
Write-Only Oblivious RAM based
Privacy-Preserved Access of Outsourced

Data

Lichun Li, Anwitaman Datta
School of Computer Engineering, Nanyang Technological University

Singapore
Email: {lcli, anwitaman}@ntu.edu.sg

Abstract

Oblivious RAM (ORAM) has recently attracted a lot of interest since it can be used to protect
the privacy of data user’s data access pattern from (honest but curious) outsourced storage. This
is achieved by simulating each original data read or write operation with some read and write
operations on some real and dummy data items. This paper proposes two single-server write-
only ORAM schemes and one multi-server write-only ORAM scheme, which simulate only the
write operations and protect only the write pattern. The reduction of functions however allows to
build much simpler and efficient (in terms of communication cost and storage usage) write-only
ORAMs. Write-only ORAM can be used in conjunction with Private Information Retrieval (PIR),
which is a technique to protect data user’s read patterns, inorder to protect both write and read
patterns. Write-only ORAM may be used alone too, when only write patterns need protection. We
study two usage scenarios: (i) data publishing/sharing: where a data owner shares the data with
others, who only consume the published information. Data consumers should not have write access
to the outsourced data, and thus cannot use ORAM to protect their read patterns in this scenario.
To hide access patterns from the outsourced storage, the data owner can use ORAM to write data,
and data consumers use PIR to read data. Alternatively, for some applications, a data consumer can
trivially download all data once or regularly, and neither the data owner nor data consumers mind
that the outsourced storage learns such read pattern. Compared with using traditional ORAM,
using the simpler write-only ORAM here produces much less communication cost and/or client-
side storage usage. Our single-server write-only ORAM scheme produceslower (typically one
order lower) communication cost with the same client-side storage usage, or requires much less
(typically at least one order less) client-side storage to achieve the same level of communication
cost than the best known single-server full functional ORAM schemes do. Compared with the
best known multi-server ORAM scheme, our write-only ORAM schemes havelower (typically
one order lower) communication cost, or achieve the same communication cost with the same
client-side storage usage in single-server setting. (ii) the data owner’s personal use: Our write-
only ORAM schemes combined with PIR can be used as building blocks for some existing full
functional ORAM schemes. This leads tothe reduction of the communication costs for two full-
functional ORAM schemes by the factors of O(logN) and O(

√
logN × log logN), whereN is

the maximum data item count. One of these resulting schemes has a communication cost ofO(l),
wherel is data item length. This istypically one order lower than the previous best known ORAM
scheme’s cost, which is O(logN × l). The other resulting scheme also achievesO(logN × l)
communication cost, but itsclient-side storage usage is several orders lower than the best known
single-server ORAM’s.

I. INTRODUCTION

Oblivious RAM (Random Access Machine: an abstract computermodel) was proposed in [1]
to hide a software’s data access pattern, for the purpose of protecting software from reverse
engineering in 1980s. A software can be re-complied to use ORAM (Oblivious RAM) technique,
and simulate the original software’s data operations on thememory using ORAM’s methods like

accessing dummy data items (dummy items for short) or unnecessary real data items, re-encrypting
a data/dummy item into a different ciphertext after accessing it, and obliviously shuffling real and
dummy data items. From the view of the adversary observing the software’s memory access,
whether a simulated operation is read or write is indistinguishable. ORAM also hides individual
data item’s access frequency and the linkage between the simulated operations operating on the
same data item. Here, the CPU executing the software’s operations and the CPU’s internal storage,
i.e. registers, are considered secure. The adversary can’tsee the data in CPU.

In recent years, ORAM has attracted a lot of research interest, e.g. [2–5], since it can protect
the privacy of data user’s data access pattern from the honest but curious outsourced storage. The
confidentiality of the data user’s data in outsourced storage can be protected by encryption. But
sometimes encryption is not enough to protect privacy as data access pattern could leak sensitive
information [2]. Suppose that operations on certain data items is always followed by a specific
stock action of the user. Then a curious server can predict the user’s stock action by monitoring
its data access pattern. In [6–8] it is further elaborated how access pattern may leak sensitive
information.

This paper is focused on ORAM’s outsourced storage usage instead of software protection usage.
In ORAM’s outsourced storage usage, the data user’s node plays the roles of “software” and “CPU”,
while the outsourced storage plays the role of “memory”. In the literature and this paper, such
a user node is called ORAM client (client for short), and suchan outsourced storage is called
ORAM server (server for short).

PIR (Private Information Retrieval), first proposed in [9],is another technique used to protect
data user’s privacy of read patterns from honest but curiousoutsourced storages. PIR allows users
to retrieve a data item from a database without letting the database server know which item is
being retrieved. Such a privacy primitive is used in diversesettings including patent databases [10],
pharmaceutical databases [10], email systems [11], e-commerce [12], P2P file sharing systems [13],
etc. to hide an user’s interest/profile.

Motivation. This paper proposes write-only ORAM, and discusses how to use it with/without
PIR to protect data access pattern. Existing ORAM schemes are all full functional, which can
simulate both write and read operations of standard non-oblivious RAM. In another word, existing
ORAM schemes can hide the access (write/read) pattern of simulated operations and the type (write
or read) of any simulated operation. This paper’s write-only ORAM simulates only write operations,
and protects only write patterns. As far as we know, this is the first work on write-only ORAM.
The reduction of functions allows us to build simpler ORAM with better performance. Compared
with the best known full functional ORAM schemes, this paper’s write-only ORAM schemes have
lower (typically one order lower) communication cost, or require much less (typically at least one
order less) client-side storage to achieve the same level ofcommunication cost. Write-only ORAM
can be used in three situations: 1) If only write pattern needs protection, write-only ORAM can be
used alone; 2) If read and write patterns need protection butoperation type doesn’t need protection,
write-only ORAM and PIR can be used; 3) If access pattern and operation type need protection,
full functional ORAM can be built based on write-only ORAM and PIR. Write-only ORAM is
useful in the below two scenarios, which contain these situations.

• The first scenario is data sharing via outsourced storage. The data owner shares its data with
consumers using an outsourced storage. The data owner’s write pattern and data consumers’
read pattern can be hidden from the outsourced storage usingfull functional ORAM. However,
in that case the data consumers would need to have write access at the outsourced storage.
It’s usually unacceptable because a malicious data consumer can use this right to tamper
data items. To allow data consumers reading data obliviously but without write access, PIR
can be used instead. Then ORAM and PIR are used to protect dataowner’s write pattern

and data consumer’s read pattern respectively. Alternatively, for some applications, a data
consumer that needs all data can trivially download all the data from the outsourced storage
once or regularly. Therefore, a possible data sharing solution is: the data owner uses ORAM
to write (add or update) data at the outsourced storage; dataconsumers use PIR to retrieve
data from the outsourced storage, or trivially download alldata from the outsourced storage.
Compared with using full functional ORAM, using the simplerwrite-only ORAM with lower
cost here is better. For some applications, the data owner may need to read data items from
outsourced storage too. If the data owner doesn’t mind to expose its operation type (read
or write), it can use PIR to retrieve data items or download all data items trivially like a
data consumer. Otherwise, one should use full functional ORAM which can be achieved by
composing write-only ORAM and PIR differently, as discussed next.

• The second scenario is outsourced storage for the data owner’s own use, or when multiple
parties own and collaborate over the data, and even the type of operation (read or write)
is confidential, i.e., a fully functional ORAM is needed. Both read and write operations are
carried out by data owner(s), and full functional ORAM is used to protect access pattern. Based
on write-only ORAM, two kinds of full functional ORAM can be built: (a) full functional
ORAM built by directly combining write-only ORAM with PIR; (b) full functional ORAM
built by combining write-only ORAM with PIR and using it as a building block in [4, 5]’s
ORAM frameworks. Compared with traditional full functional ORAM, these two new kinds
of full functional ORAMs make a tradeoff of computational cost for communication cost
and client-side storage usage. We focus on full functional ORAM (b) in this paper, because
ORAM (b)’s computational cost is lower than ORAM (a)’s. We use write-only ORAM and
PIR as a building block to improve two full functional ORAM schemes [4, 5]. By using
write-only ORAM and PIR in [4] and [5]’s ORAM frameworks, thecommunication cost can
be reduced by a factor ofO(

√
logN× log logN) andO(logN) respectively whereN denotes

the maximum number of data items the ORAM system can store.

Contributions. The main contributions of this paper are as follows:
(i) Two novel single-server write-only ORAM schemes (basicwrite-only and advanced write-only
ORAM) and a multi-server write-only ORAM scheme are proposed. The advanced single-server as
well as the multi-server schemes leverage on the basic scheme. The advantages of advanced write-
only ORAM depend on proper optimization of parameters, and is explored in the paper. Though
write-only ORAM is simpler than traditional full functional ORAM, this paper’s contribution (i)
is not trivial. New algorithms and new data organizations are used to realize efficient designs.
Moreover, our design supports multiple ORAM clients and concurrent access, which is atypical in
most existing full functional ORAMs.
(ii) This paper studies and improves the method of supporting PIR clients in ORAM. This method
is not only useful for write-only ORAM in above two scenarios, but also needed if using full
functional ORAM and PIR together in the data sharing via outsourced storage scenario.
(iii) We demonstrate how a full functional ORAM can be directly build based on write-only ORAM
and using write-only ORAM as a building block.

Organization. Next, in Section II we discuss the necessary background and related works. We
give an overview of our write-only schemes in Section III. InSections IV and V we present our
basic and advanced write-only ORAM schemes respectively. In Section VI, we show how to extend
the basic write-only ORAM scheme to a multi-server write-only ORAM scheme. We discuss how
to use write-only ORAM as a building block to improve two fullfunctional ORAM schemes [4, 5]
in Section VII. Finally, we conclude along with a discussionof future works in Section VIII.

II. BACKGROUND AND RELATED WORK

A. Oblivious RAM

Most ORAM schemes are single-server schemes. Very few schemes, e.g. [20], are multi-server
schemes, that assumek independent and non-colluding outsourced servers.

In Table I we list the best traditional ORAM schemes that we have identified. In this table and
the rest of this paper,N denotes the maximum number of data items the system is designed to
store at any time, andl is the data item length in bits. The last ORAM scheme in table [20] is
the best multi-server scheme, while the other schemes are single-server ones. Among traditional
fully functional ORAM schemes, they have the lowest communication costs under different levels
of storage usages.

Table I
TRADITIONAL ORAM

scheme client storage server storage amortized communication/computational cost
[3, 16, 17]* O(N1/r × l) O(N × l) O(logN × l)

[4]** O(logN ×N + l) O(logN ×N × l) O(logN ×
√
logN × log logN × l)

[18]
O((logN)2/ log l × l)

O(N × l) O((logN)2/ log l × l + logN × l)
O(logN × l)

[19] O(l) O(N × l) O((logN)2/ log logN × l)
[20]*** O(l) O(N × l) O(logN × l)

* r is a small constant.
** [4] has two ORAM constructions. This result is achieved byits basic ORAM construction.
*** This is a two-server (and also the best multi-server) ORAM scheme.

B. Private Information Retrieval (PIR)

Broadly, there are two kinds of PIR techniques — itPIR (information-theoretic PIR) and cPIR
(computational PIR), providing unconditional and computational hardness based privacy respec-
tively. The privacy in cPIR is guaranteed subject to computational bounds on the server, while
all communication efficient itPIR schemes are multi-serverbased, and assume that not all the
servers collude together. Neither cPIR nor itPIR require that the data items in the database are
encrypted. In cPIR, the user’s PIR client encrypts the wanted data item’s position in the database,
and sends the encrypted position as a query to the database server; the database server computes
an answer using the encrypted position and all the data itemsin the database; the client decrypts
the answer and obtains the desired data item. There is no single-server itPIR scheme apart the
trivial one, i.e., downloading the whole database. Efficient multi-server itPIR schemes can be built
under the conditions that each server holds a replication ofthe database and not all servers collude.
A multi-server itPIR scheme is called at-private k-server itPIR scheme if it requiresk (k > 1)
database servers and resists up tot (k > t ≥ 1) colluding servers. Suppose a database hasN
data items, at-privatek-server itPIR works in the following way: the user’s PIR client uses the
position of the wanted data item to generatek queries, and sends each server a query; each server
computes an answer using its received query andO(N) data items in the database, and sends the
answers to the client; the client recovers the wanted data item from received answers. Anyt or
less servers together can’t learn any non-trivial information of the wanted data item’s position from
their received queries. In most itPIR schemes, a secret sharing scheme is used to generate shares
from the secret position, and each share is a query [21, 25].

The computational costs of cPIR and itPIR are bothO(N × l). However, the constant in cPIR’s
O(N × l) cost is much higher, and itPIR’s performance is better than cPIR’s [36]. Originally, cPIR
was considered impractical for normal database sizes [37].Subsequently, efficient cPIR schemes
were invented and considered computationally practical for restricted database sizes [24, 36, 38].
Recently, cPIR and itPIR schemes exploiting parallelization of cloud/cluster computing [40, 41] or

GPU [39] were proposed to improve PIR’s performance and makeit practical for bigger databases.
The parallelization of cloud computing can be exploited in this paper’s outsourced storage scenarios,
and some cloud providers like Amazon also provide virtual machines with GPU.

Compared with traditional ORAM, PIR has lower communication cost in most cases for the
outsourced data sharing and outsourced storage for data owner scenarios (where database size is
at most a few PB, and individual data item size is at least a KB)considered in this paper. The
communication costs of most PIR schemes are betweenO(logN + l) andO(N + l). [23]’s cPIR
scheme can achieveO(logN+l) communication cost. Normally, in the scenarios consideredin this
paper,O(logN + l) = O(l). Quite a few PIR schemes like [21, 22] can achieve a communication
cost of O(N1/d + l), where d ≥ 1. For many typical setting ofN and l, most of these PIR
schemes can makeO(N1/d) ≤ O(l), and achieve a communication cost ofO(l). For example,
supposeN = 242 and l = 214 (2KB). The database size is 8PB. ThenN1/d ≤ l if d ≥ 3, which
can be easily achieved by some schemes. For example,d depends onk andt, e.g.d× t+1 = k in
two of [21]’s itPIR schemes (main PIR protocol and binary PIRprotocol). For another example,
d depends onN , e.g.d = O(log logN) in [22]. So the best communication cost of PIR isO(l)
in many cases. In this paper, we care more about the comparison between the communication
costs of traditional full functional ORAM and PIR when PIR isused with write-only ORAM to
improve [4, 5]’s ORAM schemes. As introduced later in Section III and elaborated in Section
VII, in this usage, PIR is used to retrieve data items from a partition of the database containing
O(

√
N) or O(logN) data items instead of from the whole database. For a 1PB database with

1KB data item size, the partition size is at most several GB orhundreds of KB respectively, and
the database partition can be viewed as a much smaller database. Then it’s much easier to achieve
O(l) communication cost for many PIR schemes. Therefore, in thispaper, we useO(l) as PIR’s
communication cost when evaluating the overall communication cost of our designs.

In this paper, write-only ORAM may be used with single-server or multi-server PIR to protect
access pattern. Please note that a single-server ORAM scheme can be used with a multi-server PIR
scheme though they require different number of servers. A multi-server PIR scheme requires that
each server has a replication of the database. The ORAM client can run a single-server ORAM
scheme in one server, and synchronize the changes of the database to every other server. Similarly,
a multi-server ORAM scheme may be used together with a single-server PIR scheme. However,
multi-server PIR scheme is computationally more efficient than a single-server one. If using multi-
server ORAM scheme, multi-server PIR scheme should be chosen over single-server PIR scheme.
The details of using write-only ORAM and PIR together will begiven later.

C. Combining ORAM with PIR

Most trusted-hardware-assisted PIR schemes [26–29] are based on ORAM. These schemes share
the same basic principle. A trusted coprocessor at the database server works as a representative of
the PIR client. The trusted coprocessor uses ORAM to read thedata item wanted by the PIR client
from the server’s storage obliviously, and returns the dataitem to the PIR client. Compared with PIR
schemes without trusted hardware, these schemes have lowercomputational and communication
costs. In this paper, we use normal PIR with write-only ORAM,and don’t require trusted hardware
at the server side. Also, the PIR discussed in this paper except this paragraph is normal PIR without
trusted hardware.

In [15], a privacy-preserving data sharing over outsourcedstorage is proposed using full func-
tional ORAM to protect the data owner’s data update pattern and PIR to protect data consumers’
read patterns. The design also considers the needs of pricing and access control, which allows the
data owner to control which data items are accessible to a specific data consumer. In this paper, we
borrow and improve [15]’s method of supporting PIR clients in ORAM when combining write-only
ORAM with PIR, to support the above scenario more efficiently.

The ORAM scheme in [4]’s is improved by [30] using PIR and PIR-writing [31] as building
blocks in [4]’s ORAM framework. PIR-writing can update a data item without letting the database
server knowing which data item is updated. PIR-writing utilizes homomorphic encryption to modify
every data item’s ciphertext, and only one data item’s plaintext is updated. [30] improves the
communication cost toO((logN)3+(logN)2× l) with O(l) client-side storage. Inspired by [30],
we further improve upon [4] by using PIR and write-only ORAM as building blocks in [4]’s
ORAM framework, and reduce communication cost toO(logN × l) with O(l + N1/r × logN)
client-side storage.r is a small constant here. Compared with using PIR-writing, using write-only
ORAM produces less computational cost.

III. OVERVIEW OF WRITE-ONLY ORAM SCHEMES

A. System Setting

The outsourced storage, i.e. the ORAM server, is consideredhonest but curious. The input of
an ORAM client or a group of ORAM clients is a sequence of data operations (simulated data
operations), and thei-th operation is denoted as(opi, qi, xi). opi is the type of data operation,
which could be read or write. A read operation retrieves the value of the data item indexedqi,
while a write operation sets the value of the data item indexed qi to xi. A full functional ORAM
system is considered secure if, for any two equal-length sequences of data operations, which
sequence is chosen by the ORAM client(s) as input is computationally indistinguishable for the
ORAM server(s). In contrast, like the name suggests, in write-only ORAM the data operation
type is always write. Thus to say, both full functional and write-only ORAM hide individual data
item’s access frequency and the linkage between the simulated operations operating on the same
data item. Full functional ORAM also hides the type of any data operation, which our write-only
ORAM operations do not. The ORAM server however knows how many operations are executed
during any time period.

In contrast to most existing works in the literature which consider single ORAM client and
single ORAM server, our approach supports the possibility of data consumers’ non-ORAM clients,
multiple ORAM clients and multiple ORAM servers. In such a setting, the (write-only) ORAM
mechanisms do not prevent the data consumers’ clients from learning about the data owner’s write
pattern since they have access to read the data, and thus theycan repeatedly read the whole data to
identify the differences. Likewise, when multiple ORAM clients collaboratively mutate a collection
of data, they can (as well as need to) also see what changes arebeing made by others. (For example,
the data owner is a company and the ORAM clients of multiple employees access the data stored
in the ORAM server.) However, a data consumer can hide its read pattern from everyone by using
PIR.

Finally, for the case of multiple ORAM servers, our scheme requires that not all servers collude.
More specifically, the multi-server scheme can be characterized as at-private k-server scheme
(t < k), which is secure only if at mostt of all the k servers collude.

B. Design Overview

Our basic write-only ORAM has a very simple structure containing two storage areas. Incontrast,
the most efficient traditional ORAMs have aO(logN)-tier pyramid structure or aO(logN)-level
tree structure. To support PIR in ORAM, an additional table named slot mapping table containing
the mappings from item indices to locations is maintained additionally. The slot mapping table
design is based on [15], to which we make two major modifications to reduce the client-side
storage usage for maintaining this table.

Theadvanced write-only ORAM uses the basic write-only ORAM as a building block. Advanced
write-only ORAM’s construction contains multiple buckets, and each bucket is implemented as a

basic write-only ORAM. We optimize the bucket count to reduce client-side storage usage in
different configurations of maximal data item countN and item lengthl. The advanced write-only
ORAM also needs to maintain a table named bucket mapping table containing the mappings from
item indices to bucket numbers. The bucket mapping table is maintained at the client-side as if
there is only a single ORAM client. If there are multiple ORAMclients, the table is maintained
at the server-side as an additional basic write-only ORAM.

The multi-server write-only ORAM also builds on the basic write-only ORAM, but uses a
different oblivious merge mechanism to update values of data items. Basic write-only ORAM
uses an oblivious merge algorithm based on a recently proposed oblivious sort algorithm [44].
Giving the assumption that not all servers collude, the multi-server write-only ORAM adopts a
low-cost multi-server oblivious merge based on oblivious remove and oblivious scramble.

Compared with traditional ORAMs, the amortized communication costs in write-only ORAMs
are lower. In traditional ORAMs, oblivious shuffle is the most costly operation performed after every
oblivious read/write operation to hide the positions of thedata items being accessed. In contrast,
in write-only ORAMs, oblivious merge is the most costly (butless costly than oblivious shuffle)
operation, and it is used to update data items obliviously with new written values. The simpler
structure and less costly oblivious merge makes write-onlyORAM’s amortized communication cost
of oblivious write lower than traditional ORAM’s amortizedcost of oblivious access, assuming a
given size of storage space.

Based on write-only ORAM, two kinds offull functional ORAMs can be built: (a) full functional
ORAM built by directly combining write-only ORAM with PIR; (b) full functional ORAM built
by combining write-only ORAM with PIR and using it as a building block in [4, 5]’s ORAM
frameworks. In full functional ORAM (a), a read operation ofa data item can be simulated by
using PIR to retrieve the data item and a following obliviouswrite of a dummy data item. Similarly,
a write operation of a given data item can be simulated by using PIR to retrieve a random item
and a following oblivious write of the target data item.

One can also use write-only ORAM and PIR as building blocks toimprove two full functional
ORAM frameworks [4, 5]. Both frameworks proposed ORAMs containing multiple buckets, but
[4]’s bucket is a full functional ORAM storing at mostO(logN) data items, while [5]’s bucket
is a full functional ORAM storing at mostO(

√
N) data items. By reusing [4] and [5]’s ORAM

frameworks and implementing their buckets based on write-only ORAM and PIR, the communica-
tion cost is reduced by a factor ofO(

√
logN × log logN) andO(logN) respectively. To combine

their ORAM frameworks and our write-only ORAM, we make slight modifications to write-only
ORAM and [4]’s ORAM framework.

Compared with traditional full functional ORAM, these two new kinds of full functional ORAMs
have higher computational cost but lower communication cost or client-side storage usage. Lower
communication cost and client-side storage usage are important to clients with limited bandwidth
and storage space. Higher computational cost may decrease data operation throughput and increase
data access latency. The higher computational cost is due tothe use of PIR, and the cost depends
on the total size of data/dummy items hiding the retrieved item. So the computational cost depends
on the whole database size in full functional ORAM (a), whilethe cost depends on the bucket
size in full functional ORAM (b). Because ORAM (b)’s computational cost is lower than ORAM
(a)’s, we focus on full functional ORAM (b), and defer the design of full functional ORAM (a)
in Appendix A for the sake of completeness. For diverse applications, the corresponding typical
N and l values are such that the full functional ORAM (b)’s computation/communication/client-
side storage cost trade-offs are practical. To pinpoint quantitatively the tradeoffs under different
conditions (different values ofN and l; different PIR schemes; different hardware; different
bandwidth), further implementation and benchmarking oriented work is still needed, particularly to

evaluate how data operation throughput and data access latency are affected. We provide a back of
the envelope estimation below based on the performance datareported in the literature, but defer
any further experimental work for the future.

Since the database size in most experiments reported by the ORAM and PIR literatures is not
more than 1TB, let’s assume the database size is 1TB in the performance estimation. To the best
of our knowledge, ObliviStore [35] is the fastest obliviousRAM implementation for outsourced
storage to date. Performance tests on a 1TB database with 4KBsized data items stored in a
commodity machine (the ORAM server) yielded throughput andresponse latency of 364 KB/s and
196ms respectively. Recall that a bucket of [4] and [5]’s ORAMs storeO(logN) and O(

√
N)

items respectively. As shown in [5, 45], the constants inO(logN) andO(
√
N) can be lower than

2 and 3 in practice. We can reasonably assume [4] and [5]’s bucket sizes are6 × logN × l and
4×

√
N × l respectively considering the storage expansion of using write-only ORAM. Thus, for

1TB database with 4KB sized data items, [4] and [5]’s bucket sizes are 672KB and 256MB. For
the 1TB database with 1MB sized data items, [4] and [5]’s bucket sizes are 80MB and 4GB. To
generate a response to a PIR request, a server of full functional ORAM (b) would need to process all
data in a bucket. Performance study [36] showed that a commodity machine’s database processing
speed in the fastest itPIR scheme [9] is 1GB/s or more depending on the database size and memory
size. Likewise, [39] tested several cPIR schemes in three kinds of commodity machines with GPU.
Among these cPIR schemes, Gentry and Ramzan’s scheme [23] isthe most desirable one with a
data processing speed of 187.5KB/s. Though the speed of [38]’s scheme is faster, [38]’s scheme
is less communication efficient than the best traditional ORAM. ([38] is still a good option for
outsourced data sharing scenario.) The outsourced storagecan use multiple commodity machines
to parallelize and speed up the database processing. Using these figures, we extrapolate that the
outsourced storage can use an acceptable number of machinesto achieve acceptable throughput and
response latency. We may estimate PIR’s performance in our full functional ORAM from [40] and
[41] too. [40]’s showed that the average query time of [42]’sitPIR scheme is lower than 1 second
when a PIR server is a cloud with 320 machines and the databasesize is 4GB. [41] tested its cPIR
scheme using 20 Amazon instances. It took a PIR client about 3minutes to retrieve a 1MB sized
data item from a 10GB database. If the bucket size is small or more machines are used, [41]’s cPIR
scheme could have an acceptable performance compared with traditional ORAM’s performance.

C. Our Results

Our write-only ORAM schemes’ communication costs and storage usages are shown in Table
II, III and IV. Compared with basic write-only ORAM, advanced write-only ORAM requires less
client-side storage usage to achieveO(l) communication cost whenO(N× logN) < O(N1/r× l).
Compared with single-server write-only ORAMs, multi-server write-only ORAM can achieveO(l)
communication cost with less client-side storage usage whenO(l+N) < O(N1/r×l). We show the
communication costs, computational costs and storage usages of two write-only ORAM based full
functional ORAMs using [4] and [5]’s ORAM frameworks in Table V. We can see that our results
are better than traditional full functional ORAM in terms ofcommunication cost and client-storage
usage.

For data sharing via outsourced storage, the write-only ORAM schemes with/without supporting
PIR can be used. Let’s consider ORAM without supporting PIR first. Please note that traditional
ORAM’s costs in Table I are the costs without supporting PIR.As shown in Table II, III and
IV, the best communication cost of write-only ORAMs isO(l). In contrast,O(logN × l) is
the best communication cost of single-server and multi-server traditional ORAMs, which requires
O(N1/r × l) andO(l) client-side storage usage respectively to achieve this cost. Compared with
the traditional multi-server ORAM, our single-server ORAMcan achieve the same communication
cost and client-side storage usage using only one server, which doesn’t require multiple servers and

Table II
BASIC WRITE-ONLY ORAM

client storage server storage
amortized communication cost

oblivious write PIR read
supporting trivial O(l) O(N × l) O(logN × l)

download only O(N1/r × l) O(N × l) O(l)

supporting PIR O(l)* O(N × l) O(
√
N × (logN)2) O(

√
N × logN)

and trivial download O(l +N1/r × logN) O(N × l) O(logN × (l +
√
N)) O(l +

√
N × logN)

O(N1/r × l) O(N × l) O(l +
√
N × logN) O(l +

√
N × logN)

r ≥ 2 andr is a small constant.
* This row’s costs are under the condition ofO(l) < O(N1/r × logN). If O(l) ≥ O(N1/r × logN), please check

the next row.

Table III
ADVANCED WRITE-ONLY ORAM

PIR
case client storage server storage

amortized communication cost
support oblivious write PIR read

no
1 O(N × logN) O(N × l) O(l)
2 O(N × logN + l) O(N × l) O(l)

yes
1 O(N × logN) O(N × l) O(l +

√
N × logN) O(l +

√
N × logN)

2 O(N × logN + l) O(N × l) O(l +
√
N × logN) O(l +

√
N × logN)

case 1: There are multiple ORAM clients andN ≥ l.
case 2: There is only one ORAM client orN < l.

the assumption of not all servers colluding. Compared with the traditional single-server ORAMs
achieving this cost, our single-server ORAM can achieve this cost with much less client-side
storage usage (O(l) only), or use at most the same client-side storage usage (O(N1/r × l)) to
achieve lower communication cost (O(l)). Therefore, our single-server write-only ORAM reduces
communication cost by a factor oflogN or client-side storage usage by a factor ofN1/r. Typically,
communication cost and client-side storage usage can be reduced by one order and several orders
respectively. For example, ifN = 230 and r = 3, logN = 30 and N1/r = 1024. Write-only
ORAM and traditional ORAM can use the same way to support PIR in the data sharing scenario.
If using O(N1/r × logN) (or O(logN)) client-side storage to support PIR, the communication
costs of both write-only ORAM and traditional ORAM will be increased byO(

√
N × logN) (or

O(
√
N × (logN)2)).

For the outsourced storage used by the data owner, the full functional ORAM schemes using

Table IV
MULTI -SERVER WRITE-ONLY ORAM

PIR support client storage server storage
amortized communication cost

oblivious write PIR read
no O(N + l) O(N × l) O(l)

yes O(N + l) O(N × l) O(l +
√
N × logN) O(l +

√
N × logN)

Table V
FULL FUNCTIONAL ORAM USING WRITE-ONLY ORAM AS A BUILDING BLOCK

client storage server storage amortized comm. cost amortized comp. cost
[5]’s ORAM framework O(

√
N × l +N × logN) O(N × l) O(l) O(

√
N × l)

[4]’s ORAM framework O(l +N1/r × logN) O(N × l) O(logN × l) O((logN)2 × l)

write-only ORAM as a building block can be used. As shown in Table V, the first scheme improves
communication cost toO(l), and the second scheme achievesO(logN × l) communication cost,
which is equal to the best communication cost of single-server and multi-server traditional ORAMs.
As shown in Table I, traditional single-server ORAM schemesachieving this communication cost
require at leastO(N1/r × l) client-side storage usage. In contrast, the second scheme usesO(l+
N1/r × logN) client-side storage, which typically is several orders lower.

IV. BASIC SINGLE-SERVERWRITE-ONLY ORAM

A. Preliminaries

Similar to most full functional ORAM schemes, this paper’s single-server and multi-server write-
only ORAM schemes are based on the following assumptions. The maximum number of data items
in the outsourced storage, i.e. server, isN . During the use of the outsourced storage, data items
may be added or deleted. Thus, at any given time, the actual data count is equal to or less than
N . Data items’ indices, i.e. IDs, are in{1, 2, ...N}, and all data items have same length:l bits.
The server won’t tamper stored data, or tampering will be detected using techniques like MAC
(Message Authentication Code) and signature.

Furthermore, as in full functional ORAM schemes, dummy items are used to hide access pattern,
and data/dummy items uploaded to the server are encrypted with a semantically secure probabilistic
encryption [43] scheme and therefore two encrypted copies of the same item look different. The
server cannot identify whether these two copies correspondto the same item or not.

B. Construction

As shown in Figure 1, the server-side storage contains two areas: a main part and a write cache.
Both areas haveN slots, and each slot can store one encrypted data item or dummy item. All
items in the main part and the write cache are encrypted. The main part is always filled with items
so that the server cannot tell the actual data item count in the main part. There may beN or less
data items in the main part, and the remaining items, if any, are dummy items. Dummy items are
used to hide data item count and access pattern from the server. At the beginning, the ORAM
client initializes the main part by uploadingN encrypted items to it. TheseN items include all
data items outsourced at the beginning and maybe some dummy items for hiding current data
item count. Some meta data of an item, e.g. data item index, item type (real data item or dummy
item) and freshness level, are encrypted and stored along with the item’s content. Freshness level
is optional. It will be introduced later. The ORAM client candetermine whether an item in the
main part is a data item or dummy item only after decrypting it, and accordingly get the item’s
index and freshness level if the item is a data item. The writecache stores recently written data
items. The write cache is empty at the beginning. Every time the ORAM client does an oblivious
write operation, it uploads an encrypted data item, and the item is put in the first empty slot in
the write cache.

If the write cache is full after writing a data item, the ORAM client does an oblivious merge:
it obliviously updates the main part with the recently written data items in the write cache, and
empties the write cache. After the oblivious merge, newly added data items are put in the main
part, and the outdated data items in the main part are replaced with the most updated data items.
Please note that the server cannot detect whether an item’s plaintext has changed or not after
the oblivious merge because every item’s ciphertext changes due to use of a semantically secure
probabilistic encryption scheme.

C. Oblivious Merge Algorithms

There are two oblivious merge algorithms for basic write-only ORAM: oblivious merge based
on oblivious sort and trivial oblivious merge. Oblivious merge based on oblivious sort is used

N slots filled with encrypted items.

D7 D7
...

Main part
Write cache

N slots
D2

A write operation inserts an encrypted

item in the first empty slot in write cache.

V
V

D1 D3 D5 D6 D7

N slots. Each slot stores an encrypted data

item or dummy item.

... ...

Main part Write cache

N slots are empty at the beginning. Each

slot can store an encrypted item.

V V

Initialization

ORAM client

ORAM server’s storage

N items include all the data items

outsourced at the beginning and

maybe some dummy items.

Upload N encrypted items to fill the main part.

ⱶ ⱶ

ORAM client

Oblivious write

ORAM server’s storage

N slots filled with encrypted items.

D7 D7 ...

Main part
Write cache

Write cache is full before oblivious merge.

V
V

update main part with new/updated data items in write cache

ORAM server’s storage before oblivious merge

D2 D1 D7 D6 D1 D3

Updated main part

(updated: D1, D3, D6, D7 …; newly added: D2…)

Main part
Write cache

Write cache is empty after oblivious merge.

V
V

ORAM server’s storage after oblivious merge

...

Oblivious merge

Di

ⱶ

Data item indexed i

Dummy item

...

...

...

ⱶ

D1 D3 D5 D6 D7 ⱶ ⱶ ⱶ

D1 D3 D5 D6 D7 ⱶ ⱶ ⱶ

D3 D5 D6 D7 ⱶ D1 D2 ⱶ

Figure 1. Basic write-only ORAM

in most cases. When the basic write-only ORAM is used as a building block in other ORAM
schemes, the trivial oblivious merge may be used.

The ORAM client does the oblivious merge based on oblivious sort by following steps, and a
toy example is shown in Figure 2.

• First, the client scans all items, and tags each data item with a freshness level. For a data item
in the main part, its freshness level is 0. For a data item in the write cache, its freshness level
is its position in the write cache (positions are 1-based here). The client downloads the items
in the main part and write cache one by one. If a downloaded item is a data item, the client
tags it. Then the client uploads the downloaded item (dummy item or data item) back to the
server after re-encrypting it. A data item’s tag is encrypted along with its content so that the

server can’t learn any data item’s freshness level. Becauseevery scanned item is re-encrypted
with a semantically secure probabilistic encryption scheme, the server can’t learn any scanned
item’s type.

• Second, the client sorts the items in the server using a data-oblivious external-storage sort
algorithm. In our case, the outsourced storage is the “external-storage”. We use [44]’s oblivious
sort algorithm. After sorting, items of the sorted list are in the order that: 1) data items before
dummy items; 2) the data item with smaller index before the data item with bigger index; 3)
for data items with the same index, items with higher freshness levels are before items with
lower freshness levels.

• Third, the client scans the sorted list, removes tags, and replaces outdated data items with
dummy items. The client detects outdate items by comparing adjacent items’ indices and
freshness levels. If two items have the same index, the item with lower freshness level is
outdated. The client scans the sorted list from head to tail.The client downloads items in the
list one by one to scan. If current scanned item is a data item,the client compares current
scanned item’s index and freshness level with last scanned item’s index and freshness level.
If current scanned item is an outdated data item, the client uploads a new dummy item to the
server. Otherwise, the client re-encrypts the current item, and uploads it.

• Fourth, the client sorts all items again obliviously. [44]’s oblivious sort algorithm is used again
here. After sorting, items are in the order that data items are before dummy items.

• Fifth, the client asks the server to put the firstN items of the sorted item list in the main
part.

It’s easy to find out that each of above steps is oblivious and above oblivious merge algorithm
is secure. The second and fourth steps are the most costly parts of the oblivious merge based
on oblivious sort. Under the assumption ofl ≥ (logN)ε (ε > 0 is a small constant), [44]’s
oblivious sort algorithm produces following communication cost for sorting a list ofN items:
O(N× logN× l) if usingO(l) client-side storage ;O(N×r× l) = O(N× l) if usingO(N1/r× l)
client-side storage. Here,r ≥ 1 andr is a small constant can be omitted inO(N×r× l). Normally,
l ≥ (logN)ε stands. It’s also acceptable to choose a value forr that makesr ≥ 2. In this paper,
we assumer ≥ 2, which will simplify the analysis of costs. The most computationally costly
operations in the oblivious merge are decrypting downloaded items and encrypting items to be
uploaded. So, the communication and computational costs are the same in the second and fourth
steps. Both costs of the other steps areO(N × l), which is less than the cost of the second and
fourth steps. Therefore, the oblivious merge’s communication and computational costs are both:
O(N × logN× l) if usingO(l) client-side storage;O(N×r× l) = O(N× l) if usingO(N1/r× l)
client-side storage. Here,r ≥ 2 andr is a small constant, which can be omitted inO(N × r× l).

If the ORAM client hasO(N × l) storage space, it can do a trivial oblivious merge locally.
First, the client downloads all items, and picks the most updated data items. Second, the client
re-encrypts the picked data items, and uploads them to the server. Third, if the number of uploaded
data items is less thanN , the client creates one or some dummy items, and uploads the dummy
item(s) to the server to make uploaded item count beN . The server will put all received items in
the main part. A client havingO(N × l) storage space is usually not practical. However, when the
basic write-only ORAM is used as a building block in other ORAM schemes, this trivial oblivious
merge may be useful.

Concurrent read/write during oblivious merge. An oblivious merge may take a long time when
there are many items. To enable concurrent read/write operations during the oblivious merge, as
shown in Figure 3, the server allocates space for a new main part and a new write cache. The
oblivious merge outputs the merged items to new main part. A concurrent ORAM write can put
the data item in the new write cache. As discussed in Section I, a data reader could be a node of

D1

D1(7) D1(4)

D1(0)

D1

D7

N slots filled with encrypted items. (N=8)

D7 D7

Main part Write cache

Write cache is filled with N items before oblivious merge.

Step 1: tag freshness level

Before oblivious merge

D2 D1 D7 D6 D1 D3
D3 D5 D6 D7 ⱶ ⱶ

D3 D5 D6 D7 ⱶ D1 D2

D7(1) D7(2)

Main part
Write cache

Step 2: oblivious sort

After step 1

D2(3) D1(4) D7(5) D6(6) D1(7) D3(8)
D3(0) D5(0) D6(0) D7(0) ⱶ ⱶ

Step 3: replace outdated data items with dummy items; remove tags

After step 2

D7(2) D7(1)D2(3) D7(0)D1(0) D3(8) D7(5) ⱶ ⱶ D3(0) D5(0) D6(6) D6(0)

2N = 16 sorted items

Step 4: oblivious sort

After step 3

D2 ⱶ ⱶ D3 D5 D6

2N = 16 items

ⱶ ⱶ ⱶ ⱶ ⱶ ⱶ

ⱶ ⱶ ⱶ ⱶ ⱶ

Di (j)
Data item indexed i

with freshness level j

2N = 16 sorted items

ⱶ ⱶ ⱶ

Step 5: fill main part with first N items; empty write cache

Temporary server-side space for oblivious merge

Temporary server-side space for oblivious merge

Temporary server-side space for oblivious merge
After step 4

(updated: D1,D3, D6, D7 ; newly added: D2; unchanged: D5)

Updated main part Write cache

Write cache is empty after oblivious merge.

After step 5

ⱶ
ⱶ

ⱶ

ⱶ ⱶ

ⱶ

D3 D5 D6 D7 ⱶ D1 D2 ⱶ

Figure 2. A toy example of oblivious merge based on oblivioussort

the data owner or a data consumer. A data reader may retrieve data items using PIR, or download
all data items directly. Concurrent PIR reads will use PIR toretrieve data items from the old main
part, old write cache and new write cache. A concurrent read of all data items will download all
items in the old main part, old write cache and new write cachedirectly. When the oblivious merge
is done, items in the old main part and old write cache will be deleted.

D. Key Sharing for Data Consumers and Multiple ORAM Clients

A symmetric encryption scheme like AES can be used in ORAM. Inthe outsourced data sharing
scenario, cryptographic keys should be shared to data consumers so that they can decrypt retrieved
data items. The data owner may have multiple ORAM clients (e.g. the data owner is a company
and multiple employees access the data stored in the ORAM server). A client need to decrypt
data/dummy items encrypted by other clients during an oblivious merge. Then keys should be

D1 D3 D5 D6 D7 D9

V

Old main part is filled with

N encrypted items.

...

D3 D8 ...

Old main part

New write cache

New write cache has N slots.

A concurrent write operation

inserts the data item in the first

empty slot in new write cache.

Old write cache is full after N

write operations.

...

Old write cache

D1

New main part is waiting to be

filled with N encrypted items.

...

New main part
D6

The result of the oblivious merge is

being output to the new main part

Server storage

A client of a data owner/consumer

From old main part, old write cache and new write cache, a

client reads data by

either using PIR to retrieve one or more data items

or downloading all items

V

V

V

D7 D7 D2 D1 D7 D6 D1 D3ⱶ ⱶ

D2

Figure 3. Concurrent read and write during an obvious merge

shared among ORAM clients too. The simplest way of managing and sharing keys is using the
same key for all items like most ORAMs and pre-sharing the keylike [16]. Alternative, [15]’s way
can be used. [15] uses different keys for different items, and considers access control when sharing
keys. By control the access to keys, the data owner can control which data items are accessible to
a specific data consumer. Please refer to [15] for the details.

E. Analysis

During either an oblivious write operation or an oblivious merge, from the perspective of the
server, the ORAM client’s behaviors are independent of the data item being written and the data
items been written before. The server does not know the indexof any data item being written or
having been written. The server cannot find the linkage between two write operations writing on
the same data item. The server does not know if a given data item is updated more frequently than
other items.

This write-only ORAM usesO(N × l) server-side storage. The communication and compu-
tational costs of an oblivious write are bothO(l). If the client-side storage usage isO(l), the
communication/compuatational cost of an oblivious merge is O(N × logN × l). If the client-side
storage usage isO(N1/r × l), the communication/compuatational cost of an oblivious merge is
O(N × l). An oblivious merge is performed after everyN oblivious writes. So the amortized
communication and computational costs of an oblivious write are both:O(l) when client-side
storage isO(N1/r × l); O(logN × l) when client-side storage isO(l). Here,r ≥ 2 and r is a
small constant.

F. Supporting PIR Clients

1) Maintaining Data Item Location for PIR Clients
For a client using PIR to retrieve a data item, as introduced in Section II, it needs to locate the

data item’s location in the server before using PIR. A table containing mappings from data item
indices to their locations should be maintained. The table is called slot mapping table, which has
N entries, and thei-th entry stores thei-th data item’s location. If thei-th data item does not exist,
the i-th entry stores a special value (e.g. -1) indicating the non-existence of thei-th data item.
Entry size isO(logN) bits, and the table size isO(N × logN) bits. To share the table among the
clients of the data owner and data consumers, the mapping table is stored in the ORAM server.
Each entry is encrypted with a semantically secure probabilistic encryption scheme. ORAM clients
need to update the table obliviously, and PIR clients need toread the table obliviously. [15] has
proposed an efficient method to read and update such a mappingtable obliviously. We reuse its

method after two major modifications for reducing client-side storage usage, and summarize the
modified method as below.

(1,1) (2,2) (3,-1) (4,3) (5,-1) (6,-1) (7,4) (8,5)

N encrypted entries.

The i-th Entry: mapping from data item index i

to location or -1 (if no this item).

...
(8,33) (3,34) ...

Slot mapping table
Cache for updating one entry

√N slots for encrypted entries.

(5,35)

After writing a data item, the ORAM client updates an

entry by inserting the updated entry in the cache.

V
V

Cache for updating the whole table

V

After an oblivious merge of data items, the ORAM client

inserts N entries for new main part’ items to the cache.

A temporary cache of N slots.

...

(6,9)

PIR client: data item 8's position is 33

Retrieve the 8th

entry from the

table with PIR
Download all entries in

the cache
(8,5)

(6,9)
(1,1)

(8,33) (3,34) (5,35)

When a cache is full, the ORAM client obliviously merge

entries in that cache to the slot mapping table.

Figure 4. Slot mapping table for supporting PIR clients

As shown in Figure 4, the slot mapping table and two caches aremaintained in the ORAM
server. The original design of [15] has only one cache: the cache of

√
N slots for updating one

entry. We add a cache ofN slots for updating the whole table. After an oblivious writeof a data
item, the ORAM client inserts the updated entry of the data item in the cache for updating one
entry. To lookup a data item’s location, the PIR client not only retrieves the item’s entry in the table
using PIR, but also downloads all entries in the cache for updating one entry. Then the amortized
communication cost of a PIR read on a data item isO(l+

√
N × logN). If the cache is full after

inserting
√
N entries, the ORAM client obliviously merges the entries in the cache and slot mapping

table. In [15]’s original design, the ORAM client also stores a local slot mapping table with updated
entries, and uploads the entries of the local table to replace the entries in the remote table. We
make a modification to reduce client-side storage usage here: the client doesn’t store a local slot
mapping table; the client does an oblivious merge based on oblivious sort, which is the same as the
oblivious merge algorithm for data items in Section IV-C. Toenable concurrent read/write during
the oblivious merge, an additional empty cache can be used for concurrent writes, and concurrent
reads can retrieve entries from the slot mapping table, the full cache and the additional cache. This
is very similar to the way of enabling concurrent read/writeof data items. Another modification
we make is the update of slot mapping table during an oblivious merge of data items. The server
uses a cache ofN entries for the update. During an oblivious merge of data items,N data/dummy
items are put in the new main part. The client inserts the entries of theseN items in this cache.
If an item is a dummy item, a dummy entry for the dummy item is inserted. After the cache is
full, the client does an oblivious merge to update the slot mapping table with entries in the cache.
Again, this oblivious merge is based on oblivious sort, which is the same as the oblivious merge
algorithm for data items in Section IV-C. Then communication and computational costs of an
oblivious merge of entries are both:O(N × r× logN) = O(N × logN) if usingO(N1/r× logN)
client-side storage;O(N × (logN)2) if using O(logN) client-side storage.r ≥ 2 but r is a small
constant, which can be omitted inO(N × r × logN).

An oblivious merge of slot mapping entries is performed after every
√
N oblivious ORAM

writes and during every oblivious merge of data items. Recall that the amortized communication
cost of an oblivious write without sharing slot mapping table is:O(l) when client-side storage is
O(N1/r × l); O(logN × l) when client-side storage isO(l). Normally,N1/r × l > N1/r × logN .
Then, if sharing the slot mapping table, the amortized communication cost of an oblivious write is
increased to:O(l+

√
N×logN) when client-side storage isO(N1/r×l); O(logN×(l+

√
N)) when

client-side storage isO(l+N1/r × logN); O(logN × l+
√
N × (logN)2) = O(

√
N × (logN)2)

when client-side storage isO(l) and l’s order of magnitude is lower thanN1/r × logN ’s. r ≥ 2
andr is a small constant here. The computational cost of retrieving a data item and a slot mapping
table entry with PIR areO(N × l) andO(N × logN) respectively. Normally,N × l ≥ N × logN .
So the amortized computational cost of retrieving a data item with PIR is stillO(N × l).

2) Multi-server PIR Support
Multi-server PIR requires that each storage has the exact replication of the database. In another

word, at any given position of the database, every server stores the same item. To use ORAM
and multi-server PIR together, every server needs to store the identical encrypted item at the
same position. The ORAM client can run the single-server write-only ORAM in one server, and
synchronizes the changes of the database to every other server. Then, to use with ak-server PIR,
the communication cost of ORAM is increased at mostk times.k is regarded as a small constant.
The communication cost is proportionally increased, but the order of magnitude thus stays the
same.

V. A DVANCED SINGLE-SERVERWRITE-ONLY ORAM

A. Construction

Using O(N1/r × l) bits client-side storage, basic write-only ORAM can achieve an amortized
communication cost ofO(l) bits. Advanced write-only ORAM can also achieveO(l) bits amortized
communication cost by employing basic write-only ORAM as a building block. Advanced write-
only ORAM requires less client-side storage usage to achieve this cost whenO(N × logN) <
O(N1/r × l). Here,r ≥ 2 andr is a small constant.

Bucket 2 ...

D8

V

Bucket 1 Bucket K-1 Bucket K

Optional write-only ORAM

for bucket mapping table

K buckets : Each bucket is a

basic write-only oblivious RAM

1. choose a random

bucket, write the data

item to its write cache

ORAM client

Server-side storage

2. update (item index,

bucket No.) mapping

(8,2)

Figure 5. Advanced write-only ORAM and an oblivious write example

As shown in Figure 5, the server-side storage containsK buckets (K < N), and each bucket
is a basic write-only ORAM that can store at mostB data items. So the bucket size isO(B × l)
bits. The values ofK andB depend onN and l, which will be discussed later. A table named
bucket mapping table containing the mappings from item indices to bucket numbers is maintained
at the client-side or server-side. The table hasN entries, and thei-th entry stores thei-th data
item’s bucket number. If thei-th data item does not exist, thei-th entry stores a special number
(e.g. -1) indicating the non-existence of the data item. If there is only one ORAM client, the table
is maintained at the client-side. Otherwise, as shown in Figure 5, all table entries are maintained
at the server-side in an additional basic write-only ORAM. An entry contains a data item index
and a bucket number. Then the entry size isO(logN + logK) = O(logN) bits, and the ORAM
size (server-side storage for the ORAM) isO(N × logN) bits.

In advanced write-only ORAM, an ORAM client obliviously writes a data item to the outsourced
storage by following steps. First, it encrypts the data itemlocally with a semantically secure
probabilistic encryption scheme. Second, it chooses a bucket uniformly at random, and oblivious
writes the data item to the bucket ORAM. Third, it updates thedata item’s bucket number in a
table named bucket mapping table, which stores the mappingsfrom all data items’ indices to their
bucket numbers.

If the bucket mapping table is maintained in a basic write-only ORAM at the server side, an
ORAM client can utilizeO(N×logN) client-side storage do a trivial oblivious merge of this basic
write-only ORAM locally. Then the amortized communicationcost of updating bucket mapping
table isO(logN), which is less thanO(l) normally. So updating the data item’s bucket number
won’t increase the amortized communication cost of writingdata item no matter the bucket mapping
table is maintained at client-side or server-side.

The client does a bucket’s oblivious merge based on oblivious sort when the bucket’s write cache
is full. If a basic write-only ORAM haveB data items,O(B1/r × l) client-side storage is required
to do an oblivious merge and achieveO(l) amortized communication cost. However, a bucket is
not just a basic write-only ORAM. To do an oblivious merge of abucket, additional client-side
storage and operations are also needed to detect and remove outdated data items in the bucket.
The bucket mapping table is maintained for detecting outdated items. The client can lookup the
bucket mapping table to see if all versions of thei-th data items in a bucket are outdated. If the
i-th data item’s bucket is not the current bucket, all versions are outdated. Otherwise, one of these
versions is the most updated, which is determined by their freshness levels. If there is only one
ORAM client, the bucket mapping table can be maintained at the client-side storage. Otherwise,
the bucket mapping table should be shared via the ORAM server, and the client downloads the
table before doing an oblivious merge. The bucket mapping table’s size isO(N × logN) bits.
So the client-side storage usage isO(N × logN + B1/r × l). An oblivious merge of a bucket
is performed after everyB writes to the bucket. Then downloading the bucket mapping table
increases the amortized communication cost of data item writing by O(N/B × logN). Therefore,
the amortized communication cost of writing a data item is: still O(l) if the bucket mapping table
is maintained at the client side;O(l +N/B × logN) otherwise. In the case that a bucket’s main
part will be overflowed after an oblivious merge, the client concurrently inserts each overflowed
data item to a random chosen bucket by doing an oblivious write. As discussed below,B is set to
a proper value to make overflow rare.

B. Parameter Optimization

Now we discuss how to choose the values ofK andB. Our goal is to minimize client-side storage
usageO(N× logN+B1/r× l) while keeping amortized communication cost of an obliviouswrite
asO(l) and server-side storage usage asO(N× l). To keep server-side storage usage asO(N × l),
we need to setB asO(N/K). Based on the standard balls in bins analysis [33], the bucket with

most data items hasO(N/K) data items with high probability ifN ≥ K × logK. So we must
chooseK ’s value to makeN ≥ K × logK. As analyzed above, if the bucket mapping table is
maintained at the client side,O(l) amortized communication cost can be achieved. However, if the
bucket mapping table is shared at the server for multiple clients, the amortized communication cost
is O(l +N/B × logN). In that case, we must makeO(l) ≥ O(N/B × logN) = O(K × logN)
to achieveO(l) amortized communication cost. Therefore, to meet our goal,following conditions
must be met: 1)N ≥ K× logK; 2) B = O(N/K); 3) O(l) ≥ O(K× logN) if there are multiple
ORAM clients. Below, we show how to chooseK ’s value to meet these conditions.

• If there are multiple ORAM clients andN ≥ l, we chooseK ’s value as the maximal integer
that can makel ≥ K × logN . As N ≥ l ≥ K × logN > K × logK, B’s value can be set
to O(N/K). Therefore, the client-side storage usage isO(N × logN + (N/K)1/r × l). As
O(l) = O(K × logN), we gotO((N/K)1/r × l) = O((N/(l/logN))1/r × l) = O(N1/r ×
l(r−1)/r × (logN)1/r) < O(N × logN). Then the client-side storage usage isO(N × logN).
As O(l) ≥ O(K × logN), the amortized communication cost of an oblivious write isO(l).

• Otherwise, if there is only one ORAM client orN < l , we chooseK ’s value as the maximal
integer that can makeN ≥ K × logN . SoB’s value can be set toO(N/K) = O(logN).
Therefore, the client-side storage usage isO(N×logN+(logN)1/r×l). Normally,(logN)1/r

can be viewed as a small constant. Then the client-side storage usage isO(N × logN + l).
BecauseO(l) ≥ O(N) ≥ O(K × logN), the amortized communication cost of an oblivious
write is O(l) no matter there is only one ORAM client or not.

The communication cost and storage usage after optimization are as follows. The amortized
communication cost of an oblivious write isO(l). The server-side storage usage isO(N × l).
If there are multiple ORAM clients andN ≥ l, the client-side storage usage isO(N × logN).
Otherwise, the client-side storage usage isO(N × logN + l).

C. Security Analysis

All the operations in advanced write-only ORAM are oblivious. Each bucket is a basic write-
only ORAM. If the bucket mapping table is maintained at the server side, table entries are stored
in a basic write-only ORAM. Operations on any bucket or the bucket mapping table at the server
side are oblivious. The types of performed operations (write or oblivious merge) and the operated
buckets’ numbers are independent of the sequence of writtendata items’ indices. Any two write
operation sequences with the same length are indistinguishable to the server.

D. Supporting PIR Clients

Supporting PIR clients in basic write-only ORAM and advanced write-only ORAM are the
same. The ways of maintaining data item location and supporting multi-server PIR are the same.
In basic write-only ORAM, a mapping table called slot mapping table storing data item locations
is maintained. Please note that, in advanced write-only ORAM, we use only one slot mapping
table for all buckets instead of maintaining a separate table for each bucket. This table stores the
mapping from data item indices to their exact locations in advanced write-only ORAM. The size
of the slot mapping table is stillO(N × logN).

As discussed in Section IV-F, the amortized communication cost of a PIR read isO(l+
√
N ×

logN). Section IV-F also shows that the amortized communication cost of an oblivious write
is increased byO(

√
N × logN) if using O(N1/r × logN) client-side storage to support PIR

clients. r ≥ 2 and r is a small constant. So, to support PIR, the amortized communication cost
and client-side storage usage are increased byO(

√
N × logN) andO(N1/r × logN) respectively.

However, the increased client-side storage usage is negligible compared with the usage without
PIR support. Therefore, the amortized communication cost of an oblivious write is increased to

O(l +
√
N × logN), and client-side storage usage’s order of magnitude is not increased. The

computational costs of retrieving a data item and a data item’s location with PIR areO(N × l)
andO(N × logN) respectively. Normally,N × l ≥ N × logN . So the amortized computational
cost of retrieving a data item with PIR isO(N × l).

VI. M ULTI -SERVERWRITE-ONLY ORAM

In the outsourced data sharing scenario, as proposed by [15], t-privatek-server itPIR can be used
with ORAM to hide data access pattern, wherek > t ≥ 1. Recall that the use oft-privatek-server
itPIR requiresk outsourced storages, e.g. storages provided byk cloud providers, and the number
of colluding storages are no more thant. t-privatek-server itPIR also requires that each storage has
the exact replication of the database. In another word, at any given position/address of the database,
every server stores the same item. As discussed in Section II-B and IV-F, single-server ORAM
scheme can be used with multi-server PIR scheme: the ORAM client runs a single-server write-
only ORAM scheme in one server, and synchronizes the changesof the database to every other
server. Alternatively, giving the assumption that the number of colluding storages are no more than
t, we can design at-privatek-server write-only ORAM scheme, and use it witht-privatek-server
itPIR.

In this section, we design a multi-server write-only ORAM scheme based on the basic single-
server write-only ORAM. Compared with basic write-only ORAM, this multi-server write-only
ORAM has lower client-side storage usage whenO(l+N) < O(N1/r × l). This ORAM’s client-
side storage usage is also lower than advanced write-only ORAM’s. In addition to being used with
multi-server PIR, multi-server write-only ORAM may also beused in the case that data consumers
download all data items trivially.

ORAM client

k=3 servers provided by third parties. t=2 or less servers collude.

3rd server
1st server

2nd server

Step 4(1) scramble items

from 1
st

server & output

result to 2
nd

server

Step1-3 replace

outdated items

with dummy items Step 5 sc
ramble ite

ms fro
m

3
rd se

rver, d
iscard

N
dummy

ite
ms, a

nd output r
esu

lt t
o

1
st se

rver.

Step 4(2) scramble items

from 2
nd

server & outputs

result to 3
rd

server

Figure 6. Oblivious merge in multi-server write-only oblivious RAM

The only difference between multi-server write-only ORAM and basic write-only ORAM is
oblivious merge. Suppose there arek servers, and the number of colluding servers are no more
thant. Multi-server write-only ORAM scheme utilizest+1 servers to do an oblivious merge. The
same as applying single-server write-only ORAM to multipleservers, the client runs the write-
only ORAM in one server, and synchronizes the changes of the database to every other server.
The synchronization is required by the use of multi-server PIR, but is optional for data consumers
downloading all data items trivially. When the ORAM’s writecache is full, the client utilizest+1

servers to do an oblivious merge. Suppose the server runningORAM is indexed1. The client
chooses othert servers randomly. We index these servers from2 to t+1. As illustrated in Figure
6, the ORAM client does the oblivious merge based on oblivious remove and oblivious scramble
by following steps. In these steps, items are encrypted witha semantically secure probabilistic
encryption scheme.

• First, the client creates a bitmap ofN bits. The bitmap is initialized as all zeros. The bitmap
is used to detect outdated data items. Let’s call this bitmapdetective bitmap.

• Second, the client scans the write cache of the first server from tail to head, replaces outdated
data items with dummy items. If data consumers use PIR, to keep every server’s database
identical and allow concurrent PIR read, the client operates on a copy of the write cache in
a temporary space of the server instead of the write cache. Because the cache is scanned
from tail to head, more recently written data items in the write cache are scanned before
less recently written data items. During the scan, if a data item indexedi is found, the client
checks thei-th bit of the detective bitmap. If thei-th bit is zero, which means the data item
is the most updated version of thei-th data item, the client sets thei-th bit as 1. Then client
re-encrypts the data item, and puts it back to its slot in the write cache. If thei-th bit of the
detective bitmap is 1, which means a more updatedi-th data item exists, the client puts a
dummy item back to the data item’s slot in the write cache.

• Third, the client scans the main part of the first server, replaces outdated data items with
dummy items. If data consumers use PIR, to allow concurrent PIR read, the client operates
on a copy of the main part in the server instead of the main part. The client detects and
replaces outdated data items by utilizing the detective map, which is very similar to that in
the second step. During the scan, if a data item indexedi is found, the client checks thei-th
bit of the detective bitmap. If thei-th bit is zero, the client sets thei-th bit as 1. Then the
client re-encrypts the data item, and puts it back to its slotin the main part. If thei-th bit of
the detective bitmap is 1, the client puts a dummy item to the data item’s slot in the main
part.

• Fourth, the client scrambles all itemst times utilizing t+1 servers. The client downloads the
items in the first server’s main part and write cache one by onein a random order. After the
second and third steps, all data items in the downloaded items are the most updated. During
the download, the client re-encrypts the downloaded items,uploads them to the second server,
and removes uploaded items from local storage. Then onlyO(l) client-side storage is required
in this step. The uploaded items are stored in a temporary space in the second server. After
all items being uploaded to the second server, the first scramble is finished. Using the same
way, the client scrambles the items uploaded to the second server, and uploads the result of
the second scramble to the third server. Using the same way, the client scrambles the items
t − 2 times more, and eventually the result is stored in a temporary space in the(t + 1)-th
server.

• Fifth, the client scrambles all items in the(t+1)-th server, and outputs data items to the first
server. The client downloads the items in the(t+ 1)-th server, which have been scrambledt
times, in a random order. During the download, the client re-encrypts downloaded data items,
uploads them to the first server, and removes uploaded items and dummy items from local
storage. The uploaded items are put in the new main part of thefirst server. If data item
count is less thanN , the client also uploads one or more new dummy items to fill thenew
main part during the upload of data items. The data item countcan be measured during the
second and third step, and stored with a counter of⌈logN⌉ bits. If data consumers use PIR,
the change of the ORAM is also synchronized to other servers by the client.

Analysis After first three steps, outdated data items are replaced with dummy items, and updated

data items are kept in their original positions before the oblivious merge. No information about the
write pattern leaks in the first three steps because the ORAM client’s behaviors are independent
of the write pattern. In the fourth and fifth step, items in thedatabase are scrambledt+ 1 times.
After t+1 scrambles, updated data items and maybe some dummy items areoutputted to the first
server as the result of the oblivious merge, andN dummy items of the(t+1)-th scramble’s result
are discarded. By observing the upload speed of outputting the oblivious merge’s result, the first
server learns information about positions of updated data items and dummy items in the(t+1)-th
scramble’s result. If the first server can correlate the items before and after thet + 1 scrambles
by colluding with some servers, it knows information about updated data items’ positions before
oblivious merge and write pattern. However, if no more thant servers collude, no server can learn
the information. Thei-th server can correlate the items before and after thei-th scramble only.
If any t of the k servers collude, they can correlate at mostt scrambles’ input items and output
items, but can’t correlate the items before and aftert+1 scrambles. Therefore, if colluding server
count is no more thant, the oblivious merge is secure.

The client-side and server-side storage usages areO(N + l) andO(N × l) bits respectively.t
andk are small integers, and viewed as constants in this paper. Then the communication cost of
an oblivious merge isO(N × l). An oblivious merge is performed after everyN oblivious writes.
So the amortized communication cost of oblivious write isO(l).

Supporting PIR clients in multi-server write-only ORAM is the same as that in single-server
write-only ORAM. To support PIR, the amortized communication cost is increased byO(

√
N ×

logN) using additionalN1/r× logN client-side storage usage. This is the same as the case in the
basic write-only ORAM. So, to support PIR, the amortized communication cost of oblivious write
is increased toO(l+

√
N × logN) and client-side storage isO(N + l+N1/r × logN) = O(N +

l). The same as the basic write-only ORAM, in multi-server write-only ORAM, the amortized
communication and computational costs of PIR read areO(l +

√
N × logN) and O(N × l)

respectively.

VII. F ULL FUNCTIONAL ORAM USING WRITE-ONLY ORAM AS A BUILDING BLOCK

[4] and [5] proposed ORAMs containing multiple buckets. [4]’s bucket is a full functional ORAM
storing at mostO(logN) data items, while [5]’s bucket is a full functional ORAM storing O(

√
N)

data items. We can view their designs as frameworks using other full functional ORAM schemes
as building blocks. Most traditional full functional ORAM schemes and our write-only ORAM
schemes (together with PIR) can be used to implement these buckets with slight modifications.
Using our write-only ORAM and PIR as a build block in [4] and [5]’s ORAMs, the communication
cost can be reduced, and the increased computational cost could be acceptable or even negligible
for many reasonable values ofN and l.

[4] and [5]’s bucket ORAM is a bit different from normal full functional ORAM. [4] and [5]
require a bucket ORAM to provide oblivious read-and-removeprimitive and add primitive instead
of read primitive and write primitive. The oblivious read-and-remove primitive can read and remove
a real data item or a dummy data item from a bucket, while the oblivious add primitive can add
a real data item or a dummy data item to a bucket. It is not required to hide an primitive’s type.
Building [4]’s bucket ORAM and [5]’s bucket ORAM based on write-only ORAM and PIR are
similar but not exactly the same. We make slight modifications to [4]’s ORAM framework and our
write-only ORAM. Next, we describe how to build bucket ORAM based on write-only ORAM for
[5] and [4] separately.

A. Using Write-only ORAM in [5]’s ORAM Framework

In [5], there is only one client, and it usesO(
√
N× l+N× logN) bits local storage. The client

maintains
√
N queues locally. Thei-th queue stores the data items to be added to thei-th bucket

later. Locally, the client also maintains a data location table, which contains each data item’s exact
location. A read/write operation of a data item indexedi is simulated by the following steps. First,
the client looks up the data location table locally to get thei-th data item’s location. Second, if
the i-th data item is in a local queue, the client removes the data item from the queue. Third,
the client performs an oblivious read-and-remove operation on a bucket. The client performs a
read-and-remove operation on thei-th data item’s bucket to get the data item if it exists in the
server. Otherwise, the client performs a read-and-remove operation on a random bucket to read a
dummy item. Fourth, if the client has obtained the most updated data value of thei-th data item,
the client chooses a random bucket for thei-th data item, and puts thei-th data item with its value
in the bucket’s queue. If the simulated operation is a write operation, the data value is given by
the operation. Otherwise, the data value is read from a localqueue in the second step or a bucket
in the third step. Fifth, the client updates thei-th data item’s location in the data location table
unless the simulated operation is a read operation and thei-th data item is not found.

To prevent queues becoming full, the client carries out a background eviction process continu-
ously. An eviction process may remove a data item from a bucket’s queue, and add the item to the
bucket using the oblivious add primitive. An eviction process may add a dummy item obliviously
to a bucket so as to hide that the bucket’s queue is empty. To hide access pattern, [5] designed
several eviction algorithms to schedule eviction processes.

We choose to use our basic write-only ORAM to build the bucketORAM in [5]’s ORAM
framework. As the client has enough storage space to store a bucket’s items locally, the client
can download all items in a bucket, and do the oblivious mergelocally. There is no need to use
the more complicated advanced write-only ORAM here. In the bucket ORAM based on basic
write-only ORAM and PIR, the ORAM client is both a write-onlyORAM client and a PIR client.
Because the client already maintains each data item’s location locally in [5]’s design, there is no
need to maintain write-only ORAM’s slot mapping table. To read-and-remove a data item from a
bucket ORAM, the client first looks up the data item’s location inside the bucket locally, and then
retrieves the data item from the bucket using PIR. For our write-only ORAM, there is no need to
do an explicit remove because our ORAM can detect outdated data items by looking up the data
location table. To read-and-remove a dummy item from a bucket ORAM, the client simply retrieves
a random item (data item or dummy item) using PIR. To add a dataitem or dummy item to a
bucket ORAM, the client simply does an oblivious write by putting the item in the bucket’s write
cache. The amortized communication and computational costs of a read-and-remove operation on
a bucket are bothO(l), while the amortized communication and computational costs of an add
operation on a bucket areO(l) andO(

√
N × l) respectively.

During an oblivious read/write, a read-and-remove operation and an add operation are performed.
Using write-only ORAM and PIR to build the buckets in [5]’s ORAM framework, the amortized
communication cost of an oblivious read/write isO(l), and the amortized computational cost
is O(

√
N × l). If using traditional full functional ORAM to build buckets, the best amortized

communication and computational costs are bothO(logN × l). We can see that using write-only
ORAM makes a tradeoff of computational cost for communication cost. What values ofN and l
can make this tradeoff worthy needs further work to find out.

B. Using Write-only ORAM in [4]’s ORAM Framework

We omit [4]’s the design here, and only introduce some of [4]’s properties that affects our building
of bucket ORAM. Please refer to [4] for the design details. [4]’s design contains a basic construction
and a recursive construction based on the basic construction. We can use write-only ORAM to
build the buckets of both the basic and recursive constructions, and reduce both constructions’
communication costs. However, compared with the best knowntraditional ORAM schemes, the

performance of the recursive construction using write-only ORAM is not better. So we introduce
only the basic construction, and show how to build buckets for the basic construction only.

In [4]’s original design, there areO(N) buckets organized in a binary tree, and each node in the
tree is a bucket storing at mostO(logN) items. The server-side storage usage isO(N× logN× l),
and the tree hash = O(logN) levels. These parameters can be optimized to reduce server-side
storage usage [45]. After optimization, there areO(N/ logN) buckets, and each bucket stores at
mostO(logN) items. Then, the server-side storage usage is reduced toO(N × l) and the tree
hash = O(log(N/ logN)) = O(logN) levels. The simulation of a read/write operation contains
following work: the client choosesO(h) buckets, and performs a read-and-remove operation to
get a data item or dummy item from each of these buckets; the client choosesO(h) buckets, and
adds a data or dummy item to each of the chosen buckets using the add primitive. A data item
being added to a bucket is an item not existed in any bucket currently. The item is either never
stored in any bucket before, or just removed from a bucket using the read-and-remove primitive.

In [4]’s basic construction, the client locally maintains adata structure, called index structure by
[4], containing entries for all data items. A data item’s entry containsO(logN) bits data. So the
client storage usage isO(N × logN). The client needs the index structure to decide the choices
of buckets. A data item’s entry is read and updated once during an oblivious read/write. To reduce
client-side storage usage, we make a slight modification here. Instead storing the index structure
at the client side, we can use an additional full functional ORAM store all entries of the index
structure. For example, we can use an ORAM from [3, 16, 17], and item size of this ORAM is
logN . Then, according to Table I, the client-side storage and amortized communication cost for
this ORAM areO(N1/r × logN) andO(logN × logN) respectively.

We can build a bucket ORAM for [4]’s basic construction basedon our write-only ORAM and
PIR. If the client usesO((logN)1/r×l) local storage space, which is acceptable in many situations,
a bucket can be built based on of basic write-only ORAM. So we prefer to choose the simpler
basic write-only ORAM to build buckets. In [4]’s design, theclient doesn’t have a data location
table contains each data item’s location. But the client of our bucket ORAM needs to locate data
item location. Instead of using the slot mapping table, we use a table called property table to
locate data item location inside a bucket ORAM. The propertytable is also used to detect outdated
data items during oblivious merges. The server additionally stores a property table for each bucket
containing the properties of all items in the bucket. Thei-th entry of a bucket’s property table
stores the properties of the item in thei-th slot inside the bucket. The item properties include item
type (data item or dummy item), freshness (outdated or updated), and item index. If the item in
i-th slot is a dummy item, freshness value and index value can be set to some random values. Each
property table is encrypted with a semantically secure probabilistic encryption scheme. The size
of a property table isO((logN)2) bits. Usually,O((logN)2) is not bigger thanO(l). When full
functional ORAM is used in outsourced storage, it is usuallyused as a block storage system or the
underlying layer of a file system [8, 35]. Usually, the item size is at least several KB. Supposel is
8192 bits (1KB).N has to be bigger than290 to make(logN)2 bigger thanl, which is unlikely.

To read-and-remove a data item from a bucket ORAM, the clientdoes following steps. First, the
client downloads the bucket’s property table, decrypts it,and looks up the data item’s location inside
the bucket locally. Second, the client retrieves the data item from the bucket using PIR. Third, the
client updates the property table by setting the item’s freshness property as outdated, and uploads
the table after re-encrypting it. Instead of removing the data item directly, we virtually remove it by
setting its freshness property as outdated here. To read-and-remove a dummy item from a bucket
ORAM, the client does following steps. First, the client downloads the bucket’s property table, and
decrypts it. Second, the client retrieves a random item (data item or dummy item) from the bucket
using PIR. Third, the client uploads the property table after re-encrypting it. To add a data item

or dummy item to a bucket ORAM, the client does following steps. First, the client downloads
the bucket’s property table, and decrypts it. Second, the client obliviously write the item to the
bucket. Third, the client updates the property table by adding the item’s properties, and uploads
the table after re-encrypting it. The amortized communication and computational costs of an add
operation on a bucket are bothO(l), while the amortized communication and computational costs
of a read-and-remove operation on a bucket areO(l) andO(logN × l) respectively.

In [4]’s basic construction, an original data read/write operation is simulated withO(logN)
read-and-remove and add operations on buckets. One read access and one write access to an
entry of the index structure are also required in the simulation of an original data operation.
Recall that we modify the basic construction by adding an additional ORAM for storing its index
structure. The client-side storage and amortized communication cost for this additional ORAM are
O(N1/r × logN) andO((logN)2) respectively. Using write-only ORAM and PIR to build the
buckets in [4]’s basic construction, the amortized communication cost of an oblivious read/write is
O(logN× l+(logN)2) = O(logN× l), and the amortized computational cost isO((logN)2× l).
The client-side storage usage isO((logN)1/r × l + N1/r × logN). (logN)1/r can be viewed
as a small constant in practice. Then the client-side storage usage isO(l + N1/r × logN). The
server-side storage usage isO(N × l) after optimization [45].

[4] uses two kinds of traditional ORAM-based buckets in its basic ORAM construction. The best
one is based on [1]’s Square-Root ORAM. If building buckets based on [1]’s Square-Root ORAM,
the amortized communication and computational costs are both O(logN×

√
logN×log logN×l).

If improving [4]’s basic construction as introduced in thissection (adding an additional ORAM for
storing its index structure and optimizing server-side storage usage), the server-side and client-side
storage usages are the same as our result. Therefore, using write-only ORAM makes a tradeoff of
computational cost for communication cost.

VIII. C ONCLUDING REMARKS

In this paper, two single-server write-only ORAM schemes and one multi-server write-only
ORAM scheme have been proposed to hide the write pattern on honest but curious outsourced
storages. This paper has discussed write-only ORAM’s usages in two scenarios: the data owner
sharing data to data consumers via outsourced storage; outsourced storage for the data owner’s own
usage. To hide both read and write patterns, PIR is used together with write-only ORAM in first
scenario, and full functional ORAM based on write-only ORAMand PIR is used in the second
scenario. Write-only ORAM may be used alone in some cases of the first scenario where only
write pattern need to be hidden. In addition to proposing three write-only ORAM schemes, this
paper have studied supporting PIR in ORAM as well as buildingfull functional ORAM based on
write-only ORAM and PIR. The stroage/communication/computational costs of write-only ORAM
schemes have been estimated and compared with traditional ORAM’s costs in above scenarios.
Compared with using traditional ORAM, using write-only ORAM in the above scenarios has lower
communication cost or much less client-side storage usage.However, using write-only ORAM in
the second scenario has higher computational cost. Real-life experiments are still needed to evaluate
how these costs affect data operation throughput and data access latency under different settings
of data item count and data item length. We leave this as a future work.

REFERENCES

[1] O. Goldreich. “Towards a Theory of Software Protection and Simulation by Oblivious RAMs.”
In STOC 1987.

[2] B. Pinkas and T. Reinman. “Oblivious RAM Revisited.” In CRYPTO 2010.
[3] M. T. Goodrich and M. Mitzenmacher. “Privacy-preserving Access of Outsourced Data via

Oblivious RAM Simulation.” In ICALP 2011.

[4] E. Shi, T. H. Chan, E. Stefanov, and M. Li. “Oblivious RAM with O((logN)3) Worst-case
Cost.” In ASIACRYPT 2011.

[5] E. Stefanov, E. Shi, and D. Song. “Towards Practical Oblivious RAM.” In NDSS 2012.
[6] D. Boneh, D. Mazieres, and R. A. Popa. “Remote Oblivious Storage: Making

Oblivious RAM Practical.” Technical Report MIT-CSAIL-TR-2011-018, 2011.
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf

[7] M. Franz, P. Williams, B. Carbunar, S. Katzenbeisser, A.Peter, R. Sion, and M. Sotakova.
“Oblivious Outsourced Storage with Delegation.” In FC 2012.

[8] P. Williams, R. Sion, and A. Tomescu. “PrivateFS: a Parallel Oblivious File System.” In CCS
2012.

[9] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. “Private Information Retrieval.” In FOCS
1995.

[10] D. Asonov. “Private Information Retrieval: An Overview and Current Trends.” In the ECDPvA
Workshop, 2001.

[11] L. Sassaman, B. Cohen, and N. Mathewson. “The Pynchon Gate: A Secure Method of
Pseudonymous Mail Retrieval.” In WPES 2005.

[12] S. B. Mane, S. T. Sawant, and P. K. Sinha. “Using Private Information Retrieval Protocol for
an E-commerce Application.” In CUBE Intl. Inf. Tech. Conf.,2012.

[13] A. M. Miceli, B. J. Sample, C. E. Ioup, and D. M. Abdelguerfi. “Private Information Retrieval
in an Anonymous Peer-to-Peer Environment.” In SAM 2011.

[14] S. Wang, D. Agrawal, and A. E. Abbadi. “Generalizing PIRfor Practical Private Retrieval of
Public Data.” In DBSec 2010.

[15] Y. Huang and I. Goldberg. “Outsourced Private Information Retrieval with Pricing and Access
Control.” Technical Report CACR 2013-11. http://cacr.uwaterloo.ca/techreports/2013/cacr2013-
11.pdf

[16] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. “Privacy-preserving
Group Data Access via Stateless Oblivious RAM Simulation.”In SODA 2012.

[17] M.T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. “Oblivious RAM
Simulation with Efficient Worst-case Access Overhead.” In CCSW 2011.

[18] E. Stefanov, M. v. Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. “Path O-
RAM: an Extremely Simple Oblivious RAM Protocol.” Technical Report arXiv:1202.5150v2,
http://arxiv.org/pdf/1202.5150v2

[19] E. Kushilevitz, S. Lu, and R. Ostrovsky. “On the (In)security of Hash-based Oblivious RAM
and a New Balancing Scheme.” In SODA 2012.

[20] S. Lu and R. Ostrovsky. “Distributed Oblivious RAM for Secure Two-party Computation.”
In TCC 2013.

[21] A. Beimel, Y. Ishai, and E. Kushilevitz. “General Constructions for Information-theoretic
Private Information Retrieval.” In Journal of Computer andSystem Sciences 71.2 (2005).

[22] S. Yekhanin. “Towards 3-query Locally Decodable Codesof Subexponential Length.” In
STOC 2007.

[23] C. Gentry and Z. Ramzan. “Single-Database Private Information Retrieval with Constant
Communication Rate.” In ICALP 2005.

[24] J. Trostle and A. Parrish. “Efficient Computationally Private Information Retrieval from
Anonymity or Trapdoor Groups.” In ISC 2011.

[25] A. Beimel, Y. Ishai, E. Kushilevitz, I. Orlov. “Share Conversion and Private Information
Retrieval.” In CCC 2012

[26] A. Iliev and S. Smith. “Private Information Storage with Logarithmic-space Secure Hardware.”
In Information Security Management, Education and Privacy, 2004.

[27] A. Iliev and S. Smith. “Protecting Client Privacy with Trusted Computing at the Server.” In
S&P 2005.

[28] S. Wang, X. Ding, R. H. Deng, and F. Bao. “Private Information Retrieval using Trusted
Hardware.” In ESORICS 2006.

[29] P. Williams and S. Radu. “Usable PIR.” In NDSS 2008.
[30] T. Mayberry, E. O. Blass, A. Chan. “Efficient Private File Retrieval by Combining ORAM

and PIR.” In Cryptology ePrint Archive: Report 2013/086, 2013.
[31] H. Lipmaa, and B. Zhang. “Two New Efficient PIR-Writing Protocols.” In ACNS 2010.
[32] M. T. Goodrich. “Randomized Shellsort: a Simple Oblivious Sorting Algorithm.” In SODA

2010.
[33] M. Raab and A. Steger. ““Balls into Bins” - a Simple and Tight Analysis.” In RANDOM

1998.
[34] I. Damgard, S. Meldgaard, and J. B. Nielsen. “PerfectlySecure Oblivious RAM without

Random Oracles.” In TCC 2011.
[35] E. Stefanov and E. Shi. “ObliviStore: High PerformanceOblivious Cloud Storage.” In S&P

2013.
[36] F. Olumofin, I. Goldberg. “Revisiting the Computational Practicality of Private Information

Retrieval.” In FC 2011.
[37] R. Sion, and B. Carbunar. “On the Computational Practicality of Private Information

Retrieval.” In NDSS 2007.
[38] C. A. Melchor and P. Gaborit. “a Lattice-Based Computationally-Efficient Private Information

Retrieval Protocol.” In WEWORC 2007.
[39] C. A. Melchor, B. Crespin, P. Gaborit, V. Jolivet, and P.Rousseau. “High-Speed Private

Information Retrieval Computation on GPU.” In SECURWARE 2008.
[40] C. Devet. “Evaluating Private Information Retrieval on the Cloud.” Technical Report CACR

2013-05, 2013. http://cacr.uwaterloo.ca/techreports/2013/cacr2013-05.pdf.
[41] T. Mayberry, E. O. Blass, and A. H. Chan. “Pirmap: Efficient Private Information Retrieval

for Mapreduce.” In FC 2013.
[42] I. Goldberg. “Improving the Robustness of Private Information Retrieval.” In S&P 2007.
[43] Goldwasser, Shafi, and Silvio Micali. “Probabilistic Encryption.” In Journal of Computer and

System Sciences 28.2 (1984).
[44] M. T. Goodrich. “Data-oblivious External-memory Algorithms for the Compaction, Selection,

and Sorting of Outsourced Data.” In SPAA 2011.
[45] C. Gentry, K. A. Goldman, S. Halevi, C. Julta, M. Raykova, and D. Wichs. “Optimizing

ORAM and Using it Efficiently for Secure Computation.” In PETS 2013.

APPENDIX A
FULL FUNCTIONAL ORAM DIRECTLY BASED ON WRITE-ONLY ORAM AND PIR

A. Full Functional ORAM directly based on Basic Single-server Write-only ORAM and PIR

We can build a full functional ORAM based on the basic write-only ORAM and PIR directly. In
this full functional ORAM, an ORAM client is both a write-only ORAM client and a PIR client.

A read operation on thei-th data item is simulated by following steps. First, the client locates
the i-th data item’s slot by obviously looking up the slot mappingtable. Second, the client retrieves
an item from the server using PIR. If the most updated versionof the i-th data item exists in the
server, the client retrieves the data item. Otherwise, the client retrieves a random item (data item
or dummy item) from the server. Third, the client writes a dummy item to the write cache. Fourth,
if the slot mapping table is stored in the server, the client pretends to update the mapping table
by writing a dummy entry to the table’s cache.

Given the new data value of thei-th data item, a write operation on thei-th data item is simulated
by following steps. First, if the slot mapping table is stored in the server, the client locates the
i-th data item’s slot by obviously looking up the slot mappingtable. Second, the client retrieves
an random item (data item or dummy item) from the server usingPIR. Third, the client writes the
i-th data item with its new data value to the write cache. Fourth, the client updates thei-th data
item’s slot location in the mapping table obliviously.

Based on the analysis in Section IV-F, we can learn that the amortized communication cost of
an oblivious read/write is:O(l+

√
N× logN) when client-side storage isO(N1/r× l); O(logN×

(l +
√
N)) when client-side storage isO(l + N1/r × logN); O(

√
N × (logN)2) when client-

side storage isO(l) and O(l) < O(N1/r × logN). r ≥ 2 and r is a small constant here. The
amortized computational cost of an oblivious read/write isO(N× l). The server-side storage usage
is O(N × l).

If there is only one ORAM client and the client has enough local storage for the slot mapping
table, the table can be stored in the client side as well. In that case, the amortized communication
cost can be reduced to:O(l) when client-side storage isO(N1/r × l+N × logN); O(logN × l)
when client-side storage isO(l +N × logN).

B. Full Functional ORAM directly based on Advanced Single-server Write-only ORAM and PIR

We can build a full functional ORAM based on the advanced write-only ORAM and PIR directly.
In this full functional ORAM, an ORAM client is both a write-only ORAM client and a PIR client.

A read operation on thei-th data item is simulated by following steps. First, the client locates
the i-th data item’s slot by obviously looking up the slot mappingtable. Second, the client retrieves
an item from the server using PIR. If the most updated versionof the i-th data item exists in the
server, the client retrieves it using PIR. Otherwise, the client retrieves a random item (data item or
dummy item) from the server using PIR. Third, the client randomly chooses a bucket, and writes
a dummy item to the bucket’s write cache. Fourth, if the slot mapping table is stored in the server,
the client pretends to update the slot mapping table by writing a dummy entry to the table’s cache.

Given the new data value of thei-th data item, a write operation on thei-th data item is simulated
by following steps. First, if the slot mapping table is stored in the server, the client locates thei-th
data item’s location by obliviously looking up the slot mapping table. Second, the client retrieves
an random item (data item or dummy item) from the server usingPIR. The first step and second
step are performed to hide the type of the simulated operation. Third, the client randomly chooses
a bucket, and writes thei-th data item with its new data value to the bucket’s write cache. Fourth,
the client updates thei-th data item’s bucket number and slot location in the bucketmapping table
and the slot mapping table obliviously.

The amortized computational and communication costs of an oblivious read/write areO(N × l)
andO(l+

√
N × logN) respectively. The server-side and client-side storage usages areO(N × l)

andO(N × logN + l) respectively.
If there is only one ORAM client, the bucket mapping table andslot mapping table can be

stored in the client side as well. In that case, the amortizedcommunication cost of an oblivious
read/write is reduced toO(l). The computational cost, server-side and client-side storage usages
are still the same.

