
A More Efficient AES Threshold Implementation

Begül Bilgin1,2, Benedikt Gierlichs1, Svetla Nikova1, Ventzislav Nikov3, and
Vincent Rijmen1

1 KU Leuven, ESAT-COSIC and iMinds, Belgium {name.surname}@esat.kuleuven.be
2 University of Twente, EEMCS-DIES, The Netherlands

3 NXP Semiconductors, Belgium {name.surname}@nxp.com

Abstract. Threshold Implementations provide provable security against first-order power
analysis attacks for hardware and software implementations. Like masking, the approach
relies on secret sharing but it differs in the implementation of logic functions. At Eurocrypt
2011 Moradi et al. published the to date most compact Threshold Implementation of AES-128
encryption. Their work shows that the number of required random bits may be an additional
evaluation criterion, next to area and speed. We present a new Threshold Implementation of
AES-128 encryption that is 18% smaller, 7.5% faster and that requires 8% less random bits
than the implementation from Eurocrypt 2011. In addition, we provide results of a practical
security evaluation based on real power traces in adversary-friendly conditions. They confirm
the first-order attack resistance of our implementation and show good resistance against
higher-order attacks.

Keywords: Threshold Implementation, First-order DPA, Glitches, Sharing, AES, S-box

1 Introduction

Embedded devices seem to be easily protected by modern ciphers in a black-box scenario.
However, in the late 90s [10] the security of such devices has been shown to depend on
the algorithm implementation. During the computation of an algorithm the device leaks
information. Side channel attacks (SCA) are among the most relevant threats for the
security of implementations of cryptographic algorithms. Certain countermeasures aim at
introducing noise in the side channel, e.g. random delays, random order execution, dummy
operations, etc., while masking conceals all sensitive intermediate values of a computation
with random data and allows one to formally argue the security such a protection provides.
Different masking schemes, like additive [8,9] and multiplicative [14], have been proposed in
order to provide security against differential power analysis (DPA) attacks. However, it was
shown [11,12,17] that masking can still be vulnerable to first-order DPA due to the presence
of glitches in hardware implementations. One can try to eliminate the security relevant
glitches by carefully balancing signal propagation delays, but this requires expertise, time,
iterations of design and testing, and hence is expensive. As an alternative, new masking
schemes have been developed that provide provable security even if glitches occur. In 2006
Nikova et al. proposed such a scheme called Threshold Implementation (TI) [19]. It is
based on secret-sharing and provably secure against first-order DPA [20]. In 2012 Prouff
and Roche proposed an other such scheme [24], based on Shamir’s secret sharing, for which
they claim security even against higher-order attacks. It is a general method that replaces
every field multiplication by 4d3 field multiplications and 4d3 additions, using 2d2 bytes
of randomness. In some cases this may prove too costly or inefficient. And a recent result
has shown that the multivariate leakages can be exploitable in univariate attacks [16].

Related Work. The Threshold Implementation technique is based on a specific type
of multi-party computation and applies boolean masking. Interesting properties of the
technique are that it provides provable security against first-order side-channel attacks,
that it requires few assumptions on the hardware leakage behavior, and that it allows
to construct realistic-size circuits without intervention and design iterations. However,
threshold implementations can still be broken by univariate mutual information analysis
(MIA) [2,20] or univariate higher-order attacks [15].

It has been shown that all 3× 3, 4× 4 and the DES 6× 4 S-boxes have a TI sharing
with 3, 4 or 5 shares [5]. The TI approach has been applied to only few entire algorithms:
PRESENT [21], AES [18] and Keccak [3]. In AES, the S-box is the by far most challenging
part to share. Moradi et al. [18] have proposed a TI of this S-box that constantly uses 3
shares based on the tower field approach.

Contribution. We propose a more compact and faster Threshold Implementation of
AES-128 encryption that requires less random bits compared to the one by Moradi et al.
from Eurocrypt 2011. For the S-box we use the tower field approach over GF (24) and
for each block in the S-box computation we adapt the number of shares. This reduces the
area by 13% and the clock cycles by 40%. However, our main focus is to optimize not only
the S-box but the whole cipher. Our implementation of AES is 18% smaller, 7.5% faster
and requires 8% less random bits than the implementation from Eurocrypt 2011. We
investigate the uniformity problem and the need for re-masking in more detail. We prove
that under certain circumstances, it is enough to re-mask only a fraction of the shares. We
evaluate the security of our implementation against first and higher-order attacks using
real power traces in adversary-friendly conditions. The results confirm that it provides
the theoretically guaranteed first-order attack resistance and show good security against
higher-order attacks.

2 Threshold Implementation

TIs use sharings with the following properties: correctness, incompleteness and uniformity.
The last property is often the most difficult to achieve, and the most costly in terms
of hardware area. However, one can propose implementations where not every function
satisfies the property of uniformity and fresh randomness is used instead to do a re-
masking. In this section, we recall the TI properties and describe how circuit complexity
can be traded off for fresh random bits.

2.1 Notation and Definitions

We denote by upper-case characters stochastic variables, and by lower-case characters the
values they can take, i.e. elements of a finite field. Let X, taking values in Fm, denote the
input of the (unshared) function f . A masking takes as inputs a value x and some auxiliary
values (random masks), and outputs a vector (x1, x2, . . . , xsx) such that the XOR-sum of
the sx shares equals x. For all values x with Pr(X = x) > 0, let Sh(x) denote the set of
valid share vectors (x1, x2, . . . , xsx) for x:

Sh(x) = {(x1, x2, . . . , xsx) ∈ Fmsx |x1 + x2 + · · ·+ xsx = x} .

Pr((X1, X2, . . . , Xsx) = (x1, x2, . . . , xsx)|X = x) denotes the probability that (X1, X2, . . . , Xsx) =
(x1, x2, . . . , xsx) when the first input of the masking equals x, taken over all auxiliary

inputs of the masking. Similarly, we denote the output Y , taking values in Fn, and
(y1, y2, . . . , ysy), Sh(y). Let F denote the vector function with input (X1, X2, . . . , Xsx) and
output (Y1, Y2, . . . , Ysy); we will call it a sharing. TIs, like most other masking schemes,
require that the masking is uniform, in the sense of the following definition.

Definition 1 (Uniform masking). A masking is uniform if and only if there exists a
constant p such that for all x we have:

Pr((X1, X2, . . . , Xsx) = (x1, x2, . . . , xsx)|X = x) = p if (x1, x2, . . . , xsx) ∈ Sh(x),

else it is 0.

In words, we call a masking uniform if for each value x of the variable X, the corresponding
vectors with masked values occur with the same probability. Straightforward computation
shows that this probability p = 2−m(sx−1).

Threshold implementations use sharings that satisfy the following properties. Firstly,
the sharing F of f needs to be correct :

∀y ∈ Fn, ∀(x1, x2, . . . , xsx) ∈ Sh(x), ∀(y1, y2, . . . , ysy) ∈ Sh(y) :

F (x1, x2, . . . , xsx) = (y1, y2, . . . , ysy)⇔ f(x) = y.

Secondly, the sharing needs to be incomplete: every component function of F should be
independent of at least one share Xi. The third property is uniformity of the sharing.
Although the main point of this section is that also sharings which do not satisfy the third
property can be used in threshold implementations, we provide the definition already now.

Definition 2 (Uniform sharing). The sharing F of f is uniform if and only if

∀x ∈ Fm, ∀y ∈ Fn with f(x) = y,∀(y1, y2, . . . , ysy) ∈ Sh(y) :

∣∣{(x1, x2, . . . , xsx) ∈ Sh(x)|F (x1, x2, . . . , xsx) = (y1, y2, . . . , ysy)
}∣∣ =

2m(sx−1)

2n(sy−1)
.

It follows that a uniform sharing F is invertible if and only if f is invertible.

2.2 Security from Correctness and Incompleteness

The security of threshold implementations against first-order side-channel attacks follows
from two intuitively easy steps. If the masking is uniform and the sharing F is incomplete,
then

1. any single component function of F does not get the information to determine the
value of X (it does not know x), hence cannot leak any information on X, and

2. the expected value (average) of any leakage signal of an implementation of the sharing
F , be it instantaneous or summed over an arbitrary period of time, is constant.

Note that the only assumption on the physical behavior of the hardware or software
implementation of F that is needed for this reasoning, is that it should be possible to
implement the component functions in such a way that they are each independent of one
share of X. In other words, the cross-talk between implementations of different components
should be negligible.

2.3 Uniformity for the Cascaded and Parallel Functions

If the threshold implementation technique is used to protect cascaded functions, then
extra measures need to be taken, such that the input for the next non-linear operation is
again a uniform masking. A similar situation occurs when the threshold implementation
technique is used to protect several functional blocks acting in parallel on (partially) the
same inputs. This occurs for example in implementations of the AES S-box using the tower
field approach. If no special care is taken, then “local uniformity” of the distributions of
the inputs of the individual blocks will not lead to “global uniformity”, i.e. for the joint
distributions of the inputs of all blocks. For example, let f, g be two functions acting on
the same input X. Then, even if F,G are uniform sharings, producing uniform Y = F (X)
and Y ′ = G(X), this does not imply that (Y, Y ′) is uniform. Like with cascaded functions,
if each of the parallel blocks satisfies the properties of correctness and incompleteness,
there will be no leakage of signals within the parallel blocks, but the lack of uniformity in
the joint distribution of the masking of the outputs can lead to information leakage if the
outputs are combined as inputs to a next function.

We can take different types of actions to remedy this problem. We discuss here two
alternatives. The first approach is to require uniformity of the sharing F (Definition 2). We
can show that if the sharing is uniform and the masking of its input is uniform, then also
the masking of its output is uniform. Hence there will be no leakage in further functions,
provided that their sharings are correct and incomplete.

Theorem 1. If the masking of X is uniform and the sharing F is uniform, then the
masking of Y = f(X), defined by (y1, y2, . . . , ysy) = F (x1, x2, . . . , xsx), is uniform.

The proof is omitted here to save space. Practice shows that adding the uniformity re-
quirement to a sharing tends to blow up the mathematical complexity of the sharing, as
well as the cost of implementation. In some applications, it might be better to consider
an alternative remedy: re-masking as for example done by Moradi et al. [18]. Indeed, by
adding new random masks to the shares, we can make the distribution uniform.

2.4 Reducing the Randomness Used in a Re-masking Step

The following theorem allows to reduce the amount of random bits used by re-masking
steps of threshold implementations: under certain circumstances, only a fraction of the
shares needs to be re-masked.

Theorem 2. Let X be a Q-ary variable and let (X1, X2, . . . , Xs) be a sharing of X, where
Pr(X1 = x1, X2 = x2, . . . , Xs = xs|X 6= x1 + x2 + · · ·xs) = 0 and Pr(X1 = x1, . . . , Xt =
xt) = Q−t, ∀(x1, . . . , xt) for some t with 1 ≤ t ≤ s. Then the sharing (Y1, . . . , Ys), defined
by Yi = Xi for 1 ≤ i ≤ t and Yi = Xi + Ri for t < i ≤ s, is a uniform sharing for X,
i.e.: Pr(Y1 = y1, Y2 = y2, . . . , Ys = ys|X = y1 + y2 + · · · ys) = Q1−s, provided that the Ri,
i = t + 1, . . . , s − 1 are independently and uniformly distributed random Q-ary variables
and that Rs = −(Rt+1 + · · ·+Rs−1).

Proof. We give here a sketch of the proof. We have:

Pr(Y1 = y1, . . . , Ys = ys|X = y1 + y2 + · · · ys)
= Pr(Y1 = y1, . . . , Yt = yt|X = y1 + y2 + · · · ys) (1)

·Pr(Yt+1 = yt+1, . . . , Ys = ys|X = y1 + y2 + · · · ys, Y1 = y1, . . . , Yt = yt) .

Since Yi = Xi for 1 ≤ i ≤ t, the first factor equals Q−t. For the second factor we recall the
definition of Yt+1to obtain that:

Pr(Yt+1 = yt+1) =
∑

xt+1

Pr(Xt+1 = xt+1) Pr(Rt+1 = yt+1 − xt+1)︸ ︷︷ ︸
Q−1

.

The same holds for Yt+2, . . . , Ys−1 and since the Ri have independent distributions, we can
equate the second factor of (1) to:

Q1−s−t
∑

xt+1,...,xs−1

Pr(Xt+1 = xt+1, . . . , Xs−1 = xs−1, Ys = ys|X = y1+· · ·+ys, X1 = x1, . . . , Xt = xt) .

Recalling the definition of Ys completes the proof. ut

Clearly, the extra randomness required by the re-masking approach in some cases
may be a worse problem than the blow-up in gate count caused by the uniform sharing
approach. The point that we want to stress here, however is the following.

Observation 1 An implementation that uses re-masking, does not need uniform sharings
in order to resist first-order attacks.

By relinquishing the uniformity requirement, it is often possible to reduce the number of
shares and the size of the implementation. This will be used in the next section in order
to reduce the number of shares in the subblocks of the AES S-box and improve on the
implementation of [18].

3 Implementations

In this section, we will discuss the new TI of AES in detail. We will first describe the
general data flow of our implementation. Then we will introduce a new approach to apply
the TI to the S-box of AES which is the only non-linear layer of the block cipher. We
used ModelSim to verify the functionality of the proposed design and Synopsys Design
Vision D-201-.03-SP4 with Faraday Standard Cell Library FSA0A C Generic Core, which
is based on UMC 0.18µm GenericII Logic Process with 1.8V voltage, for synthesis. We
will conclude this section by providing the performance of our design together with the
comparison with the previous work in [18].

3.1 General Data Flow

Our main goal in this implementation is to minimize the area and randomness overhead
caused by the sharing for a more efficient implementation. To achieve this, we use a serial
implementation as proposed in [18] which requires only one S-box instance and loads the
plaintext and key byte-wise in column-wise order. Moreover, we adapt the number of
shares used in each operation in the block cipher. That is, we use two shares which is the
minimum number of shares possible for all the affine operations such as MixColumns or
Key XOR and increase or decrease the number of shares when required for the non-linear
layer. This can also be seen in Fig. 7 in Appendix A, as the key and the state registers
are 256 bits implying the two shares. With this approach we already decrease a significant
part of the register cost since one bit register costs 5.33 GE in our library.

The TI of the S-box, for which the details will be given in the following section, requires
four input shares and 20 bits of randomness and outputs three shares. Therefore our initial

sbin1,2

sbin3,4

||m1
P
mi m2||m3

sig1

sig2
mcini

sbout1,2

sbout3

mcouti

S00
S01 S02 S03

S11 S12 S13S10

S21 S22 S23S20

S31 S32
S33S30

P0

P3

(a) State array with ShiftRows

sbin1,2

sig3

sbout1,2
sbout3

K00 K01 K02 K03

K11 K12 K13K10

K21 K22 K23K20

K31 K32 K33K30

P0

P3

||m1
P
mi

m2||m3
sig4

sig5

sbin3,4

sig6

rcon

rndkeyi

rndkeyi

(b) Key array

Fig. 1: Architecture of the registers.

sharing for the plaintext is also with four shares. The key is XORed to two of these shares
before the S-box operation. After three clock cycles two of the output shares are written
to the state register whereas one share is written to the register P3. The data in P3 is
merged with one of the shares after one clock cycle to be able to continue with two shares
for the linear operations. In the following rounds, we increase the number of shares from
two to four by using 24 bits of randomness one clock cycle before the S-box operation.
We use P0 to store these extra two shares to achieve the non-completeness property of a
proper TI. The registers P0 and P3 are used both for the round transformations and the
key scheduling.

State Array (Fig. 1a) The state array consists of sixteen 16-bit registers each corre-
sponding to the two shares of a byte in the state. From the first to the sixteenth clock
cycle, the four input shares (first round) or the shares in the registers S00 and P0 (later
rounds) are sent to the S-box module. The corresponding three output shares are writ-
ten to the registers S33 and P3 and shifted to the left horizontally from the third to the
eighteenth clock cycle. The signal sig2 is active from the fourth to the nineteenth clock
cycle. The Shift Rows operation is also completed in the nineteenth clock cycle with an
irregular horizontal shift. In the next four clock-cycles, the data in the registers S00, S10,
S20 and S30 are sent to MixColumns operation, the rest of the registers are shifted to the
left horizontally and the output of the MixColumns operation is written to the registers
S03, S13, S23 and S33. The MixColumns operation is implemented column-wise as in [18]
and with two shares working in parallel. The registers except S10, S11 and S12 are imple-
mented as scan flip-flops (SFF) that are D-flip-flops (DFF) combined with 2-to-1 MUXes
and can operate with two inputs to reduce the area since a single 2-to-1 MUX costs 3.33
GE in our library whereas one bit SFF costs 6.33 GE. One round of AES takes 23 clock
cycles. The signal sig1 is active for sixteen clock cycles, starting from the last clock-cycle
of each round, for re-sharing.

Key Array (Fig. 1b) Similar to the state array, the key array also consists of sixteen
16-bit registers implemented as SFFs each corresponding to the two shares of a byte in
the key schedule. The round key is inserted from the register K33 in the first sixteen clock
cycles of each round. For the next three clock cycles, the registers except K03, K13, K23 and
K33 are not clocked. The registers K03, K23 and K33 are also not clocked in the seventeenth

clock cycle. In that clock cycle, we increase the number of shares in the register K13. In
the following three clock cycles this re-sharing is done during the vertical shift from the
register K23 to K13. Hence the re-sharing signal sig4 is active from the seventeenth to the
twentieth clock cycle. Signal sig5 is active from eighteenth to twenty first clock cycle to
reduce the number of shares. The registers K03, K13, K23 and K33 are not clocked in the
remaining two clock cycles of each round. We choose this way of irregular clocking to avoid
using extra MUXes in our design. The S-box output is XORed to the data in K00 together
with the round counter rcon in the last four clock cycles of each round. rcon is active only
in the twentieth clock cycle and the number of shares are reduced in the output of the
register K30. Signal sig3 is active in the first sixteen clock cycles except the fourth, eighth,
twelfth and sixteenth clock cycles. The roundkey is taken from the register K00.

3.2 TI of the AES S-box

The S-box (Fig. 2) is shared between the key schedule and the state update. In the first
sixteen clock cycles, it gets its inputs from the state. The input is taken from the key array
in clock cycles eighteen to twenty-one.

lin.
map

GF(24)
sq.sc.

GF(24)
multiplier

m4

m5
m4 m5

P 1

(5
6-

bi
t) GF(24)

inverter
P 2

(5

6-
bi

t)

m6m7m8

m6 m7 m8

GF(24)
multiplier

GF(24)
multiplier

inv.
lin.
map

1st phase 2nd phase 3rd phase
8-bit
4-bit

Fig. 2: The Sbox of our implementation.

The S-box implementation in [18], which can be observed in Appendix B, uses the
tower field approach up to GF (22) for a smaller implementation. Therefore, the only non-
linear operation is GF (22) multiplication which must be followed by registers to avoid first
order leakages.

We also chose to use the tower field approach, however, we decided to go to GF (24)
instead of GF (22). With this approach, the GF (24) inverter can be seen as a four bit
permutation and the GF (24) multiplier as a four bit multiplication both of which are well
studied in [4]. Therefore, we can find uniform TIs for these non-linear blocks directly which
implies using less fresh random bits. Moreover, with this approach the S-box calculation
takes three clock cycles instead of five.

The multiplier in GF (24) is a combination of three multipliers in GF (22) and some
XOR gates as given in [7,18]. The algebraic normal form of this multiplier is given in
Appendix C.1. This multiplication can be shared uniformly as in Appendix C.3 with four
input and three output shares and the required area is 625 GE without any optimization.

The GF (24) inverter, on the other hand, is a combination of three GF (22) multipli-
cations, one GF (22) inversion and some XOR gates (formula in Appendix C.2). To have
a uniform sharing for this function, which belongs to class C4282 [5], we consider two op-
tions. Either using four shares which is the minimum number of shares necessary for a

uniform implementation in that class and decomposing the function into three uniform
sub-functions as Inv(x) = F (G(H(x))), or using five shares without any decomposition.
Our experiments show that both versions have similar area requirements but a different
number of clock cycles. To reduce the number of cycles, we chose the version with five
shares, with the formula in Appendix C.4, which requires 618 GE. The sharing for this
module is found by using the method described in [20] which is slightly different from the
direct sharing [5]. We chose this formula since it can be implemented with less logic gates
in hardware compared to the direct sharing.

Even though it is enough to use only two shares for linear operations, we sometimes
chose to work on more than two shares to avoid the need for extra random bits. The linear
map operates on four shares since the multiplication needs four input shares. The inverter
requires five input shares and the multiplication outputs only three shares, therefore we
use two shares for the square scalar to have five shares in the beginning of the second
phase. We use three shares for the inverse linear map since the multiplication outputs
three shares.

Combining the sub-blocks. During this process we face two challenges. One is to keep
the uniformity in the pipeline registers as the sub-blocks are combined. That is a challenge
Moradi et al. also faced and solved with re-masking. We also apply re-masking in the 2nd

phase where we combine the 2 output shares of the square scaler and the 3 output shares
of the multiplier to 5 shares. We must note that this combination also acts as the XOR
of the output of the square scaler and multiplier in the unshared case. By theorem 2, it
is enough to re-mask the output shares only for one function to achieve uniformity. We
choose to re-mask the output of the square scaler since it operates on less shares hence
requires less random bits. The correction mask, i.e. XOR of the masks, is XORed to one
of the output shares of the multiplier to achieve correctness and non-completeness.

The second challenge is to keep the uniformity as we increase or decrease the number of
shares. This is achieved by introducing new masks before the S-box operation to increase
from two to four shares and at the end of the second phase to decrease from five to four
shares. The output of the third phase together with the decrease from three to two shares
is not uniform. However, uniform input is important for the non-linear functions only and
the re-sharing before the S-box makes the input uniform.

We always keep the XOR of the masks in the pipeline registers and complete the
re-masking in the next clock cycle as in [18]. Overall, we need 44 bits of fresh random
numbers per S-box operation which is less than what was required in [18].

3.3 Performance

Like other countermeasures TIs require extra area and randomness. In this work we min-
imize these needs for a more efficient implementation. In Table 1, we show the area,
randomness and timing requirements of our implementation and compare them with [18].
The area cost for the state and the key arrays include the ANDs and XORs that are in
Fig. 1. An expected observation is that the cost of the state and key array together with
the MixColumns is reduced by one third compared to [18] since we use two shares instead
of three. The area cost of the S-box is a sum of the combinational logic in three phases
and the registers required. For the three phases, we use four linear maps (each 42 GE),
two square scalers (each 9 GE), three multipliers (each 625 GE), one inverter (618 GE),
three inverse linear maps (each 33 GE) and some additional XORs for re-masking. The

Table 1: Synthesis results for different versions of AES TI.
State Key

S-box
MixCol

Contr.1
Key

MUX Other Total cycles
rand

Array Array Col XOR bits2

[18] 2529 2526 4244 1120 166 64 376 89 11114/110313 266 48
This paper 1698 1890 3708 770 221 48 746 21 9102 246 44
This paper3 1698 1890 3003 544 221 48 746 21 8171 246 44
1 including round constant 2 per S-box 3 compile ultra

registers P0 and P3 are also counted in the cost of the S-box together with the pipelined
registers P1 and P2.

In this implementation, the S-box occupies 40% of the total area. When compared to
the previous implementation by Moradi et al., the S-box is 13% smaller and the overall
area is 18% smaller. Moreover it is faster and requires less randomness. The numbers
provided in Table 1 are taken from the Synopsys tool with compile command. We use
these numbers for a fair quantitative comparison. On the other hand, it is also possible
to compile each function that is provided in Appendix C.3 and C.4 individually with the
compile ultra command to let the tool optimize these functions and use the generated
optimized descriptions of these functions. This reduces the cost of TI of AES to 8171 GE.
However, the results for compile ultra mainly reflect how good the tools are at optimizing
and a comparison may not be fair.

4 Power Analysis

To evaluate the security of our design in practice we implement it on a SASEBO-G
board [1] using Xilinx ISE version 10.1. We use the “keep hierarchy” constraint to prevent
the tools from optimizing over module boundaries (see the last paragraph of Sect. 2.2).
The board features two Xilinx Virtex-II Pro FPGA devices: we implement the TI AES and
a PRNG on the crypto FPGA (xc2vp7) while the control FPGA (xc2vp30) handles I/O
with the measurement PC and other equipment. The PRNG that generates all random
bits is implemented as AES-128 in CTR mode.

We measure the power consumption of the crypto FPGA during the first 1.5 rounds of
TI AES as the voltage drop over a 1Ω resistor in the FPGA core GND line. The output of
the passive probe is sampled with a Tektronix DPO 7254C digital oscilloscope at 1GS/s
sampling rate.

Methodology. We define two main goals for our practical evaluation. First, we want
to verify our implementation’s resistance against first-order attacks. Second, we want to
assess the level of security our implementation provides against other, e.g. higher-order,
power analysis attacks.

Since there is no single, all-embracing test to evaluate the security of an implementa-
tion, we follow the approach of [18] and test its resistance against state-of-the-art attacks.
We narrow the evaluation to univariate attacks because our implementation processes all
shares of a value in parallel. Estimating the information-theoretic metric by Standaert et
al. [25] is out of reach. It would require estimation of up to 256 Gaussian templates.

We make several choices that are in favor of an adversary and make attacks easier.
First, to minimize algorithmic noise the PRNG and the TI AES do not operate in parallel,
i.e. the PRNG generates and stores a sufficient number of random bits before each TI AES
operation. In practice, running them in parallel will increase the level of noise and thus the
number of measurements needed for an attack to succeed. Second, we provide the crypto

FPGA with a stable 3MHz clock frequency to ensure that the traces are well aligned and
the power peaks of adjacent clock cycles do not overlap (this would also help to assign
a possibly identified leak to a specific clock cycle). In practice, clocking the device at a
faster or unstable clock will make attacks harder. Note that the “combining effect” of the
measurement setup or a faster clock described in [16] does not apply to our situation.
In our implementation all shares are processed and leak at the same time, in contrast to
the implementation analyzed in [16] where all shares are processed and leak separated
in time. Hence we expect the effect to not ease an attack. Third, we let the adversary
know the implementation. Specifically, if the PRNG was switched off the adversary would
be able to correctly compute bit values and bit flips under the correct key hypothesis. In
practice, obscurity is often used as an additional layer of security. Fourth, we use techniques
described in [13] to achieve the best possible alignment of the traces.

PRNG switched off. To confirm that our setup works correctly and to get some reference
values we first attack the implementation with the PRNG switched off. We expect that the
implementation can be broken with many first-order attacks. As example, Fig. 3 shows the
result of a correlation DPA attack [6] that uses the Hamming distance of two consecutive
S-box outputs as power model. The attacks require 2 · 28 key hypotheses. To reduce the
computational complexity we let the adversary know one key byte and aim to recover the
second one.

Fig. 3: Results of DPA attacks using HD model over 3/2/1 registers with PRNG off;
left: correlation traces for all key hypotheses computed using 50 000 power traces, correct
hypothesis in black, and a scaled power trace; right: max. correlation coefficient per key
hypothesis (from the overall time span) over number of traces used.

Since the adversary knows the implementation, he can choose to compute the Hamming
distance over three 8-bit registers (S33 and P3; output of the S-box in three shares), two
8-bit registers (S32; one cycle later; two shares) or ignore the details and compute the
distance over a single 8-bit register as if it was a plain implementation. The results for all
three options are identical. This is a property of our implementation that vanishes when
the PRNG is switched on. Only a few hundred traces are required to recover the key with
one of these attacks. It is worth noticing that the highest correlation peak does not occur
at the S-box output registers, but three resp. two clock cycles later when the bit-flips
occur in register S30. This register drives the MixColumns logic and therefore has a much
greater fanout.

Fig. 4 shows the result of a correlation collision attack [17] that targets combinational
logic. The attack computes two sets of mean traces for the values of two processed plaintext
bytes and shifts the mean traces in the time domain to align them. It aims to recover the

linear difference between the two key bytes involved. To do so, it permutes one set of
mean traces according to a hypothesis on the linear difference and then correlates both
sets of mean traces. The result shows that this attack is successful with a few thousand
measurements.

Fig. 4: Result of a correlation collision attack with PRNG off; left: correlation traces for all
hypotheses on the linear difference computed using 50 000 power traces, correct hypothesis
in black, and a scaled power trace; right: max. correlation coefficient per hypothesis on
the linear difference (from the overall time span) over number of traces used.

PRNG switched on. Next we repeat the evaluation with the PRNG switched on. Fig. 5
and Fig. 9 in Appendix D show the results of the first-order attacks against the protected
implementation using 10 million measurements. The results show that the attacks fail.

Fig. 5: Results of first-order DPA and correlation collision attacks with PRNG on computed
using 10 million traces; left: HD over 1 register, right: correlation collision.

We proceed with higher-order attacks to assess the level of security our implementation
provides. For our second-order DPA attacks we use the same power models as before but
center and then square the traces (for each time sample) before correlating [8,23,26].
Second-order correlation collision attacks work as above with mean traces replaced by
variance traces [15].

Fig. 6 (top) shows the results of the second-order DPA attack that uses the Hamming
distance in a single register as power model (as if it was a plain implementation). The
attack requires about 600 000 traces to succeed. We note that the highest correlation peak
occurs again when the bitflips happen in register S30, cf. Fig. 3. Second-order DPA attacks
using the other, intuitively more informative power models did unexpectedly fail to recover
the key.

Fig. 6 (bottom) shows the results of the second-order correlation collision attack. The
attack requires about 3.5 million traces to succeed. A third-order correlation collision
attack works as above with mean traces replaced by skewness traces [15]. This attack fails
using 10 million measurements.

Fig. 6: Results of second-order DPA (top) and correlation collision (bottom) attacks with
PRNG on computed using 10 million traces; right: min./max. correlation coefficient per
hypothesis (from the overall time span) over number of traces used.

Discussion. The first goal of our evaluation is to verify our implementation’s resistance
against first-order attacks. But this goal is always limited by the number of measurements
at hand. It is simply not possible to demonstrate resistance against attacks with an infinite
number of traces. However, we argue that for practical security a different criterion is more
relevant: a first-order attack must not be the easiest attack vector. In other words, the job
is done if a non-first-order attack becomes easier than a first-order attack. The second goal
is to assess the level of security our implementation provides against such other attacks.

We have shown that our implementation resists state-of-the-art first-order attacks with
10 million traces in conditions that are strongly in favor of the adversary (no algorithmic
noise from the PRNG, knowledge of the implementation, slow and stable clock, best pos-
sible alignment). In the same conditions, the most trace-efficient second-order attack in
our evaluation requires about 600 000 traces.

We hence consider our implementation sufficiently secure against first-order attacks
because the second-order attack is easier. Recall that our evaluation focuses on univariate
attacks, so that the computational overhead is limited to estimating second-order mo-
ments and does not involve the notoriously more costly search over pairs of points in time.
Regarding second-order attacks, it is well known that the number of traces required for
an attack to succeed scales quadratically in the noise standard deviation [8,22]. There-
fore, second-order attacks against our implementation in less favorable, i.e. more noisy,
conditions will require many more traces.

It is tempting to compare the results of our evaluation to the results of the evaluation
in [18]. However, not only the implementations but also the measurement platforms and
the conditions differ, so that any difference must not be credited to an implementation
alone. Already the numbers of traces required for attacks against the implementations with
PRNG switched off differ by roughly two orders of magnitude. In addition, the analysis
in [18] is limited to four clock cycles during the S-box computation.

5 Acknowledgement

This work has been supported in part by the Research Council of KU Leuven (OT/13/071),
B. Bilgin was partially supported by the FWO project G0B4213N, V. Nikov was supported
by the European Commission (FP7) within the Tamper Resistant Sensor Node (TAM-
PRES) project with contract number 258754 and Benedikt Gierlichs is a Postdoctoral
Fellow of the Research Foundation - Flanders (FWO).

References

1. AIST. Side-channel Attack Standard Evaluation BOard. http://staff.aist.go.jp/akashi.satoh/

SASEBO/en/.
2. L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F.-X. Standaert, and N. Veyrat-Charvillon. Mutual

Information Analysis: a Comprehensive Study. J. Cryptol., 24(2):269–291, April 2011.
3. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Building power analysis resistant implemen-

tations of Keccak. Second SHA-3 candidate conference, August 2010.
4. B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. Stütz. Threshold implementations of all 3× 3 and

4× 4 S-boxes. Cryptology ePrint Archive, http://eprint.iacr.org/.
5. B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. Stütz. Threshold implementations of all 3× 3 and

4× 4 S-boxes. In CHES, volume 7428 of LNCS, pages 76–91. Springer, 2012.
6. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage model. In CHES,

volume 3156 of LNCS, pages 16–29. Springer, 2004.
7. D. Canright. A very compact S-box for AES. In CHES, volume 3659 of LNCS, pages 441–455. Springer,

2005.
8. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to counteract power-

analysis attacks. In CRYPTO, volume 1666 of LNCS, pages 398–412. Springer, 1999.
9. L. Goubin and J. Patarin. DES and differential power analysis the “duplication” method. In CHES,

volume 1717 of LNCS, pages 158–172. Springer, 1999.
10. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO, volume 1666 of LNCS,

pages 388–397. Springer, 1999.
11. S. Mangard, T. Popp, and B. M. Gammel. Side-channel leakage of masked CMOS gates. In CT-RSA,

volume 3376 of LNCS, pages 351–365. Springer, 2005.
12. S. Mangard, N. Pramstaller, and E. Oswald. Successfully attacking masked AES hardware implemen-

tations. In CHES, volume 3659 of LNCS, pages 157–171. Springer, 2005.
13. T. S. Messerges. Power analysis attacks and countermeasures on cryptographic algorithms. PhD thesis,

University of Illinois at Chicago, 2000.
14. T. S. Messerges. Securing the AES finalists against power analysis attacks. In Bruce Schneier, editor,

FSE, volume 1978 of LNCS, pages 150–164. Springer, 2000.
15. A. Moradi. Statistical tools flavor side-channel collision attacks. In D. Pointcheval and T. Johansson,

editors, EUROCRYPT, volume 7237 of LNCS, pages 428–445. Springer, 2012.
16. A. Moradi and O. Mischke. On the simplicity of converting leakages from multivariate to univariate

- (case study of a glitch-resistant masking scheme). In G. Bertoni and J.-S. Coron, editors, CHES,
volume 8086 of LNCS, pages 1–20. Springer, 2013.

17. A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-enhanced power analysis collision attack. In
CHES, volume 6225 of LNCS, pages 125–139. Springer, 2010.

18. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the limits: A very compact and
a threshold implementation of AES. In EUROCRYPT, volume 6632 of LNCS, pages 69–88. Springer,
2011.

19. S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against side-channel attacks
and glitches. In ICICS, volume 4307 of LNCS, pages 529–545. Springer, 2006.

20. S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation of nonlinear functions in the
presence of glitches. J. Cryptology, 24(2):292–321, 2011.

21. A. Poschmann, A. Moradi, K. Khoo, C.-W. Lim, H. Wang, and S. Ling. Side-channel resistant crypto
for less than 2300 GE. J. Cryptology, 24(2):322–345, 2011.

22. E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security proof. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT, volume 7881 of LNCS, pages 142–159.
Springer, 2013.

23. E. Prouff, M. Rivain, and R. Bevan. Statistical analysis of second order differential power analysis.
IEEE Trans. Computers, 58(6):799–811, 2009.

24. E. Prouff and T. Roche. Higher-order glitches free implementation of the AES using secure multi-party
computation protocols. In CHES, volume 6917 of LNCS, pages 63–78. Springer, 2011.

25. F.-X. Standaert, T. Malkin, and M. Yung. A unified framework for the analysis of side-channel key
recovery attacks. In Antoine Joux, editor, EUROCRYPT, volume 5479 of LNCS, pages 443–461.
Springer, 2009.

26. J. Waddle and D. Wagner. Towards efficient second-order power analysis. In M. Joye and J.-J.
Quisquater, editors, CHES, volume 3156 of LNCS, pages 1–15. Springer.

A Architecture of the serialized TI of AES-128

Fig. 7: Architecture of the serialized TI of AES-128 .

B Architecture of the AES S-box described in [18]

C Equations

C.1 Multiplier in GF (24)

(f1, f2, f3, f4) = (x1, x2, x3, x4)× (x5, x6, x7, x8)

f1 = x1x5 ⊕ x3x5 ⊕ x4x5 ⊕ x2x6 ⊕ x3x6 ⊕ x1x7 ⊕ x2x7 ⊕ x3x7 ⊕ x4x7 ⊕ x1x8 ⊕ x3x8
f2 = x2x5 ⊕ x3x5 ⊕ x1x6 ⊕ x2x6 ⊕ x4x6 ⊕ x1x7 ⊕ x3x7 ⊕ x2x8 ⊕ x4x8
f3 = x1x5 ⊕ x2x5 ⊕ x3x5 ⊕ x4x5 ⊕ x1x6 ⊕ x3x6 ⊕ x1x7 ⊕ x2x7 ⊕ x3x7 ⊕ x1x8 ⊕ x4x8
f4 = x1x5 ⊕ x3x5 ⊕ x2x6 ⊕ x4x6 ⊕ x1x7 ⊕ x4x7 ⊕ x2x8 ⊕ x3x8 ⊕ x4x8

Fig. 8: Architecture of the AES S-box described in [18] .

C.2 Inverter in GF (24)

(f1, f2, f3, f4) = Inv(x1, x2, x3, x4)

f1 = x3 ⊕ x4 ⊕ x1x3 ⊕ x2x3 ⊕ x2x3x4
f2 = x4 ⊕ x1x3 ⊕ x2x3 ⊕ x2x4 ⊕ x1x3x4
f3 = x1 ⊕ x2 ⊕ x1x3 ⊕ x1x4 ⊕ x2x2x4
f4 = x2 ⊕ x1x3 ⊕ x1x4 ⊕ x2x4 ⊕ x1x2x3

C.3 Sharing Multiplier in GF (24) with 4 Input 3 Output Shares

f = xy, where

f = f1 ⊕ f2 ⊕ f3
x = x1 ⊕ x2 ⊕ x3 ⊕ x4
y = y1 ⊕ y2 ⊕ y3 ⊕ y4

f1 = (x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3)⊕ y4
f2 = ((x1 ⊕ x3)(y1 ⊕ y4))⊕ x1y3 ⊕ x4
f3 = ((x2 ⊕ x4)(y1 ⊕ y4))⊕ x1y2 ⊕ x4 ⊕ y4

C.4 Sharing Inverter in GF (24) with 5 Input 5 Output Shares

f = xyz ⊕ xy ⊕ z, where

f = f1 ⊕ f2 ⊕ f3 ⊕ f4
x = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5
y = y1 ⊕ y2 ⊕ y3 ⊕ y4 ⊕ y5
z = z1 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z5

f1 = ((x2 ⊕ x3 ⊕ x4 ⊕ x5)(y2 ⊕ y3 ⊕ y4 ⊕ y5)(z2 ⊕ z3 ⊕ z4 ⊕ z5))
⊕ ((x2 ⊕ x3 ⊕ x4 ⊕ x5)(y2 ⊕ y3 ⊕ y4 ⊕ y5))⊕ z2

f2 = (x1(y3 ⊕ y4 ⊕ y5)(z3 ⊕ z4 ⊕ z5)⊕ y1(x3 ⊕ x4 ⊕ x5)(z3 ⊕ z4 ⊕ z5)
⊕ z1(x3 ⊕ x4 ⊕ x5)(y3 ⊕ y4 ⊕ y5)⊕ x1y1(z3 ⊕ z4 ⊕ z5)⊕ x1z1(y3 ⊕ y4 ⊕ y5)
⊕ y1z1(x3 ⊕ x4 ⊕ x5)⊕ x1y1z1)⊕ (x1(y3 ⊕ y4 ⊕ y5)⊕ y1(x3 ⊕ x4 ⊕ x5)⊕ x1y1)⊕ z3

f3 = (x1y1z2 ⊕ x1y2z1 ⊕ x2y1x1 ⊕ x1y2z2 ⊕ x2y1z2 ⊕ x2y2z1 ⊕ x1y2z4 ⊕ x2y1z4 ⊕ x1y4z2
⊕ x2y4z1 ⊕ x4y1z2 ⊕ x4y2z1 ⊕ x1y2z5 ⊕ x2y1z5 ⊕ x1y5z2 ⊕ x2y5z1 ⊕ x5y1z2 ⊕ x5y2z1)
⊕ (x1y2 ⊕ y1x2)⊕ z4

f4 = (x1y2z3 ⊕ x1y3z2 ⊕ x2y1z3 ⊕ x2y3z1 ⊕ x3y1z2 ⊕ x3y2z1)⊕ 0⊕ z5
f5 = 0⊕ 0⊕ z1

D Plots of Power Analysis Attacks

Fig. 9: Results of first-order DPA attacks with PRNG on computed using 10 million traces;
left: HD over 2 registers, right: HD over 3 registers.

