ≤ d, e ≤ p, and that 0 ≤ d + e ≤ 2p, a semi-reduced output is obtained by Algorithm 1
applied on the operands d and e.

A.4 Lazy Semi-reduction modulo p following a Double-Word Addition

The lazy reduction (ab̂+ âb) mod p is replaced by Algorithm 4.

– Line-1: Notice that 0 ≤ c = ab̂+ âb ≤ 2p2 < 2256.
– Line-2: Use Lemma 1 to write c = d + 2127(e + 2127f) for integers 0 ≤ d, e < 2127 and f .

There are two cases to investigate:



Input: a, â, b, b̂ ∈ Z such that 0 ≤ a, â, b, b̂ ≤ p.

Output: h ∈ Z such that h ≡ (ab̂+ âb) (mod p) and 0 ≤ h ≤ p.

c := (ab̂+ âb) mod 2256;1

d := (c0, c1, . . . , c126), e := (c127, c128, . . . , c253), f := (c254);2

g := (e+ f) mod 2128;3

h := semi-add(d, g);4

return h;5

Algorithm 4: Lazy semi-reduction modulo p following a double-word addition

• Case 1: Assume that ab̂ + âb < (p + 1)2. Then 0 ≤ c < (p + 1)2. The bounds on c,
d, and e imply that

⌊

0/(2127)2
⌋

≤
⌊

c/(2127)2
⌋

=
⌊

(d+ 2127e+ (2127)2f)/(2127)2
⌋

= f ≤
⌊

((p+ 1)2 − 1)/(2127)2
⌋

, so f = 0. Thus ab̂+âb ≡ d+2127(e+2127f) ≡ d+2127(e+2127·0) ≡
d+ 2127(e+ 0) ≡ d+ 2127(e+ f) (mod p) and 0 ≤ e+ f < p.

• Case 2: Assume that ab̂ + âb ≥ (p + 1)2. Then (p + 1)2 ≤ c ≤ 2p2. The bounds on c,
d, and e imply that

⌊

(p+ 1)2/(2127)2
⌋

≤ f ≤
⌊

2p2/(2127)2
⌋

, so f = 1. The bounds on c
also imply that (p+ 1)2 − (2127)2 ≤ c− (2127)2 ≤ 2p2 − (2127)2, and we have d+ 2127e =
c − (2127)2f = c − (2127)2. So, 0 ≤ d + 2127e ≤ ((p − 1)2 − 2). The bounds on d + 2127e
imply that

⌊

0/2127
⌋

≤
⌊

(d+ 2127e)/2127
⌋

≤
⌊

((p− 1)2 − 2)/2127
⌋

, so 0 ≤ e < (p−2). Thus

ab̂ + âb ≡ d + 2127(e+ 2127f) ≡ d + 2127(e+ 2127 · 1) ≡ d + 2127(e + 1) ≡ d+ 2127(e+ f)
(mod p) and 0 ≤ e+ f < p.

– Line-3: Set g := (e+ f) mod 2128 where 0 ≤ g ≤ p.
– Line-4: Noting that d + 2127(e + 2127f) ≡ d + 2127g ≡ d + g (mod p), that 0 ≤ d, g ≤ p,

and that 0 ≤ d + g ≤ 2p, a semi-reduced output is obtained by Algorithm 1 applied on the
operands d and g.

A.5 Lazy Semi-reduction modulo p following a Double-Word Subtraction

The lazy reduction (ab− âb̂) mod p is replaced by Algorithm 5.

Input: a, â, b, b̂ ∈ Z such that 0 ≤ a, â, b, b̂ ≤ p.

Output: h ∈ Z such that h ≡ (ab− âb̂) (mod p) and 0 ≤ h ≤ p.

c := (ab− âb̂) mod 2256;1

d := (c0, c1, . . . , c126), e := (c127, c128, . . . , c253), f := (c254), g := (c255);2

h := (e− f) mod 2128;3

j := semi-add(d, g);4

return j;5

Algorithm 5: Lazy semi-reduction modulo p following a double-word subtraction

– Line-1: Notice that 0 ≤ c < 2256.
– Line-2: Use Lemma 1 to write c = d + 2127(e + 2127(f + 2g)) for integers 0 ≤ d, e < 2127,

0 ≤ f < 2, and g. There are two cases to investigate:
• Case 1: Assume that ab ≥ âb̂. Then 0 ≤ c = ab − âb̂ ≤ p2. The bounds on c, d, e

and f imply that
⌊

0/(2127)2
⌋

≤
⌊

c/(2127)2
⌋

=
⌊

(d+ 2127e+ (2127)2(f + 2g))/(2127)2
⌋

=

f +2g ≤
⌊

p2/(2127)2
⌋

; that is f +2g = 0. So, f = g = 0. Thus d+2127(e+2127(f +2g)) ≡
d+ 2127(e+ 2127 · 0) ≡ d+ 2127(e− 0) ≡ d+ 2127(e− f) (mod p).

• Case 2: Assume that ab < âb̂. Then c = 2256 + ab − âb̂ and −p2 ≤ ab − âb̂ < 0. So,
2256 − p2 ≤ c < 2256. As in the previous case, the bounds on c, d, e and f imply that



⌊

(2256 − p2)/(2127)2
⌋

≤ f + 2g ≤
⌊

(2256 − 1)/(2127)2
⌋

, so f + 2g = 3 and f = g = 1.
The bounds on c also imply that 2256 − p2 − 3(2127)2 = 2128 − 1 ≤ c − 3(2127)2 < 2256 −
3(2127)2 and we also have d + 2127e = c − (2127)2(f + 2g) = c − 3(2127)2. So, 2128 − 1 ≤
d + 2127e. The bounds on d + 2127e imply that

⌊

(2128 − 1)/2127
⌋

≤
⌊

(d+ 2127e)/2127
⌋

<
⌊

(2256 − 3(2127)2)/2127
⌋

= 2127, so 1 ≤ e < 2127 and e ≥ f . Thus

ab− âb̂ ≡ (2256 + ab− âb̂) − 2256 = c− 2256 ≡ c− 4

≡ d+ 2127(e+ 2127(f + 2g)) − 4

≡ d+ 2127(e+ 2127(1 + 2 · 1)) − 4

≡ d+ 2127(e− 1) ≡ d+ 2127(e− f) (mod p).

– Line-3: Set h := (e− f) mod 2128 where 0 ≤ h ≤ p.
– Line-4: Noting that d+2127(e+2127(f +2g)) ≡ d+2127h ≡ d+h (mod p), that 0 ≤ d, h ≤ p,

and that 0 ≤ d + h ≤ 2p, a semi-reduced output is obtained by Algorithm 1 applied on the
operands d and h.

A.6 Addition and Subtraction in Fp2

Let a, â, b, b̂ ∈ Z and 0 ≤ a, â, b, b̂ ≤ p. We use the obvious method which computes (a+ âi)+ (b+

b̂i) as ((a + b) mod p) + ((â + b̂) mod p)i. Both modular additions are replaced by Algorithm 1.
Analogous comments apply for the case of subtraction which uses Algorithm 2.

A.7 Multiplication in Fp2

Let a, â, b, b̂ ∈ Z and 0 ≤ a, â, b, b̂ ≤ p. On the target architecture, we experienced the best
performance for computing (a + âi)(b + b̂i) by coupling a Karatsuba-based operation scheduling
with two lazy reductions. This computes the product as

(

(ab− âb̂) mod p
)

+
(

[

(a+ â)(b+ b̂) − ab− âb̂
]

mod p
)

i.

The routine starts with two integer additions t0 := a + â and t1 := b + b̂ satisfying 0 ≤ t0, t1 <
(2128 − 1). The routine continues with the 3 integer multiplications t2 := t0t1, t3 := ab and

t4 := âb̂ satisfying 0 ≤ t2 ≤ (2128 − 2)2 < 2256 and 0 ≤ t3, t4 ≤ (2127 − 1)2 < 2254. Since
t2 > t3 and (t2 − t3) > t4, the integer value t5 := (t2 − t3) − t4 is positive and satisfies both

0 ≤ t5 ≤ 2p2 < 2255 and t5 = ab̂ + âb. The reduction of t5 is performed as in Algorithm 4. The
reduction of t6 := (t3 − t4) mod 2256 is performed as in Algorithm 5.

A.8 Squaring in Fp2

Let a, â, b, b̂ ∈ Z and 0 ≤ a, â, b, b̂ ≤ p. On the target architecture, we experienced that a lazy semi-
reduction strategy gives the same timings as the (non-lazy) semi-reduction strategy for computing
(a+ âi)2 =

(

(a− â)(a+ â)
)

+
(

2aâ
)

i.

A.9 Other Operations in Fp2

Many other Fp2 operations can be efficiently performed by Fp arithmetic only. For instance,
negation can be performed as −a = (0 − a) + (0 − â)i, p-th powering as ap = a + (0 − â)i,
and inversion as a−1 = a(a2 + â2)p−2 + (0 − â(a2 + â2)p−2)i – our Fp2-inversion implementation
incurs 128 Fp-squarings, 12 Fp-multiplications and 2 Fp-additions/subtractions.



B How was This Curve Chosen?

The curve-twist pair implemented in this paper was chosen from the family of degree-2 Q-curve
reductions with efficient endomorphisms (over Fp2) described in [33]. These curves are equipped
with efficient endomorphisms, and the arithmetic properties of the family are not incompatible
with twist-security.

We fixed p = 2127 − 1, a Mersenne prime; this p facilitates very fast modular arithmetic.
Next, we chose a tiny nonsquare to define Fp2 = Fp(i) with i2 = −1; this makes for slightly faster
Fp2 -arithmetic, and much simpler formulæ. The most secure group orders for a Montgomery curve-
twist pair (E , E ′) over Fp2 have the form (#E ,#E ′) = (4N, 8N ′) (or (8N, 4N ′)) with N and N ′

prime. The cofactor of 4 is forced by the existence of a Montgomery model, and then p2 ≡ 1
(mod 8) forces a cofactor of 8 on the twist.

The family in [33, §5] is parametrised by a free parameter s; each choice of s in Fp yields a
curve over Fp2 , each in a distinct Fp-isomorphism class. If the curve corresponding to s in Fp has
a Montgomery model E : BY 2 = X(X2 + AX + 1) over Fp2 , then 8/A2 = 1 + si. If we write
A = A0 +A1i with A0 and A1 in Fp, then

A4
0 + 2A2

0A
2
1 +A4

1 + 8(A2
1 − A2

0) = 0 . (5)

To optimise performance, we searched for parameter values s in Fp yielding Montgomery
representations with “small” coefficients: that is, where A0 and A1 could be represented as small
integers. But in view of Eq. (5), for any small value of A1 there are at most four corresponding
possibilities for A0, none of which have any reason to be small (and vice versa). Given the number
of curves to be searched to find a twist-secure pair, we could not expect to find a twist-secure curve
with both A0 and A1 small. Our Fp2 -arithmetic (described in Appendix A) placed no preference
on which of these two coefficients should be small, so we flipped a coin and restricted our search
to s yielding A1 with integer representations less than 232 (occupying only one word on 32- and
64-bit platforms). The constant appearing in Montgomery’s formulæ [24, p. 261] is (A + 2)/4, so
we also required the integer representation of A1 to be congruent to 2 modulo 4.

Our search prioritised A1 values whose integer representations had low signed Hamming weight,
in the hope that multiplication by A1 might be faster when computed via sequence of additions
and shifts. We did not find any curve-twist pairs with optimal cofactors and A1 of weight 1, 2, or
3, but we found ten such pairs with A1 of weight 4. Three of these pairs had an A1 of precisely
32 bits; the curve-twist pair in §2 corresponds to the smallest such A1. Although the low signed
Hamming weight of A1 did not end up improving our implementation, the small size of A1 yielded
a minor but noticeable speedup.

The takeaway message is that the construction in [33, §5] is flexible enough to find a vast
number of twist-secure curves over any quadratic extension field, to which all of the techniques
in this paper can be directly applied (or easily adapted), regardless of how the parameter search
is designed. Such curve-twist pairs can be readily found in a verifiably random manner, following,
for instance, the method described in [22, §5].

C Bernstein’s Uniform Two-Dimensional Differential Addition Chain

Algorithm 6 is a concrete adaptation of Bernstein’s addition chain [4, §4] to our curve E , following
the multiscalar decomposition described in §4. We use the usual formulæ (see [7]) for pseudo-
doubling, pseudo-addition, and for the combination of the two, writing their inputs and outputs
as follows. For pseudo-doubling, we write

x([2]R) = DBL(x(R)) ;

for pseudo-addition, we write

x(T ⊕ U) = ADD(x(T ), x(U), x(T ⊖ U)) ;



and for their combined computation, we write

x([2]R), x(R ⊕ S) = DBLADD(x(R), x(S), x(R ⊖ S)) .

The main iterations in the chain compute a DBLADD alongside a standalone ADD, so we denote
combined pseudo-doubling and pseudo-addition by

x([2]R), x(R ⊕ S), x(T ⊕ U) = DBLDBLADD(x(R), x(S), x(R ⊖ S), x(T ), x(U), x(T ⊖ U)) .

Input: a, b ∈ Z+ (both 128 bits - see Theorem 1),
and x(P ), x(Q), x(Q⊖ P ), x(Q⊕ P )
(four affine elements on the x-line, where Q = ψ(P ) on E)

Output: x([a]P ⊕ [b]ψ(P ))

initialization: (a)2 = (a127, . . . , a0) ∈ {0, 1}
128, (b)2 = (b127, . . . , b0) ∈ {0, 1}

128.1

z0, z1, z2, z3 ← (). /* z’s start as empty bit-sequences */2

if a0 ⊕ b0 = 1 then indfinal ← 2 else indfinal ← ∼ b0 end3

addfirst ← a0. /* addfirst ∈ {0, 1} */4

for i← 0 to 126 do /* z0, . . . z3 ∈ {0, 1}
127 at end of loop */5

â = ai ⊕ ai+1, b̂ = bi ⊕ bi+1, âb = â⊕ b̂.6

z0 ← âb||z0, z1 ← â||z1, z2 ← (ai+1 ⊕ bi+1)||z2, z3 ← addfirst||z3.7

addfirst ← â⊕ ((∼ âb)⊗ addfirst).8

end9

T0 = x(Q⊕ P ), T1 = DBL(T0)10

if addfirst = 1 then T2 ← ADD(x(Q), T0, x(P )) else T2 ← ADD(x(P ), T0, x(Q)) end11

for i← 0 to 126 do /* main loop */12

switch [z0,i, z1,i, z2,i, z3,i] do /* zj = (zj,0, . . . , zj,126) ∈ {0, 1}
127, j = 0, . . . 3 */13

case [0, 0, 0, 0] : T1, T0, T2 ← DBLADDADD(T1, T0, x(Q⊕ P ), T2, T1, x(Q)). case [0, 0, 0, 1] :14

T1, T0, T2 ← DBLADDADD(T1, T0, x(Q⊕ P ), T2, T1, x(P )). case [0, 0, 1, 0] :
T1, T0, T2 ← DBLADDADD(T1, T0, x(Q⊖ P ), T2, T1, x(Q)). case [0, 0, 1, 1] :
T1, T0, T2 ← DBLADDADD(T1, T0, x(Q⊖ P ), T2, T1, x(P )). case [0, 1, 0, 0] :
T1, T0, T2 ← DBLADDADD(T0, T1, x(Q⊕ P ), T2, T0, x(Q)). case [0, 1, 0, 1] :
T1, T0, T2 ← DBLADDADD(T0, T1, x(Q⊕ P ), T2, T0, x(P )). case [0, 1, 1, 0] :
T1, T0, T2 ← DBLADDADD(T0, T1, x(Q⊖ P ), T2, T0, x(Q)). case [0, 1, 1, 1] :
T1, T0, T2 ← DBLADDADD(T0, T1, x(Q⊖ P ), T2, T0, x(P )). case [1, 0, 0, 0] :
T1, T2, T0 ← DBLADDADD(T2, T1, x(Q), T0, T1, x(Q⊕ P )). case [1, 0, 0, 1] :
T1, T2, T0 ← DBLADDADD(T2, T0, x(P ), T0, T1, x(Q⊕ P )). case [1, 0, 1, 0] :
T1, T2, T0 ← DBLADDADD(T2, T1, x(Q), T0, T1, x(Q⊖ P )). case [1, 0, 1, 1] :
T1, T2, T0 ← DBLADDADD(T2, T0, x(P ), T0, T1, x(Q⊖ P )). case [1, 1, 0, 0] :
T1, T2, T0 ← DBLADDADD(T2, T0, x(Q), T0, T1, x(Q⊕ P )). case [1, 1, 0, 1] :
T1, T2, T0 ← DBLADDADD(T2, T1, x(P ), T0, T1, x(Q⊕ P )). case [1, 1, 1, 0] :
T1, T2, T0 ← DBLADDADD(T2, T0, x(Q), T0, T1, x(Q⊖ P )). case [1, 1, 1, 1] :
T1, T2, T0 ← DBLADDADD(T2, T1, x(P ), T0, T1, x(Q⊖ P )).

end15

end16

return Tindfinal
.17

Algorithm 6: Bernstein’s uniform 2-D chain, tailored to the curve in §2.

The chain is determined in its entirety using only bit operations before any arithmetic is done
on the x-line (the symbols ⊕ and ⊖ denote bit operations in Lines 3-9 of Algorithm 2, but curve
operations everywhere else).

Observe that the associated differences in pseudo-additions are always one of the four affine
input points x(P ), x(Q), x(P ⊖ Q), or x(P ⊕ Q). On the other hand, the three running values
T0 = (X0 : Z0), T1 = (X1 : Z1) and T2 = (X2 : Z2) are projective. Thus, the final step (which
chooses one of the three running values to output) will involve an Fp2 -inversion to output Tindfinal

in affine form.
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