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passwords, for identifying the end points to each other. But what can be obtained when
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Clearly, when there is no pre-existing credential infrastructure, an adversary can mount
successful “man in the middle” attacks by modifying the communication between the
legitimate endpoints. Still, we show that not all is lost, as long as the adversary’s control
over the communication is not complete: We present relatively efficient key exchange
and secure session protocols that provide the full guarantee of secure communication
as long as the adversary fails to intercept even a single message between the legitimate
endpoints.
To obtain this guarantee we strengthen the notion of key exchange to require that the
keys exchanged in any two sessions are independent of each other as long as each ses-
sion has at least one honest endpoint, even if both sessions has an adversarial endpoint.
We call this notion credential-free key exchange. We then strengthen the existing no-
tion of secure session protocols to provide the above guarantee given a CFKE (existing
definitions and constructions are insufficient for this purpose). We provide two alterna-
tive definitions and constructions of CFKE, a game-based one with a construction in the
RO model, and a UC one with a construction in the CRS model.
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1 Introduction

Secure communication over adversary-controlled channels is one of the most widely and frequently
used achievements of cryptography. The standard approach to secure communication involves two
steps. First, the two conversing parties A and B securely establish a session key, and second, they
use the key to encrypt and authenticate the exchanged messages. The first step, key exchange (KE),
ensures that only authorized players are able to successfully compute the keys. This guarantee holds
even if the adversary is capable of complete control of the channel, including arbitrary message ob-
servation, alteration and scheduling.

Traditionally, the ability of communicating parties to authenticate themselves almost always re-
quires possession of secrets, and corresponding authorization architectures and protocols employ
some kind of infrastructure, which manages these secrets. Common examples include Public Key
Infrastructure (PKI), shared long term private keys, and human memorizable passwords.

In this work, we focus on efficiently achieving a strong security guarantee for the problems of key
exchange and secure sessions in the credential-free setting.

Practical need for authentication without credentials. While trusted infrastructure aids greatly in
certifying the identities, capabilities or permissions of communicating paties, its heavy cost is not
justified in many non-security-critical applications. In some cases, there may not be an authority who
is qualified or trusted to operate the infrastructure and issue credentials. Some applications may use
infrastructure opportunistically and use PKI when available, but may fall back on weak authentication
without credentials. In yet other scenarios, such as ad-hoc peer-to-peer information sharing networks,
it is not required to associate a network entity with a real-life entity, but rather there is a need to ensure
the persistence of the connection.

The practical importance of the problem has led to a rich body of network security research.
Several techniques of weak authentication have emerged, were standardized, and successfully widely
deployed. Our work is a more formal approach that achieves much stronger security.

1.1 The Setting and Our Contributions

In our setting, two parties A and B have decided to have a communication session over an insecure
channel. A and B do not share any information other than which channel to use for communication,
and possibly a global public reference string. The decision itself may have been made in an insecure
way; for example, A may have really been invited by an adversary Adv rather than by B. As there
is no infrastructure to support authentication, Adv may falsely claim any identity. The channel A and
B will use for their session may also be controlled by Adv, who can read from it and write to it at
will. Without credentials, we have no hope of preventing Adv falsely taking another player’s identity
or playing man-in-the-middle (MIM).

Motivated by today’s networking architectures (e.g., the difficulty of the adversary to always be
an active MIM), we present a candidate for what we believe is the “next best” achievable security
guarantee in this setting. Namely, we require that the adversary must remain continuously active on
the channel throughout the entire session to avoid detection.

We formalize this by proposing new definitions of KE and secure sessions, which, when com-
bined, guarantee the above property (see Sect. 5.1). Our definitional approach is as follows. In the KE
preceeding the communication, either the exchanged key is hidden from Adv, or, if the adversary is
playing MIM betweenA andB, thenA andB will output keys that are random and independent from
each other,and the adversary’s view contains no secrets about these keys. We model this by requiring
the view of the adversary to be simulatable given the outputs of the parties. We identify and formalize
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a security property of secure session protocols, which we call MIM-integrity, which ensures that the
MIM-adversary must remain continuously active on the channel throughout the entire session to avoid
detection. We show that combining above KE and secure sessions guarantees secure communication
in the above sense. In this work we:
1. Present definitions of secure credential-free key exchange (CFKE) in the standalone and univer-

sally composable (UC) [Can00] settings. Our definitions guarantee that if two parties participate
in a CFKE protocol, they either output the same key which is completely hidden from the ad-
versary, or output two keys that are uniformly random given the transcript of the view of the
adversary.

2. Present simple definitions of secure credential-free secure sessions (CFSS), which, in addition
to the standard security properties, guarantee that MIM must be continuously active to avoid
detection.

3. We show that composing any CFKE and CFSS results in secure communication in the credential-
free setting. We also show that, in contrast, session protocols, even those standardized by the
Internet bodies, are insecure in our setting.

4. Describe a construction of a CFKE protocol in the standalone model with a global common
reference string (CRS), and prove its security in the standard model. We then show how to
construct a secure session with a new integrity property (MIM-integrity) that guarantees that an
adversary must modify every message in transit from A to B or be detected.

5. Analyze two existing KE protocols: we show that the well known hashed Diffie-Hellman proto-
col satisfies a variant of our standalone definition in the random oracle model. We additionally
compare our standalone protocol to the instantiation of our UC definition using the construction
of [BCL+05], and show that it provides a useful tradeoff in settings with high latency, where
low round complexity is crucial.

1.2 Intuition for Our Constructions

CFKE. The key difference between a CFKE protocol and an unauthenticated key exchange (such as
the basic Diffie-Hellman protocol) is that neither party should be able to influence the outcome too
much. This is necessary to achieve independence of keys in the man-in-the-middle scenario.

A naive CFKE approach may be to use a coin toss protocol as a black box, and simply encrypt its
messages. However, there is no key infrastructure that would allow A and B to encrypt! Indeed, the
whole purpose of CFKE is to attempt to establish such an infrastructure. Moreover, simply exchanging
public keys to be used for encryption won’t work since the adversary may be able to replace (or
modify) the public keys on the way, stripping the coin toss protocol from any privacy. This leads us
to the following intuitive observation: any cryptographic keys that are sent across the channel and are
used for the security of KE, must be strongly tied to the randomness used to generate the final key.

Overview of the construction. Our credential-free key exchange protocol is symmetric, and con-
sists of two rounds whereA andB simultaneously send messages to each other. It proceeds as follows:

1. A andB generate and announce public keys, and commit to the public keys together with random
nonces. Here the commitment must have strong non-malleability properties (which we identify
and formally define).

2. Using the public keys announced in the first round, A and B send to each other encrypted decom-
mitment strings for the commitments they announced in the first round.

3. A and B use the decommitment strings to obtain each other’s nonces, and output their exclusive-
OR.
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Relying on the non-malleability property of the commitment scheme, we get that no adversary can
modify either A’s public key or her nonce, without changing the other (similarly for B). Moreover,
since the nonce is hidden by the commitment, the adversary is unable to commit to a related nonce, if
she decides to modify the public key. On the other hand, if she leaves the public key untouched, she
will not be able to learn B’s decommitment when he sends it in the next round.

Using CFKE for communication. CFKE can be used to construct secure session protocols with
security against MIM-adversaries. We show that the following is a secure credential-free secure ses-
sion (CFSS): a secure session protocol in the traditional sense, where additionally the sender sim-
ply attaches to each message, in the clear, a dedicated part of the secret key. That is, if A’s key is
KA = (KA,1,KA,2), then KA,1 is used for the underlying secure session protocol, and KA,2 is at-
tached as an authenticator to each message. Now, whenB receives a message fromAwith an attached
authenticator KA,2, he checks if KA,2 = KB,2, and aborts if the check fails. It is easy to see that any
adversary that does not change the authenticator on each message will be caught as soon as a single
message is transmitted directly.

1.3 Discussion

Password-authenticated key exchange (PAKE) [BM92,KOY01,GL01,GL03,CHK+05,KV11,CDSVW12],
when executed with fixed publicly known password, achieves guarantees somewhat similar to those
of CFKE, and at the first glance may seem sufficient for our task. There are, however, important
differences between CFKE and PAKE, which render PAKE inapplicable to our setting.

Firstly, the definitional approach to PAKE fundamentally differs from our approach: a successful
Adv in PAKE may be able to fix the output key to an arbitrary value, which would render such KE
useless for CFSS (indeed, MIM Adv can set the two players’ key to be equal and known to him, and
thus break the CFSS protection).

Beyond just definitions, many natural PAKE protocols in fact do allow a player to set the session
key (and, to our knowledge, no protocols prove otherwise). Indeed, such a PAKE can be easily con-
structed from any secure PAKE by adding a round where the successfully authenticated players (now
presumed honest by PAKE definitions) are allowed to set the session key to anything of their choice.

More importantly, many existing protocols from the literature, e.g., of Canetti et al. [CDSVW12]
have the above feature. We stress that it is a natural property of their approach; provably avoiding it
would complicate their construction and would require a new definition and a proof. In [CDSVW12],
UC-secure PAKE is built from Oblivious Transfer (OT), roughly as follows: the two players run
several OT instances, where the secrets are randomly chosen strings, and the password defines the
selection bits. The session key of OT receiver is the XOR of the received secrets, and OT sender’s key
is the XOR of the secrets corresponding to his password. It is easy to see that in the above PAKE, the
OT sender can set the session key to any string of his choice. We note that the above PAKE OT idea is
the basis for two constructions of [CDSVW12], and in both of them the property of OT sender being
able to set the key is preserved.

Practical Impact of MIM-Integrity. Despite seeming simplicity, MIM-integrity is a subtle concept
and can be violated by seemingly secure natural protocols. Consider a session protocol where players
periodically refresh the session key. Typically, one player chooses a nonce n, and each player up-
dates his key sk to PRFsk(n). One prominent example of such a protocol is in EAP-TLS [ALE09].
This refresh is a frequently employed “best security practice”, which aims to limit the amount of
ciphertext an adversary can collect to attack the underlying encryption. However, CFSS using above
security heuristic is completely insecure, as, since AES is invertible, MIM Adv can choose nonces
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nA, nB which would set the refreshed keys KA = KB , allowing the adversary to withdraw and only
occasionally interfere with communication when needed.

Open directions. The main open direction left by our work is to design new secure session protocols
and notions of security against MIM adversaries that rely on other (possibly weaker or incomparable)
properties of networks in practice. For example, one may be able to design secure sessions that always
detect a MIM adversary assuming network delay, or that messages are sent in pieces and that an
adversary is unable to predict future content (this idea was used in the Interlock protocol [RS84]).
We believe that our notion (and constructions) of CFKE can be used as a formal basis for such future
explorations.

1.4 Related Work

The problem of unauthenticated secure communication over insecure channels traces back to the
work of Dolev, Dwork, and Naor in [DDN91]. They introduced the non-malleability guarantee: any
adversary controlling the channel between two parties either remains essentially passive, or is forced
to run two independent instances of the protocol, one with each honest party. The study of non-
malleability has led to a rich body of research that can be roughly classified according to two types of
constructions: constructions of specific non-malleable primitives such as encryption, zero-knowledge
proof systems, commitments, etc; and non-malleable “meta-protocols” that are used to establish per-
session infrastructures. These include non-malleable coin tossing [Bar02], establishing a public key
infrastructure [BCL+05], and a shared secret key infrastructure [CCGS10]. Such protocols can then
provide setup for the protocols that need it.

Barak [Bar02] defines and constructs non-malleable coin tossing protocols, where two parties
wish to agree on an almost unbiased public random string in the presence of MIM adversary. This coin
tossing guarantees that an adversary must either allow the players to output the same random string,
or cause them to output two separate and independently generated random strings. The protocols of
[Bar02] work without any infrastructure, but provide no privacy guarantee (the outcome of the coin
toss is always known to the adversary).

In [BCL+05] Barak et al. define split functionalities – a variant of ideal functionalities of the UC
framework. Split functionalities allow an adversary to partition the set of honest parties P into disjoint
“authentication sets”. The idea is that all parties within each setHi ⊆ P have successfully established
an authenticated session. The adversary is then unable to impersonate any party in Hi to any other
party inHi, but can impersonate any party in P \Hi to any party inHi. Since the adversary determines
the authenticated sets, this allows her, for example, to set all authenticated sets to be singletons, in
which case no authenticated communication between honest parties is possible. This indeed seems
unavoidable since the adversary has complete control over the communication channels. Camenisch
et al. [CCGS10] define, among other things, split key exchange and give a construction based on the
decisional Diffie-Hellman assumption.

Our non-malleable KE can be built from split functionalities and coin toss. Indeed, coin-toss
whose output is hidden from Adv is easily achieved assuming secure channels (e.g., Blum’s protocol
with a UC-commitment suffices). Then, applying the compilers of [BCL+05] or [CCGS10] to such
secret coin toss functionality guarantees that either key is hidden from Adv (Adv chose to interact with
a single ideal functionality that issues keys secretly to the two honest parties), or that Adv knows both
independent keys (Adv interacts with two separate functionalities, playing the role of an honest party
in each one). Using the recent commitment protocol of Lindell [Lin11b], the resulting KE protocol
requires seven rounds of communication, and sending of a constant number of group elements.
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2 Preliminaries

Notation. We write PPT to denote Probabilistic Polynomial Time. When we wish to fix the random
bits of a PPT algorithmM to a particular value, we writeM(x; r) to denote runningM on input x and
randomness r. We write timen(M) to denote the running time of algorithm M on security parameter
n. We use x ∈R S to denote the fact that x is sampled according to a distribution S. Similarly, when
describing an algorithm we may write x ←R S to denote the action of sampling an element from S
and storing it in a variable x.

Discrete Logarithm Assumption. Let G be a probabilistic group generator such that G ←R G(1n)
is a group of order p where p is a prime of length about n bits. The Discrete Logarithm assumption
for G is that given G, g, gx, where G←R G(1n), g ∈R G, x ∈R Zp, it is infeasible to find x.

Non-Malleable Public Key Encryption (PKE). Let PKE = 〈KeyGen,Enc,Dec〉 be a public key
encryption scheme. We say thatPKE is non-malleable if no adversary can distinguish the encryptions
of two messages of her choice, even if she is allowed to make a single decryption query after seeing
the challenge ciphertext C∗. The decryption query is of course restricted to all strings that are not
equal to C∗.

Target Collision Resistant Hash Functions. A family H = {Hk}k∈{0,1}∗ of hash functions is
target collision resistant if no efficient adversary can win the following game: (i) the adversary selects
a target input x; (ii) a random key k ∈R {0, 1}n is chosen; (iii) the adversary is given k and must
output another input y such that Hk(x) = Hk(y).

3 Definition of Secure Key Exchange Without Credentials

We start with a syntactic definition of a credential-free key exchange (CFKE) protocol. A CFKE
protocol is a triple CFKE = 〈KEInit,KEA,KEB〉 where KEInit takes as input a security parameter
1n and outputs a common reference string PUB. The protocol itself consists of the actions performed
by a role-A party, specified by KEA, and a role-B party whose actions are specified by KEB (the roles
are assigned to break the symmetry, e.g. to determine who moves first). The pair KE = 〈KEA,KEB〉
is a two party protocol in the common reference string model. We shall use KE to discuss the protocol
as a whole, and distinguish between KEA and KEB when such a distinction is warranted.

Adversary for a CFKE protocol is a triple of PPT algorithms Adv = (Ake, Adist, Amal). To define
security of CFKE we describe three experiments where the first experiment models the interaction of
Adv with the protocol KE, and the other experiments capture privacy and non-malleability properties.

Security Experiments. We start with the description of the experiment ExpCFKE which defines the
interaction of the adversary with the protocol: let KE be a CFKE and let Ake be a PPT algorithm.

Experiment ExpCFKE(1n,KE , Ake)

1. KEInit(1n) is run to obtain public parameters PUB, which are given to Ake.
2. The key exchange protocol is run between two parties A and B, where A acts according to KEA

and B acts according to KEB . All the communication is routed through Ake. During this process
Ake can inject, delete, and modify messages between the two parties at will.

3. After KE concludes, let Kout
A and Kout

B be the outputs of the protocol, and let view(Ake) be
the view of Ake during its execution. The view consists of the randomness of Ake, and all the
(potentially modified) messages exchanged betweenA andB during the execution of the protocol.

4. The outcome of the experiment is the tuple (Kout
A ,Kout

B , view(Ake)).
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Intuitively, we wish to achieve the following security guarantee: either the two parties agree on
a key and the adversary knows nothing about it, or the adversary is forced to perform two indepen-
dent key exchanges (one with each party) resulting in the parties outputting independently random
keys. We capture this intuition by describing two security experiments for CFKE: privacy and non-
malleability.

The first experiment ExpCFKEInd requires the adversary to distinguish a key agreed upon by
the two parties in the protocol from a random key. If the two parties do not agree on a key (i.e.
Kout
A 6= Kout

B ) then the adversary automatically loses in the privacy experiment. This is enforced
by setting the outcome of the experiment by flipping an unbiased coin. Let b ∈ {0, 1}, the privacy
experiment is defined as follows:

Experiment ExpCFKEInd(1n,KE , Ake, Aind, b)

1. Run experiment ExpCFKE(1n,KE , Ake) to obtain (Kout
A ,Kout

B , view(Ake)).
2. If Kout

A 6= Kout
B , flip an unbiased coin b′ ∈R {0, 1} and set the outcome of the experiment to b′.

3. Else, let K0 = Kout
A , K1 ∈R {0, 1}n. Let b′ ←R Aind(view(Ake),Kb). The outcome of the

experiment is b′.

Definition 1. Let KE = (KEInit,KE) be a credential-free key exchange. We say that KE is private if
for every CFKE adversary Adv = (Ake, Adist, Amal), there exists a negligible function neg(·), such
that for all n ∈ N

|Pr[ExpCFKEInd(1n,KE , Ake, Aind, 0) = 1]−
Pr[ExpCFKEInd(1n,KE , Ake, Aind, 1) = 1]| ≤ neg(n)

In the second experiment ExpCFKENMal the goal of the adversary is to make the two parties
output different keys with some correlation that may depend on the adversary’s view. We require that
for every adversary there exists a simulator such that the view of the adversary in an interaction that
causes the parties to output two different keys KA,KB is simulatable given random keys KA,KB .
The simulated view should be indistinguishable from the real one even given KA and KB .

This captures the intuition that the only way the adversary can make the parties output different
keys is by making them output independent random keys. As we discussed in the introduction, we
cannot completely prevent the adversary from influencing the output of the parties since she always
has the option to omit the message that determines that outcome, unless the outcome satisfies some
property (e.g. the key KA has zero as its first bit). We require that this is essentially the only way
the adversary can influence the outputs of the parties. This is captured by allowing the simulator to
sample polynomially many pairs of uniformly random keys, and pick one pair for the output. This
essentially grants the simulator exactly the ability to try a new key unless the current key satisfies a
relatively likely property. For b ∈ {0, 1} and a simulator S the non-malleability experiment is:

Experiment ExpCFKENMal(1n,KE , Ake, Amal, S, b)

1. Run experiment ExpCFKE(1n,KE , Ake) to obtain (Kout
A ,Kout

B , view(Ake)).
2. If Kout

A = Kout
B , flip an unbiased coin b′ ∈R {0, 1} and set the outcome of the experiment to b′.

3. Else, run simulator S(1n) and allow S to sample a polynomial number of uniformly random key
pairs (KA,KB) ∈ ({0, 1}n)2. Let view′ be the output of the simulator and (KA,KB) be the last
pair of keys sampled by S.

4. Set Y0 = (Kout
A ,Kout

B , view(Ake)), and Y1 = (KA,KB, view
′), and let b′ ←R Amal(Yb). The

outcome of the experiment is b′.
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Definition 2. Let KE = (KEInit,KE) be a credential-free key exchange. We say that KE is non-
malleable if for every CFKE adversary Adv = (Ake, Adist, Amal), there exists an expected PPT
simulator S, and a negligible function neg(·), such that for all n ∈ N

|Pr[ExpCFKENMal(1n,KE , Ake, Amal, S, 0) = 1]−
Pr[ExpCFKENMal(1n,KE , Ake, Amal, S, 1) = 1]| ≤ neg(n)

Finally, we say that a CFKE protocol is secure if it satisfies both properties described above.

Definition 3. Let KE = (KEInit,KE) be a credential-free key exchange. We say that KE is secure if
it satisfies privacy, and non-malleability.

On concurrent CFKE executions. In contrast to many definitions of KE with credentials, we do not
need to include any additional players in our model. This is because in our setting the adversary can
simulate all parties, except the two that he decides to target. There are no secrets associated with the
communicating parties. Thus, there is no advantage in corrupting an honest party, since none of the
other parties are even aware of its existence. Further, allowing for multiple protocol runs confers no
advantage to the adversary, as there are no secrets that are re-used across runs the participant.

Universally composable CFKE. To allow for formal composability of CFKE protocols, we also
provide a UC definition and construction of the CFKE notion. Due to limited space, this is presented
in Appendix D.

4 Two Credential-Free Key Exchange Protocols

We present two constructions of CFKE protocols. Our main protocol is shown to be secure in the
standard model, and requires two simultaneous rounds of communication. The second protocol that
we present is what is commonly known as “Hashed Diffie-Hellman”. We show that HDH is not a
secure CFKE protocol in the standard random oracle model. However, we show that if one is willing
to assume that HDH uses its own random oracle, that is not later used by other protocols, it is a secure
CFKE protocol.

4.1 Protocol 1: Standard Model

We now present our main protocol (see Section 1.2 for its intuition). For our construction, we rely on
a non-interactive equivocal commitment scheme with a specialized non-malleability property. Com-
mitments are discussed in detail in Appendix B. We note that while our definition is specialized to
allow us to prove the security of our CFKE protocol, it may be of independent interest as a property
of non-interactive commitment schemes.

Let COM = 〈ComInit,Commit,Decommit〉 be a 2-strongly non-malleable commitment scheme
(discussed in detail in Appendix B), and let PKE = 〈KeyGen,Enc,Dec〉 be a non-malleable public
key encryption scheme. We construct a two-flow credential-less key exchange protocol CFKE1 =
〈KEInit,KEA,KEB〉 based on COM and PKE .

The public parameters generating algorithm KEInit on input security parameter 1n runs ComInit(1n)
to obtain a common reference string PUB for COM, and outputs PUB as the public parameters of
the key exchange protocol. The protocol KE consists of two rounds where in each round Alice and
Bob send a message to each other. In our protocol, the actions of the parties are symmetric, and so the
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Alice Bob
Public parameters PUB

Run KeyGen(1n) to obtain pubA, priA
Choose a random key KA ∈R {0, 1}n
(αA, βA)←R CommitPUB(pubA,KA)

Run KeyGen(1n) to obtain pubB , priB
Choose a random key KB ∈R {0, 1}n
(αB , βB)←R CommitPUB(pubB ,KB)

pubA,αA−−−−−−−−−→
pubB ,αB←−−−−−−−−−

Compute CA ←R EncpubB (βA) Compute CB ←R EncpubA(βB)
CA−−−−−−→
CB←−−−−−−

Compute β′B ← DecpriA(CB)
(pub′B ,K

′
B)← DecommitPUB(αB , β

′
B)

If ⊥ ∈ {β′B , pub′B ,K
′
B} or pub′B 6= pubB

or αB = αA
Output K̂A ∈R {0, 1}n

Else
Output KA ⊕K′B

Compute β′A ← DecpriB (CA)
(pub′A,K

′
A)← DecommitPUB(αA, β

′
A)

If ⊥ ∈ {β′A, pub′A,K
′
A} or pub′A 6= pubA

or αA = αB
Output K̂B ∈R {0, 1}n

Else
Output KB ⊕K′A

Fig. 1. The CFKE Protocol CFKE1

messages at each round can be sent in parallel, without either side waiting for the other to send first.
The complete description of the protocol is given in Figure 1.
Privacy. To achieve privacy, the protocol must guarantee that if the two parties agree on a key (i.e.
output the same string) then the adversary is unable to distinguish that key from a random one. we
prove the following theorem:

Theorem 1 IfPKE is a non-malleable public key encryption scheme and COM is a computationally
binding, 2-strongly non-malleable commitment scheme, then the protocol CFKE1 is private according
to Definition 1.

Intuitively, this follows from the following two facts: (i) if the adversary modifies A’s a public key
(the case of B is symmetric), then because of the strong non-malleability of the commitment scheme,
she must choose a new nonce to accompany the modified public key. However, if she does so, the
probability that A and B output the same key is negligible. On the other hand, if she allows A and B
to exchange public keys, then privacy follows from the semantic security of the encryption scheme.
Due to limited space we present the details of the proof in Appendix C.1.
Non-Malleability. To show non-malleability, we must describe a simulator that can simulate the
view of the adversary given a choice of one of polynomially many pairs of random outputs for the
two parties. We prove the following theorem:

Theorem 2 If COM is a 2-strongly non-malleable commitment scheme then the protocol CFKE1 is
non-malleable according to Definition 2.

Proof sketch. We next present an overview of our proof. The complete details are given in Appendix
C.2. Our proof is structured as follows. We first describe a simulator that achieves a weaker notion
of security, where the simulator is allowed to lock an output for each party. That is, the simulator can
sample pairs of output keys as before, but now it has the additional ability to lock one key in the pair,
and continue randomizing the other key. Once a key is locked the simulator has committed to making
that key the output of the corresponding party. Once we describe a simulator Sim in the weaker
model, achieving simulation according to the actual notion of security is straightforward: sample a
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Schedule EA Schedule EB
αA−−−−−→ αB←−−−−−

α′
A−−−−−→
βB←−−−−−

α′
B←−−−−−

βA−−−−−→
β′
B←−−−−−

β′
A−−−−−→

αA−−−−−→ αB←−−−−−
α′
B←−−−−−

βA−−−−−→
α′
A−−−−−→
βB←−−−−−

β′
B←−−−−−

β′
A−−−−−→

Fig. 2. Two possible schedules for adversarial commitments

pair of random keys K̂A and K̂B and guess at which iteration Sim will lock each key. Then, generate
the rest of the keys randomly. This procedure is repeated until the guess is correct.

The simulator Sim itself is described in Figure 4 of Appendix C. On a high level the simulator
works as follows. Let us denote by EA (EB) the event that the adversary submits both α′A and α′B
before seeing an encryption of βA (βB). Note that since each party outputs the encrypted decommit-
ment after obtaining the commitment of the other party, at least one of these events must always occur
(see Figure 2 for an illustration of the two possible schedules). Specifically, according to scheduleEA
the adversary submits both α′A and α′B before seeing an encryption of βA. Similarly, according to
schedule EB the adversary submits both commitments before obtaining βB . The simulator first gen-
erates a tuple γ of the form (PUB, pubA, αA, pubB, αB, radv). This commits the adversary to one of
the two schedules described in Figure 2 (see proof of Claim C.1). Assuming that EA is the schedule
that the adversary follows conditioned on γ, the simulator proceeds to extract a decommitment for
α′A by simulating the interaction of the adversary with the protocol to completion (the case when the
schedule induced by γ is EB is symmetric). Now, by making use of the strong non-malleability of
the commitment scheme, and ignoring (for the moment) the possibility that the adversary chooses
to provide an invalid decommitment for α′A, we know that there is a unique value K ′A that α′A will
be decommitted to. Therefore, the decommitment β′A obtained by the simulator, together with the
commitment α′A, allow the simulator to obtain K ′A.

At this point, the simulator fixes a key K̂B to be output by Bob, and rewinds the adversary to
the point where she submitted her commitment α′A. The simulator then uses the equivocability of the

commitment scheme to decommit αB toKB
def
= K̂B⊕K ′A A similar extract-then-adjust procedure is

repeated with the Alice side of the interaction: fixing (γ, α′A, βB) the simulator obtains a commitment
α′B from the adversary and simulates the protocol to completion to obtain a decommitment β′B . Again,
ignoring invalid commitments and applying the strong non-malleability property of the commitment
scheme, there is only a single value to which the adversary can decommit α′B . That value, K ′B , is
obtained by the simulator from α′B and β′B . The simulator then rewinds the adversary to the point

where (γ, α′A, βB, α
′
B) are fixed, fixes a key K̂A to be output by Alice, and decommits αA to KA

def
=

K̂A⊕K ′B . As a result,KA andKB are properly distributed in the transcript of the protocol – uniformly
random, and the simulator successfully forces the correct outputs K̂A and K̂B for Alice and Bob
respectively.

Under the simplifying assumptions that the adversary always decommits a given commitment
α′A or α′B to a unique value, and that no invalid decommitments are ever generated, the simulator
described above perfectly simulates the view of the adversary in the non-malleability experiment.
The main technical difficulty is caused by the fact that after fixing the commitment α′A or α′B the
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adversary still has a choice whether to decommit toK ′A (K ′B) or to produce an invalid decommitment.
To accommodate this possibility the actual simulator may rewind the adversary many times until the
“right” kind of commitment is produced. For example, if the adversary first decommits α′A to K ′A
then after rewinding the simulator will keep trying new random keys K̂B for Bob until the adversary
decommits α′A toK ′A again. This repeated rewinding is what causes the running time of our simulator
to be expected rather than strict polynomial. The only computational part of our argument concerns
the inability of the adversary to decommit a single commitment α′A or α′B to more than one non-
⊥ value. If this were not the case then our simulator would potentially not be able to predict the
value K ′A to which α′A will be decommitted, and therefore fail to set β′A appropriately. However, no
efficient adversary can violate this requirement without breaking the strong non-malleability of the
commitment scheme.

We give the complete details in Appendix C.2.

4.2 Protocol 2: Hashed Diffie-Hellman as CFKE

We next analyze the hashed Diffie-Hellman (HDH) [DH76] protocol (cf. Figure 3) in the context of
CFKE. Note, HDH (and natural variants) are insecure in the sense of Definition 2. Indeed, a MIM
adversary in HDH can learn the pre-images under the hash function H of the keys KA and KB

by running a separate instance of the protocol with each party. This violates the non-malleability
requirement of CFKE. One can then design (contrived) session protocols that become insecure when
the adversary has this information. For example, a secure CFKE protocol can stop encrypting and
authenticating messages if Alice receives a message containing the pre-image of her key under H .

At the same time, protocols such as HDH are natural and useful CFKE protocols, and should be
allowed by the definition (especially since “incompatible” CFSS protocols can be naturally excluded
– see below). A simple amendment to the definition of non-malleability resolves this. To accom-
modate protocols that output a hash of a value as the final key, we let the simulator in experiment
ExpCFKENMal fix the output key pair to be the outcome of the last two queries that the simulator
makes to the random oracle before terminating. More precisely, we modify step 3 in the experiment
as follows:

3′. Run simulator S(1n) and allow S to query the random oracle H . Let view′ be the output of the
simulator and (KA,KB) be the last two values returned by H as responses to queries made by S.

Definition 4. Let KE = (KEInit,KE) be a credential-free key exchange in the random oracle model.
We say that KE is secure if it satisfies privacy, and amended non-malleability.

We note that the original version of Step 3 can be simulated in the above variant simply by
querying the random oracle on pairs of random inputs.

As discussed above, Definition 4 requires excluding “incompatible” CFSS protocols, namely
those that may query the same RO used in CFKE. Hence, a simple way to ensure security of composed
CFKE (Definition 4 version) and CFSS is to require that different RO are used for the two types of
protocols. This is achieved in practice by using a protocol name as a prefix in all hash function calls.

Theorem 3 Suppose that the hash function H in the description of CFKE2 is modeled as a random
function Then, CFKE2 is a secure CFKE according to Definition 4.

The proof of Theorem 3 is straightforward: privacy follows from the decisional Diffie-Hellman
assumption (DDH), similarly to the standard Diffie-Hellman key exchange protocol. Non-malleability
is shown by having the simulator query the random oracle on the two values queried last by the two
parties.
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Alice Bob
Hash function H
Generator g ∈ G

Choose x ∈R Zp
Compute X ← gx

Choose y ∈R Zp
Compute Y ← gy

X−−−−−→
Y←−−−−−

Compute KA = H(Y x) Compute KB = H(Xy)

Fig. 3. The Hashed Diffie-Hellman protocol CFKE2

5 Definition and Construction of Credential-Free Secure Sessions

The notion of secure session protocol (with a supposedly shared session key) appears intuitive, and
is often omitted from formal discussion. However, existing formalizations of secure sessions and
secure channels [Sho99,CK02] show that subtleties arise even in these “simple” settings. Further, as
we pointed out in Section 1.3, standard definitions (and even constructions!) of secure sessions don’t
work in our credential-free scenario. In this section, we justify and formalize the new notion.

We simplify presentation by only considering one-way sessions where A communicates a long
message to B. This message arrives in “pieces” to A, which are encrypted (using encryption function
ENC) and sent to B one at a time. The adversary sees the encryptions and chooses the pieces in a
very adaptive manner: he chooses the first piece, sees its encryption, chooses the second piece, sees its
encryption, etc. B decrypts the pieces one at a time (using DEC). Each such decryption will involve
an integrity test; if any such test fails, we say that B outputs a special symbol FAIL for the piece, and
for simplicity we will assume that B must then output FAIL for all succeeding pieces.

Formally, a session protocol is a tuple 〈ENC,DEC〉, which satisfies correctness in the absence
of an adversary. That is, if ENC and DEC are given the same key K, and if ENC is given a sequence
of message pieces m0,m1, . . . ,mw, and if the resulting encryptions are fed into DEC, then DEC will
output message pieces m0,m1, . . . ,mw. A standard secure session must satisfy the standard notions
of integrity and privacy.

Definition of Credential-Free Secure Sessions (CFSS). We say a session protocol is a CFSS, if
it satisfies: Integrity, Privacy, and MIM-Integrity. We omit formalization of the first two standard
properties. To define MIM-integrity (and hence CFSS), fix a session protocol (ENC,DEC).

MIM-Integrity: Consider an adversary Adv on input security parameter 1n. Adv is a probabilistic
algorithm that runs in time polynomial in n. We define an experiment that begins with two random
n-bit strings KA and KB being chosen; Adv sees both KA and KB; KA is given to A (who uses
ENC) and KB is given to B (who uses DEC).

Adv interactively chooses m0,m1, . . . ,mw while seeing e0, e1, . . . , ew. (Note that since A – that
is ENC – is allowed to be probabilistic, Adv might not be able to compute e0, e1, . . . , ew on his
own.) Adv then computes and sends e′0, e

′
1, . . . , e

′
j to B, where 0 ≤ j ≤ w and e′j = ei for some i,

0 ≤ i ≤ w. If B doesn’t output FAIL in response to e′j , we say that Adv wins. Let pAdv(n) be the
probability that Adv wins.

MIM-Integrity means that for every such Adv for every c, for sufficiently large n, pAdv(n) ≤
1/nc.

A CFSS Protocol. It is not hard to create a session protocol that satisfies these three concepts. It is
straightforward to verify that the following construction is a CFSS.
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Construction. Say that the session key consists of two parts: an n bit privacy key k1 and an n
bit integrity key k2. Assume we have two pseudo-random function generators F and F ′, where
Fk1 : {0, 1}n → {0, 1}n and F ′k2 : {0, 1}2n → {0, 1}n. A encrypts the ith n-bit piece mi, by
computing α = Fk1(i)⊕mi and letting the encryption be ei = αF ′k2(iα). (Here, i denotes the n-bit
representation of i.) B decrypts in the obvious way: given the i-th encryption e′i = α′β′, B FAILs
if β′ 6= F ′k2(iα

′), and otherwise outputs Fk1(i) ⊕ α′. It is easy to see that this satisfies integrity and
privacy, but it does not necessarily satisfy MIM-integerity. In order to satisfy MIM-integrity, we add
to ei the string Fk1(1

n), and we add to B the additional stipulation that given e′i = α′β′γ′, B FAILs if
γ′ 6= Fk1(1

n). Alternatively, we could add a dedicated part k3 of the key to each message, however,
adding Fk1(1

n) allows for shorter keys.

5.1 Composing CFKE and CFSS

In this section we informally argue that composing CFKE and CFSS provides the guarantee that
“the adversary must remain continuously active on the channel throughout the entire session to avoid
detection”.

This is indeed easy to see. In one case, CFSS (namely, its standard integrity and privacy properties)
guarantees that if the keys are random and unknown to Adv, then channel is fully secure in the
standard strong sense. In the other case, Adv knows the keys of the players, and the keys are random
and independent of each other, the MIM-integrity property of CFSS guarantees that as soon as Adv
allows an unmodified message to pass between the players, it is immediately detected. Finally, the
CFKE definition is tailored to explicitly guarantee that the keys that the players output fall under one
of the two of the above cases.
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A Probabilistic Lemma

We make use of the following simple fact about sampling from conditional distributions.

Lemma 1. Let D be a probability distribution over some sample space X . Let E ⊆ X be any event.
Then, the following procedure outputs a random element sampled according to the distribution D|E:

1. Sample x from X according to D.
2. If x ∈ E output x, otherwise repeat.

Furthermore, the expected number of samples until a value is output is 1/Pr[E].

Before presenting our main construction in Section 4.1, we present a building block that we
construct – Strongly Non-Malleable Commitments.
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B Strongly Non-Malleable Commitments

A non-interactive commitment scheme consists of a triple of PPT algorithms: (ComInit,Commit,

Decommit) and a length parameter d ∈ N. For n ∈ N, m ∈ {0, 1}nd , ComInit(1n) outputs a public
parameter string PUB, Commit(1n,PUB,m) outputs a commitment α and decommitment β, and
Decommit(1n, PUB, α, β) outputs a string m′ ∈ {0, 1}d or a special string ⊥.

Definition 5. A commitment scheme (ComInit,Commit,Decommit) is correct if for all n ∈ N,
m ∈ {0, 1}d, random tapes r1, r2, r3 ∈ {0, 1}poly(n), Decommit(1n,PUB, α, β; r1) = m if PUB =
ComInit(1n; r2) and (α, β) = Commit(1n,PUB,m; r3).

Non-interactive commitment schemes come in two flavors: “perfectly binding”, where each com-
mitment can be decommitted to a unique value, and that value is computationally hidden without the
decommitment string; and “perfectly hiding”, where a commitment string contains no information
about the underlying message, but a computationally bounded adversary is only able to decommit to
one value. In this work we use perfectly hiding commitment schemes that are also equivocal. Infor-
mally, a commitment scheme is equivocal if there is an alternative method of generating the public
parameters PUB that provides a trapdoor, and given that trapdoor any commitment string can be
decommitted to any message. Furthermore, if the alternatively generated PUB has the same distribu-
tion as the actual PUB then the commitment scheme is perfectly equivocal. We now define perfect
equivocability formally:

Definition 6. A commitment scheme (ComInit,Commit,Decommit) is perfectly equivocal if there
exists a triple of PPT algorithms (EInit,ECom,EDecom) such that

1. EInit(1n) outputs (PUB, s), where s is trapdoor information about PUB.
2. For all m ∈ {0, 1}d the following two random variables are identically distributed:

{(PUB, α, β)|(PUB, s)← EInit(1n); α← ECom(1n,PUB); β ← EDecom(s, α,m)}
{(PUB, α, β)|PUB← ComInit(1n); (α, β)← CommitPUB(m)}

Strong Non-Malleability Another property of commitment schemes that we require is non-malleability.
Two definitions of non-interactive non-malleable commitments have appeared in the literature, both
aiming to capture variants of the following intuitive property: no efficient adversary should be able,
given a commitment α to a message m, to produce a commitment to a related message m′. One
definition, non-malleability with respect to commitment [DDN91], requires exactly this. That is, that
no efficient adversary can produce a commitment to a related message. The second definition, non-
malleability with respect to opening [DCIO98,FF00], requires the adversary to successfully decommit
to the related message after producing the commitment. We note that for statistically hiding com-
mitment schemes, non-malleability with respect to commitment is not a meaningful notion since a
commitment can be decommitted to many different messages (in the information theoretic sense).
Consequently, non-malleability with respect to opening is considered the right notion for statistically
and perfectly hiding commitments.

In both definitions described above the requirement that m is related to m′ is modeled by as-
suming the existence of a polynomial time computable relation R such that R(m,m′) is significantly
more likely to hold than R(m,m′′) where m′′ is chosen according to some distribution that does not
depend on the commitment α. However, this approach does not rule out a scenario where m′ depends
on the decommitment string β that decommits α to m. In particular, it is possible that by seeing dif-
ferent valid decommitments of α, possibly all to the same message m, or to different messages, the
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adversary is able to produce decommitments of α′ to different messages. We believe that in many
natural applications of non-malleable commitments the adversary will, in fact, be able to choose a
decommitment for α′ after seeing a decommitment for α. One such application is our credential-free
key exchange protocol.

In this paper we propose a new, stronger, definition of non-interactive non-malleable commitment
schemes. Our definition is described as a game and does not require specifying any particular relation
that must hold between the strings in question. Instead, we require that no efficient adversary can
win in the following game: the adversary is given an equivocal commitment α, and must produce
a different commitment α′ such that given two decommitments for α that decommit to different
messages the adversary must produce decommitments for α′ that decommit to different messages.
For our analysis, we actually require an even stronger type of non-malleability: where the adversary
is unable to win the above game even if given equivocation of multiple commitments. Somewhat
counter-intuitively, security with respect to a single commitment does not imply security relative to
multiple commitments (we direct the reader to [DDN00] for a discussion). It may be instructive to
first provide a definition with respect to one commitment, and then extend to multiple commitments.
However, to avoid confusing the reader with numerous definitions we directly provide the definition
of strong non-malleability with respect to multiple commitments, and merely state that the single
commitment variant is a special case.

Formally, strong non-malleability with respect to k commitments is defined through the following
experiment:
Experiment ExpSNMal(1n, k, Adv)

1. EInit is run to obtain a tuple (PUB, s) and ECom is run k times to obtain commitments α1, . . . , αk.
PUB and (α1, . . . , αk) are given to the adversary.

2. The adversary submits a commitment string α and 2k messages m1, . . . ,mk and m′1, . . . ,m
′
k.

Let w be the current state of the adversary.
3. 2m decommitments are computed βi ← EDecom(s, αi,mi) and β′i ← EDecom(s, αi,m

′
i).

4. Two copies of the adversary are run in parallel with state w. One copy is given β1, . . . , βk. The
other copy is given β′1, . . . , β

′
k. Each copy then outputs a decommitment for α. Let β and β′ be

the decommitments produced by the first and second copies of the adversary respectively.
5. Let m = DecommitPUB(α, β) and m′ = DecommitPUB(α, β

′). The outcome of the experiment
is 1 if m 6= m′ and ⊥ 6∈ {m,m′}. Otherwise, the outcome of the experiment is 0.

Definition 7. For k ∈ N, a perfectly equivocal commitment scheme (ComInit,Commit,Decommit,
EInit,ECom) is k-strongly non-malleable if for every PPT adversary Adv there exists a negligible
function neg(·) such that for all n ∈ N, Pr[ExpSNMal(1n, k, Adv) = 1] ≤ neg(n).

In the following section we present an adaptation of the commitment scheme of [CKOS01] that
is 2-strongly non-malleable.

A Strongly Non-Malleable Commitment Scheme We show that an adaptation of the discrete loga-
rithm based commitment scheme of Di Crescenzo et al. [CKOS01] is 2-strongly non-malleable. Our
proof essentially follows the proof in [CKOS01], and perhaps surprisingly is somewhat simpler. We
start with a full description of the commitment scheme. The scheme makes use of a computational
group generator G, and consists of three PPT algorithms COM = 〈ComInit,Commit,Decommit〉,
which are defined as follows:

Setup. Run G ←R G(1n), generate g1, g2, g3, g4 ←R G, and let H : G → Zp be a target collision
resistant hash function. PUB = (G, g1, g2, g3, g4, H).
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Commitment. Generate r1, r2, r3, r4, r5 ←R Zp, set A← gr11 g
r2
2 g

r3
3 g

r4
4 γ ← H(A), D ← gγ

2

1 g
γ
2g3,

B ← Dmgr54 , σ ← MACr1,r2(B). The commitment is α = (A,B, σ). The decommitment is
β = (m, r1, r2, r3, r4, r5). Output (α, β)

Decommitment. Decommit(PUB, α, β): Parse α = (A,B, σ), β = (m, r1, r2, r3, r4, r5). If the
parsing fails output ⊥. Verify A ?

= gr11 g
r2
2 g

r3
3 g

r4
4 ; B

?
= (gγ

2

1 g
γ
2g3)

mgr54 ; σ
?
= MACr1,r2(B) If

verification succeeds output m. Otherwise, output ⊥.

Theorem 4 The commitment scheme COM is perfectly hiding, computationally binding, perfectly
equivocal, and 2-strongly non-malleable.

B.1 Proof of Theorem 4

Perfect hiding and equivocability are self evident. The computational binding property follows by a
simple reduction to the binding property of the Pedersen commitment scheme [Ped91]. We concen-
trate on an adaptation of the non-malleability proof from [CKOS01] to our scheme and the stronger
security definition. Let α1 = (A1, B1, σ1) and α2 = (A2, B2, σ2) be the two commitments given to
the adversary, and let (A′, B′, σ′) be the commitment produced by the adversary. Following the proof
in [CKOS01], we consider the following cases:

Case 1: A′ = A1 or A′ = A2. Suppose without loss of generality that A′ = A1. Then, the
argument proceeds as in [CKOS01], that is, if the adversary later produces a decommitment where
(r1, r2, r3, r4) = (r′1, r

′
2, r
′
3, r
′
4) then it can be used to break the binding property of the Pedersen

commitment scheme. If (r1, r2, r3, r4) 6= (r′1, r
′
2, r
′
3, r
′
4) then with overwhelming probability the de-

commitment will result in ⊥ since the MAC key (r1, r2) is information theoretically hidden given
(α1, α2).

Case 2: A′ 6= A1 and A′ 6= A2 but γ′ = γ1 or γ′ = γ2. Again, similarly to [CKOS01], in this
case we are able to find a collision in H .

Case 3: A′ 6= A1, A′ 6= A2, γ′ 6= γ1 and γ′ 6= γ2. We show that if an adversary is able to
successfully decommit α′ to two different messages then we can use it to produce two different valid
decommitments to a related Pedersen commitment. Then, using the reduction described in [CKOS01]
we can compute the discrete logarithm of a given group element. More precisely, we describe a new
adversary Adv′ that is given g1 and g4, and proceeds as follows:

- Generate ri, si, r2,i, r3,i, ui ∈R Zp for i ∈ {1, 2}, and generate t, t′ ∈R Zp.
- Set Ai = gri1 g

si
4 , Bi = ui, σi = MACr1,i,r2,i(Bi).

- Set r1,i = (γ1 + γ2)r2,i − γ1γ2r3,i + ri and r4,i = −tr2,i − t′r3,i + si.
- Set PUB = (g1, g2, g3, g4),αi = (Ai, Bi, σi) and s = (r1,1, r1,2, r2,1, r2,2, r3,1, r3,2, r4,1, r4,2, t, t

′, u1, u2).

The tuple (PUB, α1, α2) is given to Adv, which in turn submits a commitment α′ = (A′, B′, σ′)
and two pairs of messages (m1,1,m1,2) and (m2,1,m2,2). Adv′ then computes decommitments for
1 ≤ i, j ≤ 2

βi,j = (r1,j , r2,j , r3,j , r4,j , uj −mi,j(tγj + t′))

Let w be the state of Adv at this point. Adv′ runs two copies of Adv in parallel starting from state w.
Copy i receives decommitments (βi,1, βi,2). It is easy to verify that the public parameters, commit-
ments, and decommitments produced by Adv′ are properly distributed. Note that for i ∈ {1, 2}

Di = g
γ2i
1 g

γi
2 g3 = gtγi+t

′

4
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There are two subcases to consider:
Case 3.1: D′ = g

(γ′)2

1 gγ
′

2 g3 = gtγi+t
′

4 for some i ∈ {1, 2}. In this case, if it also holds that
B′ = Bi, then α′ can be decommitted using any decommitment for αi. However, we argue that no
efficient adversary can construct a commitment that matches this case: if D′ = gtγi+t

′

4 then

g
(γ′)2−(γ1+γ2)γ′+γ1γ2
1 gtγ

′+t′

4 = gtγi+t
′

4

Since γ′ 6∈ {γ1, γ2}, it is not a root of the polynomial in the exponent of g1, this allows us to recover
the discrete logarithm of g4 relative to g1 by solving a linear equation.

Case 3.2: D′ = g
(γ′)2

1 gγ
′

2 g3 6= gtγi+t
′

4 for both i ∈ {1, 2}. In this case, similarly to [CKOS01]
we obtain two different valid decommitments for a Pedersen commitment using generators g4 and
g
(γ′)2−(γ1+γ2)γ′+γ1γ2
1 gtγ

′+t′

4 . Using the reduction in [Ped91], we can now compute the discrete loga-
rithm of g4 relative to g1.

C Analysis of CFKE Protocol

C.1 Privacy

In this section we prove Theorem 1. We reduce the security of our construction to the chosen cipher-
text security of PKE and the security of the commitment scheme COM. Our proof proceeds through
a series of hybrid experiments, where the initial experiment is the original experiment of privacy, and
the final experiment is such that the transcript of the protocol contains no information about the key
that A and B agree on (if they do indeed agree on some key). We show that the adversary cannot
distinguish between participating in the original and final experiments, and conclude that she must
have almost identical advantage in breaking privacy in these experiments. This immediately implies
the privacy property since the advantage of the adversary in the final experiment is zero.

We start with a description of the hybrid experiments. In each experiment i we denote by Xi the
random variable which is 1 if the adversary successfully guesses the bit b, and 0 otherwise.
Game 1. Game 1 is the original privacy security game.
Game 2. Game 2 proceeds identically to Game 1, except that in the beginning of the game a random
string zA ∈R {0, 1}n is chosen, and if, after the second round, C ′B decrypts to zA then A outputs
KA ⊕KB .

The modification in Game 2 introduces a secret string that allows A to output the correct key
without ever receiving a decommitment for the commitment αB that was sent by B in the first round.
The two games proceed identically unless the adversary manages to produce an encryption C ′B of zA.
However, since zA is uniformly random, and the adversary is given no information about it, this event
occurs with negligible probability. The proof of the following claim is trivial, and is omitted.

Claim. Let F2 be the event that the adversary produces a ciphertext C ′B that decrypts to zA. Then,
|Pr[X1 = 1]− Pr[X2 = 1]| ≤ Pr[F2], and Pr[F2] =

1
2n .

Game 3. Game 3 proceeds identically to Game 2 with the following exception. In game 3, if the
adversary submits a public key pub′A = pubA then CB is modified to be an encryption of zA instead
of βB .

We now show that no adversary can distinguish between games 2 and 3. Intuitively, this follows
from the non-adaptive chosen-ciphertext security ofPKE . If the adversary leaves the public key pubA
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unmodified then she either has to forward the ciphertext CB to A without changing it, or compute
a new ciphertext C ′B with an unrelated plaintext. Suppose that an adversary can distinguish between
games 2 and 3. This gives a way to break the security of PKE : if the adversary does not modify
CB , then in both games A will output KA ⊕KB , therefore the adversary must be distinguishing the
content of CB in game 2 (the decommitment βB) from its content in game 3 (the string zA). If the
adversary produces a modified ciphertext C ′B 6= CB , then we can decrypt C ′B using the decryption
oracle. This allows us to simulate the adversary perfectly.

Claim. Let ε = |Pr[X2 = 1] − Pr[X3 = 1]|. Then, we can construct an adversary that breaks the
non-malleability of the public key encryption scheme PKE with advantage ε.

Proof. We construct an adversary Apke that simulates Adv, and breaks the non-malleability of PKE .
Initially Apke is given a public key pub. Apke then proceeds as follows. It sets pubA = pub, and
generates the values (KA,KB, αA, βA, αB, βB, priB, pubB) from the appropriate distributions, and
chooses zA ∈R {0, 1}n. Apke then submits βB and zA as its two messages in the security experiment
of PKE , and obtains a challenge ciphertext C∗.

The adversary Adv then proceeds to submit either (pub′A, α
′
A) or (pub′B, α

′
B). If the adversary

submits (pub′B, α
′
B) first then Apke computes CA = Encpub′B

(DecA) and gives CA to Adv. When the
adversary submits (pub′A, α

′
A), Apke checks whether pub′A 6= pubA, and if so stops the simulation

and flips a coin in the security experiment of PKE . Note that if pub′A 6= pubA then games 2 and 3
proceed identically, and so Adv will behave identically in both cases.

Suppose that Adv submits (pub′A, α
′
A) where pub′A = pubA. Then, Apke sets CB = C∗, and

gives CB to Adv. Adv then submits C ′B and stops. At this point Apke proceeds in one of two ways:
if C ′B = CB then C ′B is either an encryption of βB or zA. In both cases, the output of A is KA ⊕KB

in both game 2 and 3. If C ′B 6= CB then Apke submits C ′B to its decryption oracle to obtain β′B , and
proceeds to compute Kout

A according to the protocol.
Finally, Apke uses the private key priB to decrypt C ′A and compute Kout

B . If Kout
A = Kout

B then
Kout
A is given to Adv, and Apke outputs whatever Adv outputs. Otherwise, Apke flips a fair coin and

outputs the outcome. It is now easy to see that Apke simulates Adv perfectly in game 2 if C∗ is an
encryption of βB , and in game 3 if it is an encryption of zA. The claim follows.

We now define games 4 and 5 analogously for B:

Game 4 Game 4 proceeds identically to Game 3, except that in the beginning of the game a random
string zB ∈R {0, 1}n is chosen, and if, after the second round, C ′A decrypts to zB then B outputs
KA ⊕KB .

Game 5. Game 5 proceeds identically to Game 4 with the following exception. In game 5, if the
adversary submits a public key pub′B = pubB then CA is modified to be an encryption of zB instead
of βA.

The proofs of the following two claims are almost identical to the proofs of Claim C.1 and
Claim C.1, and are omitted.

Claim. Let F4 be the event that the adversary produces a ciphertext C ′A that decrypts to zB . Then,
|Pr[X3 = 1]− Pr[X4 = 1]| ≤ Pr[F4], and Pr[F4] =

1
2n .

Claim. Let ε = |Pr[X4 = 1] − Pr[X5 = 1]|. Then, we can construct an adversary that breaks the
non-malleability of the public key encryption scheme PKE with advantage ε.
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Game 6. Game 6 proceeds identically to Game 5 except that if pub′A 6= pubA but α′A = αA then B
always outputs a random key K̂B , regardless of what C ′A decrypts to.

Intuitively, an adversary that manages to modify pubA without changing the commitment αA is
able to equivocate αA. We use this fact to break the computational binding property of COM. Let F6

be the following event:

F6 =
{

pub′A 6= pubA; α
′
A = αA; DecommitPUB(αA,DecpriB (C

′
A)) 6= ⊥; pub′′A = pub′A

}
Claim. Let ε = |Pr[X6 = 1] − Pr[X5 = 1]|. Then, we can construct an adversary that breaks the
binding property of the commitment scheme COM with advantage ε.

Proof. We first show that unless F6 occurs, games 5 and 6 proceed identically. Clearly, this is true if
pub′A = pubA or α′A 6= αA. Suppose that DecommitPUB(αA,DecpriB (C

′
A)) = ⊥ or pub′′ 6= pub′A.

Then, in both games B outputs a random key K̂B .
Now, let ε = Pr[F6]. We construct an adversaryAbind that simulatesAdv and violates the compu-

tational binding property of COMwith probability ε.Abind initially receives PUB, and has to produce
a commitment α, and two different decommitments that decommit to different, non ⊥ values.

Abind proceeds as follows. It performs a perfect simulation of Adv in game 5 up to the point
where B is about to output a key Kout

B . At this point, Abind can tell whether event F6 occurred. If
it did, Abind outputs αA as its commitment, and (βA, β

′
A) as the decommitments. We know that βA

decommits αA to a string of the form (pubA,KA), and that β′A decommits to (pub′A,K
′
A). The fact

that pubA 6= pub′A implies that Abind has successfully broken the binding property.

Game 7. Game 7 proceeds identically to Game 6 except that if pub′B 6= pubB but α′B = αB then A
always outputs a random key K̂A, regardless of what C ′B decrypts to.

Event F7, and Claim C.1 are symmetric to event F6 and Claim C.1.

F7 =
{

pub′B 6= pubB; α
′
B = αB; DecommitPUB(αB,DecpriA(C

′
B)) 6= ⊥; pub′′B = pub′B

}
Claim. Let ε = |Pr[X7 = 1] − Pr[X6 = 1]|. Then, we can construct an adversary that breaks the
binding property of the commitment scheme COM with advantage ε.

Game 8. Proceeds identically to Game 7 except that if αA = α′A or αB = α′B then the outcome of
the experiment is determined by flipping a fair coin.

Claim. Pr[X7 = 1] = Pr[X8 = 1] ≤ 1
2n

Proof. We show that if αA = α′A then the outcome of the experiment is 1 with probability 1/2 in both
game 7 and 8. The case of αB = α′B is symmetric. There are two cases to consider: pubA = pub′A and
pubA 6= pub′A. If pubA = pub′A then according to the modification introduced in game 3 the ciphertext
CB sent from Bob to Alice is an encryption of zA, which is a uniformly random string independent
from KB . Consequently, the adversary never sees (information theoretically) a decommitment to
KB . Since the commitment scheme is perfectly hiding, the adversary never gains any information
about KB , and so the value KA ⊕KB is a uniformly random string. Therefore, if pubA = pub′A the
adversary wins in game 7 with probability 1/2.

If pubA 6= pub′A then Bob always outputs a random key K̂B . Therefore, in the privacy experiment
the key Kout

A output by Alice will be equal to K̂B with probability 1
2n (recall that if the keys are not

equal, the outcome of the experiment is determined by flipping a fair coin).
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Game 9. Proceeds identically to Game 8 except that the public parameters PUB, commitment strings
αA and αB and the decommitments βA and βB are generated using the equivocal algorithms EInit,
ECom and EDecom instead of the regular commitment algorithms. More formally, the following
values are sampled:

(PUB, s)←R EInit(1n); αA ←R EComPUB(s); αB ←R EComPUB(s)

(pubA, priA)←R KeyGen(1n); (pubB, priB)←R KeyGen(1n); KA,KB ←R {0, 1}n

βA ←R EDecom(αA, s, (KA, pubA)); βB ←R EDecom(αB, s, (KB, pubB))

The values PUB, pubB, pubA, αA, αB, βA, βB are then to generate the communication between Alice
and Bob. By the perfect equivocability of the commitment scheme we get

Claim. Pr[X8 = 1] = Pr[X9 = 1]

Game 10. Game 10 proceeds identically to Game 9 except that if {αA, αB} ∩ {α′A, α′B} 6= ∅ then
the outcome of the experiment is determined by flipping a fair coin.

Claim. Let ε
def
= |Pr[X9 = 1]− Pr[X10 = 1]|. Then, we can construct an adversary that breaks the

2-strong non-malleability property of COM with advantage ε2

2 −
1

2n+1 .

Proof. First, let us consider the case where α′B = αA or α′A = αB . Then, according to the protocol
a random key is chosen for the party in question. Consequently, games 9 and 10 proceed identically
in this case. Let F9 be the event that αA 6= α′A, αB 6= α′B , Kout

A = Kout
B , and let ε = Pr[F9].

Also, let us denote by EA (EB) the event that the adversary submits both α′A and α′B before seeing an
encryption of βA (βB). Note that since each party outputs the encrypted decommitment after obtaining
the commitment of the other party, at least one of these events must always occur (see Figure 2 for an
illustration of the two possible schedules).

Consider tuples of the form (PUB, αA, αB, radv) where PUB are the global public parameters, αA
and αB are the non-adversarial commitments of Alice and Bob respectively, and radv are the random
bits used by the adversary. A tuple γ of this form determines whether event EA, EB , or EA ∧ EB
occurs. Let us denote εγ = Pr[F9|γ].

We shall now describe an adversary A′ that uses Ake to break the 2-strong non-malleability of
the commitment scheme. A′ starts by receiving PUB, α∗, and flipping a fair coin c1 ∈R {0, 1} to
guess whether event EA or EB will occur. Suppose without loss of generality that A′ guesses that
EA occurs. A′ then generates two random keys KA,0,KA,1 ∈R {0, 1}n, a random commitment αB ,
random bits radv, and sets αA = α∗. Let γ be the tuple (PUB, αA, αB, radv). A′ then verifies that γ
causes event EA to occur by checking that Ake, when given PUB, αA, αB outputs α′A (note that the
adversary always has to submit α′B before she is given βA, therefore submitting α′A guarantees that
event EA occurs) or a pair (α′A, α

′
B). If this is not the case then A′ aborts.

Suppose that EA occurs. The adversary Ake has now committed to mauling the commitment αA,
but is still free to decide which of the two commitments α′A and α′B she will equivocate. In fact, the
adversary may make that decision adaptively based on the decommitment that she receives for αA. It
is therefore instructive to recall that the two messages chosen by A′ are the random keys KA,0 and
KA,1. Consequently, conditioning on the tuple γ, the distributions on the decommitment given to A′

are identical for both messages.
We shall now argue that if, conditioned on γ,Ake causes eventF9 to occur with probability εγ then

in two independently generated continuations of γ, Ake is likely to decommit at least one of α′A or
α′B to two different values. The values that are missing from γ to completely determine the execution
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of the protocol are only βA and βB . The decommitment βB does not affect the value that αA is de-
committed to. Therefore, we can fix it for both executions: let KB ∈R {0, 1}n and let βB be a random
decommitment of αB to KB . We now focus on the extended tuple γ′ = (PUB, αA, αB, βB, radv).
Let εγ′ be the probability that F9 occurs conditioned on γ′, where the probability is over KA and
the randomness needed to generate a decommitment βA of αA to KA. Consider two independently
generated transcripts δ and δ′ that are continuations of γ′. Since the transcripts are independently
generated using γ′ as a starting point we have

Pr[δ, δ′ ∈ F9] = ε2γ′

We now show that if δ, δ′ ∈ F9 and, in addition, KA,0 6= KA,1, then the adversary Ake has to
decommit at least one of the commitments α′A or α′B to two different values given decommitments
of αA to KA,0 and KA,1 respectively. Let us denote by Kout

A,b and Kout
B,b the keys output by A and B

respectively due to the transcripts δ and δ′. Then we get

Kout
A,0 = KA,0 ⊕K ′B,0; Kout

B,0 = KB ⊕K ′A,0
Kout
A,1 = KA,1 ⊕K ′B,1; Kout

B,1 = KB ⊕K ′A,1
The event δ, δ′ ∈ F9 implies that Kout

A,b = Kout
B,b for b ∈ {0, 1}. Therefore, if KA,0 6= KA,1 then we

get that either K ′B,0 6= K ′B,1 or K ′A,0 6= K ′A,1. Let us denote these events by EquivB and EquivA
respectively. Clearly, Pr[KA,0 = KA,1] = 1/2n. Consequently, the above argument shows that

Pr[EquivA ∨ EquivB|γ′] ≥ ε2γ′ −
1

2n

Consequently, we can assume without loss of generality that

Pr[EquivA|γ′] ≥
ε2γ′

2
− 1

2n+1
(1)

Getting back to the construction of A′, A′ submits (α′A,KA,0,KA,1) in the strong non-malleability
experiment. At this point two copies of A′ are run independently. One is given a decommitment βA,0
that decommits αA to KA,0. The other is given a decommitment βA,1 that decommits to KA,1. A′

now continues to simulate Ake to obtain the decommitments β′A,0 and β′A,1 in the two independent
copies. Note that A′ generated the public keys pubA and pubB herself and can therefore decrypt the
ciphertexts C ′A and C ′B to obtain the decommitments. Each copy of A′ then verifies that the protocol
concludes successfully (without any values being set to ⊥) and that Kout

A = Kout
B . If the verification

fails then A′ aborts. Otherwise, the two copies of A′ output β′A,0 and β′A,1 respectively. It is now easy
to verify that the success probability of A′ conditioned on γ′ is exactly Pr[EquivA|γ′]. Let us now
calculate the overall probability of success of A′:

Pr[A′ wins] =
1

2

∑
γ′

Pr[EquivA|γ′] Pr[γ′]

≥
∑
γ′

(
ε2γ′

2
− 1

2n+1

)
Pr[γ′]

≥
Eγ′ [ε2γ′ ]

2
− 1

2n+1

≥ ε2

2
− 1

2n+1

where the first equality holds because A′ has to guess correctly (through the coin c1) which schedule
among EA and EB is followed, and the last inequality holds because E[ε2γ′ ] ≥ (E[εγ′ ])2 = ε2.
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C.2 Non-Malleability

Inputs: A security parameter 1n, an infinite sequence of keys K̂A ∈ {0, 1}n and K̂B ∈ {0, 1}n.
Setup: PUB, s←R EInit(1n). Set PUB as the public reference string.
Phase 1: Generate a tuple γ of the form (PUB, priA, pubA, αA, priB , pubB , αB , radv) where αA and αB are the non-

adversarial commitments of Alice and Bob respectively, and radv are the random bits used by the adversary.
Phase 2: Starting from γ simulate the interaction of Ake with the protocol to completion. Suppose that EA occurs (the

description of the simulator for the case when EB occurs is symmetric), and let K′A,K
′
B ∈ {0, 1}n ∪ {⊥} be the

values obtained by decommitting the adversarial commitments α′A and α′B using β′A and β′B respectively, and let view
be the view of Ake at the end of the execution. Sample a new pair of output keys (K̂A, K̂B).

Phase 3: The simulator proceeds according to the following cases:
1. K′B = ⊥ and K′A = ⊥: Output view.
2. K′B 6= ⊥ and K′A = ⊥: Let γ′ = (γ, α′A, βB , α

′
B). Fix K̂B . Repeat the following: sample new K̂A; set KA =

K̂A ⊕K′B ; βA ←R EDecom(s, αA,KA); conclude the protocol. Let (K′B,i,K
′
A,i, viewi) be the keys decom-

mitted to by Ake and the view of Ake during repetition i. If for any i, K′B,i 6∈ {K′B ,⊥} abort. Stop repeating
when (K′B,i,K

′
A,i) = (K′B ,⊥). Output viewi.

3. K′A 6= ⊥: Let γ′ = (γ, α′A). Repeat the following: sample new (K̂A, K̂B); set KB = K̂B ⊕ K′A; βB ←R

EDecom(s, αB ,KB); conclude the protocol. Let (K′B,i,K
′
A,i, viewi) be the keys decommitted to by Ake and

the view of Ake during repetition i. There are three sub-cases:
1. K′A,i 6= K′A: If K′A,i 6= ⊥ abort. Otherwise, repeat.
2. K′A,i = K′A and K′B,i = ⊥: Terminate and output (K̂A, K̂B , viewi).
3. K′A,i = K′A and K′B,i 6= ⊥: Let γ′′ = (γ, α′A, βB , α

′
B). Fix K̂B . Repeat the following: sample new K̂A; set

KA = K̂A ⊕K′B,i; βA ←R EDecom(s, αA,KA); conclude the protocol. Let (K′B,j ,K
′
A,j , viewj) be the

keys decommitted to by Ake and the view of Ake during repetition i. If for any j, K′B,j 6∈
{
K′B,i,⊥

}
or

K′A,j 6∈ {K′A,⊥} abort. Stop repeating when (K′B,j ,K
′
A,j) = (K′B,i,K

′
A). Output viewj .

Fig. 4. The Simulator Sim

In this section we prove Theorem 2. The structure of the proof can be summarized as follows:
we describe a simulator Sim and show that it terminates in expected polynomial time. The simulator
Sim makes use of an additional ability, which is not available to a simulator in the non-malleability
experiment ExpCKENMal: to fix one of the output keys in the sampled random key pairs and keep
randomizing the other key. We then describe a variant Sim′ of Sim, for which we have no bound on
the running time, but it is guaranteed to produce a perfect simulation of the view of the adversary. We
then show that the outputs of the first and second simulators are statistically indistinguishable unless a
certain bad event occurs. If the bad event occurs with high probability then we can create an adversary
that breaks the non-malleability of the commitment scheme COM with a similar probability. Finally,
we describe how to convert Sim to a simulator Ŝim that does not lock output keys and is compatible
with ExpCKENMal. Combining these steps, we get that our simulator Ŝim performs a statistically
indistinguishable simulation of the interaction of the adversary with the protocol, and it does so in
expected polynomial time.

The complete description of the simulator is given in Figure 4. Our analysis of Sim consists of
three parts. First, we describe a modified variant Sim′ of the simulator Sim which never aborts.
Instead, in the cases where Sim aborts, Sim′ enters another iteration of the loop. We then show that
with all but negligible probability Sim and Sim′ proceed identically. Otherwise, we can construct an
adversary that breaks the 2-message strong non-malleability of the underlying commitment scheme.
Then, we show that the distribution of the transcripts produced by Sim′ is identical to the distribution
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of the transcripts in the real interaction between the adversary and the protocol. Finally, we show that
Sim runs in expected polynomial time. Combining the three claims together we obtain Theorem 2.
Hybrid Experiments. In order to compare the behavior of Amal when given either real or simulated
transcripts we define a hybrid experiment where the transcript is simulated, but the simulator never
aborts. Instead, it keeps trying until it produces a transcript from the correct distribution. Specifically,
we define the following experiments:

Experiment Hyb1. Is the experiment ExpCKENMal(1n,KE , Ake, Amal, 1) where the transcript given
to the distinguisher is generated by the simulator Sim.

Experiment Hyb2. Is the hybrid experiment where the transcript is generated by a modified simula-
tor Sim′, which is defined as follows. Sim′ to proceed identically to Sim except that whenever
Sim aborts, Sim′ performs another iteration of the appropriate step of Sim. More precisely,
when Sim would abort in step 2 of phase 3, Sim′ performs another iteration of step 2. Similarly,
when Sim aborts at the top level of step 3, Sim′ performs another iteration of step 3, and when
Sim aborts in step 3.3, Sim′ performs another iteration of step 3.3.

Experiment Hyb3. Is the experiment ExpCKENMal(1n,KE , Ake, Amal, 0) where the transcript given
to the distinguisher is generated by an interaction of Ake with the protocol.

We now show that the outcomes of experiments Hyb1 and Hyb2 are closely distributed, and that
the transcripts produced by Sim′ and by actual interactions of Ake with the protocol are identically
distributed. The closeness in both cases is statistical, therefore, we obtain that the outcomes of exper-
iments Hyb1 and Hyb3 are close. Finally, we show that Sim runs in expected polynomial time.

Lemma 1 Experiments Hyb1 and Hyb2 proceed identically with probability ≥ 1− ε1/3com−nmal.

Proof. Let abort be the event that Sim aborts at some point during its execution, and let ε =
Pr[abort]. Clearly, unless abort occurs Sim and Sim′ proceed identically. We describe an adversary
Adv that uses Sim to break the 2-message strong non-malleability of the underlying commitment
scheme with probability close to ε. The main difficulty stems from the fact that Sim may rewind
Ake many times, each time equivocating one of the commitments αA or αB to a different value. In
contrast, our adversary essentially gets one chance to rewind in the strong non-malleability experi-
ment (through the two independent copies of Adv). We are saved by the fact that an abort in Sim is
always caused by a pair of transcripts that are independent from all other pairs of transcripts that Sim
generates. Moreover, there are only two ways that such a pair of transcripts can be generated: first,
by fixing a tuple of the form γ′ = (γ, α′A, βB, α

′
B) and generating two independent continuations of

γ′ where in each continuation αA is decommitted to a new random string K̂A. An abort that occurs
due to transcripts generated this way can occur either in case 2 or case 3.3 of phase 3. The second
type of pairs of transcripts is generated by fixing a tuple of the form γ′ = (γ, α′A) and generating two
independent continuations of γ′ where in each continuation both αA and αB are decommitted to new
random strings K̂A and K̂B . An abort in case 3.1 of phase 3 is always caused by such a pair. Conse-
quently, what our adversary does is to guess what type of transcript pair will cause the abort, and then
use the two branches of the strong non-malleability experiment to generate the two transcripts.

Formally, our new adversary Adv proceeds as follows: given public parameters PUB and two
commitments αA, αB , Adv generates (priA, pubA) and (priB, pubB) from the appropriate distribu-
tions, as well as random bits radv for Ake. Adv then tosses a fair coin c as a guess about the type
of transcript pair that will cause the abort. Adv also guesses whether the schedule EA or EB will be
followed by the adversary. Below we describe the algorithm of Adv for the case when EA is guessed.
The case of EB is symmetric. Assuming that Adv guessed that schedule EA is followed, it proceeds
according to the following cases:
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Case 1: c = 0. In this case Adv will generate a pair of transcripts of the second type described
above, where (γ, α′A) are fixed and both αA and αB are decommitted to random strings in the two
branches of Adv. Specifically, Adv simulates Ake on inputs PUB, pubA, αA, pubB, αB . Ake then
has a choice whether to follow schedule EA or EB . If the adversary follows EB then Adv aborts.
Otherwise, Ake submits a commitment α′A. Adv then submits α′A in the non-malleability experiment.
At this point two parallel copies ofAdv are run where copy i is given two decommitments (βA,i, βB,i)
for (αA, αB). Adv then proceeds to simulate a complete interaction of Ake with the protocol by
setting βA = βA,i an βB = βB,i. Eventually Ake submits a decommitment β′A,i, which Adv outputs
in copy i.

Case 2: c = 1. In this case Adv will generate a pair of transcripts of the first type described
above, where αB is decommitted to a single value in both branches, and αA is decommitted to two
independently chosen random strings. Adv starts by replacing the commitment αB with a new com-
mitment α̂B for a random KB ∈R {0, 1}n. More precisely, Adv generates KB ∈R {0, 1}n and
(α̂B, β̂B)←R CommitPUB(KB). Adv then simulates Ake with inputs (PUB, αA, pubA, α̂B, pubB) to
obtain a commitment α′A (again, if Ake does not follow schedule EA then Adv aborts). Adv then
continues simulating Ake using the decommitment β̂B to obtain a commitment α′B . At this point Adv
guesses whether α′A or α′B will be equivocated by tossing a coin c′. If c′ = 0, Adv submits α′A in
the non-malleability experiment. Otherwise, Adv submits α′B . Two copies of Adv are then run in
parallel where copy i is given a pair of decommitments (βA,i, βB,i). Adv ignores βB,i and proceeds
to complete the interaction of Ake with the protocol using decommitments βA = βA,i and βB = β̂B .
At the end of the simulation Adv outputs the decommitment β′A produced by Ake if c′ = 0, and β′B
if c′ = 1.

This concludes the description ofAdv (assuming schedule EA). We now show thatAdv succeeds
in breaking strong non-malleability with a probability which is close to the probability of abort during
an execution of Sim. Let rsim be a random variable representing the number of repetitions performed
by the simulator, where a repetition occurs each time Sim restarts in cases 2, 3, and 3.3 of phase 3.
This is also the number of opportunities for the simulator to abort. From Lemma 2 we know that
E[rsim] = 3. Let abortk be the event that Sim aborts on or before the kth repetition. We then get by
Markov’s inequality that for every integer k > 0,

Pr[abort] ≤ Pr[abort|rsim < k] +
E[rsim]
k

= Pr[abort|rsim < k] +
3

k
(2)

and so Pr[abortk] ≥ Pr[abort]− 3/k. We shall now relate the probability of abortk occurring to the
advantage of Adv in the strong non-malleability experiment. There are four cases where Sim aborts
in phase 3:

1. Event E2: in case 2, due to equivocation of α′B . Let γ′ be the tuple fixed at the beginning of case
2, let δ be the continuation of γ′ that was generated in phase 2, and let δ′ be the continuation
generated during the repetition that caused the abort in case 2. Then, δ and δ′ are distributed
identically. Moreover, δ and δ′ have the same distribution as the transcripts generated by the two
branches of Adv when c = 1 and c′ = 1.

2. Event E3.1: in case 3.1, due to equivocation of α′A. Let γ′ be the tuple fixed at the beginning of
case 3, let δ be the continuation of γ′ that was generated in phase 2, and let δ′ be the continuation
generated during the repetition that caused the abort in case 3.1. Then, δ and δ′ are identically
distributed and have the same distribution as the transcripts generated by the two branches of
Adv when c = 0.

3. Events E3.3a and E3.3b: in case 3.3, due to equivocation of either α′A or α′B . Let γ′′ be the tuple
fixed when case 3.3 was first entered, let δ be the continuation of γ′′ that was generated at the
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top level of case 3 (and caused Sim to enter case 3.3), and let δ′ be the continuation generated
during the repetition that caused the abort in case 3.3. Then, if the abort is caused by the rule
K ′B,j 6∈

{
K ′B,i,⊥

}
, δ and δ′ have the same distribution as the transcripts generated by the two

branches of Adv when c = c′ = 1. Similarly, if the abort is caused by the rule K ′A,j 6∈ {K ′A,⊥}
then δ and δ′ have the same distribution as the transcripts generated by the two branches of Adv
when c = 1 and c′ = 0.

Clearly, abortk = (abortk ∧ E2) ∨ (abortk ∧ E3.1) ∨ (abortk ∧ E3.3a) ∨ (abortk ∧ E3.3b), and
so for some E ∈ {E2, E3.1, E3.3a, E3.3b}, Pr[abortk ∧ E] ≥ Pr[abortk]/4. Let us now calculate the
probability of success of Adv. An abort occurs due to a pair of transcripts that matches one of the
cases listed above. We can think of Adv as guessing which pair of transcripts will cause the abort,
and then generating the pair from the appropriate distribution. The adversary “guesses” correctly with
probability≥ 1/4k2 (that is, the values c, c′ match the eventE and the two repetitions where the abort
causing transcripts were generated are guessed correctly). We therefore obtain thatAdv succeeds with
probability:

Pr[ExpUSNMal(1n, 2, Adv) = 1] ≥ Pr[abortk]

16k2
≥ Pr[abort]− 3/k

16k2

and so ε ≤ 16k2εcom + 3/k. This expression is minimized when k =
(

3
32εcom

)1/3
, and we get

ε ≤ ε1/3com

The following lemma shows that the modified simulator Sim′, which does not abort, performs a
perfect simulation of the interaction of the adversary Ake with the protocol.

Lemma 2 Let 〈Ake, Amal〉 be any PPT adversary for the CKE non-malleability experiment ExpCKENMal.
Then Pr[ExpCKENMal(1n,KE , Ake, Amal, Sim′, 0) = 1] = Pr[ExpCKENMal(1n,KE , Ake, Amal, Sim′, 1) =
1].

Proof. To prove the lemma we show that the cases of phase 3 of the simulator partition the space
of transcripts into disjoint sets. Then, we argue that each case is selected with the right probability,
and that inside each case the actual outcome is sampled with the right probability, conditioned on
the set. We start our analysis by noting that the tuple γ generated in phase 1 is fixed throughout the
simulation, and is always part of the final simulated view. Also recall that a tuple γ determines which
of the schedules EA or EB is followed. We describe the analysis for the case of EA. The analysis for
EB is symmetric. The entire argument is concluded by noting that the schedules EA and EB partition
the transcripts into disjoint sets, and that each of the schedules is followed with the right probability
in views produced by the simulator.

For a given γ let us define E⊥,⊥, E∗,⊥, E⊥,∗, E∗,∗ to be the events that the simulator enters cases
1, 2, 3.2, and 3.3 respectively. These events commit the simulator to producing transcripts where the
adversarial commitments (α′B, α

′
A) are decommitted to (⊥,⊥), (K ′B,⊥), (⊥,K ′A), and (K ′′B,K

′
A)

for some string K ′′B (not necessarily equal to K ′B). It is therefore clear that the sets of transcripts
produced in each sub-case are disjoint. We now consider each case separately:

Case 1: This case is followed when K ′A = K ′B = ⊥ and causes the simulator to output the view
view that was generated in phase 2. Since phase 2 is simply a simulation of a complete interaction of
the adversary with the protocol, and because Alice and Bob output random keys when E⊥,⊥ occurs,
we get that for every outcome δ0 = (K̂A, K̂B, view), Prδ←Sim′ [δ = δ0|E⊥,⊥] = Prδ←Adv[δ =
δ0|E⊥,⊥].
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Case 2: In this case K ′B 6= ⊥. Therefore, the output of Alice must be K ′B ⊕ KA. However, in
phase 2 the simulator chose a random KA, without first seeing K ′B . Consequently, it is unlikely that
the value K ′B ⊕KA, where KA is Alice’s ephemeral key from view, will be equal to any of the keys
K̂A that the simulator can sample in polynomial time. The simulator therefore proceeds to resample
KA together with K̂A, while fixing both adversarial commitments and KB . During this repeated
sampling K̂A is sampled first and then KA is set to K̂A ⊕K ′B . However, since K̂A and KA are still
independently chosen random strings the transcripts viewi that are generated during the sampling are
correctly distributed. The simulator terminates when (K ′B,i,K

′
A,i) = (K ′B,⊥), which according to

Lemma 1 implies Prδ←Sim′ [δ = δ0|EK′B ,⊥] = Prδ←Adv[δ = δ0|EK′B ,⊥] for every K ′B ∈ {0, 1}n.
The argument for cases 3.2 and 3.3 is similar and is omitted.

Next we show that the actual simulator Sim runs in expected polynomial time. The proof pro-
ceeds by standard calculation. In particular, we show that each case in phase 3 of the simulation will
require only a constant number of repetitions in expectation.

Lemma 3 Let tprot be an upper bound on the running time of the protocol (with commitments gener-
ated using the equivocal algorithms) and adversary, and let tsim be a random variable representing
the running time of Sim. Then, E[tsim] ≤ 3 · tprot.

Proof. We start by observing that E[tsim] =
∑

γ Pr[γ]E[tsim|γ], where γ is the tuple generated in
phase 1. We shall now calculate E[tsim|γ]. Let us define E1, E2, E3, E3.1, E3.2, E3.3 to be the events
that the simulator enters into the corresponding sub-case in phase 3. We further break down our
calculation as follows:

E[tsim|γ] =
∑

E∈{E1,E2,E3}

Pr[E|γ]E[tsim|E, γ] (3)

For E1, there are no repetitions and so E[tsim|E1, γ] = 1. For E2, the expected running time is as
follows:

E[tsim|E2, γ] =
∑
γ′

Pr[γ′|E2, γ]

Pr [E2|γ′]
=
∑
γ′

Pr[E2|γ′, γ] Pr[γ′|γ]/Pr[E2|γ]
Pr [E2|γ′]

=
∑
γ′

Pr[γ′|γ]
Pr[E2|γ]

=
1

Pr[E2|γ]

For E3 the calculation is somewhat more involved due to the nested loop:

E[tsim|E3, γ] =
1

Pr [E3|γ]
+ Pr[E3.3|γ]

∑
γ′

Pr[γ′|E3.3, γ]

Pr[E3.3|γ′]

=
1

Pr [E3|γ]
+ Pr[E3.3|γ]

∑
γ′

Pr[E3.3|γ′, γ] Pr[γ′|γ]/Pr[E3.3|γ]
Pr[E3.3|γ′]

=
1

Pr [E3|γ]
+ Pr[E3.3|γ]

∑
γ′

Pr[γ′|γ]
Pr[E3.3|γ]

=
1

Pr [E3|γ]
+ 1

Going back to (3) we get:

E[tsim|γ] = Pr[E1|γ] + Pr[E3|γ] + 2 ≤ 3 (4)
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Which implies that E[tsim] ≤ 3tprot. We note that one might suspect that, due to the nested loop
structure that triggers event E3 in the simulator, the expected running time should have a quadratic
term. This is not the case. Indeed, the external loop of phase 3, step 3 is never repeated once step 3.3
is entered, which avoids a quadratic term in equation (4).

This concludes the analysis of Sim. We are left with one final task: to achieve simulation in
the setting where the simulator cannot lock the keys of Alice and Bob individually, but rather must
randomize both keys at the same time. However, this is quite straightforward: We describe a new
simulator Ŝim that uses Sim as a black box. Ŝim will run Sim many times. Each time, Ŝim will
use its oracle to sample a new pair of outputs (K̂A, K̂B) for Alice and Bob and guess at which
iterations Sim will lock each of the two keys. To simulate the key sampling and locking oracle of
Sim, Ŝim will generate answers randomly except at the iterations where we guessed that Sim will
lock a key. At these iterations Ŝim will use the appropriate key from the pair (K̂A, K̂B). That is, if
we guessed that Sim will lock Alice’s output at iteration i then Ŝim will reply to Sim’s query with
K̂A, and similarly for Bob. Formally, Ŝim works as follows:
The simulator Ŝim. Repeat the following steps until the first success:

1. Obtain a new pair of random output keys (K̂A, K̂B).
2. Choose randomly two indexes i, j ∈R [n].
3. Simulate Sim for at most n repetitions as follows: at all repetitions k 6∈ {i, j}, if Sim asks for a

new output key for Alice or Bob, choose one at random and use it as a response to Sim’s query.
At repetition i, if Sim asks for a key for Alice and locks it then provide K̂A, otherwise restart (go
back to step 1). Similarly, at repetition j if Sim asks for a key for Bob and locks it, provide K̂B .
Otherwise restart.

4. If we haven’t restarted and Sim has output a view view within n repetitions, output (K̂A, K̂B, view).
Otherwise, restart.

Lemma 4 The simulator Ŝim runs in expected polynomial time and produces transcripts from the
same distribution as Sim.

Proof (Proof Sketch.). Using Markov’s inequality and Lemma 2 we obtain that Sim terminates within
n repetitions with probability at least 1−3/n. Ŝim guesses the repetitions in which the keys are locked
correctly with probability 1/n2. Therefore, the expected running time of Ŝim is n3

n−3 . Finally, we
observe that the distribution of transcripts output by Sim does not depend on the repetition in which
the transcript is output. In particular, unless Sim aborts, it always produces a perfect simulation of
the adversary’s view.

Lemmas 1, 2, 3, and 4 together give us Theorem 2.

D Universally Composable Credential-free Key Exchange

D.1 Background on Split Functionalities

We define what it means to realize an ideal functionality in an unauthenticated network without any
setup. As sketched in the Introduction, realizing a functionality in the unauthenticated model is de-
fined by requiring that the protocol actually realizes a relaxed variant of the functionality, called a
“split functionality.” (More motivational discussion on this choice appears there.) Recall that split
functionalities enable the ideal-model adversary to split the uncorrupted parties into disjoint sets,
called authentication sets, in an adaptive way. The parties in each authentication set H then run a
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separate ideal execution with the trusted party where in each execution the adversary plays the roles
of all the parties not in H .

A little more precisely, we assume that the parties know in advance the set U of parties with which
they wish to interact. In each execution of an authentication set H the adversary plays the roles of the
parties in U −H . (Throughout, we use the term “party P ” to mean “an ITI with PID P ”, where the
SID is clear from the context.) We wish to make the following guarantees:

1. An authentication set must be fixed before any computation in the set begins (and thus an au-
thentication set cannot be chosen on the basis of the inputs of the uncorrupted parties in that
set);

2. The authentication sets are disjoint. This guarantees that all the parties in an authentication set
have consistent views of the interaction. In particular, each party participates in only one execu-
tion.

3. The computation within each set is secure in the standard sense, i.e. as in the case that authen-
ticated channels are assumed. In particular it is independent of the computations in other sets,
except for the inputs provided by the adversary, which can be correlated to the outputs that it has
received from computations with other authentication sets that have already been completed.

For simplicity, we assume that the authentication sets given by the adversary do not include cor-
rupted parties. Alternatively, we modify the disjointment requirement to say that the intersection of
any two authentication sets contains only corrupted parties.

Functionality sF

Given functionality F, functionality sF proceeds as follows:

Initialization:

1. Upon receiving an input (Init, sid) from a party P (i.e., from an ITI with SID sid and PID P ),
interpret sid = (U, sid′), where U is a set of IDs that includes P . Send (Init, sid, P) to the
adversary.

2. Upon receiving a message (Init, sid, P ′, H, sidH) from the adversary, verify that H ⊆ U , that
P ′ ∈ H , and that for all previously recorded sets H ′, it holds that either (1) H ∩ H ′ contains only
corrupted parties and sidH 6= sidH′ , or (2) H = H ′ and sidH = sidH′ . If any condition fails then
do nothing. Otherwise, record the pair (H, sidH), output (Init, sid, sidH) to P ′, locally initialize
a new instance of the original functionality F with session identifier sidH , and provide this instance of
F, denoted FH , with the current set of corrupted parties. From now on let the adversary play the role
of the parties in U −H in FH .

Computation:

1. Upon receiving an input (Input, sid, v) from party P ′, find the set H such that P ′ ∈ H , and
forward the message v from P ′ to FH . If no such H is found then ignore the input.

2. Upon receiving a message (Input, sid,H, P ′, v) from the adversary, if FH is initialized and P ′ ∈
U −H , then forward v to FH as if coming from party P ′. Otherwise, ignore the message.

3. When an instance FH generates an output v for party P ∈ H , output v to P . When the output is for a
party P ′ ∈ U −H or for the adversary, send the output to the adversary.

Corruption:

1. Upon receiving a (corrupt, P) message from the adversary, record P as corrupted and forward
this message to all currently active instances of F.

Fig. 5. The split version of ideal functionality F
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The split functionality sF. We now proceed to formalize the above. Let F be an ideal functionality.
We define the relaxation of F, called split-F or sF, in Figure 5. For convenience, we let the SID of
sF explicitly contain the list of parties (i.e., PIDs) that the initiator of this instance wished to interact
with.

In the initialization stage of sF, the adversary adaptively chooses subsets of uncorrupted parties.
(The adaptivity relates to the fact that an authentication set can be chosen and even a full execution
completed, before the next authentication set is chosen). The adversary can choose any subsets that
it wishes, as long as they are disjoint (or, rather, as long as the intersection of any two authentication
sets contains only corrupted parties).

sF requires the adversary to provide a unique identifier, sidH , for each authentication set H .
This identifier is used to differentiate between the various copies of F. Furthermore, this identifier
is outputted explicitly to all the parties in this set. This is an important security guarantee: while the
parties do not know, of course, which are the authentication sets, they have “evidence” of the set they
are in. In particular, a global entity that sees the outputs of all parties can determine the authentication
sets from the outputs alone. (From a technical point of view, this provision forces the adversary in
the ideal process to mimic the same partitioning to authentication sets as the adversary in the real
protocol execution.)

In the computation stage of the functionality, each setH is provided with a different and indepen-
dent copy of F. This means that each set H essentially runs a separate ideal execution of F. In each
such execution, the parties P ∈ H provide their own inputs, and the adversary provides the inputs for
all P ′ ∈ U − H . This reflects the fact that in each execution, the roles of the parties outside of the
authentication set are played by the adversary. Similarly, the parties P ∈ H all receive their specified
outputs as computed by their copy of F. The adversary receives all of its own outputs, as well as the
outputs of the parties P ∈ U − H . We stress that there is no sharing of state between the different
copies of F run by sF.

Note that each instance of sF has a session identifier, sid, which is separate from the identifiers
of the various authentication sets. This convention makes sure that all participants agree on the set U
of intended participants. It is also consistent with the UC framework, which requires each instance of
a functionality or a protocol to have its own unique identifier.

Also, when initializing a new copy of F, functionality sF lets this copy know the current set
of corrupted parties. This too is done for consistency with the UC framework, which models party
corruption in the ideal process via special messages sent from the adversary to the ideal functionality.

D.2 UC Definition in The Split Functionalities Setting

Functionality FCT

1. Upon activation with input (Init, sid) from party with PID P0, where sid = (P0, P1, sid
′), choose

a value k ←R {0, 1}n, and forward (sid, k) to the adversary.
2. When receiving (Deliver, sid) from the adversary, output (Init, sid) to the party with SID sid

and PID P1.
3. When receiving (Key, P) from the adversary, where P ∈ {P0, P1}, output (Key, k) to the party

with SID sid and PID P .

Fig. 6. The Coin Toss functionality, FCT .
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The secret coin toss functionality FSCT is identical to FCT except that the adversary does not
learn the output value k.

Functionality FSCT

1. Upon activation with input (Init, sid) from party with PID P0, where sid = (P0, P1, sid
′), choose

a value k ←R {0, 1}n, and forward sid to the adversary.
2. When receiving (Deliver, sid) from the adversary, output (Init, sid) to the party with SID sid

and PID P1.
3. When receiving (Key, P) from the adversary, where P ∈ {P0, P1}, output (Key, k) to the party

with SID sid and PID P .
4. When receiving (Corrupt, sid) from the adversary, send k to the adversary.

Fig. 7. The Secret Coin Toss functionality, FSCT .

In Figure 6 we review the commonly used definition of UC coin toss, and describe a simple
modification that provides privacy of the output (given in Figure 7). The credential-less key exchange
functionality FCFKE, given in Figure 8 is essentially a reformulation of the split version of FSCT – a
coin toss functionality with privacy of the output. That is, the adversary can decide whether it wants
to disrupt the iteraction or to let it continue un-disrupted. If the interaction is not disrupted, then both
intended parties obtain the same ideally random key, which remains unknown to the adversary. If the
adversary decides to disrupt the interaction, then an independent random key is chosen for each one
of the two parties. The adversary can then learn the key associated with each party, and then decide,
based on the value of this key, whether to allow this party to obtain this key as output. When either
party is corrupted, the adversary learns the corresponding key.

Functionality FCFKE

1. Upon activation with input (Init, sid) from party with PID P0, where sid = (P0, P1, sid
′),

k0, k1 ←R ({0, 1}n)2, initialize d0, d1 to ⊥ and forward sid to the adversary.
2. When receiving (Deliver, sid) from the adversary, output (Init, sid) to the party with SID sid

and PID P1.
3. When receiving (Key, sid, Pi, di) from the adversary, where i ∈ {0, 1} and di ∈
{disrupt,connect}, do:

(a) If di = continue, d1−i 6= disrupt, and no output was sent to Pi, then (Key, k0) to party
Pi.

(b) If di = disrupt, d1−i 6= continue, and ki was not yet given to the adversary, then return ki
to the adversary. If ki was already given to the adversary then output (Key, ki) to party Pi.

4. When receiving (Corrupt, sid, I) from the adversary, where I already received output value k,
send k to the adversary.

Fig. 8. The Credential-Less Key Exchange functionality, FCFKE .

D.3 A UC Secure CFKE Protocol

In this section we sketch a very simple transformation using existing tools that implements the UC
version FCFKE of CFKE. The UC based solution stems from the following observation. A coin
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toss protocol where the messages are encrypted and authenticated has both properties that we need:
(i) the outcome is hidden from the adversary, and (ii) if the adversary were to corrupt an honest
party, he will still be unable to influence the outcome too much. The problem, of course, is that
encryption and authentication are unavailable in our setting. This is where the compilers of [BCL+05]
and [CCGS10] are very useful. Intuitively, a split functionality compiler transforms the “private coin
toss” described above (and formally in Figure 7) into a protocol that achieves one of two scenarios:
either the adversary allows the two honest parties to interact with a single FSCT functionality, or the
adversary must interact with two independent functionalities FASCT and FBSCT, where honest party A
interacts with FASCT and party B with FBSCT. Now the secrecy part of the functionality is no longer
relevant (since the adversary plays the role of B when interacting with FASCT and the role of A when
interacting with FBSCT). However, the coin toss part of the functionality guarantees that the key that
adversary agrees on with A is a uniformly random string, independent from the random key on which
he agrees with B.

For concreteness, if we instantiate Blum’s coin toss protocol with a recent UC commitment by
Lindell [Lin11a], and apply the transformation of [CCGS10] to obtain a split functionality, we obtain
a seven round FCFKE protocol (in comparison to our first protocol, which requires two simultaneous
rounds).
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