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Abstract

Oblivious RAM (ORAM) has recently attracted a lot of interesice it can be used to protect
the privacy of data user’s data access pattern from (hongstusious) outsourced storage. This
is achieved by simulating each original data read or writerafion with some read and write
operations on some real and dummy data items. This papeogespwo single-server write-
only ORAM schemes and one multi-server write-only ORAM suke which simulate only the
write operations and protect only the write pattern. Theuotidn of functions however allows to
build much simpler and efficient (in terms of communicatiastcand storage usage) write-only
ORAMs. Write-only ORAM can be used in conjunction with Ptevdnformation Retrieval (PIR),
which is a technique to protect data user’s read patternsrdar to protect both write and read
patterns. Write-only ORAM may be used alone too, when onigengatterns need protection. We
study two usage scenarios: (i) data publishing/sharingere/fa data owner shares the data with
others, who only consume the published information. Datesamers should not have write access
to the outsourced data, and thus cannot use ORAM to proteictréad patterns in this scenario.
To hide access patterns from the outsourced storage, thedaer can use ORAM to write data,
and data consumers use PIR to read data. Alternativelypfoesapplications, a data consumer can
trivially download all data once or regularly, and neithiee ata owner nor data consumers mind
that the outsourced storage learns such read pattern. Cedhpédth using traditional ORAM,
using the simpler write-only ORAM here produces much lessrmaoinication cost and/or client-
side storage usage. Our single-server write-only ORAM seh@roducedower (typically one
order lower) communication cost with the same client-side storage usage, or requires much less
(typically at least one order less) client-side storage to achieve the same level of communication
cost than the best known single-server full functional ORAM goles do. Compared with the
best known multi-server ORAM scheme, our write-only ORAMemes haveower (typically
one order lower) communication cost, or achieve the same communication cost with the same
client-side storage usage in single-server setting. (ii) the data owner’s personal use: Our write-
only ORAM schemes combined with PIR can be used as buildingkisl for some existing full
functional ORAM schemes. This leads ttwe reduction of the communication costs for two full-
functional ORAM schemes by the factors of O(log N) and O(y/log N x loglog N), where N is
the maximum data item count. One of these resulting scheasa lkommunication cost 6i(1),
wherel is data item length. This igypically one order lower than the previous best known ORAM
scheme’s cost, which is O(log N x 1). The other resulting scheme also achie@$og N x [)
communication cost, but itdient-side storage usage is several orders lower than the best known
single-server ORAM’s.

. INTRODUCTION

Oblivious RAM (Random Access Machine: an abstract compnitedel) was proposed in [1]
to hide a software’s data access pattern, for the purposeratéqiing software from reverse
engineering in 1980s. A software can be re-complied to usMROblivious RAM) technique,
and simulate the original software’s data operations onntleenory using ORAM'’s methods like



accessing dummy data items (dummy items for short) or urssecg real data items, re-encrypting
a data/dummy item into a different ciphertext after aceessi and obliviously shuffling real and

dummy data items. From the view of the adversary observimgsthfitware's memory access,
whether a simulated operation is read or write is indistisigable. ORAM also hides individual

data item’s access frequency and the linkage between thdatad operations operating on the
same data item. Here, the CPU executing the software’s tipesaand the CPU'’s internal storage,
i.e. registers, are considered secure. The adversary see'the data in CPU.

In recent years, ORAM has attracted a lot of research irtteeeg. [2-5], since it can protect
the privacy of data user’s data access pattern from the hbnégurious outsourced storage. The
confidentiality of the data user’'s data in outsourced s®rean be protected by encryption. But
sometimes encryption is not enough to protect privacy aa datess pattern could leak sensitive
information [2]. Suppose that operations on certain damgt is always followed by a specific
stock action of the user. Then a curious server can predictusier's stock action by monitoring
its data access pattern. In [6-8] it is further elaborated locess pattern may leak sensitive
information.

This paper is focused on ORAM'’s outsourced storage usatgaid®f software protection usage.
In ORAM’s outsourced storage usage, the data user’s nogs thla roles of “software” and “CPU”,
while the outsourced storage plays the role of “memory”.Ha titerature and this paper, such
a user node is called ORAM client (client for short), and sachoutsourced storage is called
ORAM server (server for short).

PIR (Private Information Retrieval), first proposed in [&,another technique used to protect
data user’s privacy of read patterns from honest but curmtsourced storages. PIR allows users
to retrieve a data item from a database without letting thalztese server know which item is
being retrieved. Such a privacy primitive is used in divessttings including patent databases [10],
pharmaceutical databases [10], email systems [11], e-@oejl12], P2P file sharing systems [13],
etc. to hide an user’s interest/profile.

Motivation. This paper proposes write-only ORAM, and discusses how ¢oitusith/without
PIR to protect data access pattern. Existing ORAM schemeslarfull functional, which can
simulate both write and read operations of standard noniobs RAM. In another word, existing
ORAM schemes can hide the access (write/read) pattern eflaied operations and the type (write
or read) of any simulated operation. This paper’s writef@dMRAM simulates only write operations,
and protects only write patterns. As far as we know, this éfttst work on write-only ORAM.
The reduction of functions allows us to build simpler ORAMthvbetter performance. Compared
with the best known full functional ORAM schemes, this paperite-only ORAM schemes have
lower (typically one order lower) communication cost, oquae much less (typically at least one
order less) client-side storage to achieve the same levamimunication cost. Write-only ORAM
can be used in three situations: 1) If only write pattern sgwdtection, write-only ORAM can be
used alone; 2) If read and write patterns need protectioopertation type doesn’t need protection,
write-only ORAM and PIR can be used; 3) If access pattern gretaiion type need protection,
full functional ORAM can be built based on write-only ORAM @iPIR. Write-only ORAM is
useful in the below two scenarios, which contain these sdna.

« The first scenario is data sharing via outsourced storage.d@ta owner shares its data with
consumers using an outsourced storage. The data ownetés paitern and data consumers’
read pattern can be hidden from the outsourced storage fusifignctional ORAM. However,
in that case the data consumers would need to have write saatdbe outsourced storage.
It's usually unacceptable because a malicious data cornsoare use this right to tamper
data items. To allow data consumers reading data obliwolist without write access, PIR
can be used instead. Then ORAM and PIR are used to protectodater's write pattern



and data consumer’s read pattern respectively. Alterslgtifor some applications, a data
consumer that needs all data can trivially download all tatadrom the outsourced storage
once or regularly. Therefore, a possible data sharing isolus: the data owner uses ORAM
to write (add or update) data at the outsourced storage;aatsumers use PIR to retrieve
data from the outsourced storage, or trivially downloaddalla from the outsourced storage.
Compared with using full functional ORAM, using the simplerte-only ORAM with lower
cost here is better. For some applications, the data owngrnmeed to read data items from
outsourced storage too. If the data owner doesn’t mind t@®xpts operation type (read
or write), it can use PIR to retrieve data items or downlodddata items trivially like a
data consumer. Otherwise, one should use full functionah@Rvhich can be achieved by
composing write-only ORAM and PIR differently, as discubsext.

o The second scenario is outsourced storage for the data 'svoven use, or when multiple
parties own and collaborate over the data, and even the tympearation (read or write)
is confidential, i.e., a fully functional ORAM is needed. Bakad and write operations are
carried out by data owner(s), and full functional ORAM is dise protect access pattern. Based
on write-only ORAM, two kinds of full functional ORAM can beuit: (a) full functional
ORAM built by directly combining write-only ORAM with PIR;k) full functional ORAM
built by combining write-only ORAM with PIR and using it as ailding block in [4, 5]'s
ORAM frameworks. Compared with traditional full functidnr@RAM, these two new kinds
of full functional ORAMs make a tradeoff of computationalstdor communication cost
and client-side storage usage. We focus on full functiom@A® (b) in this paper, because
ORAM (b)’'s computational cost is lower than ORAM (a)’s. Weeusrite-only ORAM and
PIR as a building block to improve two full functional ORAM leemes [4, 5]. By using
write-only ORAM and PIR in [4] and [5]'s ORAM frameworks, ttdmmunication cost can
be reduced by a factor @?(\/log N x log log N) andO(log N ) respectively whereV denotes
the maximum number of data items the ORAM system can store.

Contributions. The main contributions of this paper are as follows:
(i) Two novel single-server write-only ORAM schemes (basiite-only and advanced write-only
ORAM) and a multi-server write-only ORAM scheme are progbSéhe advanced single-server as
well as the multi-server schemes leverage on the basic sehEme advantages of advanced write-
only ORAM depend on proper optimization of parameters, @anexplored in the paper. Though
write-only ORAM is simpler than traditional full functioh®RAM, this paper’s contribution (i)
is not trivial. New algorithms and new data organizations ased to realize efficient designs.
Moreover, our design supports multiple ORAM clients andaorent access, which is atypical in
most existing full functional ORAMs.
(ii) This paper studies and improves the method of supppfR clients in ORAM. This method
is not only useful for write-only ORAM in above two scenaridmsit also needed if using full
functional ORAM and PIR together in the data sharing via outsed storage scenario.
(i) We demonstrate how a full functional ORAM can be difgdiuild based on write-only ORAM
and using write-only ORAM as a building block.

Organization. Next, in Section Il we discuss the necessary background elated works. We
give an overview of our write-only schemes in Section Ill.Sections IV and V we present our
basic and advanced write-only ORAM schemes respectivelgeiction VI, we show how to extend
the basic write-only ORAM scheme to a multi-server writdyo@RAM scheme. We discuss how
to use write-only ORAM as a building block to improve two félinctional ORAM schemes [4, 5]
in Section VII. Finally, we conclude along with a discussiminfuture works in Section VIII.



[I. BACKGROUND AND RELATED WORK
A. Oblivious RAM

Most ORAM schemes are single-server schemes. Very few sehieeng. [20], are multi-server
schemes, that assumdeindependent and non-colluding outsourced servers.

In Table | we list the best traditional ORAM schemes that weehigentified. In this table and
the rest of this paperV denotes the maximum number of data items the system is dmbign
store at any time, andlis the data item length in bits. The last ORAM scheme in taB® |s
the best multi-server scheme, while the other schemes agéesierver ones. Among traditional
fully functional ORAM schemes, they have the lowest commation costs under different levels
of storage usages.

Table |
TRADITIONAL ORAM
scheme client storage server storage | amortized communication/computational cast
[3, 16, 17]* O(NV™ x1) O(N x1) O(log N x [)
[4]** O(log N x N +1) O(log N x N x 1) O(log N x /log N x loglog N x 1)
O((log N)?/logl x 1) 2

[18] O(log N x 1) O(N x1) O((log N)*/logl x I +1og N x 1)

[19] o(l) O(N x 1) O((log N)?/loglog N x 1)
[20]** o(l) O(N x1) O(log N x 1)

* r is a small constant.
** [4] has two ORAM constructions. This result is achieved ity basic ORAM construction.
*** This is a two-server (and also the best multi-server) ORAcheme.

B. Private Information Retrieval (PIR)

Broadly, there are two kinds of PIR techniques — itPIR (infation-theoretic PIR) and cPIR
(computational PIR), providing unconditional and compiotaal hardness based privacy respec-
tively. The privacy in cPIR is guaranteed subject to comjoi@l bounds on the server, while
all communication efficient itPIR schemes are multi-serbased, and assume that not all the
servers collude together. Neither cPIR nor itPIR requir the data items in the database are
encrypted. In cPIR, the user’s PIR client encrypts the waua item’s position in the database,
and sends the encrypted position as a query to the database; she database server computes
an answer using the encrypted position and all the data itertiee database; the client decrypts
the answer and obtains the desired data item. There is ntesiegver itPIR scheme apart the
trivial one, i.e., downloading the whole database. Effitianlti-server itPIR schemes can be built
under the conditions that each server holds a replicatidgheoflatabase and not all servers collude.
A multi-server itPIR scheme is calledtaprivate k-server itPIR scheme if it requires (k > 1)
database servers and resists up tk > ¢ > 1) colluding servers. Suppose a database Nas
data items, &-private k-server itPIR works in the following way: the user’'s PIR dlieuses the
position of the wanted data item to generatgueries, and sends each server a query; each server
computes an answer using its received query @) data items in the database, and sends the
answers to the client; the client recovers the wanted data ftom received answers. Anyor
less servers together can'’t learn any non-trivial infoforabf the wanted data item’s position from
their received queries. In most itPIR schemes, a secreinghactheme is used to generate shares
from the secret position, and each share is a query [21, 25].

The computational costs of cPIR and itPIR are bO{tiV x /). However, the constant in cPIR’S
O(N x 1) cost is much higher, and itPIR’s performance is better tHliRs [36]. Originally, cPIR
was considered impractical for normal database sizes Bithsequently, efficient cPIR schemes
were invented and considered computationally practicatdstricted database sizes [24, 36, 38].
Recently, cPIR and itPIR schemes exploiting parallel@aof cloud/cluster computing [40, 41] or



GPU [39] were proposed to improve PIR’s performance and nitgkectical for bigger databases.
The parallelization of cloud computing can be exploitechiis paper’s outsourced storage scenarios,
and some cloud providers like Amazon also provide virtuatiirges with GPU.

Compared with traditional ORAM, PIR has lower communicatimost in most cases for the
outsourced data sharing and outsourced storage for datar®eenarios (where database size is
at most a few PB, and individual data item size is at least a &@)sidered in this paper. The
communication costs of most PIR schemes are betw&éog N + 1) andO(N +1). [23]'s cPIR
scheme can achievg(log N +/) communication cost. Normally, in the scenarios considerehlis
paper,0O(log N 4+ 1) = O(l). Quite a few PIR schemes like [21, 22] can achieve a commtioita
cost of O(N'/4 + 1), whered > 1. For many typical setting ofV and/, most of these PIR
schemes can mak@(N'/?) < O(l), and achieve a communication cost ©f!). For example,
supposeN = 2%2 and! = 2!* (2KB). The database size is 8PB. ThaH/? < [ if d > 3, which
can be easily achieved by some schemes. For exaaplepends ot andt, e.g.d xt+1 =k in
two of [21]'s itPIR schemes (main PIR protocol and binary RiRRtocol). For another example,
d depends onV, e.g.d = O(loglog N) in [22]. So the best communication cost of PIRG%!)
in many cases. In this paper, we care more about the compalistiveen the communication
costs of traditional full functional ORAM and PIR when PIRused with write-only ORAM to
improve [4, 5]'s ORAM schemes. As introduced later in Sectld and elaborated in Section
VII, in this usage, PIR is used to retrieve data items from digan of the database containing
O(v/N) or O(log N) data items instead of from the whole database. For a 1PB akalvith
1KB data item size, the partition size is at most several GBuwrdreds of KB respectively, and
the database partition can be viewed as a much smaller gatabaen it's much easier to achieve
O(l) communication cost for many PIR schemes. Therefore, inpgajger, we us&®(l) as PIR’s
communication cost when evaluating the overall commuignatost of our designs.

In this paper, write-only ORAM may be used with single-seroe multi-server PIR to protect
access pattern. Please note that a single-server ORAM sctembe used with a multi-server PIR
scheme though they require different number of servers. Ritserver PIR scheme requires that
each server has a replication of the database. The ORAMta#m run a single-server ORAM
scheme in one server, and synchronize the changes of tHeadatto every other server. Similarly,
a multi-server ORAM scheme may be used together with a siegieer PIR scheme. However,
multi-server PIR scheme is computationally more efficibiainta single-server one. If using multi-
server ORAM scheme, multi-server PIR scheme should be ohmger single-server PIR scheme.
The details of using write-only ORAM and PIR together will en later.

C. Combining ORAM with PIR

Most trusted-hardware-assisted PIR schemes [26—29] asddltmn ORAM. These schemes share
the same basic principle. A trusted coprocessor at the dsg¢aferver works as a representative of
the PIR client. The trusted coprocessor uses ORAM to readdteitem wanted by the PIR client
from the server’s storage obliviously, and returns the data to the PIR client. Compared with PIR
schemes without trusted hardware, these schemes have ¢owgutational and communication
costs. In this paper, we use normal PIR with write-only ORAMd don't require trusted hardware
at the server side. Also, the PIR discussed in this papeipexais paragraph is normal PIR without
trusted hardware.

In [15], a privacy-preserving data sharing over outsourstedage is proposed using full func-
tional ORAM to protect the data owner’s data update pattewch RIR to protect data consumers’
read patterns. The design also considers the needs ofgacid access control, which allows the
data owner to control which data items are accessible to @fgpdata consumer. In this paper, we
borrow and improve [15]'s method of supporting PIR cliem$RAM when combining write-only
ORAM with PIR, to support the above scenario more efficiently



The ORAM scheme in [4]'s is improved by [30] using PIR and RIRting [31] as building
blocks in [4]'s ORAM framework. PIR-writing can update a datem without letting the database
server knowing which data item is updated. PIR-writingize¢is homomorphic encryption to modify
every data item’s ciphertext, and only one data item’s péxinis updated. [30] improves the
communication cost t®((log N)? + (log N)? x 1) with O(1) client-side storage. Inspired by [30],
we further improve upon [4] by using PIR and write-only ORAM huilding blocks in [4]'s
ORAM framework, and reduce communication costQ¢log N x 1) with O(I + N/ x log N)
client-side storage: is a small constant here. Compared with using PIR-writirging write-only
ORAM produces less computational cost.

[1l. OVERVIEW OF WRITE-ONLY ORAM SCHEMES
A. System Setting

The outsourced storage, i.e. the ORAM server, is consideoagst but curious. The input of
an ORAM client or a group of ORAM clients is a sequence of dgiarations (simulated data
operations), and théth operation is denoted a®p;, ¢;, z;). op; is the type of data operation,
which could be read or write. A read operation retrieves thkies of the data item indexeg,
while a write operation sets the value of the data item indexeo z;. A full functional ORAM
system is considered secure if, for any two equal-lengthueseces of data operations, which
sequence is chosen by the ORAM client(s) as input is compuatdly indistinguishable for the
ORAM server(s). In contrast, like the name suggests, ineagsitly ORAM the data operation
type is always write. Thus to say, both full functional andtesonly ORAM hide individual data
item’s access frequency and the linkage between the sietlizperations operating on the same
data item. Full functional ORAM also hides the type of anyadaperation, which our write-only
ORAM operations do not. The ORAM server however knows howyngperations are executed
during any time period.

In contrast to most existing works in the literature whicmsider single ORAM client and
single ORAM server, our approach supports the possibifityada consumers’ non-ORAM clients,
multiple ORAM clients and multiple ORAM servers. In such dtisg, the (write-only) ORAM
mechanisms do not prevent the data consumers’ clients feammihg about the data owner’s write
pattern since they have access to read the data, and thusahegpeatedly read the whole data to
identify the differences. Likewise, when multiple ORAMatits collaboratively mutate a collection
of data, they can (as well as need to) also see what changkesiagemade by others. (For example,
the data owner is a company and the ORAM clients of multiplplegees access the data stored
in the ORAM server.) However, a data consumer can hide it$ padtern from everyone by using
PIR.

Finally, for the case of multiple ORAM servers, our schengpiees that not all servers collude.
More specifically, the multi-server scheme can be charnaei@ras at-private k-server scheme
(t < k), which is secure only if at mostof all the k& servers collude.

B. Design Overview

Our basic write-only ORAM has a very simple structure containing two storage areasritrast,
the most efficient traditional ORAMs have@(log N)-tier pyramid structure or &(log N)-level
tree structure. To support PIR in ORAM, an additional taldened slot mapping table containing
the mappings from item indices to locations is maintaineditamhally. The slot mapping table
design is based on [15], to which we make two major modificetito reduce the client-side
storage usage for maintaining this table.

The advanced write-only ORAM uses the basic write-only ORAM as a building block. Advanced
write-only ORAM'’s construction contains multiple bucketad each bucket is implemented as a



basic write-only ORAM. We optimize the bucket count to reeludient-side storage usage in
different configurations of maximal data item couwitand item lengtH. The advanced write-only
ORAM also needs to maintain a table named bucket mapping taiitaining the mappings from
item indices to bucket numbers. The bucket mapping tableamtained at the client-side as if
there is only a single ORAM client. If there are multiple ORAMents, the table is maintained
at the server-side as an additional basic write-only ORAM.

The multi-server write-only ORAM also builds on the basic write-only ORAM, but uses a
different oblivious merge mechanism to update values of data items. Basic write-oriRAKD
uses an oblivious merge algorithm based on a recently peaboblivious sort algorithm [44].
Giving the assumption that not all servers collude, the irsgltver write-only ORAM adopts a
low-cost multi-server oblivious merge based on oblivioesove and oblivious scramble.

Compared with traditional ORAMSs, the amortized commurndgatosts in write-only ORAMs
are lower. In traditional ORAMSs, oblivious shulffle is the hosstly operation performed after every
oblivious read/write operation to hide the positions of tfega items being accessed. In contrast,
in write-only ORAMSs, oblivious merge is the most costly (hess costly than oblivious shuffle)
operation, and it is used to update data items obliviousiyn wew written values. The simpler
structure and less costly oblivious merge makes write-QRAM'’s amortized communication cost
of oblivious write lower than traditional ORAM’s amortizembst of oblivious access, assuming a
given size of storage space.

Based on write-only ORAM, two kinds diill functional ORAMs can be built: (a) full functional
ORAM built by directly combining write-only ORAM with PIR;K) full functional ORAM built
by combining write-only ORAM with PIR and using it as a buiidi block in [4, 5]'s ORAM
frameworks. In full functional ORAM (a), a read operation afdata item can be simulated by
using PIR to retrieve the data item and a following oblivieuge of a dummy data item. Similarly,

a write operation of a given data item can be simulated byguBitR to retrieve a random item
and a following oblivious write of the target data item.

One can also use write-only ORAM and PIR as building blockartprove two full functional
ORAM frameworks [4, 5]. Both frameworks proposed ORAMs @iming multiple buckets, but
[4]'s bucket is a full functional ORAM storing at mos?(log N) data items, while [5]'s bucket
is a full functional ORAM storing at mosP(+/N) data items. By reusing [4] and [5]'s ORAM
frameworks and implementing their buckets based on writg-©ORAM and PIR, the communica-
tion cost is reduced by a factor 6f(\/log N x loglog N) andO(log N) respectively. To combine
their ORAM frameworks and our write-only ORAM, we make slighodifications to write-only
ORAM and [4]'s ORAM framework.

Compared with traditional full functional ORAM, these twew kinds of full functional ORAMs
have higher computational cost but lower communicatiort ooglient-side storage usage. Lower
communication cost and client-side storage usage are tamtaio clients with limited bandwidth
and storage space. Higher computational cost may decratsegeration throughput and increase
data access latency. The higher computational cost is dtleetase of PIR, and the cost depends
on the total size of data/dummy items hiding the retrievethitSo the computational cost depends
on the whole database size in full functional ORAM (a), white cost depends on the bucket
size in full functional ORAM (b). Because ORAM (b)’'s comptiteal cost is lower than ORAM
(a)'s, we focus on full functional ORAM (b), and defer the @@sof full functional ORAM (a)
in Appendix A for the sake of completeness. For diverse appbns, the corresponding typical
N and! values are such that the full functional ORAM (b)’'s compuaiatcommunication/client-
side storage cost trade-offs are practical. To pinpoinnttadively the tradeoffs under different
conditions (different values ofV and I; different PIR schemes; different hardware; different
bandwidth), further implementation and benchmarkingragd work is still needed, particularly to



evaluate how data operation throughput and data accessyatee affected. We provide a back of
the envelope estimation below based on the performancerejpdated in the literature, but defer
any further experimental work for the future.

Since the database size in most experiments reported by R#eMCand PIR literatures is not
more than 1TB, let's assume the database size is 1TB in tHerpgmce estimation. To the best
of our knowledge, ObliviStore [35] is the fastest oblivioBR&\M implementation for outsourced
storage to date. Performance tests on a 1TB database with sl data items stored in a
commodity machine (the ORAM server) yielded throughput segponse latency of 364 KB/s and
196ms respectively. Recall that a bucket of [4] and [5]'s QRAstore O(log N) and O(v/'N)
items respectively. As shown in [5, 45], the constant®iflog N) andO(v/N) can be lower than
2 and 3 in practice. We can reasonably assume [4] and [5]'kdigizes are5 x log N x [ and
4 x /N x 1 respectively considering the storage expansion of usirigwwnly ORAM. Thus, for
1TB database with 4KB sized data items, [4] and [5]'s bucketsare 672KB and 256MB. For
the 1TB database with 1MB sized data items, [4] and [5]'s etdizes are 80MB and 4GB. To
generate a response to a PIR request, a server of full furatt@RAM (b) would need to process all
data in a bucket. Performance study [36] showed that a contynméchine’s database processing
speed in the fastest itPIR scheme [9] is 1GB/s or more depgrati the database size and memory
size. Likewise, [39] tested several cPIR schemes in thnegskof commodity machines with GPU.
Among these cPIR schemes, Gentry and Ramzan’s scheme [#8} imost desirable one with a
data processing speed of 187.5KB/s. Though the speed d§ [88jeme is faster, [38]'s scheme
is less communication efficient than the best traditionalA®R ([38] is still a good option for
outsourced data sharing scenario.) The outsourced stoeagese multiple commodity machines
to parallelize and speed up the database processing. Usdseg figures, we extrapolate that the
outsourced storage can use an acceptable number of matheaseve acceptable throughput and
response latency. We may estimate PIR’s performance inutiiuhctional ORAM from [40] and
[41] too. [40]'s showed that the average query time of [4EAR scheme is lower than 1 second
when a PIR server is a cloud with 320 machines and the datalsses 4GB. [41] tested its cPIR
scheme using 20 Amazon instances. It took a PIR client abanin8tes to retrieve a 1MB sized
data item from a 10GB database. If the bucket size is smallavemmachines are used, [41]'s cPIR
scheme could have an acceptable performance comparedraditional ORAM’s performance.

C. Our Results

Our write-only ORAM schemes’ communication costs and gferasages are shown in Table
II, Il and IV. Compared with basic write-only ORAM, advartte&rite-only ORAM requires less
client-side storage usage to achig¥d) communication cost whe@ (N x log N) < O(NY/" x1).
Compared with single-server write-only ORAMs, multi-serwrite-only ORAM can achievé(l)
communication cost with less client-side storage usagen@ié+N) < O(N'/" x1). We show the
communication costs, computational costs and storagesaszgwo write-only ORAM based full
functional ORAMSs using [4] and [5]'s ORAM frameworks in TabV. We can see that our results
are better than traditional full functional ORAM in termsadmmunication cost and client-storage
usage.

For data sharing via outsourced storage, the write-only @FRs&hemes with/without supporting
PIR can be used. Let's consider ORAM without supporting PR .fiPlease note that traditional
ORAM’s costs in Table | are the costs without supporting PAR. shown in Table II, 1l and
IV, the best communication cost of write-only ORAMSs (/). In contrast,O(log N x [) is
the best communication cost of single-server and multiesetraditional ORAMSs, which requires
O(NY" x 1) and O(l) client-side storage usage respectively to achieve this Gmmpared with
the traditional multi-server ORAM, our single-server ORATdn achieve the same communication
cost and client-side storage usage using only one servahwlbesn’t require multiple servers and



Table 1l
BASIC WRITE-ONLY ORAM

amortized communication cost

client storage server storag

oblivious write PIR read
supporting trivial o) O(N x1) O(log N x 1)
download only O(N'"™ x 1) O(N x 1) o)
supporting PIR o()* O(N x 1) O(VN x (log N)?%) O(VN x log N)
and trivial download| O(I + N/" x log N) O(N x 1) O(log N x (I++/N)) | O(l+ VN xlogN)
O(NY" x1) O(N x 1) O(l+ VN xlogN) | O(l+ VN x log N)

r > 2 andr is a small constant.
* This row’s costs are under the condition 61) < O(N'/" x log N). If O(l) > O(N'/" x log N), please check
the next row.

Table 111
ADVANCED WRITE-ONLY ORAM
PIR case client storage server storag amortized communication cost
support oblivious write PIR read
no 1 O(N x log N) O(N x 1) o)
2 O(N xlog N +1) O(N x 1) o)
yes 1 O(N x log N) O(N x 1) O(++VN xlogN) | O(1++/N xlogN)
2 | O(N xlogN +1) O(N x 1) O(l++VN xlogN) | O(1++/N xlogN)

case 1: There are multiple ORAM clients and> 1.
case 2: There is only one ORAM client oF < |.

the assumption of not all servers colluding. Compared with traditional single-server ORAMs
achieving this cost, our single-server ORAM can achieve ttost with much less client-side
storage usage((l) only), or use at most the same client-side storage us@g&’{/" x 1)) to
achieve lower communication cos?P(!)). Therefore, our single-server write-only ORAM reduces
communication cost by a factor tfg NV or client-side storage usage by a facton\dof/”. Typically,
communication cost and client-side storage usage can heeddy one order and several orders
respectively. For example, iV = 230 andr = 3, log N = 30 and N/ = 1024. Write-only
ORAM and traditional ORAM can use the same way to support RIEhé data sharing scenario.
If using O(N'/" x log N) (or O(log N)) client-side storage to support PIR, the communication
costs of both write-only ORAM and traditional ORAM will bedreased byO(v/N x log N) (or
O(VN x (log N)2).

For the outsourced storage used by the data owner, the fuitibnal ORAM schemes using

Table IV
MULTI-SERVER WRITEONLY ORAM

PIR support| client storage| server storag .?mo”'z?‘d communication cost
oblivious write PIR read
no O(N +1) O(N x 1) o(l)
yes O(N +1) O(N x1) | O(l++VN xlogN) | O + N x log N)
Table V

FuLL FUNCTIONAL ORAM USING WRITE-ONLY ORAM AS A BUILDING BLOCK

client storage server storagg amortized comm. cosf amortized comp. cos
[5]'s ORAM framework | O(v/N x I+ N x log N) O(N x 1) o(l) O(VN x 1)
[4]'s ORAM framework |  O(l+ N'/" x log N) O(N x 1) O(log N x 1) O((log N)? x 1)




write-only ORAM as a building block can be used. As shown ibl&a/, the first scheme improves
communication cost té)(/), and the second scheme achietg$og N x [) communication cost,
which is equal to the best communication cost of singleeseamd multi-server traditional ORAMSs.
As shown in Table I, traditional single-server ORAM scheraekieving this communication cost
require at leasO(N'/" x 1) client-side storage usage. In contrast, the second schees®( +
N7 x log N) client-side storage, which typically is several ordersdaw

IV. BASIC SINGLE-SERVERWRITE-ONLY ORAM
A. Preliminaries

Similar to most full functional ORAM schemes, this papeifsgée-server and multi-server write-
only ORAM schemes are based on the following assumptions nidximum number of data items
in the outsourced storage, i.e. serverNis During the use of the outsourced storage, data items
may be added or deleted. Thus, at any given time, the actualadaint is equal to or less than
N. Data items’ indices, i.e. IDs, are ifi,2,...N}, and all data items have same lengthbits.
The server won't tamper stored data, or tampering will beected using techniques like MAC
(Message Authentication Code) and signature.

Furthermore, as in full functional ORAM schemes, dummy &eame used to hide access pattern,
and data/dummy items uploaded to the server are encryptadasemantically secure probabilistic
encryption [43] scheme and therefore two encrypted copighensame item look different. The
server cannot identify whether these two copies corresporide same item or not.

B. Construction

As shown in Figure 1, the server-side storage contains t@asam main part and a write cache.
Both areas haveV slots, and each slot can store one encrypted data item or gutem. All
items in the main part and the write cache are encrypted. Tdie part is always filled with items
so that the server cannot tell the actual data item countanrthin part. There may b& or less
data items in the main part, and the remaining items, if are/dammy items. Dummy items are
used to hide data item count and access pattern from thersétvéhe beginning, the ORAM
client initializes the main part by uploadiny encrypted items to it. Thes® items include all
data items outsourced at the beginning and maybe some dutemy ifor hiding current data
item count. Some meta data of an item, e.g. data item index iype (real data item or dummy
item) and freshness level, are encrypted and stored alothgtiag item’s content. Freshness level
is optional. It will be introduced later. The ORAM client caletermine whether an item in the
main part is a data item or dummy item only after decryptincaitd accordingly get the item’s
index and freshness level if the item is a data item. The vadtehe stores recently written data
items. The write cache is empty at the beginning. Every tinee@RAM client does an oblivious
write operation, it uploads an encrypted data item, and tdma is put in the first empty slot in
the write cache.

If the write cache is full after writing a data item, the ORAMent does an oblivious merge:
it obliviously updates the main part with the recently veiittdata items in the write cache, and
empties the write cache. After the oblivious merge, newlgeatidata items are put in the main
part, and the outdated data items in the main part are replaith the most updated data items.
Please note that the server cannot detect whether an itdaittgxt has changed or not after
the oblivious merge because every item’s ciphertext chauge to use of a semantically secure
probabilistic encryption scheme.

C. Oblivious Merge Algorithms

There are two oblivious merge algorithms for basic writdf0QRAM: oblivious merge based
on oblivious sort and trivial oblivious merge. Oblivious rge based on oblivious sort is used
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Figure 1. Basic write-only ORAM

in most cases. When the basic write-only ORAM is used as alibgilblock in other ORAM
schemes, the trivial oblivious merge may be used.

The ORAM client does the oblivious merge based on oblivicus By following steps, and a

toy example is shown in Figure 2.

« First, the client scans all items, and tags each data itemaviteshness level. For a data item
in the main part, its freshness level is 0. For a data itemenvihite cache, its freshness level
is its position in the write cache (positions are 1-base@hdre client downloads the items
in the main part and write cache one by one. If a downloaded itea data item, the client
tags it. Then the client uploads the downloaded item (dumey ior data item) back to the
server after re-encrypting it. A data item’s tag is encrgpadong with its content so that the



server can't learn any data item’s freshness level. Becausegy scanned item is re-encrypted
with a semantically secure probabilistic encryption scletine server can'’t learn any scanned
item’s type.

o Second, the client sorts the items in the server using a aldid@ous external-storage sort
algorithm. In our case, the outsourced storage is the “eatestorage”. We use [44]’s oblivious
sort algorithm. After sorting, items of the sorted list aneie order that: 1) data items before
dummy items; 2) the data item with smaller index before thia dt@m with bigger index; 3)
for data items with the same index, items with higher freskrievels are before items with
lower freshness levels.

« Third, the client scans the sorted list, removes tags, apthces outdated data items with
dummy items. The client detects outdate items by comparidjgcant items’ indices and
freshness levels. If two items have the same index, the iteétm wer freshness level is
outdated. The client scans the sorted list from head toTa# client downloads items in the
list one by one to scan. If current scanned item is a data iteenclient compares current
scanned item’s index and freshness level with last scarteedsi index and freshness level.
If current scanned item is an outdated data item, the cliplttads a new dummy item to the
server. Otherwise, the client re-encrypts the current,itend uploads it.

« Fourth, the client sorts all items again obliviously. [#4¢blivious sort algorithm is used again
here. After sorting, items are in the order that data itenesbefore dummy items.

« Fifth, the client asks the server to put the firstitems of the sorted item list in the main
part.

It's easy to find out that each of above steps is oblivious @@ oblivious merge algorithm
is secure. The second and fourth steps are the most costly glathe oblivious merge based
on oblivious sort. Under the assumption bf> (log N)¢ (¢ > 0 is a small constant), [44]'s
oblivious sort algorithm produces following communicaticost for sorting a list ofNV items:
O(N xlog N x 1) if using O(l) client-side storage @(N xr x1) = O(N x 1) if using O(N'/" x 1)
client-side storage. Here,> 1 andr is a small constant can be omitted@{ N x r x ). Normally,

[ > (log N)¢ stands. It's also acceptable to choose a value-firat makes > 2. In this paper,
we assume- > 2, which will simplify the analysis of costs. The most compiaaally costly
operations in the oblivious merge are decrypting downldaitlems and encrypting items to be
uploaded. So, the communication and computational costshar same in the second and fourth
steps. Both costs of the other steps @@V x [), which is less than the cost of the second and
fourth steps. Therefore, the oblivious merge’s commuigcaand computational costs are both:
O(N xlog N x 1) if using O(l) client-side storage® (N x r x 1) = O(N x 1) if using O(N'/" x 1)
client-side storage. Here,> 2 andr is a small constant, which can be omittedN x r x ).

If the ORAM client hasO(N x [) storage space, it can do a trivial oblivious merge locally.
First, the client downloads all items, and picks the mostatpd data items. Second, the client
re-encrypts the picked data items, and uploads them to tirers@hird, if the number of uploaded
data items is less thaW, the client creates one or some dummy items, and uploadsutmeng
item(s) to the server to make uploaded item counf\oeThe server will put all received items in
the main part. A client havin@ (N x [) storage space is usually not practical. However, when the
basic write-only ORAM is used as a building block in other O®Achemes, this trivial oblivious
merge may be useful.

Concurrent read/write during oblivious merge. An oblivious merge may take a long time when
there are many items. To enable concurrent read/write tpasaduring the oblivious merge, as
shown in Figure 3, the server allocates space for a new mainapa a new write cache. The
oblivious merge outputs the merged items to new main partodcarrent ORAM write can put
the data item in the new write cache. As discussed in Sectiardhta reader could be a node of
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Figure 2. A toy example of oblivious merge based on oblivieast

the data owner or a data consumer. A data reader may retraggdtdms using PIR, or download
all data items directly. Concurrent PIR reads will use PIRetmieve data items from the old main
part, old write cache and new write cache. A concurrent rdaall a@ata items will download all
items in the old main part, old write cache and new write catihectly. When the oblivious merge
is done, items in the old main part and old write cache will leéetid.

D. Key Sharing for Data Consumers and Multiple ORAM Clients

A symmetric encryption scheme like AES can be used in ORAMh&outsourced data sharing
scenario, cryptographic keys should be shared to data omrswso that they can decrypt retrieved
data items. The data owner may have multiple ORAM clientg. (fie data owner is a company
and multiple employees access the data stored in the ORAMeBe” client need to decrypt
data/dummy items encrypted by other clients during an @hlsy merge. Then keys should be
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Figure 3. Concurrent read and write during an obvious merge

shared among ORAM clients too. The simplest way of managimd) sharing keys is using the
same key for all items like most ORAMs and pre-sharing thelikey[16]. Alternative, [15]'s way
can be used. [15] uses different keys for different itemsl, @msiders access control when sharing
keys. By control the access to keys, the data owner can domtioh data items are accessible to
a specific data consumer. Please refer to [15] for the details

E. Analysis

During either an oblivious write operation or an obliviougnge, from the perspective of the
server, the ORAM client’s behaviors are independent of thia ddem being written and the data
items been written before. The server does not know the indexy data item being written or
having been written. The server cannot find the linkage betwte/o write operations writing on
the same data item. The server does not know if a given dateifteipdated more frequently than
other items.

This write-only ORAM usesD(N x 1) server-side storage. The communication and compu-
tational costs of an oblivious write are both(l). If the client-side storage usage @¥((), the
communication/compuatational cost of an oblivious meg@ (N x log N x [). If the client-side
storage usage i®(N'/" x 1), the communication/compuatational cost of an obliviousgeds
O(N x 1). An oblivious merge is performed after every oblivious writes. So the amortized
communication and computational costs of an oblivious evete both:O(l) when client-side
storage isO(N'/" x 1); O(log N x 1) when client-side storage ©(l). Here,r > 2 andr is a
small constant.

F. Supporting PIR Clients

1) Maintaining Data Item Location for PIR Clients

For a client using PIR to retrieve a data item, as introducefigction I, it needs to locate the
data item’s location in the server before using PIR. A taldataining mappings from data item
indices to their locations should be maintained. The tableailed slot mapping table, which has
N entries, and theé-th entry stores theé-th data item’s location. If the-th data item does not exist,
the i-th entry stores a special value (e.g. -1) indicating the-exiatence of the-th data item.
Entry size isO(log V) bits, and the table size i9(/V x log V) bits. To share the table among the
clients of the data owner and data consumers, the mappitg iglstored in the ORAM server.
Each entry is encrypted with a semantically secure proiséibiencryption scheme. ORAM clients
need to update the table obliviously, and PIR clients neecaad the table obliviously. [15] has
proposed an efficient method to read and update such a matghifegobliviously. We reuse its



method after two major modifications for reducing clierdesistorage usage, and summarize the
modified method as below.

After writing a data item, the ORAM client updates an
entry by insertmg the updated entry in the cache.

Slot mapping table Cache for updating one entry ‘
!111! 2,2) ,3*1! !4:3’ (5-1) | (6-1) | (7,4) | (85) ] ...
q— - 833) (334 ‘ ‘ ‘

N encrypted entries.
The i-th Entry: mapping from data item index i
to location or -1 (if no this item).

VN slots for encrypted entries.

After an oblivious merge of data items, the ORAM client

Retrievelthe 8th inserts N entries for new main part’ items to the cache.

entry from the

table if(h PIR Downl Wl entries in (L2)" ™ Cache for updating the whole table \
the cache [ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
(8,5) |
' Mem a3 - — T
% A temporary cache of N slots.

When a cache is full, the ORAM client obliviously merge
entries in that cache to the slot mapping table.

PIR client: data item 8's position is 33

Figure 4. Slot mapping table for supporting PIR clients

As shown in Figure 4, the slot mapping table and two cachegrai@tained in the ORAM
server. The original design of [15] has only one cache: tteheaf+/N slots for updating one
entry. We add a cache d¥f slots for updating the whole table. After an oblivious writea data
item, the ORAM client inserts the updated entry of the daganiin the cache for updating one
entry. To lookup a data item’s location, the PIR client nolyaetrieves the item’s entry in the table
using PIR, but also downloads all entries in the cache foratipg one entry. Then the amortized
communication cost of a PIR read on a data iter®{+ /N x log N). If the cache is full after
insertingy/N entries, the ORAM client obliviously merges the entriesia tache and slot mapping
table. In [15]'s original design, the ORAM client also steielocal slot mapping table with updated
entries, and uploads the entries of the local table to repthe entries in the remote table. We
make a modification to reduce client-side storage usage trexeclient doesn't store a local slot
mapping table; the client does an oblivious merge based bivials sort, which is the same as the
oblivious merge algorithm for data items in Section IV-C. disable concurrent read/write during
the oblivious merge, an additional empty cache can be ugecbftcurrent writes, and concurrent
reads can retrieve entries from the slot mapping table,uthedche and the additional cache. This
is very similar to the way of enabling concurrent read/wofedata items. Another modification
we make is the update of slot mapping table during an obl&imerge of data items. The server
uses a cache a¥ entries for the update. During an oblivious merge of datasteV data/dummy
items are put in the new main part. The client inserts theientf theseV items in this cache.
If an item is a dummy item, a dummy entry for the dummy item iseiied. After the cache is
full, the client does an oblivious merge to update the sloppirag table with entries in the cache.
Again, this oblivious merge is based on oblivious sort, whig the same as the oblivious merge
algorithm for data items in Section IV-C. Then communicatind computational costs of an
oblivious merge of entries are bott¥(N x r x log N) = O(N x log N) if using O(N/" x log N)
client-side storage® (N x (log N)?) if using O(log N) client-side storage: > 2 butr is a small
constant, which can be omitted @M(N x r x log N).



An oblivious merge of slot mapping entries is performed raéteery v N oblivious ORAM
writes and during every oblivious merge of data items. Rebak the amortized communication
cost of an oblivious write without sharing slot mapping &d: O(l) when client-side storage is
O(N'" x1); O(log N x I) when client-side storage (). Normally, N'/" x | > N'/" x log N.
Then, if sharing the slot mapping table, the amortized conioation cost of an oblivious write is
increased to©(14++/N xlog N') when client-side storage 3(N'/" x1); O(log N x (I++v/N)) when
client-side storage i (I + N/ x log N); O(log N x I+ v/N x (log N)?) = O(v/N x (log N)?)
when client-side storage i9(1) and!’s order of magnitude is lower thaiV'/" x log N's. r > 2
andr is a small constant here. The computational cost of retrgeai data item and a slot mapping
table entry with PIR aré® (N x [) andO(N x log N) respectively. NormallyN x I > N x log N.
So the amortized computational cost of retrieving a data igth PIR is still O(NV x [).

2) Multi-server PIR Support

Multi-server PIR requires that each storage has the exptitation of the database. In another
word, at any given position of the database, every serveestthe same item. To use ORAM
and multi-server PIR together, every server needs to stogeidentical encrypted item at the
same position. The ORAM client can run the single-serveteasnly ORAM in one server, and
synchronizes the changes of the database to every othar.séhen, to use with &-server PIR,
the communication cost of ORAM is increased at mosimes. k is regarded as a small constant.
The communication cost is proportionally increased, bat dnder of magnitude thus stays the
same.

V. ADVANCED SINGLE-SERVERWRITE-ONLY ORAM
A. Construction

Using O(N/" x 1) bits client-side storage, basic write-only ORAM can achien amortized
communication cost aP (1) bits. Advanced write-only ORAM can also achieW¢l) bits amortized
communication cost by employing basic write-only ORAM asudlding block. Advanced write-
only ORAM requires less client-side storage usage to aehikis cost wherO(N x log N) <
O(N'Y" x 1). Here,r > 2 andr is a small constant.

Server-side storage |
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Figure 5. Advanced write-only ORAM and an oblivious writeaexple



As shown in Figure 5, the server-side storage conté&inbuckets { < N), and each bucket
is a basic write-only ORAM that can store at mdstdata items. So the bucket size(8B x )
bits. The values ofX and B depend onN and!, which will be discussed later. A table named
bucket mapping table containing the mappings from itemceslito bucket numbers is maintained
at the client-side or server-side. The table Masntries, and the-th entry stores thé-th data
item’s bucket number. If thé-th data item does not exist, theh entry stores a special number
(e.g. -1) indicating the non-existence of the data itemhéfré is only one ORAM client, the table
is maintained at the client-side. Otherwise, as shown iurgich, all table entries are maintained
at the server-side in an additional basic write-only ORAM éntry contains a data item index
and a bucket number. Then the entry siz&idog N + log K) = O(log N) bits, and the ORAM
size (server-side storage for the ORAM)(BN x log N) bits.

In advanced write-only ORAM, an ORAM client obliviously wes a data item to the outsourced
storage by following steps. First, it encrypts the data itexelly with a semantically secure
probabilistic encryption scheme. Second, it chooses adiugkiformly at random, and oblivious
writes the data item to the bucket ORAM. Third, it updates dia¢a item’s bucket number in a
table named bucket mapping table, which stores the mapfriogsall data items’ indices to their
bucket numbers.

If the bucket mapping table is maintained in a basic writatdDRAM at the server side, an
ORAM client can utilizeO(N xlog N) client-side storage do a trivial oblivious merge of thisibas
write-only ORAM locally. Then the amortized communicatioast of updating bucket mapping
table isO(log N), which is less tharO(l) normally. So updating the data item’s bucket number
won'’t increase the amortized communication cost of writilaga item no matter the bucket mapping
table is maintained at client-side or server-side.

The client does a bucket’s oblivious merge based on oblé/gmrt when the bucket’'s write cache
is full. If a basic write-only ORAM have3 data items((B'/" x 1) client-side storage is required
to do an oblivious merge and achie@d/) amortized communication cost. However, a bucket is
not just a basic write-only ORAM. To do an oblivious merge obucket, additional client-side
storage and operations are also needed to detect and remtuatenl data items in the bucket.
The bucket mapping table is maintained for detecting oetti#ems. The client can lookup the
bucket mapping table to see if all versions of thh data items in a bucket are outdated. If the
i-th data item’s bucket is not the current bucket, all versiare outdated. Otherwise, one of these
versions is the most updated, which is determined by theshiness levels. If there is only one
ORAM client, the bucket mapping table can be maintained atdient-side storage. Otherwise,
the bucket mapping table should be shared via the ORAM seavel the client downloads the
table before doing an oblivious merge. The bucket mappibte® size iSO(N x log N) bits.
So the client-side storage usageQ$N x log N + BY/" x [). An oblivious merge of a bucket
is performed after every3 writes to the bucket. Then downloading the bucket mappirdeta
increases the amortized communication cost of data iteriingrby O(N/B x log N). Therefore,
the amortized communication cost of writing a data item i#l: ©(/) if the bucket mapping table
is maintained at the client sid€(I + N/B x log N) otherwise. In the case that a bucket’'s main
part will be overflowed after an oblivious merge, the clieohcurrently inserts each overflowed
data item to a random chosen bucket by doing an obliviousewAs discussed below is set to
a proper value to make overflow rare.

B. Parameter Optimization

Now we discuss how to choose the valuegond B. Our goal is to minimize client-side storage
usageO(N x log N + B'/" x 1) while keeping amortized communication cost of an obliviauie
asO(l) and server-side storage usageg sV x [). To keep server-side storage usageds’ x 1),
we need to seB asO(N/K). Based on the standard balls in bins analysis [33], the huekik



most data items ha®(N/K) data items with high probability ifV > K x log K. So we must
chooseK'’s value to makeN > K x log K. As analyzed above, if the bucket mapping table is
maintained at the client sidé€)(/) amortized communication cost can be achieved. Howevéreif t
bucket mapping table is shared at the server for multipkntdi, the amortized communication cost
is O(l+ N/B x log N). In that case, we must make(l) > O(N/B x log N) = O(K x log N)

to achieveO(l) amortized communication cost. Therefore, to meet our godwing conditions
must be met: 1)V > K xlog K; 2) B = O(N/K); 3) O(l) > O(K x log N) if there are multiple
ORAM clients. Below, we show how to choog$€’s value to meet these conditions.

o If there are multiple ORAM clients and/ > [, we choosek’s value as the maximal integer
that can makéd > K xlogN. As N > 1> K xlog N > K x log K, B’s value can be set
to O(N/K). Therefore, the client-side storage usag®isV x log N + (N/K)'/" x ). As
O(l) = O(K x log N), we gotO((N/K)'/" x 1) = O((N/(1/logN))"/" x 1) = O(NY" x
1=D/7 % (log N)'/") < O(N x log N). Then the client-side storage usageig\ x log N).

As O(l) > O(K x log N), the amortized communication cost of an oblivious writeJig).

« Otherwise, if there is only one ORAM client &% < [ , we chooséX’s value as the maximal
integer that can mak& > K x log N. So B’s value can be set t&(N/K) = O(log N).
Therefore, the client-side storage usag@isV x log N + (log N)'/ x1). Normally, (log N)'/"
can be viewed as a small constant. Then the client-sidegearaage i) (N x log N +1).
Because)(l) > O(N) > O(K x log N), the amortized communication cost of an oblivious
write is O(l) no matter there is only one ORAM client or not.

The communication cost and storage usage after optimizatie as follows. The amortized
communication cost of an oblivious write 3(l). The server-side storage usage(d$N x ).
If there are multiple ORAM clients and&/ > [, the client-side storage usage(§N x log N).
Otherwise, the client-side storage usag®isV x log N +1).

C. Security Analysis

All the operations in advanced write-only ORAM are obliviouEach bucket is a basic write-
only ORAM. If the bucket mapping table is maintained at theveeside, table entries are stored
in a basic write-only ORAM. Operations on any bucket or theke mapping table at the server
side are oblivious. The types of performed operations éngit oblivious merge) and the operated
buckets’ numbers are independent of the sequence of widéés items’ indices. Any two write
operation sequences with the same length are indistingllisho the server.

D. Supporting PIR Clients

Supporting PIR clients in basic write-only ORAM and advahaerite-only ORAM are the
same. The ways of maintaining data item location and sujpgpnhulti-server PIR are the same.
In basic write-only ORAM, a mapping table called slot magptable storing data item locations
is maintained. Please note that, in advanced write-only MR#e use only one slot mapping
table for all buckets instead of maintaining a separateetédl each bucket. This table stores the
mapping from data item indices to their exact locations imaaded write-only ORAM. The size
of the slot mapping table is stitD(N x log NV).

As discussed in Section IV-F, the amortized communicatiost of a PIR read i©)(I 4+ /N x
log N). Section IV-F also shows that the amortized communicatiost ©f an oblivious write
is increased byO(v/N x log N) if using O(NY/" x log N) client-side storage to support PIR
clients.r > 2 andr is a small constant. So, to support PIR, the amortized contation cost
and client-side storage usage are increase@py N x log N) andO(N'/" x log N) respectively.
However, the increased client-side storage usage is riggligompared with the usage without
PIR support. Therefore, the amortized communication cbstnooblivious write is increased to



O(l + v'N x log N), and client-side storage usage’s order of magnitude is moeased. The
computational costs of retrieving a data item and a data’stémeation with PIR areO(N x [)
andO(N x log N) respectively. NormallyN x [ > N x log N. So the amortized computational
cost of retrieving a data item with PIR 3(N x [).

VI. MULTI-SERVERWRITE-ONLY ORAM

In the outsourced data sharing scenario, as proposed byt{pEyate k-server itPIR can be used
with ORAM to hide data access pattern, whére ¢ > 1. Recall that the use afprivate k-server
itPIR requiresk outsourced storages, e.g. storages provide#l bipud providers, and the number
of colluding storages are no more than-privatek-server itPIR also requires that each storage has
the exact replication of the database. In another word, yagamen position/address of the database,
every server stores the same item. As discussed in SectBratd IV-F, single-server ORAM
scheme can be used with multi-server PIR scheme: the ORAdMtcluns a single-server write-
only ORAM scheme in one server, and synchronizes the chaoigé®e database to every other
server. Alternatively, giving the assumption that the nemiif colluding storages are no more than
t, we can design &private k-server write-only ORAM scheme, and use it witlprivate k-server
itPIR.

In this section, we design a multi-server write-only ORAMeme based on the basic single-
server write-only ORAM. Compared with basic write-only ORAthis multi-server write-only
ORAM has lower client-side storage usage wiigf + N) < O(N'/" x I). This ORAM'’s client-
side storage usage is also lower than advanced write-onNDR In addition to being used with
multi-server PIR, multi-server write-only ORAM may also bged in the case that data consumers
download all data items trivially.

k=3 servers provided by third parties. t=2 or less servers collude.

1st server

2nd server 3rd server

A

Step 4(1) scramble items Step 4(2) scramble items
from 1% server & output from 2™ server & outputs
result to 2" server result to 3" server

Z

ORAM client

Figure 6. Oblivious merge in multi-server write-only oliius RAM

The only difference between multi-server write-only ORAMdabasic write-only ORAM is
oblivious merge. Suppose there areservers, and the number of colluding servers are no more
thant. Multi-server write-only ORAM scheme utilizest 1 servers to do an oblivious merge. The
same as applying single-server write-only ORAM to multigkrvers, the client runs the write-
only ORAM in one server, and synchronizes the changes of #tebdse to every other server.
The synchronization is required by the use of multi-send&, But is optional for data consumers
downloading all data items trivially. When the ORAM'’s writeche is full, the client utilizes+ 1



servers to do an oblivious merge. Suppose the server ruf@RGM is indexedl. The client
chooses othet servers randomly. We index these servers ftoio ¢ + 1. As illustrated in Figure
6, the ORAM client does the oblivious merge based on oblwimmove and oblivious scramble
by following steps. In these steps, items are encrypted witemantically secure probabilistic
encryption scheme.

« First, the client creates a bitmap f bits. The bitmap is initialized as all zeros. The bitmap
is used to detect outdated data items. Let's call this bitohetpctive bitmap.

« Second, the client scans the write cache of the first serwer fail to head, replaces outdated
data items with dummy items. If data consumers use PIR, tp levery server's database
identical and allow concurrent PIR read, the client operate a copy of the write cache in
a temporary space of the server instead of the write cachealBe the cache is scanned
from tail to head, more recently written data items in thetevicache are scanned before
less recently written data items. During the scan, if a d&ta iindexed is found, the client
checks the-th bit of the detective bitmap. If théth bit is zero, which means the data item
is the most updated version of thi¢h data item, the client sets thieh bit as 1. Then client
re-encrypts the data item, and puts it back to its slot in thigeveache. If thei-th bit of the
detective bitmap is 1, which means a more updat#d data item exists, the client puts a
dummy item back to the data item’s slot in the write cache.

o Third, the client scans the main part of the first server,aegd outdated data items with
dummy items. If data consumers use PIR, to allow concurréRtrBad, the client operates
on a copy of the main part in the server instead of the main JFdm client detects and
replaces outdated data items by utilizing the detective, mdgich is very similar to that in
the second step. During the scan, if a data item indéxsdound, the client checks thieth
bit of the detective bitmap. If théth bit is zero, the client sets thieth bit as 1. Then the
client re-encrypts the data item, and puts it back to itsisidghe main part. If the-th bit of
the detective bitmap is 1, the client puts a dummy item to th& dem’s slot in the main
part.

« Fourth, the client scrambles all itemgimes utilizingt + 1 servers. The client downloads the
items in the first server’'s main part and write cache one byioreerandom order. After the
second and third steps, all data items in the downloadedsit® the most updated. During
the download, the client re-encrypts the downloaded iterpkads them to the second server,
and removes uploaded items from local storage. Then @y client-side storage is required
in this step. The uploaded items are stored in a temporargesipathe second server. After
all items being uploaded to the second server, the first ddeai finished. Using the same
way, the client scrambles the items uploaded to the secanersand uploads the result of
the second scramble to the third server. Using the same wayglient scrambles the items
t — 2 times more, and eventually the result is stored in a tempm@pace in thgt + 1)-th
server.

« Fifth, the client scrambles all items in ttie+ 1)-th server, and outputs data items to the first
server. The client downloads the items in {lte- 1)-th server, which have been scrambted
times, in a random order. During the download, the clientmerypts downloaded data items,
uploads them to the first server, and removes uploaded it@hslammy items from local
storage. The uploaded items are put in the new main part ofittsteserver. If data item
count is less tharV, the client also uploads one or more new dummy items to fillrbe
main part during the upload of data items. The data item coantbe measured during the
second and third step, and stored with a countefl@f V| bits. If data consumers use PIR,
the change of the ORAM is also synchronized to other servetthd client.

Analysis After first three steps, outdated data items are replacddduinmy items, and updated



data items are kept in their original positions before thivimus merge. No information about the
write pattern leaks in the first three steps because the ORKeMts behaviors are independent
of the write pattern. In the fourth and fifth step, items in teabase are scrambled- 1 times.
After ¢t + 1 scrambles, updated data items and maybe some dummy iterositargted to the first
server as the result of the oblivious merge, andlummy items of thét + 1)-th scramble’s result
are discarded. By observing the upload speed of outputtiagoblivious merge’s result, the first
server learns information about positions of updated datas and dummy items in the -+ 1)-th
scramble’s result. If the first server can correlate the stdvafore and after the+ 1 scrambles
by colluding with some servers, it knows information aboptated data items’ positions before
oblivious merge and write pattern. However, if no more thaervers collude, no server can learn
the information. Thei-th server can correlate the items before and afterittie scramble only.
If any ¢ of the k servers collude, they can correlate at mostrambles’ input items and output
items, but can't correlate the items before and afterl scrambles. Therefore, if colluding server
count is no more than, the oblivious merge is secure.

The client-side and server-side storage usage®)aré + /) and O(N x [) bits respectivelyt
and k are small integers, and viewed as constants in this papen ffte communication cost of
an oblivious merge i®)(N x [). An oblivious merge is performed after evely oblivious writes.
So the amortized communication cost of oblivious writeig).

Supporting PIR clients in multi-server write-only ORAM iket same as that in single-server
write-only ORAM. To support PIR, the amortized communioaticost is increased b (v N x
log N) using additionalN'/" x log N client-side storage usage. This is the same as the case in the
basic write-only ORAM. So, to support PIR, the amortized owmication cost of oblivious write
is increased t@ (I + v/N x log N) and client-side storage 8(N 41+ N/" xlog N) = O(N +
). The same as the basic write-only ORAM, in multi-server etohly ORAM, the amortized
communication and computational costs of PIR read @t¢+ v/N x log N) and O(N x [)
respectively.

VIl. FuLL FUNCTIONAL ORAM USING WRITE-ONLY ORAM AS A BUILDING BLOCK

[4] and [5] proposed ORAMSs containing multiple buckets!d4jucket is a full functional ORAM
storing at most (log N) data items, while [5]'s bucket is a full functional ORAM sing O(v/N)
data items. We can view their designs as frameworks usingr dititl functional ORAM schemes
as building blocks. Most traditional full functional ORAMlsemes and our write-only ORAM
schemes (together with PIR) can be used to implement thedeetsuwith slight modifications.
Using our write-only ORAM and PIR as a build block in [4] and'$50RAMSs, the communication
cost can be reduced, and the increased computational cast lse acceptable or even negligible
for many reasonable values &f and!.

[4] and [5]'s bucket ORAM is a bit different from normal fuluhctional ORAM. [4] and [5]
require a bucket ORAM to provide oblivious read-and-remprimitive and add primitive instead
of read primitive and write primitive. The oblivious readekremove primitive can read and remove
a real data item or a dummy data item from a bucket, while tH&iobs add primitive can add
a real data item or a dummy data item to a bucket. It is not reduio hide an primitive’s type.
Building [4]'s bucket ORAM and [5]'s bucket ORAM based on terionly ORAM and PIR are
similar but not exactly the same. We make slight modificatitm[4]'s ORAM framework and our
write-only ORAM. Next, we describe how to build bucket ORAMd®d on write-only ORAM for
[5] and [4] separately.

A. Using Write-only ORAM in [5]'s ORAM Framework

In [5], there is only one client, and it us€¥v/N x I+ N x log N) bits local storage. The client
maintainsy/N queues locally. The-th queue stores the data items to be added ta-thebucket



later. Locally, the client also maintains a data locatidsigawhich contains each data item’s exact
location. A read/write operation of a data item indexesl simulated by the following steps. First,
the client looks up the data location table locally to get #ih data item’s location. Second, if
the i-th data item is in a local queue, the client removes the data from the queue. Third,
the client performs an oblivious read-and-remove opematipn a bucket. The client performs a
read-and-remove operation on tih data item’s bucket to get the data item if it exists in the
server. Otherwise, the client performs a read-and-remgegadion on a random bucket to read a
dummy item. Fourth, if the client has obtained the most updiaiata value of théth data item,
the client chooses a random bucket for i@ data item, and puts theth data item with its value

in the bucket's queue. If the simulated operation is a wrjperation, the data value is given by
the operation. Otherwise, the data value is read from a lpeale in the second step or a bucket
in the third step. Fifth, the client updates th¢h data item’s location in the data location table
unless the simulated operation is a read operation and-thelata item is not found.

To prevent queues becoming full, the client carries out &dpauind eviction process continu-
ously. An eviction process may remove a data item from a kiscgaeue, and add the item to the
bucket using the oblivious add primitive. An eviction presenay add a dummy item obliviously
to a bucket so as to hide that the bucket’s queue is empty. d® &tcess pattern, [5] designed
several eviction algorithms to schedule eviction processe

We choose to use our basic write-only ORAM to build the budR&AM in [5]'s ORAM
framework. As the client has enough storage space to stongckets items locally, the client
can download all items in a bucket, and do the oblivious méwgelly. There is no need to use
the more complicated advanced write-only ORAM here. In thekbt ORAM based on basic
write-only ORAM and PIR, the ORAM client is both a write-onRAM client and a PIR client.
Because the client already maintains each data item’sitocéically in [5]'s design, there is no
need to maintain write-only ORAM’s slot mapping table. Tadeand-remove a data item from a
bucket ORAM, the client first looks up the data item’s locatinside the bucket locally, and then
retrieves the data item from the bucket using PIR. For outevwonly ORAM, there is no need to
do an explicit remove because our ORAM can detect outdateditdams by looking up the data
location table. To read-and-remove a dummy item from a UOKAM, the client simply retrieves
a random item (data item or dummy item) using PIR. To add a deta or dummy item to a
bucket ORAM, the client simply does an oblivious write bytmg the item in the bucket’s write
cache. The amortized communication and computationas aish read-and-remove operation on
a bucket are bottD(/), while the amortized communication and computational ca$tan add
operation on a bucket a@ (/) andO(v/'N x [) respectively.

During an oblivious read/write, a read-and-remove openadind an add operation are performed.
Using write-only ORAM and PIR to build the buckets in [5]'s @RI framework, the amortized
communication cost of an oblivious read/write (%), and the amortized computational cost
is O(vV/N x 1). If using traditional full functional ORAM to build bucketshe best amortized
communication and computational costs are bofftog N x [). We can see that using write-only
ORAM makes a tradeoff of computational cost for communaatost. What values oV and!
can make this tradeoff worthy needs further work to find out.

B. Using Write-only ORAM in [4]'s ORAM Framework

We omit [4]'s the design here, and only introduce some o[gtoperties that affects our building
of bucket ORAM. Please refer to [4] for the design detail¥s[design contains a basic construction
and a recursive construction based on the basic constnudfie can use write-only ORAM to
build the buckets of both the basic and recursive constmstiand reduce both constructions’
communication costs. However, compared with the best knaditional ORAM schemes, the



performance of the recursive construction using writetddRAM is not better. So we introduce
only the basic construction, and show how to build bucketdtie basic construction only.

In [4]'s original design, there ar@ (V) buckets organized in a binary tree, and each node in the
tree is a bucket storing at moStlog V) items. The server-side storage usag€{#Vv x log N x (),
and the tree hag = O(log N) levels. These parameters can be optimized to reduce ssideer-
storage usage [45]. After optimization, there &€N/log N) buckets, and each bucket stores at
most O(log N) items. Then, the server-side storage usage is reducéd A x [) and the tree
hash = O(log(N/log N)) = O(log N) levels. The simulation of a read/write operation contains
following work: the client choose®(h) buckets, and performs a read-and-remove operation to
get a data item or dummy item from each of these buckets; thata@hoose®) () buckets, and
adds a data or dummy item to each of the chosen buckets usengdith primitive. A data item
being added to a bucket is an item not existed in any buckeewtly. The item is either never
stored in any bucket before, or just removed from a bucketguie read-and-remove primitive.

In [4]'s basic construction, the client locally maintainslata structure, called index structure by
[4], containing entries for all data items. A data item’srgntontainsO(log V) bits data. So the
client storage usage 9(N x log N). The client needs the index structure to decide the choices
of buckets. A data item’s entry is read and updated once gwamoblivious read/write. To reduce
client-side storage usage, we make a slight modificatioe.Hestead storing the index structure
at the client side, we can use an additional full function&®AM store all entries of the index
structure. For example, we can use an ORAM from [3, 16, 17, item size of this ORAM is
log N. Then, according to Table I, the client-side storage andramed communication cost for
this ORAM areO(N'/" x log N) andO(log N x log N) respectively.

We can build a bucket ORAM for [4]'s basic construction basedour write-only ORAM and
PIR. If the client use®((log N)'/" x 1) local storage space, which is acceptable in many situgtions
a bucket can be built based on of basic write-only ORAM. So wefgp to choose the simpler
basic write-only ORAM to build buckets. In [4]'s design, tlkbent doesn’t have a data location
table contains each data item’s location. But the clientwflmucket ORAM needs to locate data
item location. Instead of using the slot mapping table, we astable called property table to
locate data item location inside a bucket ORAM. The proptbfe is also used to detect outdated
data items during oblivious merges. The server additigrettires a property table for each bucket
containing the properties of all items in the bucket. Tké entry of a bucket's property table
stores the properties of the item in tixh slot inside the bucket. The item properties include item
type (data item or dummy item), freshness (outdated or @olaind item index. If the item in
i-th slot is a dummy item, freshness value and index value easebto some random values. Each
property table is encrypted with a semantically secure givdistic encryption scheme. The size
of a property table i€)((log N)?) bits. Usually,O((log N)?) is not bigger tharO(l). When full
functional ORAM is used in outsourced storage, it is usuadlgd as a block storage system or the
underlying layer of a file system [8, 35]. Usually, the itermesis at least several KB. Suppdsis
8192 bits (1KB).N has to be bigger tha2™ to make(log N)? bigger thanl, which is unlikely.

To read-and-remove a data item from a bucket ORAM, the ctiees following steps. First, the
client downloads the bucket’s property table, decryptarig looks up the data item’s location inside
the bucket locally. Second, the client retrieves the data ifrom the bucket using PIR. Third, the
client updates the property table by setting the item’shiness property as outdated, and uploads
the table after re-encrypting it. Instead of removing thead@m directly, we virtually remove it by
setting its freshness property as outdated here. To reddesmove a dummy item from a bucket
ORAM, the client does following steps. First, the client ddwads the bucket’s property table, and
decrypts it. Second, the client retrieves a random itema(dam or dummy item) from the bucket
using PIR. Third, the client uploads the property tableraféeencrypting it. To add a data item



or dummy item to a bucket ORAM, the client does following stepirst, the client downloads
the bucket’s property table, and decrypts it. Second, tfentcbbliviously write the item to the
bucket. Third, the client updates the property table by rgldhe item’s properties, and uploads
the table after re-encrypting it. The amortized commuieaand computational costs of an add
operation on a bucket are bofk(!), while the amortized communication and computationalsost
of a read-and-remove operation on a bucket@(® andO(log N x [) respectively.

In [4]'s basic construction, an original data read/writeergdion is simulated witfO(log N)
read-and-remove and add operations on buckets. One readsaand one write access to an
entry of the index structure are also required in the sinmriabf an original data operation.
Recall that we modify the basic construction by adding anteatchl ORAM for storing its index
structure. The client-side storage and amortized commatioit cost for this additional ORAM are
O(N'Y" x log N) and O((log N)?) respectively. Using write-only ORAM and PIR to build the
buckets in [4]'s basic construction, the amortized comroation cost of an oblivious read/write is
O(log N x I+ (log N)?) = O(log N x 1), and the amortized computational cost§(log N)? x 1).
The client-side storage usage G&(log N)'/" x I + N'/7 x log N). (log N)'/" can be viewed
as a small constant in practice. Then the client-side stotesgge iSO(I + N'/" x log N). The
server-side storage usage($N x [) after optimization [45].

[4] uses two kinds of traditional ORAM-based buckets in iésie ORAM construction. The best
one is based on [1]'s Square-Root ORAM. If building buckedsdd on [1]'s Square-Root ORAM,
the amortized communication and computational costs ate®@og N x v/log N x loglog N x1).

If improving [4]'s basic construction as introduced in tlsisction (adding an additional ORAM for
storing its index structure and optimizing server-sideaje usage), the server-side and client-side
storage usages are the same as our result. Therefore, usiagpnly ORAM makes a tradeoff of
computational cost for communication cost.

VIIl. CONCLUDING REMARKS

In this paper, two single-server write-only ORAM schemes @me multi-server write-only
ORAM scheme have been proposed to hide the write pattern oeshdut curious outsourced
storages. This paper has discussed write-only ORAM’s ssagéwo scenarios: the data owner
sharing data to data consumers via outsourced storag@uscesl storage for the data owner’s own
usage. To hide both read and write patterns, PIR is usedhegetith write-only ORAM in first
scenario, and full functional ORAM based on write-only ORAMd PIR is used in the second
scenario. Write-only ORAM may be used alone in some casefefiitst scenario where only
write pattern need to be hidden. In addition to proposingehwrite-only ORAM schemes, this
paper have studied supporting PIR in ORAM as well as buildingfunctional ORAM based on
write-only ORAM and PIR. The stroage/communication/cotagional costs of write-only ORAM
schemes have been estimated and compared with traditidRAM3 costs in above scenarios.
Compared with using traditional ORAM, using write-only ORIANn the above scenarios has lower
communication cost or much less client-side storage uddgwever, using write-only ORAM in
the second scenario has higher computational cost. Reaxperiments are still needed to evaluate
how these costs affect data operation throughput and dasadatency under different settings
of data item count and data item length. We leave this as agfutork.
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APPENDIX A
FuLL FUNCTIONAL ORAM DIRECTLY BASED ONWRITE-ONLY ORAM AND PIR

A. Full Functional ORAM directly based on Basic Sngle-server Write-only ORAM and PIR

We can build a full functional ORAM based on the basic writdypORAM and PIR directly. In
this full functional ORAM, an ORAM client is both a write-onlORAM client and a PIR client.

A read operation on théth data item is simulated by following steps. First, thesiotilocates
thei-th data item’s slot by obviously looking up the slot mappiagle. Second, the client retrieves
an item from the server using PIR. If the most updated vereiothe i-th data item exists in the
server, the client retrieves the data item. Otherwise, tiemtcretrieves a random item (data item
or dummy item) from the server. Third, the client writes a doynitem to the write cache. Fourth,
if the slot mapping table is stored in the server, the clienetgnds to update the mapping table
by writing a dummy entry to the table’s cache.



Given the new data value of thigh data item, a write operation on thh data item is simulated
by following steps. First, if the slot mapping table is stbie the server, the client locates the
i-th data item’s slot by obviously looking up the slot mapptagle. Second, the client retrieves
an random item (data item or dummy item) from the server uBility Third, the client writes the
i-th data item with its new data value to the write cache. Fgutte client updates theth data
item’s slot location in the mapping table obliviously.

Based on the analysis in Section IV-F, we can learn that ther&ged communication cost of
an oblivious read/write isO(I++/N x log N) when client-side storage 8(N'/" x1); O(log N x
(I + v/N)) when client-side storage i©(1 + NY/" x log N); O(v/N x (log N)?) when client-
side storage i9)(I) and O(l) < O(N'/" x log N). » > 2 andr is a small constant here. The
amortized computational cost of an oblivious read/writ®{sV x [). The server-side storage usage
is O(N x ).

If there is only one ORAM client and the client has enough lI@tarage for the slot mapping
table, the table can be stored in the client side as well. &ih ¢hse, the amortized communication
cost can be reduced t6)(1) when client-side storage i9(N/" x [+ N x log N); O(log N x 1)
when client-side storage i9(l + N x log N).

B. Full Functional ORAM directly based on Advanced Sngle-server Write-only ORAM and PIR

We can build a full functional ORAM based on the advancedesoitly ORAM and PIR directly.
In this full functional ORAM, an ORAM client is both a writendy ORAM client and a PIR client.

A read operation on théth data item is simulated by following steps. First, thesitilocates
thei-th data item’s slot by obviously looking up the slot mappiagle. Second, the client retrieves
an item from the server using PIR. If the most updated versiathie i-th data item exists in the
server, the client retrieves it using PIR. Otherwise, thentlretrieves a random item (data item or
dummy item) from the server using PIR. Third, the client ramdly chooses a bucket, and writes
a dummy item to the bucket’s write cache. Fourth, if the slapping table is stored in the server,
the client pretends to update the slot mapping table bymwgid dummy entry to the table’s cache.

Given the new data value of thigh data item, a write operation on thh data item is simulated
by following steps. First, if the slot mapping table is stbie the server, the client locates th¢h
data item’s location by obliviously looking up the slot mapgptable. Second, the client retrieves
an random item (data item or dummy item) from the server uBilR} The first step and second
step are performed to hide the type of the simulated operatibird, the client randomly chooses
a bucket, and writes theth data item with its new data value to the bucket’s writehead-ourth,
the client updates theth data item’s bucket number and slot location in the buckapping table
and the slot mapping table obliviously.

The amortized computational and communication costs oftdimious read/write are) (N x 1)
andO(I + VN x log N) respectively. The server-side and client-side storaggassareO(N x [)
andO(N x log N + ) respectively.

If there is only one ORAM client, the bucket mapping table ahat mapping table can be
stored in the client side as well. In that case, the amortcdmunication cost of an oblivious
read/write is reduced t®(l). The computational cost, server-side and client-sideag®iusages
are still the same.



