
Examination of a New Defense Mechanism:
Honeywords

Ziya Alper Genc∗, Süleyman Kardaş∗,†, Mehmet Sabir Kiraz∗

∗TÜBİTAK B İLGEM UEKAE, Gebze, Kocaeli, Turkey
†Sabancı University, Faculty of Engineering and Natural Sciences,̇Istanbul, Turkey

Abstract—It has become much easier to crack a pass-
word hash with the advancements in the graphical-
processing unit (GPU) technology. An adversary can
recover a user’s password using brute-force attack on
password hash. Once the password has been recovered
no server can detect any illegitimate user authentication
(if there is no extra mechanism used).

In this context, recently, Juels and Rivest published a
paper for improving the security of hashed passwords.
Roughly speaking, they propose an approach for user
authentication, in which some false passwords, i.e., “hon-
eywords” are added into a password file, in order to
detect impersonation. Their solution includes an auxiliary
secure server called “honeychecker” which can distinguish
a user’s real password among her honeywords and imme-
diately sets off an alarm whenever a honeyword is used. In
this paper, we analyze the security of the proposal, provide
some possible improvements which are easy to implement
and introduce an enhanced model as a solution to an open
problem.

Keywords-Security, Authentication, Password, Honey-
words

I. INTRODUCTION

The use of passwords is one of the most common tools
during authentication process. In registration process,
most of the users chooses weak passwords that can be
predicted by a brute-force attack. Namely, an adversary,
who steal the file of hashed passwords from a server,
can use brute force attack to find some user’s password.
Weir et al. [16] developed a password cracking algorithm
which uses probabilistic, context-free grammars. Kelley
et al. [10] recently showed that using Weir’s attack, one
billion guess is enough to crack %40.3 of the passwords
that comply with the “basic8” policy, i.e., all passwords
must have at least 8 characters. Golubev showed that
the cracking speed of hashes has reached 5.6 billion/s
for MD5 and 2.3 billion/s for SHA1 on a single GPU
[2]. These advancements make it necessary to develop

new security measures.
In [9], Juels and Rivest recently propose the idea of

changing the structure of the password file in such a way
that each user would have multiple possible passwords,
sweetwordsand only one of them is real. The false
passwords are calledhoneywords. As soon as one of
the honeywords is submitted in the login process, the
adversary will be detected. The idea works as follows.

Let ui, pi and H() denotes theith user name, her
password and the hash function of the standard system
respectively. As in Figure I, the system adds honeywords
hashes to this file at random orders. Thus an adversary
who has cracked the password hashes will see randomly
ordered sweetwordswi,j of userui.

username password
u1 H(p1)
u2
u3
u4

username passwords
H(w1,1),H(w1,2),H(w1,3), ...
H(w2,1),H(w2,2),H(w2,3), ...
H(w3,1),H(w3,2),H(w3,3), ...
H(w4,1),H(w4,2),H(w4,3), ...

u1
u2
u3
u4

H(p2)
H(p3)
H(p4)

Fig. 1. The structure of the password hashes file of a standard
system is on the left. The system using honeywords is on the right.

When a userui sends a login request, the login
server will determine the order of her among the users,
and the order of the submitted password among her
sweetwords. The login server sends a message of the
form Check(i, j) to a secure server which is called
“honeychecker”, for theith user and herjth sweetword.
The honeychecker will determine whether the submitted
word is a password or a honeyword. If a honeyword is
submitted, then it will raise an alarm or take an action
that is previously chosen Figure I. The honeychecker
cannot know anything about the user’s password or
honeywords. It maintains a single database that contains
only the order of the true password among the user’s
sweetwords.

The adversary can steal the file of hashed passwords
and invert the hashes but cannot tell which sweetword



User

Server Honeychecker

1. User sends
a login request
to server.

2. Check: i, j

3. True / False, Alarm

S
E

C
U

R
E

D
SECURED

4. ACCEPT or
REJECT

b

Fig. 2. Login schema of a system using honeywords.

is the password. There will be a risk of detection that
prevents the adversary to login to the system.

A closely related work is the Kamouflage system
of Bojinov et al. [3] though that work differs from
honeywords. In that system, the user’s password list is
placed with another lists that contains honeywords. There
is no need for a server in Kamouflage system although
the authors in [3] note that servers might be used to
empower the ability of detection of compromise.

Our contribution. In this work, we analyze the hon-
eyword system according to both functionality and the
security perspective. Then, we suggest improvements for
number of honeywords per user, generating typo-safe
honeywords and managing old passwords. Finally we
introduce an enhanced model of honeywords which may
be a solution to the open problem of active attacks.

The rest of the paper is structured as is follows:
Section II briey explains the password related attack
models. Section III describes the improvements that we
suggest for the proposed honeywords system in [9].
In Section IV, we introduce an enhanced honeywords
system. Section V concludes the paper.

II. ATTACK MODELS

There are numerous attacks to obtain a user’s pass-
word. The six of these techniques are depicted in Fig-
ure II.

Password Related
Attacks

Brute-force
Attack

Guessing
Attack Phising

Attack

Malwares

Shoulder
Surfing

Network
Monitoring

Fig. 3. Password Related Attacks

Password attacks can be classified as follows:

• Brute-force attack: An adversary can steal the
password hash file and crack the hashes using brute
force computation.He may also use a precomputed
dictionary of password hashes [6].

• Guessing attack: Many users choose weak pass-
words such that an adversary can find out the
passwords of some users of a system by trying
common passwords while attempting to login to that
system [4], [5]. Spafford suggest good password
choice should avoid common words and names [13].

• Network monitoring: If the communication be-
tween the user and the system is unsecured, i.e.
unencrypted, an adversary may monitor the network
traffic and obtain the passwords or interrupt the traf-
fic while a user creating her password and change
it to another one [12]. This attack is also called
man-in-the-middle-attack [1].

User Adversary ServerUNSECURED UNSECURED

1. User sends
information, i.e.
login request.

2. Adversary may
record, modify or block
the login request.

3. Adversary gets
critical information.

4. User sees what
adversary sends.

Fig. 4. Communication over an unsecured channel

• Phishing attack: A user can submit her login
information to a web page prepared by an adversary
which seems very likely to the original system’s
login screen. This technique is relatively new, the
first attempt was reported in the mid-1990s [15].

• Malwares: A Trojan program can capture the key
strokes and send this information to the adversary
[7]. There are some advanced malwares that can
steal the login information from messenger like
softwares some of which does not keep the login
information encrypted [8]. Sun et al. propose oPass
which uses a user’s cellphone and short message
service (SMS) to prevent password stealing [14].

• Visible passwords:A password that is written to
a stickie can be seen by an adversary. He can also
watch a user while she enters her password (shoul-
der surfing). Kumar et al. propose EyePassword,
gaze-based password entry, to overcome direct ob-
servation [11].

The authors in [9] focus on brute-force attack scenario
where an adversary has stolen a file of user names and
associated password hashes from the server (see Figure
II). The adversary has also obtained the salt values



and other required parameters for computing the hash
function. In this scenario, the adversary can make a
brute-force search to find one or more user’s password
(i.e., the adversary can crack most of the hashes).

The authors in [9] also assume that authentication can
only be handled using passwords while logging into the
server and the adversary does not compromise the system
persistently.

III. I MPROVEMENTS FORHONEYWORDS

We are now ready to propose our practical improve-
ments for the honeyword system. n this section, we
present four distinct solutions. The first three solutions
are proposed to make the system more robust. Our last
solution is related to a problem mentioned in [9], i.e.,
we deal with an active attack scenario to the honeyword
system.

A. Number of honeywords

The authors in [9] recommends a small integerk =
20 for the number of honeywords per-user. They note
that, though, the number of honeywords does not need
to be a system wide parameter. But how do we assess a
user’s importance and determine an appropriate number
for honeywords of her? And how should we maintain
this number for each user?

Instead of having constant number of honeywords
per-user, the number of users’ honeywords should be
dynamic once there is an active attack. Namely, the
system should generate more honeywords for users who
were previously attacked. Our suggestion comes from the
following fact: A user whom honeyword is submitted is
more likely to be the target of an adversary than users
whose honeywords are never submitted. The system
should be setup in such a way that the password of this
user is reset and her new honeywords are regenerated and
honeychecker is updated accordingly. The honeywords
should be renewed after every attack, and in order to
decrease the probability of an attacker the number of
honeywords of that user should be increased up to a
certain security level.

This technique will deter the adversary to attack the
same user again, because the success chance of the
adversary will be much lower.

B. Typo-safe Honeyword Generation

The honeyword generation method called“chaffing-
by-tweaking” tweaks the selected character positions of
the password to obtain a honeyword [9]. This technique
is easy to implement on the existing systems since it does

not require any change in the login screen. However,
since the honeywords differ from the password in a few
characters, a legitimate user may submit a honeyword
mistakenly and set off an alarm.

There is another honeyword generation algorithm
called “take-a-tail” which generates honeywords by
adding random- generally three digit- integers at the
end of the password. As the authors [9] propose, tail
tweaking code can be modified so that the difference of
two tails is a multiple of a small primeq greater than
10, i.e.q = 13.

We generalize this idea to all tweaking methods as
follows. After generating a honeyword, a new function
Eval(h, p) whereh is a newly created honeyword andp
is the password of the user, evaluates the typo-safety of
the honeyword considering the users keyboard scheme.
In this setting, a honeyword which contains a character
that is close to, i.e. right or left to, the corresponding
character of user’s password gets a lower score. If the
honeyword’s typo-safe score is lower then the minimum
allowed score, then the generation procedure generates
a new honeyword.

C. Old Passwords Problem

Most users use same password on different systems.
An old password of a user on some system may be
the current password of that user on another system.
Thus taking advanced security measurements may not
guarantee the safety. An adversary may attack to a
weaker system that the targeted user have an account on
it and obtain her old passwords and submit them on a
more secure system. This scenario constitutes a security
risk.

The authors in [9] give an effective solution where in-
stead of storing old passwords per-user basis the system
will store all user’s old passwords in a list anonymously.
When a password is created, system checks whether
this list contains the password. If it is not in the list,
the system will not allow that password to be used.
However, this solution will not be user-friendly since it
is rather strange to forbid to use a password just because
of somebody else used it before.

The authors in [9] also propose to encrypt and keep old
passwords per-user basis on the actual system and keep
the encryption keys in the honeychecker. When needed,
the system asks the honeychecker for that user’s old
passwords key. This seems to be a good solution, how-
ever, this method increases the complexity of the system
because the honeychecker does more computation, needs



more storage and accepts new type of commands which
contradicts the simplicity of the honeychecker.

We offer another method to solve this issue. In our
solution, instead of encrypting the old passwords the
system generates honeywords for old passwords “old-
honeywords”, as well. The system will generate old-
honeywords and keep their hashes with old passwords’
hashes per-user basis. There is a probability of that a
user may choose a password that is a old-honeyword.
But this possibility is negligible.

IV. A SOLUTION TO AN OPEN PROBLEM: ACTIVE

ATTACKS AGAINST HONEYWORDSSYSTEM

The honeywords system is only designed to withstand
off-line attacks. In this scenario, we assume, as the
authors mentioned in [9], that the adversary has only
stolen the password hashes but did not compromise
the system on a persistent basis, i.e, the adversary did
not hack the system or did not gain the admin rights.
However, the authors in [9] mentioned about a problem
which we believe is still open: How can a honeyword
system be best designed to withstand active attacks, e.g.,
code modification, of the system (or the honeychecker)?

The question is very reasonable as the adversary
who accesses the password hashes may also gain other
permissions like administrator rights. In this case, the
system is corrupted and therefore may behave arbitrarily.

A. Assumptions

In our proposal, we assume that the login server and
the honeychecker cannot be compromised at the same
time (otherwise, the honeyword scheme will not be
secure at all). We also assume that the administrators
of login server and honeychecker do not cooperate.

B. Adversarial Capabilities

In our model, we classify adversarial attack scenarios
into two classes.

• The adversary has compromised the login server
and has gained administrator rights. He can now
modify the codes in the login server as well as other
system components.

• The adversary has compromised the honeychecker.
He can now modify the codes of the honeychecker
as well as other system components.

In the first attack, the attacker has gained administrator
rights and has system wide effects. Thus she can send
any message (or request) to honeychecker. Note that the
honeychecker understands only two type of messages:
Set or Check which sets or checks the order of a user’s

password among her honeywords, respectively. The ad-
versary can send aSetmessage to the honeychecker and
set the order of a user’s password to a value whatever
he wants.

In the second attack, the adversary has administrator
rights on the honeychecker. In this case, the most im-
portant attack that the adversary can do is DoS attack.
The attacker can disallow any legitimate login request
or can allow any illegitimate login attempt. The attacker
may also modify the honeychecker to send True of False
results at random.

C. The Proposal

The honeychecker described in [9] trusts the login
server and does not validate anySet message. However,
in one of our attack scenarios the login server is ma-
licious. Thus we need to enhance the Honeychecker in
such a way that it can validate the origin ofSetmessages.
The login server sendsSetmessages to honeychecker if:

• A user signs up, i.e. she creates her password for
first time.

• A user changes her password.
Since the login server is compromised, the validation

process cannot be done on it. We need a secure channel
to communicate with the user whose password’s order
is being set but honeychecker does not know any in-
formation of the user. One of the design principles of
honeychecker is that compromise of only the honey-
checker does not reduce the security level of the whole
system lower than before introducing the honeywords.
Hence we should give honeychecker minimal informa-
tion about the user and this information must be enough
to communicate with the user to validate her with a fair
confidence. In todays world, the most common way of
this communication is done on Short Message Service
(SMS).

In our model, if a user signs up, the login server
asks her to enter personal information including mobile
number and updates the honeychecker. Here we add an
extra parameter toSet message:phn, the users mobile
number. The honeychecker will add this information to
its database and will communicate with the user when
needed. The sign up scheme of an enhanced honeyword
system is depicted in Figure IV-C.

If a user would like to change her password, she will
send a password change request to login server. The login
server will send aSet message to honeychecker. The
honeychecker now knows the mobile number of the user
and asks her to validate the origin of the request. The
honeychecker will set an alarm if a lot of invalid update



User

Server Honeychecker

1. User sends
a sign up

request to server.

2. Set: i, j, phn

3. Success / Failure
S

E
C

U
R

E
D

SECURED

4. Success or
Failure notice

Fig. 5. Sign up schema of an enhanced honeywords system.

requests are made. The alarm may be an e-mail but this
mail must be sent to a server other than the login server,
since it is compromised. The password change scheme
of an enhanced honeyword system is depicted in Figure
IV-C.

User

Server Honeychecker

1. User sends
a password change
request to server.

2. Set: i, j

5. Success / Failure

S
E

C
U

R
E

D

SECURED

ALARM

b3. Honeychecker asks
for approval of user

4. Approve / Reject

6. Success or
Failure notice

Short Message Service (SMS)

Fig. 6. Password change schema of an enhanced honeywords system.

D. Security Analysis of New Model

If the adversary gains administrator rights on login
server, she can sendSet messages which she desires.
In this case, the honeychecker will confirm the update
request by asking the user. A dishonest login server will
fail to change a user’s order of password in this scenario.

The adversary can also send repetitiveCheck mes-
sages to find the order of a user’s password. We suggest
that the honeychecker counts and monitors the check
requests and decides whether the login server is com-
promised or not. High number of check requests means
that the (malicious) login server is making a brute-force
search to find the correct order of password of all users.

An adversary may also attack honeychecker and may
gain administrator rights on it. She can modify the
honeychecker to send arbitrary results to login server
after Check messages. Our suggestion for fighting with
this attack is creating some small number of dummy
accounts to test the honesty of the honeychecker. The
login server will send valid login information with half
of the accounts and invalid login information with the

other half frequently. If the honeychecker is infected, i.e.
compromised, it will not take the correct action. Thus the
adversary will be detected.

Our enhanced model of honeyword system is more ro-
bust to active attacks than the primitive system designed
in [9].

V. D ISCUSSION ANDCONCLUSION

The authors in [9] propose an interesting defense
mechanism under a very common attack scenario where
an adversary steals the file of password hashes and
inverts most or many of the hashes. The honeyword
system is powerful defense mechanism in this scenario.
Namely, even if the adversary has broken all the hashes
in the password file, he cannot login to the system
without a high risk of being detected. Hacking the hon-
eychecker has also no benefit to the adversary since there
is no information about a user’s password or honeyword
in the honeychecker. The order of the true password
is meaningless without obtaining the file of password
hashes.

On the other side, honeyword system is not a complete
solution for the password management problem. The
following scenarios should also be considered:

• An adversary can infect the whole system, and learn
the index of real password among sweetwords of a
user.

• An adversary can steal the sweetwords of a user
and submit on another systems which does not use
honeywords.

In this work, we examined the paper [9] and suggest
some possible improvements for

• number of honeywords of a user
• generating typo-safe honeywords
• managing old passwords

and introduced an enhanced honeywords system which
may be a solution to the active attacks problem.

We hope our contributions improve honeywords tech-
nique and help designing more secure systems.

REFERENCES

[1] National information assurance (ia) glossary, 2010.
[2] Password cracking. Web Site, 2013.

www.golubev.com/hashgpu.htm.
[3] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh. Kamouflage:

Loss-resistant password management. InESORICS, pages 286–
302, 2010.

[4] J. Bonneau. Guessing human-chosen secrets. Technical Re-
port UCAM-CL-TR-819, University of Cambridge, Computer
Laboratory, May 2012.



[5] J. Bonneau. The science of guessing: analyzing an anonymized
corpus of 70 million passwords. InIEEE Symp. Security and
Privacy, 2012.

[6] A. Conklin, G. Dietrich, and D. Walz. Password-based authen-
tication: A system perspective. InProceedings of the Proceed-
ings of the 37th Annual Hawaii International Conference on
System Sciences (HICSS’04) - Track 7 - Volume 7, HICSS ’04,
pages 70170.2–, Washington, DC, USA, 2004. IEEE Computer
Society.

[7] D. Elser and M. Pekrul. Inside the password-stealing business:
the who and how of identity theft, 2009.

[8] J. Erasmus. Malware attacks: Anatomy of a malware attack.
Netw. Secur., 2009(1):4–7, Jan. 2009.

[9] A. Juels and R. L. Rivest. Honeywords: Making password-
cracking detectable. Unpublished draft.

[10] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas,
L. Bauer, N. Christin, L. F. Cranor, and J. Lopez. Guess
again (and again and again): Measuring password strength by
simulating password-cracking algorithms. InIEEE Symposium
on Security and Privacy, pages 523–537, 2012.

[11] M. Kumar, T. Garfinkel, D. Boneh, and T. Winograd. Reducing
shoulder-surfing by using gaze-based password entry. InPro-
ceedings of the 3rd symposium on Usable privacy and security,
SOUPS ’07, pages 13–19, New York, NY, USA, 2007. ACM.

[12] P. G. Neumann. Risks of passwords.Commun. ACM,
37(4):126–, Apr. 1994.

[13] E. H. Spafford. Opus: preventing weak password choices.
Comput. Secur., 11(3):273–278, May 1992.

[14] H.-M. Sun, Y.-H. Chen, and Y.-H. Lin. opass: A user authentica-
tion protocol resistant to password stealing and password reuse
attacks.Information Forensics and Security, IEEE Transactions
on, 7(2):651–663, 2012.

[15] A. van der Merwe, M. Loock, and M. Dabrowski. Charac-
teristics and responsibilities involved in a phishing attack. In
Proceedings of the 4th international symposium on Information
and communication technologies, WISICT ’05, pages 249–254.
Trinity College Dublin, 2005.

[16] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek. Pass-
word cracking using probabilistic context-free grammars.In
Proceedings of the 2009 30th IEEE Symposium on Security and
Privacy, SP ’09, pages 391–405, Washington, DC, USA, 2009.
IEEE Computer Society.


