
An extended abstract of this paper is published in the proceedings of the 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques — Eurocrypt 2014. This
is the full version.

Efficient Non-Malleable Codes and Key-Derivation

for Poly-Size Tampering Circuits

Sebastian Faust∗ Pratyay Mukherjee† Daniele Venturi‡ Daniel Wichs§

May 15, 2014

Abstract

Non-malleable codes, defined by Dziembowski, Pietrzak and Wichs (ICS ’10), provide roughly
the following guarantee: if a codeword c encoding some message x is tampered to c′ = f(c) such
that c′ 6= c, then the tampered message x′ contained in c′ reveals no information about x. Non-
malleable codes have applications to immunizing cryptosystems against tampering attacks and
related-key attacks.

One cannot have an efficient non-malleable code that protects against all efficient tampering
functions f . However, in this work we show “the next best thing”: for any polynomial bound
s given a-priori, there is an efficient non-malleable code that protects against all tampering
functions f computable by a circuit of size s. More generally, for any family of tampering
functions F of size |F| ≤ 2s, there is an efficient non-malleable code that protects against all
f ∈ F . The rate of our codes, defined as the ratio of message to codeword size, approaches 1. Our
results are information-theoretic and our main proof technique relies on a careful probabilistic
method argument using limited independence. As a result, we get an efficiently samplable family
of efficient codes, such that a random member of the family is non-malleable with overwhelming
probability. Alternatively, we can view the result as providing an efficient non-malleable code
in the “common reference string” (CRS) model.

We also introduce a new notion of non-malleable key derivation, which uses randomness x
to derive a secret key y = h(x) in such a way that, even if x is tampered to a different value
x′ = f(x), the derived key y′ = h(x′) does not reveal any information about y. Our results for
non-malleable key derivation are analogous to those for non-malleable codes.

As a useful tool in our analysis, we rely on the notion of “leakage-resilient storage” of Dav̀ı,
Dziembowski and Venturi (SCN ’10) and, as a result of independent interest, we also significantly
improve on the parameters of such schemes.

∗EPFL. Lausanne, Switzerland. E-mail: sebastian.faust@epfl.ch.
†Aarhus University. Aarhus, Denmark. E-mail pratyay@cs.au.dk. Research supported by a European Research

Commission Starting Grant (no. 279447), the CTIC and CFEM research center.
‡Sapienza University. Rome, Italy. E-mail: daniele.venturi@uniroma1.it.
§Northeastern University. Boston, MA, USA. E-mail: wichs@ccs.neu.edu. Research supported by NSF grant

1314722.

1 Introduction

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs [20]. They provide
meaningful guarantees on the integrity of an encoded message in the presence of tampering, even
in settings where error-correction and error-detection may not be possible. Intuitively, a code
(Enc,Dec) is non-malleable w.r.t. a family of tampering functions F if the message contained in a
codeword modified via a function f ∈ F is either the original message, or a completely unrelated
value. For example, it should not be possible to just flip 1 bit of the message by tampering the
codeword via a function f ∈ F . More formally, we consider an experiment Tamperfx in which a
message x is (probabilistically) encoded to c ← Enc(x), the codeword is tampered to c′ = f(c)
and, if c′ 6= c, the experiment outputs the tampered message x′ = Dec(c′), else it outputs a special
value same?. We say that the code is non-malleable w.r.t. some family of tampering functions F
if, for every function f ∈ F and every messages x, the experiment Tamperfx reveals almost no
information about x. More precisely, we say that the code is ε-non-malleable if for every pair of
messages x, x′ and every f ∈ F , the distributions Tamperfx and Tamperfx′ are statistically ε-close.
The encoding/decoding functions are public and do not contain any secret keys. This makes the
notion of non-malleable codes different from (but conceptually related to) the well-studied notions
of non-malleability in cryptography, introduced by the seminal work of Dolev, Dwork and Naor [18].

Relation to Error Correction/Detection. Notice that non-malleability is a weaker guarantee
than error correction/detection; the latter ensure that any change in the codeword can be corrected
or at least detected by the decoding procedure, whereas the former does allow the message to be
modified, but only to an unrelated value. However, when studying error correction/detection we
usually restrict ourselves to limited forms of tampering which preserve some notion of distance
(e.g., usually hamming distance) between the original and tampered codeword. (One exception
is [14], which studies error-detection for more complex tampering.) For example, it is already
impossible to achieve error correction/detection for the simple family of functions Fconst which, for
every constant c∗, includes a “constant” function fc∗ that maps all inputs to c∗. There is always
some function in Fconst that maps everything to a valid codeword c∗. In contrast, it is trivial to
construct codes that are non-malleable w.r.t Fconst , as the output of a constant function is clearly
independent of its input. The prior works on non-malleable codes, together with the results from
this work, show that one can construct non-malleable codes for highly complex tampering function
families F for which error correction/detection are unachievable.

Applications to Tamper Resilience. The fact that non-malleable codes can be built for large
and complex families of functions makes them particularly attractive as a mechanism for protecting
memory against tampering attacks, known to be a serious threat for the security of cryptographic
schemes [8, 2, 30, 13]. As shown in [20], to protect a scheme with some secret state against
memory-tampering, we simply encode the state via a non-malleable code and store the encoding
in the memory instead of the original secret. One can show that if the code is non-malleable with
respect to function family F , the transformed system is secure against tampering attacks carried
out by any function in F . See [20] for a discussion of the application of non-malleable codes to
tamper resilience.

Limitations & Possibility. It is impossible to have codes that are non-malleable for all possible
tampering functions. For any coding scheme (Enc,Dec), there exists a tampering function fbad(c)
that recovers x = Dec(c), creates x′ by (e.g.,) flipping the first bit of x, and outputs a valid encoding

1

c′ of x′. Notice that if Enc,Dec are efficient, then the function fbad is efficient as well. Thus, it is
also impossible to have an efficient code which is non-malleable w.r.t all efficient functions. Prior
works [27, 11, 19, 1, 10, 21] (discussed shortly) constructed non-malleable codes for several rich and
interesting function families. In all cases, the families are restricted through their granularity rather
than their computational complexity. In particular, these works envision that the codeword is split
into several (possibly just 2) components, each of which can only be tampered independently of
the others. The tampering function therefore only operates on a “granular” rather than “global”
view of the codeword.

1.1 Our Contribution

In this work, we are interested in designing non-malleable codes for large families of functions
which are only restricted by their “computational complexity” rather than “granularity”. As we
saw, we cannot have a single efficient code that is non-malleable for all efficient tampering functions.
However, we show the following positive result, which we view as the “next best thing”:

Main Result: For any polynomial bound s = s(n) in the codeword size n, and any tampering
family F of size |F| ≤ 2s, there is an efficient code of complexity poly(s, log(1/ε)) which is
ε-non-malleable w.r.t. F . In particular, F can be the family of all circuits of size at most s.

The code is secure in the information theoretic setting, and achieves optimal rate (message/codeword
size) arbitrarily close to 1. It has a simple construction relying only on t-wise independent hashing.

The CRS Model. In more detail, if we fix some family F of tampering functions (e.g., circuits
of bounded size), our result gives us a family of efficient codes, such that, with overwhelming
probability, a random member of the family is non-malleable w.r.t F . Each code in the family is
indexed by some hash function h from a t-wise independent family of hash functions H. This result
already shows the existence of efficient non-malleable codes with some small non-uniform advice
to indicate a “good” hash function h.

However, we can also efficiently sample a random member of the code family by sampling a
random hash function h. Therefore, we find it most appealing to think of this result as providing
a uniformly efficient construction of non-malleable codes in the “common reference string (CRS)”
model, where a random public string consisting of the hash function h is selected once and fixes
the non-malleable code. We emphasize that, although the family F (e.g., circuits of bounded size)
is fixed prior to the choice of the CRS, the attacker can choose the tampering function f ∈ F (e.g.,
a particular small circuit) adaptively depending on the choice of h.

We argue that it is unlikely that we can completely de-randomize our construction and come up
with a fixed uniformly-efficient code which is non-malleable for all circuits of size (say) s = O(n2).
In particular, this would require a circuit lower bound, showing that the function fbad (described
above) cannot be computed by a circuit of size O(n2).

Non-Malleable Key-Derivation. As an additional contribution, we introduce a new primitive
called non-malleable key derivation. Intuitively, a function h : {0, 1}n → {0, 1}k is a non-malleable
key derivation for tampering family F if it guarantees that for any tampering function f ∈ F , if we
sample uniform randomness x← {0, 1}n, the “derived key” y = h(x) is statistically close to uniform
even given y′ = h(f(x)) derived from “tampered” randomness f(x) 6= x. Our positive results for
non-malleable key derivation are analogous to those for non-malleable codes. One difference is that
the rate k/n is now at most 1/2 rather than 1, and we show that this is optimal.

2

While we believe that non-malleable key derivation is an interesting notion on its own (e.g.,
it can be viewed as a dual version of non-malleable extractors [17]), we also show it has useful
applications for tamper resilience. For instance, consider some cryptographic scheme G using a
uniform key in y ← {0, 1}k. To protect G against tampering attacks, we can store a bigger key
x ← {0, 1}n on the device and temporarily derive y = h(x) each time we want to execute G. In
Appendix A, we show that this approach protects any cryptographic scheme with a uniform key
against one-time tampering attacks. The main advantage of using a non-malleable key-derivation
rather than non-malleable codes is that the key x stored in memory is simply a uniformly random
string with no particular structure (in contrast, the codeword in a non-malleable code requires
structure).

In Section 6, we also show how to use non-malleable key derivation to build a tamper-resilient
stream cipher. Our construction is based on a PRG prg : {0, 1}k → {0, 1}n+v and a non-malleable
key derivation function h : {0, 1}n → {0, 1}k. For an initial key s0 ← {0, 1}n, sampled uniformly
at random, the output of the stream cipher at each round i ∈ [q] is (si, xi) := prg(h(si−1)).

1.2 Our Techniques

Non-Malleable Codes. Our construction of non-malleable codes is incredibly simple and relies
on t-wise independent hashing, where t is proportional to s = log |F|. In particular, if h1, h2 are two
such hash functions, we encode a message x into a codeword c = (r, z, σ) where r is randomness,
z = x⊕h1(r) and σ = h2(r, z). The security analysis, on the other hand, requires two independently
interesting components. Firstly, we rely on the notion of leakage-resilient encodings, proposed by
Dav̀ı, Dziembowski and Venturi [16]. These provide a method to encode a secret in such a way that
a limited form of leakage on the encoding does not reveal anything about the secret. One of our
contributions is to significantly improve the parameters of the construction from [16] by using a fresh
and more careful analysis, which gives us such schemes with an essentially optimal rate. Secondly,
we analyze a simpler/weaker notion of bounded non-malleability, which intuitively guarantees that
an adversary seeing the decoding of a tampered codeword can learn only a bounded amount of
information on the encoded value. This notion of bounded non-malleability is significantly simpler
to analyze than full non-malleability. Finally, we show how to carefully combine leakage-resilient
encodings with bounded non-malleability to get our full construction of non-malleable codes. On a
very high (and not entirely precise) level, we can think of h1 above as providing “leakage resilience”
and h2 as providing “bounded non-malleability”.

We stress that the fact that t has to be proportional to s is not an artefact of our proof. In fact,
one can see that whenever the hash function has seed size s, there is a family of 2s functions that
breaks the construction with probability 1: For each seed, just have a new function that decodes
with that seed and encodes a related value. This shows that the t has to be proportional to log |F|.

Non-Malleable Key-Derivation. Our construction of non-malleable key-derivation functions
is even simpler: a random t-wise independent hash function h already satisfies the definition with
overwhelming probability, where t is proportional to s = log |F|. The analysis is again subtle and
relies on a careful probabilistic method argument.

Similar to the case of non-malleable codes, the fact that t has to be proportional to s is necessary.

1.3 Related Works

Granular Tampering. Most of the earlier works on non-malleable codes focus on granular tam-
pering models, where the tampering functions are restricted to act on individual components of the

3

codeword independently. The original work of [20] (see also [12]) gives an efficient construction for
bit-tampering (i.e., the adversary can tamper with each bit of the codeword independently of every
other bit). Very recently, Cheraghchi and Guruswami [10] gave a construction with improved rate
and better efficiency for the same family. Choi et al. [11] considered an extended tampering family,
where the tampering function can be applied to a small (logarithmic in the security parameter)
number of blocks independently.

Perhaps the least granular and most general such model is the so-called split-state model, where
the encoding consists of two parts L (left) and R (right), and the adversary can tamper L and R
arbitrarily but independently. Starting with the random oracle construction of [20], a few other
constructions of non-malleable split-state codes have been proposed, both in the computational
setting [27, 21] and in the information theoretic setting [19, 1, 10]. Notice that the family Fsplit

of all split-state tampering functions (without restricting efficiency), has doubly exponential size

2O(2n/2) in the codeword size n, and therefore it is not covered by our results, which can efficiently
handle at most singly-exponential-size families 2poly(n). On the other hand, the split-state model
doesn’t cover “computationally simple” functions, such as the function computing the XOR or the
bit-wise inner-product of L,R. Therefore, although the works are technically orthogonal, we believe
that looking at computational complexity may be more natural.

Global Tampering. The work of [20] gives an existential (inefficient) construction of non-
malleable codes for doubly-exponential sized function families. More precisely, for any constant
0 < α < 1 and any family F of functions of size |F| ≤ 22

αn
in the codeword size n, there exists

an inefficient non-malleable code w.r.t. F ; indeed a completely random function gives such a code
with high probability. The code is clearly not efficient, and this should be expected for such a
broad result: the families F can include all circuits of size (e.g.,) s(n) = 2n/2, which means that the
efficiency of the code must exceed O(2n/2). Unfortunately, there is no direct way to “scale down”
the result in [20] so as to get an efficient construction for singly-exponential-size families. (One can
view our work as providing such “scaled down” result.) Moreover, the analysis only yielded a rate
of at most (1−α)/3 < 1/3, and it was previously not known if such codes can achieve a rate close to
1, even for “small” function families. We note that [20] also showed that the probabilistic method
construction can yield efficient non-malleable codes for large function families in the random oracle
model. However, this only considers function families that don’t have access to the random oracle.
For example, one cannot interpret this as giving any meaningful result for tampering functions with
bounded complexity.

Concurrent and Independent Work. In a concurrent and independent work, Cheraghchi and
Guruswami [9] give two related results. Firstly, they improve the probabilistic method construc-
tion of [20] and show that, for families F of size |F| ≤ 22

αn
, there exist (inherently inefficient)

non-malleable codes with rate 1−α, which they also show to be optimal. This gives the first char-
acterization of the rate of non-malleable codes. Secondly, similar to our results, they use limited
independence to construct efficient non-malleable codes when restricted to tampering families F
of size |F| ≤ 2s(n) for a polynomial s(n). However, the construction of [9] is not “efficient” in
the usual cryptographic sense: to get error-probability ε, the encoding and decoding procedures
require complexity poly(1/ε). If we set ε to be negligible, as usually desired in cryptography, then
the encoding/decoding procedures would require super-polynomial time. In contrast, the encod-
ing/decoding procedures in our construction have efficiency poly(log(1/ε)), and therefore we can
set ε to be negligible while maintaining polynomial-time encoding/decoding.

4

Other Approaches to Achieve Tamper Resilience. There is a vast body of literature that
considers tampering attacks using other approaches besides non-malleable codes. See, e.g., [5, 23,
25, 4, 22, 26, 3, 24, 28, 31, 6, 15]. The reader is referred to (e.g.,) [20] for a more detailed comparison
between these approaches and non-malleable codes.

2 Preliminaries

Notation. We denote the set of first n natural numbers, i.e. {1, . . . , n}, by [n]. Let X,Y be
random variables with supports S(X), S(Y), respectively. We define

SD(X,Y)
def
=

1

2

∑
s∈S(X)∪S(Y)

|Pr[X = s]− Pr[Y = s]|

to be their statistical distance. We write X ≈ε Y and say that X and Y are ε-statistically close to
denote that SD(X,Y) ≤ ε. We let Un denote the uniform distribution over {0, 1}n. We use the
notation x← X to denote the process of sampling a value x according to the distribution X. If f
is a randomized algorithm, we write f(x; r) to denote the execution of f on input x with random
coins r. We let f(x) denote a random variable over the random coins.

We recall two lemmas from [7].

Lemma 2.1 (Lemma 2.3 of [7]). Let t ≥ 4 be an even integer. Suppose X1, . . . , Xn are t-wise
independent random variables taking values in [0, 1]. Let X :=

∑n
i=1Xi and define µ := E[X] be

the expectation of the sum. Then, for any A > 0, Pr[|X − µ| ≥ A] ≤ Kt

(
tµ+t2

A2

)t/2
where Kt ≤ 8.

Lemma 2.2 (Lemma A.1 of [7]). Let t ≥ 2 be an even integer. Suppose X1, X2, . . . , Xn are t-wise
independent random variables taking values in [0, 1]. Let X :=

∑n
i=1Xi and µ := E[X] be the

expectation of the sum. Then, E[(X − µ)t] ≤ Kt

(
tµ+ t2

)t/2
where Kt ≤ 8.

Notice that Lemma 2.2 is slightly modified from Lemma A.1 of [7], where the random variables
are fully independent. However it is easy to extend the statement in [7] to the one above by a
simple observation (also stated in [7]) that, by linearity of expectation, the value of E[(X − µ)t]
can be computed under the assumption that X1, . . . , Xn are fully independent, whenever they are
at least t-wise independent.

2.1 Definitions of Non-Malleable Codes

Definition 2.3 (Coding Scheme). A (k, n)-coding scheme consists of two functions: a randomized
encoding function Enc : {0, 1}k → {0, 1}n, and a deterministic decoding function Dec : {0, 1}n →
{0, 1}k ∪ {⊥} such that, for each x ∈ {0, 1}k, Pr[Dec(Enc(x)) = x] = 1.

We now define non-malleability w.r.t. some family F of tampering functions. The work of [20]
defines a default and a strong version of non-malleability. The main difference is that, in the default
version, the tampered codeword c′ 6= c may still encode the original message x whereas the strong
version ensures that any change to the codeword completely destroys the original message. We
only define the strong version below. We then add an additional strengthening which we call super
non-malleability.

5

Definition 2.4 (Strong Non-Malleability [20]). Let (Enc,Dec) be a (k, n)-coding scheme and F be
a family of functions f : {0, 1}n → {0, 1}n. We say that the scheme is (F , ε)-non-malleable if for
any x0, x1 ∈ {0, 1}k and any f ∈ F , we have Tamperfx0 ≈ε Tamperfx1 where

Tamperfx
def
=

{
c← Enc(x), c′ := f(c), x′ = Dec(c′)

Output same? if c′ = c, and x′ otherwise.

}
.

For super non-malleable security (defined below), if the tampering manages to modify c to c′

such that c′ 6= c and Dec(c′) 6= ⊥, then we will even give the attacker the tampered codeword c′ in
full rather than just giving x′ = Dec(c′). We do not immediately see a concrete application of this
strengthening, but it seems sufficiently interesting to define explicitly.

Definition 2.5 (Super Non-Malleability). Let (Enc,Dec) be a (k, n)-coding scheme and F be a
family of functions f : {0, 1}n → {0, 1}n. We say that the scheme is (F , ε)-super non-malleable
if for any x0, x1 ∈ {0, 1}k and any f ∈ F , we have Tamperfx0 ≈ε Tamperfx1 where:

Tamperfx
def
=


c← Enc(x), c′ := f(c)

Output same? if c′ = c, output ⊥ if Dec(c′) = ⊥,
and else output c′.

 .

3 Improved Leakage-Resilient Codes

We will rely on leakage resilience as an important tool in our analysis. The following notion
of leakage-resilient codes was defined by [16]. Informally, a code is leakage-resilient w.r.t. some
leakage family F if, for any f ∈ F , “leaking” f(c) for a codeword c does not reveal anything about
the encoded value.

Definition 3.1 (Leakage-Resilient Codes [16]). Let (LREnc, LRDec) be a (k, n)-coding scheme. For
a function family F , we say that (LREnc, LRDec) is (F , ε)-leakage-resilient, if for any f ∈ F and
any x ∈ {0, 1}k we have SD(f(LREnc(x)), f(Un)) ≤ ε.

The work of [16] gave a probabilistic method construction showing that such codes exist and
can be efficient when the size of the leakage family |F| is singly-exponential. However, the rate
k/n was at most some small constant (< 1

4), even when the family size |F| and the leakage size
` are small. Here, we take the construction of [16] and give an improved analysis with improved
parameters, showing that the rate can approach 1. In particular, the additive overhead of the code
is very close to the leakage-amount `, which is optimal. Our result and analysis are also related
to the “high-moment crooked leftover hash lemma” of [29], although our construction is somewhat
different, relying only on high-independence hash functions rather than permutations.

Construction. LetH be a t-wise independent function family consisting of functions h : {0, 1}v →
{0, 1}k. For any h ∈ H we define the (k, n = k + v)-coding scheme (LREnch, LRDech) where: (i)
LREnch(x) := (r, h(r)⊕ x) for r ← {0, 1}v; (ii) LRDech((r, z)) := z ⊕ h(r).

Theorem 3.2. Fix any function family F consisting of functions f : {0, 1}n → {0, 1}`. With
probability 1 − ρ over the choice of a random h ← H, the coding scheme (LREnch, LRDech) is
(F , ε)-leakage-resilient as long as:

t ≥ log |F|+ `+ k + log(1/ρ) + 3 and v ≥ `+ 2 log(1/ε) + log(t) + 3.

6

Proof. Fix a function family F . Now, taking probabilities (only) over the choice of h, let Bad be
the event that (LREnc, LRDec) is not an (F , ε)-leakage-resilient code. Then,

Pr[Bad] = Pr
h←H

[∃f ∈ F , x ∈ {0, 1}k : SD(f(LREnch(x)), f(Un)) > ε]

≤
∑
f∈F

∑
x∈{0,1}k

Pr
h←H

 ∑
α∈{0,1}`

∣∣∣∣ Pr
r←{0,1}v

[f(r, h(r)⊕ x) = α]− Pr[f(Un) = α]

∣∣∣∣ > 2ε

 (1)

where Eq. (1) follows by taking a union bound over all f ∈ F and x ∈ {0, 1}k.
Fix any f ∈ F , x ∈ {0, 1}k. For any α ∈ {0, 1}`, r ∈ {0, 1}v, define pα := Pr[f(Un) = α] and

pr,α := Pr[f(r, Uk) = α]. Let p̃α := max{ pα , 2−` }. Note that∑
α∈{0,1}`

p̃α ≤
∑
α

pα +
∑
α

2−` ≤ 2. (2)

Define the random variable Yr,α such that Yr,α = 1 if f(r, h(r) ⊕ x) = α, where the randomness
is over the choice of h ← H. Then Pr[Yr,α = 1] = pr,α and, for a fixed α, the random variables
{Yr,α}r∈{0,1}v are t-wise independent. Moreover, E[

∑
r∈{0,1}v Yr,α] = 2vpα. Therefore, we have:

Pr
h←H

 ∑
α∈{0,1}`

∣∣∣∣ Pr
r←{0,1}v

[f(r, h(r)⊕ x) = α]− Pr[f(Un) = α]

∣∣∣∣ > 2ε


≤ Pr

h←H

[
∃α ∈ {0, 1}` :

∣∣∣∣ Pr
r←{0,1}v

[f(r, h(r)⊕ x) = α]− pα
∣∣∣∣ > ε · p̃α

]
(3)

≤
∑

α∈{0,1}`
Pr
h←H

∣∣∣∣∣∣
∑

r∈{0,1}v
Yr,α − 2vpα

∣∣∣∣∣∣ > 2vε · p̃α


≤

∑
α∈{0,1}`

Kt

(
t2vpα + t2

(2vεp̃α)2

)t/2
(4)

≤
∑

α∈{0,1}`
Kt

(
2t2v · p̃α
(2vεp̃α)2

)t/2
≤ 2`Kt

(
2t

2v−`ε2

)t/2
, (5)

where (3) follows from (2), and (4) follows from Lemma 2.1, with Kt ≤ 8. Finally, (5) follow from
the fact that the theorem’s parameters ensure: 2v · p̃α ≥ 2v−` ≥ t.

Combining the above with (1), we get: Pr[Bad] ≤ |F| · 2`+k · 8
(

2t
2v−`ε2

)t/2
. Therefore to satisfy

Pr[Bad] ≤ ρ we can set:

v ≥ `+ 2 log(1/ε) + log(t) + 3 and t ≥ log |F|+ `+ k + log(1/ρ) + 3.

4 Non-Malleable Codes

We now construct a non-malleable code for any family F of sufficiently small size. We will rely on
leakage resilience as an integral part of the analysis.

7

Construction. Let H1 be a family of hash functions h1 : {0, 1}v1 → {0, 1}k, and H2 be a family
of hash functions h2 : {0, 1}k+v1 → {0, 1}v2 such that H1 and H2 are both t-wise independent. For
any (h1, h2) ∈ H1 ×H2, define Ench1,h2(x) = (r, z, σ) where r ← {0, 1}v1 is random, z := x⊕ h1(r)
and σ := h2(r, z). The codewords are of size n := |(r, z, σ)| = k + v1 + v2. Correspondingly define

Dec((r, z, σ)) which first checks σ
?
= h2(r, z) and if this fails, outputs⊥, else outputs z⊕h1(r). Notice

that, we can think of (r, z) as being a leakage-resilient encoding of x; i.e., (r, z) = LREnch1(x; r).

Theorem 4.1. For any function family F , the above construction (Ench1,h2 ,Dech1,h2) is an (F , ε)-
super non-malleable code with probability 1− ρ over the choice of h1, h2 as long as:

t ≥ t∗ for some t∗ = O(log |F|+ n+ log(1/ρ))

v1 > v∗1 for some v∗1 = 3 log(1/ε) + 3 log(t∗) +O(1)

v2 > v1 + 3.

For example, in the above theorem, if we set ρ = ε = 2−λ for “security parameter” λ, and
|F| = 2s(n) for some polynomial s(n) = nO(1) ≥ n ≥ λ, then we can set t = O(s(n)) and the
message length k := n − (v1 + v2) = n − O(λ + log n). Therefore the rate of the code k/n is
1−O(λ+ log n)/n which approaches 1 as n grows relative to λ.

4.1 Proof of Theorem 4.1

Useful Notions. For a coding scheme (Enc,Dec), we say that c ∈ {0, 1}n is valid if Dec(c) 6= ⊥.
For any function f : {0, 1}n → {0, 1}n, we say that c′ ∈ {0, 1}n is δ-heavy for f if Pr[f(Enc(Uk)) =
c′] ≥ δ. Define

Hf (δ) = {c′ ∈ {0, 1}n : c′ is δ-heavy for f}.

Notice that |Hf (δ)| ≤ 1/δ.

Definition 4.2 (Bounded-malleable). We say that a coding scheme (Enc,Dec) is (F , δ, τ)-bounded-
malleable if for all f ∈ F , x ∈ {0, 1}k we have

Pr[c′ 6= c ∧ c′ is valid ∧ c′ 6∈ Hf (δ) | c← Enc(x), c′ = f(c)] ≤ τ,

where the probability is over the randomness of the encoding.

Intuition. The above definition says the following. Take any message x ∈ {0, 1}k, tampering
function f ∈ F and do the following: choose c ← Enc(x), set c′ = f(c), and output: (i) same? if
c′ = c, (ii) ⊥ if c′ is not valid, (iii) c′ otherwise. Then, with probability 1 − τ the output of the
above experiment takes on one of the values: {same?,⊥} ∪ Hf (δ). Therefore, the output of the
above tampering experiment only leaks a bounded amount of information about c; in particular it
leaks at most ` = dlog(1/δ + 2)e bits. Furthermore the “leakage” on c is independent of the choice
of the code, up to knowing which codewords are valid and which are δ-heavy. In particular, in our
construction, the “leakage” only depends on the choice of h2 but not on the choice of h1. This will
allow us to then rely on the fact that LREnch1(x; r) = (r, h1(r)⊕ x) is a leakage-resilient encoding
of x to argue that the output of the above experiment is the same for x as for a uniformly random
value. We formalize this intuition below.

8

From Bounded-Malleable to Non-Malleable. For any “tampering function” family F con-
sisting of functions f : {0, 1}n → {0, 1}n, any δ > 0, and any h2 ∈ H2 we define the “leakage func-
tion” family G = G(F , h2, δ) which consists of the functions gf : {0, 1}k+v1 → Hf (δ) ∪ {same?,⊥}
for each f ∈ F . The functions are defined as follows:

• gf (c1): Compute σ = h2(c1). Let c := (c1, σ), c′ = f(c). If c′ is not valid output ⊥. Else if
c′ = c output same?. Else if c′ ∈ Hf (δ) output c′. Lastly, if none of the above cases holds,
output ⊥.

Notice that the notion of “δ-heavy” and the set Hf (δ) are completely specified by h2 and do not
depend on h1. This is because the distribution Ench1,h2(Uk) is equivalent to (Uk+v1 , h2(Uk+v1))
and therefore c′ is δ-heavy if and only if Pr[f(Uk+v1 , h2(Uk+v1)) = c′] ≥ δ. Therefore the family
G = G(F , h2, δ) is fully specified by F , h2, δ. Also notice that |G| = |F| and that the output length
of the functions gf is given by ` = dlog(|Hf (δ)|+ 2)e ≤ dlog(1/δ + 2)e.

Lemma 4.3. Let F be any function family and let δ > 0. Fix any h1, h2 such that (Ench1,h2 ,Dech1,h2)
is (F , δ, ε/4)-bounded-malleable and (LREnch1 , LRDech1) is (G(F , h2, δ), ε/4)-leakage-resilient, where
the family G = G(F , h2, δ), with size |G| = |F|, is defined above, and the leakage amount is
` = dlog(1/δ + 2)e. Then (Ench1,h2 ,Dech1,h2) is (F , ε)-non-malleable.

Proof. For any x0, x1 ∈ {0, 1}k and any f ∈ F :

Tamperfx0 =


c← Ench1,h2(x0), c

′ := f(c)
Output: same? if c′ = c,⊥ if Dech1,h2(c′) = ⊥,

c′ otherwise.


stat
≈ ε/4

{
c1 ← LREnch1(x0)

Output: gf (c1)

}
(6)

stat
≈ ε/4

{
c1 ← LREnch1(Uk)

Output: gf (c1)

}
(7)

stat
≈ ε/4

{
c1 ← LREnch1(x1)

Output: gf (c1)

}
(8)

stat
≈ ε/4


c← Ench1,h2(x1), c

′ := f(c)
Output: same? if c′ = c,⊥ if Dech1,h2(c′) = ⊥,

c′ otherwise.

 (9)

= Tamperfx1 .

Eq. (6) and Eq. (9) follow as (Ench1,h2 ,Dech1,h2) is an (F , δ, ε/4)-bounded-malleable code, and
Eq. (7) and Eq. (8) follow as the code (LREnch1 , LRDech1) is (G(F , δ), ε/4)-leakage-resilient.

We can use Theorem 3.2 to show that (LREnch1 , LRDech1) is (G(F , h2, δ), ε/4)-leakage-resilient
with overwhelming probability. Therefore, it remains to show that our construction is (F , δ, τ)-
bounded-malleable, which we do below.

Analysis of Bounded-Malleable Codes. We now show that the code (Ench1,h2 ,Dech1,h2) is
bounded-malleable with overwhelming probability. As a very high-level intuition, if a tampering
function f can often map valid codewords to other valid codewords (and many different ones),
then it must guess the output of h2 on many different inputs. If the family F is small enough, it is
highly improbable that it would contain some such f . For more detailed intuition, we show that the

9

following two properties hold for any message x and any function f with overwhelming probability:
(i) there is at most some “small” set of q valid codewords c′ that we can hit by tampering some
encoding of x via f ; (ii) for each such codeword c′ which is not in δ-heavy, the probability of
landing in c′ after tampering an encoding of x cannot be higher than 2δ. This shows that the total
probability of tampering an encoding of x and landing in a valid codeword which not δ-heavy is at
most 2qδ, which is small. Property (i) roughly follows by showing that f would need to “predict”
the output of h2 on q different inputs, and property (ii) follows by using “leakage resilience” of h1
to argue that we cannot distinguish an encoding of x from an encoding of a random message, for
which the probability of landing in c′ is at most δ.

Lemma 4.4. For any function family F , any δ > 0, the code (Ench1,h2 ,Dech1,h2) is (F , δ, τ)-
bounded-malleable with probability 1− ψ over the choice of h1, h2 as long as:

τ ≥ 2(log |F|+ k + log(1/ψ) + 2)δ

t ≥ log |F|+ n+ k + log(1/ψ) + 5

v1 ≥ 2 log(1/δ) + log(t) + 4 and v2 ≥ v1 + 3.

Proof. Set q := dlog |F|+ k+ log(1/ψ) + 1e. For any f ∈ F , x ∈ {0, 1}k define the events Ef,x1 and

Ef,x2 over the random choice of h1, h2 as follows:

1. Ef,x1 occurs if there exist at least q distinct values c′1, . . . , c
′
q ∈ {0, 1}

n such that each c′i is
valid and c′i = f(ci) for some ci 6= c′i which encodes the message x (i.e., ci = Ench1,h2(x; ri)
for some ri).

2. Ef,x2 occurs if there exists some c′ ∈ {0, 1}n \Hf (δ) such that Prr←{0,1}v1 [f(Ench1,h2(x; r)) =
c′] ≥ 2δ.

Let E1 =
∨
f,xE

f,x
1 , E2 =

∨
f,xE

f,x
2 and Bad = E1 ∨ E2. Assume (h1, h2) are any hash functions

for which the event Bad does not occur. Then, for every f ∈ F , x ∈ {0, 1}k:

Pr[f(C) 6= C ∧ f(C) is valid ∧ f(C) 6∈ Hf (δ)]

=
∑

c′: c′valid and c′ 6∈Hf (δ)

Pr[f(C) = c′ ∧ C 6= c′] < 2qδ ≤ τ, (10)

where C = Ench1,h2(x;Uv1) is a random variable. Eq. (10) holds since (i) given that E1 does not
occur, there are fewer than q values c′ that are valid and for which Pr[f(C) = c′ ∧ C 6= c′] > 0,
and (ii) given that E2 does not occur, for any c′ 6∈ Hf (δ), we also have Pr[f(C) = c′ ∧ C 6= c′] ≤
Pr[f(C) = c′] < 2δ.

Therefore, if the event Bad does not occur, then the code is (F , δ, τ)-bounded-malleable. This
means:

Pr
h1,h2

[(Ench1,h2 ,Dech1,h2) is not (F , δ, τ)-bounded-malleable] ≤ Pr[Bad] ≤ Pr[E1] + Pr[E2].

So it suffices to show that Pr[E1] and Pr[E2] are both bounded by ψ/2, which we do next.

Claim 4.5. Pr[E1] ≤ ψ/2.

Proof. Fix some message x ∈ {0, 1}k and some function f ∈ F . Assume that the event Ef,x1 occurs
for some choice of hash functions (h1, h2). Then there must exist some values {r1, . . . , rq} such
that: if we define ci := Enc(x; ri), c

′
i := f(ci) then c′i 6= ci, c

′
i is valid, and |{c′1, . . . , c′q}| = q. The

10

last condition also implies |{c1, . . . , cq}| = q. However, it is possible that ci = c′j for some i 6= j.
We claim that we can find a subset of at least s := dq/3e of the indices such that the 2s values
{ca1 , . . . , cas , c′a1 , . . . , c

′
as} are all distinct. To do so, notice that if we want to keep some index i

corresponding to values ci, c
′
i, we need to take out at most two indices j, k in case c′j = ci or ck = c′i.

1

To summarize, if Ef,x1 occurs, then (by re-indexing) there is some set R = {r1, . . . , rs} ⊆ {0, 1}v1
of size |R| = s satisfying the following two conditions:

(i) If we define ci := Enc(x; ri), c
′
i 6= ci and c′i is valid meaning that c′i = (r′i, z

′
i, σ
′
i) where

σ′ = h2(r
′, z′).

(ii) |{c1, . . . , cs, c′1, . . . , c′s}| = 2s.

Therefore we have:

Pr[Ef,x1] ≤ Pr
h1,h2

[∃R ⊆ {0, 1}v1 , |R| = s,R satisfies (i) and (ii)] ≤
∑
R

Pr
h1,h2

[R satisfies (i) and (ii)]

≤
∑

R={r1,...,rs}

max
h1,σ1,...,σs

Pr
h2

[
∀i , c′i valid

∣∣∣∣ ci := (ri, zi = h1(ri)⊕ x, σi), c′i := f(ci), c
′
i 6= ci

|{c1, . . . , cs, c′1, . . . , c′s}| = 2s

]

≤
(

2v1

s

)
2−sv2 ≤

(
e2v1

s

)s
2−sv2 ≤ 2s(v1−v2) ≤ 2q(v1−v2)/3 ≤ 2−q, (11)

where Eq. (11) follows from the fact that, even if we condition on any choice of the hash function
h1 which fixes zi = h1(ri) ⊕ x, and any choice of the s values σi = h2(ri, zi), which fixes ci :=
(ri, zi = h1(ri) ⊕ x, σi), c′i := f(ci) such that c′i 6= ci and |{c1, . . . , cs, c′1, . . . , c′s}| = 2s, then the
probability that h2(r

′
i, z
′
i) = σ′i for all i ∈ [s] is at most 2−sv2 . Here we use the fact that H2 is t-wise

independent where t ≥ q ≥ 2s. Now, we calculate

Pr[E1] ≤
∑
f∈F

∑
x∈{0,1}k

Pr[Ef,x1] ≤ |F|2k−q ≤ ψ/2,

where the last inequality follows from the assumption, q = dlog |F|+ k + log(1/ψ) + 1e.

Claim 4.6. Pr[E2] ≤ ψ/2.

Proof. For this proof, we will rely on the leakage resilience property of the code (LREnch1 , LRDech1)
as shown in Theorem 3.2. First, let us write:

Pr[E2] = Pr
h1,h2

[
∃(f, x, c′) ∈ F × {0, 1}k × {0, 1}n \Hf (δ) : Pr[f(Ench1,h2(x;Uv1)) = c′] ≥ 2δ

]
≤ Pr

h1,h2

[
∃(f, x, c′) ∈ F × {0, 1}k × {0, 1}n \Hf (δ) : (12)

∣∣Pr[f(Ench1,h2(x;Uv1)) = c′]− Pr[f(Ench1,h2(Uk;Uv1)) = c′]
∣∣ ≥ δ]

since, for any c′ 6∈ Hf (δ), we have Pr[f(Ench1,h2(Uk;Uv1)) = c′] < δ by definition. Notice that we
can write Ench1,h2(x; r) = (c1, c2) where c1 = LREnch1(x; r), c2 = h2(c1). We will now rely on the
leakage resilience of the code (LREnch1 , LRDech1) to bound the above probability by ψ/2. In fact,

1In other words, if we take any set of tuples {(ci, c′i)} such that all the left components are distinct ci 6= cj and
all the right components are distinct c′i 6= c′j , but there may be common values ci = c′j , then there is a subset of at
least 1/3 of the tuples such that all left and right components in this subset are mutually distinct.

11

we show that the above holds even if we take the probability over h1 only, for a worst-case choice
of h2.

Let us fix some choice of h2 and define the family G = G(h2) of leakage functions G =
{gf,c′ : {0, 1}k+v1 → {0, 1} | f ∈ F , c′ ∈ {0, 1}n} with output size ` = 1 bits as follows:

• gf,c′(c1): Set c = (c1, c2 = h2(c1)). If f(c) = c′ output 1, else output 0.

Notice that the size of the family G is 2n|F| and the family does not depend on the choice of h1.
Therefore, continuing from inequality (12), we get:

Pr[E2] ≤ Pr
h1,h2

[
∃(f, x, c′) ∈ F × {0, 1}k × {0, 1}n \Hf (δ) :

∣∣Pr[f(Ench1,h2(x;Uv1)) = c′]− Pr[f(Ench1,h2(Uk;Uv1)) = c′]
∣∣ ≥ δ]

≤ max
h2

Pr
h1

[
∃(gf,c′ , x) ∈ G(h2)× {0, 1}k :

∣∣∣∣ Pr[gf,c′(LREnch1(x;Uv1)) = 1]
−Pr[gf,c′(LREnch1(Uk;Uv1)) = 1]

∣∣∣∣ ≥ δ]
= max

h2
Pr
h1

[
∃(gf,c′ , x) ∈ G(h2)× {0, 1}k :

∣∣∣∣ Pr[gf,c′(LREnch1(x;Uv1)) = 1]
−Pr[gf,c′(Uk+v1) = 1]

∣∣∣∣ ≥ δ]
≤ max

h2
Pr
h1

[(LREnch1 , LRDech1) is not (G(h2), δ)-Leakage-Resilient] ≤ ψ/2,

where the last inequality follows from Theorem 3.2 by the choice of parameters.

Putting it All Together. Lemma 4.3 tells us that for any δ > 0 and any function family F :

Pr[(Ench1,h2 ,Dech1,h2) is not (F , ε)-super-non-malleable]

≤ Pr[(Ench1,h2 ,Dech1,h2) is not (F , δ, ε/4)-bounded-malleable] (13)

+ Pr[(LREnch1 , LRDech1) is not (G(F , h2, δ), ε/4)-leakage-resilient], (14)

where G = G(F , h2, δ) is of size |G| = |F| and consists of function with output size ` = dlog(1/δ+2)e.
Let us set δ := (ε/8)(log |F| + k + log(1/ρ) + 3)−1. This ensures that the first requirement

of Lemma 4.4 is satisfied with τ = ε/4. We choose t∗ = O(log |F| + n + log(1/ρ)) such that
log(1/δ) ≤ log(1/ε) + log(t∗) +O(1). Notice that the leakage amount of G is ` = dlog(1/δ + 2)e ≤
log(1/ε) + log(t∗) + O(1). With v1, v2 as in Theorem 4.1, we satisfy the remaining requirements
of Lemma 4.4 (bounded-malleable codes) and Theorem 3.2 (leakage-resilient codes) to ensure that
the probabilities (13), (14) are both bounded by ρ/2, which proves our theorem.

5 Non-Malleable Key-Derivation

In this section we introduce a new primitive, which we name non-malleable key derivation. Intu-
itively a function h is a non-malleable key derivation function if h(x) is close to uniform even given
the output of h applied to a related input f(x), as long as f(x) 6= x.

Definition 5.1 (Non-Malleable Key-Derivation). Let F be any family of functions f : {0, 1}n →
{0, 1}n. We say that a function h : {0, 1}n → {0, 1}k is an (F , ε)-non-malleable key derivation
function if for every f ∈ F we have SD

(
Realh(f); Simh(f)

)
≤ ε where Realh(f) and Simh(f)

denote the output distributions of the corresponding experiments described in Fig. 1.

12

Experiment Realh(f) vs. Simh(f)

Experiment Realh(f):
Sample x← Un.
If f(x) = x:

Output
(
h(x), same?)

)
.

Else
Output

(
h(x), h(f(x))

)
.

Experiment Simh(f):
Sample x← Un; y ← Uk
If f(x) = x:

Output
(
y, same?

)
.

Else
Output

(
y, h(f(x))

)
.

Figure 1: Experiments defining a non-malleable key derivation function h

Note that the above definition can be interpreted as a dual version of the definition of non-
malleable extractors [17].2 The theorem below states that by sampling a function h from a set
H of t-wise independent hash functions, we obtain a non-malleable key derivation function with
overwhelming probability.

Theorem 5.2. Let H be a 2t-wise independent function family consisting of functions h : {0, 1}n →
{0, 1}k and let F be some function family as above. Then with probability 1− ρ over the choice of
a random h← H, the function h is an (F , ε)-non-malleable key-derivation function as long as:

n ≥ 2k + log(1/ε) + log(t) + 3 and t > log(|F|) + 2k + log(1/ρ) + 5.

Proof. For any h ∈ H and f ∈ F , define a function hf : {0, 1}n → {0, 1}k ∪ same? such that if
f(x) = x then hf (x) = same? otherwise hf (x) = h(f(x)). Fix a function family F . Now, taking
probabilities (only) over the choice of h, let Bad be the event that h is not an (F , ε)-non-malleable-
key-derivation function. Then:

Pr[Bad] = Pr
h←H

[
∃f ∈ F : SD(Realh(f) , Simh(f)) > ε

]
= Pr

h←H

[
∃f ∈ F : SD((h(X), hf (X)) , (Uk, hf (X))) > ε

]
≤

∑
f∈F

Pr
h←H

[∑
y∈{0,1}k

∑
y′∈{0,1}k∪same?

∣∣∣∣ Pr[h(X) = y ∧ hf (X) = y′]
−Pr[Uk = y ∧ hf (X) = y′]

∣∣∣∣ > 2ε

]

≤
∑
f∈F

Pr
h←H

[
∃ y ∈ {0, 1}k, y′ ∈ {0, 1}k ∪ same? :

∣∣∣∣ Pr[h(X) = y ∧ hf (X) = y′]
−Pr[Uk = y ∧ hf (X) = y′]

∣∣∣∣ > 2−2kε

]

≤
∑
f∈F

∑
y∈{0,1}k

∑
y′∈{0,1}k∪same?

Pr
h←H

[∣∣∣∣ Pr[h(X) = y ∧ hf (X) = y′]
−2−k Pr[hf (X) = y′]

∣∣∣∣ > 2−2kε

]
(15)

Fix f, y, y′. For every x ∈ {0, 1}n, define a random variable Cx over the choice of h ← H, such
that

Cx =


1− 2−k if h(x) = y ∧ hf (x) = y′

−2−k if h(x) 6= y ∧ hf (x) = y′

0 otherwise.

2The duality comes from the fact that the output of a non-malleable extractor is close to uniform even given
a certain number of outputs computed with related seeds (whereas for non-malleable key derivation the seed is
unchanged but the input can be altered).

13

Notice that each Cx is 0 on expectation. However, the random variables Cx are not even pairwise
independent.3 In Section 5.1, we prove the following lemma about the variables Cx.

Lemma 5.3. There exists a partitioning of {0, 1}n into four disjoint subsets {Aj}4j=1, such that
for any A > 0 and for all j = 1, . . . , 4:

Pr

[∣∣∣∣ ∑
x∈Aj

Cx

∣∣∣∣ > A

]
< Kt

(
t

A

)t
,

where Kt ≤ 8.

Continuing from Eq. (15), we get:

Pr
h←H

[∣∣∣Pr[h(X) = y ∧ hf (X) = y′]− 2−k Pr[hf (X) = y′]
∣∣∣ > 2−2kε

]
= Pr
h←H

[∣∣∣∣ ∑
x∈{0,1}n

Cx

∣∣∣∣ > 2n−2kε

]
(16)

≤
4∑
j=1

Pr
h←H

[∣∣∣∣ ∑
x∈Aj

Cx

∣∣∣∣ > 2n−2k−2ε

]
< 4Kt

(
t

2n−2k−2ε

)t
. (17)

Eq. (16) follows from the definitions of the variables Cx and Eq. (17) follows by applying

Lemma 5.3 to the sum. Combining Eq. (15) and Eq. (17), we get Pr[Bad] < |F|22k
[
4Kt

(
t

2n−2k−2ε

)t]
.

In particular, it holds that Pr[Bad] ≤ ρ as long as:

n ≥ 2k + log(1/ε) + log(t) + 3 and t > log(|F|) + 2k + log(1/ρ) + 5.

5.1 Proof of Lemma 5.3

It will be convenient to represent the tampering function f as a graph. In particular, we define a
directed graph G = (V,E) with vertices V = {0, 1}n and edges E = {(x, x′) : x′ = f(x)}. Each
vertex has out-degree 1, and the graph may contain self-loops. We choose a random h ← H, and
label each vertex x with a value h(x). Each random variable Cx depends only on the labels of the
vertices x and f(x). As we mentioned, the random variables Cx are not independent. However, we
show how to partition the variables into 4 sets such that, within each set, the variables are either
independent or “as good as independent”.

First we partition the values x ∈ {0, 1}n into two sets Sf (self-loop) and Sf (no self-loop) such
that x ∈ Sf if and only if f(x) = x. We prove the following lemma.

Lemma 5.4. Let t > 2 be an even integer. Consider the set of random variables {Cx}x∈Sf . Then
for any A > 0,

Pr

[∣∣∣∣ ∑
x∈Sf

Cx

∣∣∣∣ > A

]
< Kt

(
t

A

)t
.

where Kt ≤ 8.

3For example if f(x) = f(x′) and Cx = 0 then Cx′ = 0 as well.

14

Proof. First consider the case when y′ 6= same?. In this case, for all x ∈ Sf , we have that Cx = 0
for any choice of h and thus the statement is verified.

On the other hand when y′ = same? the variables {Cx}x∈Sf are t-wise independent. Hence, the
statement follows directly from Lemma 2.1.

Now, consider the subgraph G(Sf) induced by Sf ⊆ V . In Sf , there is no self-loop and each
vertex has at most one outgoing edge.4 We prove the following lemma about G(Sf).

Lemma 5.5. The graph G(Sf) is 3-colorable.

Proof. We prove the lemma by constructing an algorithm to color G(Sf) with 3 colors (say R, B
and W). We recall that, by definition, in graph G(Sf) each vertex has at most one outgoing edge.
Without loss of generality we assume that each vertex in the graph has exactly one outgoing edge.
It is easy to see that this is the worst-case for graph coloring, as more edges might enforce to use
more colors. This fact we exploit heavily in this proof. The algorithm is described as follows:

1. Pick up a vertex randomly and color it by some arbitrary color, say R.

2. Follow the unique outgoing edge to color the next vertex by a different color, say B.

3. Continue to color vertices alternately following unique outgoing edges successively, with the
following check at each step. To color a vertex check if its successor vertex is uncolored. If
it is, then color the vertex with R or B, whichever appropriate. Otherwise, there may be
a situation such that both the predecessor and the successor of a vertex are colored with
different colors, which enforces to color that vertex with the third color, namely W. After
that, pick up another uncolored vertex randomly and repeat from the beginning of step 3. If
no such vertex is left then stop.

Note that the algorithm always terminates; this is because whenever we encounter a loop we
choose a new vertex from the set of uncolored vertices, and there are only finitely many vertices.

To prove the correctness, we observe the following invariant is maintained throughout. Accord-
ing to the algorithm, once we are done with coloring some vertex v we move to color its unique
uncolored successor v′. Now we claim that all the other predecessors v′′ of v′ which are different
from v must be uncolored. To see this, we assume by contradiction that there is some v′′ different
from v which is colored. Now, since v′ is the unique successor of v′′, following the algorithm we
must have colored v′ immediately after we color v′′. Therefore, assuming v′′ is colored leads to the
fact that v′ is already colored which is a contradiction. So, the only neighbor of v′ which might be
colored is its unique successor v̂. Note that this may enforce us to color v′ differently from both
its predecessor v and its unique successor v̂ with the third color, which we are allowed to do. We
conclude that the algorithm imposes a proper 3-coloring on G(Sf).

By the above lemma we can partition the set Sf ⊆ {0, 1}n into three disjoint subsets A1, A2, A3

(i.e., the three colors) such that for j ∈ {1, 2, 3}, and all x, x′ ∈ Aj , f(x) 6= x′. We consider the set
of variables {Cx}x∈Aj . Intuitively, the above partitioning removed some “bad” dependence between
variables Cx and Cf(x) by seeparating them into different subsets. However, even within any set
Aj , the variables are not t-wise independent. For example if f(x) = f(x′) then Cx and Cx′ may be
in the same set Aj but are correlated. Nevertheless, we prove that the correlation within each set
goes in the “right” direction and allows us to bound the sum. In particular, we prove the following

4Note that it might happen that some outgoing edge lands in Sf . In that case the induced subgraph G(Sf) would
exclude that edge.

15

lemma about the set of variables {Cx}x∈Aj ; note that Lemma 5.4 and Lemma 5.6 imply Lemma 5.3
by letting Sf = A4.

Lemma 5.6. Let t > 2 be an even integer. Consider the set of random variables {Cx}x∈Aj for some
j ∈ {1, 2, 3}. Denote their sum by Σj =

∑
x∈Aj Cx. Then for any A > 0 and for all j ∈ {1, 2, 3},

Pr[Σj > A] < Kt

(
t

A

)t
,

where Kt ≤ 8.

Proof. Fix some j ∈ {1, 2, 3}. First consider the case when y′ = same?. In this case, for all x ∈ Aj ,
we have that Cx = 0 for any choice of h. Thus, Pr[Σj > A] = 0 and the statement of the lemma is
verified. For the remaining of this proof we will assume that y′ 6= same?.

Let |Aj | = m for some m ∈ [2n], and denote the variables {Cx}x∈Aj by {Cx1 , . . . , Cxm}. For each
variable Cxi (i ∈ [m]) we can define the corresponding conditional random variable Cxi |(h(f(xi)) =
y′) as follows:

C̃i := Cxi |(h(f(xi)) = y′) =

{
1− p with probability Prh[h(xi) = y] = p

−p with probability Prh[h(xi) 6= y] = 1− p

where p = 2−k. Note that the variables {C̃i}mi=1 satisfy the following properties: (i) They are t-wise

independent; (ii) Each C̃i is 0 on expectation and hence E[C̃] = 0, where C̃ =
∑m

i=1 C̃i. We can

thus apply Lemma 2.2 to the variables C̃1, C̃2, · · · , C̃m with µ = E[C̃] = 0 to get the following:

E[C̃t] ≤ Kt · tt, (18)

where Kt ≤ 8.
The next claim shows that E[Σt

j] < E[C̃t]. Note that from Eq. (18) and Claim 5.7 we get that
for all j ∈ {1, 2, 3}, E[Σt

j] < Kt · tt; applying Markov’s inequality we obtain that for any A > 0,

Pr[Σj > A] < Kt ·
(
t
A

)t
. This concludes the proof of Lemma 5.6.

Claim 5.7. E[Σt
j] < E[C̃t].

Proof. For any m variables Y1, Y2, . . . , Ym, we have that (Y1 + Y2 + . . . + Ym)t is a polynomial of
degree t. Therefore, to prove the above claim, using linearity of expectation, it is sufficient to
show that the expectation of each monomial in the right hand side of the inequality is individually
greater than the expectation of each monomial in the left hand side. From both sides, we take a
term of the form5 E[

∏l
i=1 Y

ei
ai] where ei, l ∈ [t], ai ∈ [m] and

∑l
i=1 ei = t.

Note that the variables Cx1 , Cx2 , . . . , Cxm are not independent. However, since within a set Aj
there is no pair x, x′ such that f(x) = x′, the only possibility of dependence among the variables
arises from the event: f(x) = f(x′). We can further partition the variables in the product

∏l
i=1C

ei
xai

into sub-products Πb =
∏
i∈Sb C

ei
xai

for disjoint subsets Sb ⊆ [l] where b ∈ {1, 2, . . . , l′} and 1 ≤ l′ ≤ l,
such that, in each sub-product Πb, for all i ∈ Sb, f(xai) = x′b (for some x′b ∈ Aj′ ∪ Sf , with j′ 6= j).
Now, since (i) by definition, dependent variables are within the same sub-product and (ii) the hash
function h is 2t-wise independent, the sub-products {Πb}l

′
b=1 are mutually independent.

Next, we compute the expectation E[Πb]:

5 We ignore the multiplicative constant as it is the same on both the sides.

16

E[Πb] = E[Πb|h(x′b) = y′] Pr[h(x′b) = y′] + E[Πb|h(x′b) 6= y′] Pr[h(x′b) 6= y′]

= E

[∏
i∈Sb

Ceixai
|h(x′b) = y′

]
Pr[h(x′b) = y′] = p ·E

[∏
i∈Sb

C̃eiai

]
. (19)

The second equality of Eq. (19) follows from the fact that Cx = 0 whenever h(f(x)) 6= y′; the
third equality follows from the definition of C̃ai . We now compute the expectation of the product∏l
i=1C

ei
xai

, as follows:

E

[l∏
i=1

Ceixai

]
=

l′∏
b=1

E[Πb] =
l′∏
b=1

(
p ·E

[∏
i∈Sb

C̃eiai

])
= pl

′
E

[l∏
i=1

(
C̃eiai
)]
< E

[l∏
i=1

(
C̃eiai
)]
. (20)

The first equality of Eq. (20) follows from the fact that the sub-products Πb are mutually
independent, the second equality follows from Eq. (19) and the third equality from the t-wise
independence of the variables C̃ai . This concludes the proof of the claim.

Optimal Rate of Non-Malleable Key-Derivation. We can define the rate of a key derivation
function h : {0, 1}n → {0, 1}k as the ratio k/n. Notice that our construction achieves rate arbitrary
close to 1/2. We claim that this is optimal for non-malleable key derivation. To see this, consider a
tampering function f : {0, 1}n → {0, 1}n which is a permutation and never identity: f(x) 6= x. In
this case the joint distribution (h(X), h(f(X))) is ε-close to (Uk, h(f(X))) which is ε-close to the
distribution (Uk, U

′
k) consisting of 2k random bits. Since all of the randomness in (h(X), h(f(X)))

comes from X, this means that X must contain at least 2k bits of randomness, meaning that
n > 2k.

6 A Tamper-resilient Stream Cipher

Throughout this section, we write CDA(X1;X2) = |Pr[A(X1) = 1] − Pr[A(X2) = 1]| for the
advantage of a PPT adversary A in distinguishing two random variables X1 and X2 (defined over
some space X).

A stream cipher SC takes as input an initial key s0 ∈ {0, 1}n and is executed in rounds. For
i ∈ [q], it computes in the i-th round (si, xi) = SC(si−1) where xi ∈ {0, 1}v is given to the adversary.
We write SCi(s0) = (si, xi) to denote the i-th output of SC, when run for i rounds with initial key s0.
We also write (si, xi) for the corresponding random variables, generated by sampling s0 ← {0, 1}n
and running the stream cipher on this key.

The standard security requirement says that even given x1, . . . , xi−1, the adversary cannot
distinguish between the next block xi and a uniform random sample u← Uv . We strengthen this
security requirement and allow the adversary to tamper additionally with the secret state of SC.
Of course, if an adversary can apply an arbitrary function fi to the state, he may just overwrite
it with a known key, which clearly contradicts the pseudorandomness of xi+1. Notice that such an
“overwriting” makes the cipher useless and does not help the adversary to, e.g., decrypt ciphertexts
that were encrypted with SC(s0). To model tamper resilience of SC we consider an adversary A
that obtains both the correctly evaluated outputs x = (x1, . . . , xi) of SC(S0) and the faulty outputs
x′ = (x′1, . . . , x

′
i) where (s′i+1, x

′
i+1) = SC(fi+1(s

′
i)). We say that SC is secure against tampering

17

S0 prg(h(·)) prg(h(·))

prg(h(·)) prg(h(·))S′
0

X1 X2

X ′
1 X ′

2

S1 S2

S′
1 S′

2

A A A

tamper tamper

f1 f2

Figure 2: Construction of a tamper-resilient stream cipher. The regular evaluation is shown in black
(at the top line), the attack related part is shown in gray with dashed lines, and the corresponding
tampered evaluation is shown in black (at the bottom line). Recall that the choice of the tampering
function is adaptive from the a-priori fixed set F that is tolerated by the underlying non-malleable
key-derivation.

attacks if even given the outputs (x,x′) the random variable xi+1 is computationally close to
uniform.

More formally, consider the following experiment (running with a PPT adversary A and a family
of functions F) and denote its output by viewA,F (q):

1. Sample s0 ← Un and let s′0 := s0.

2. The adversary repeats the following for each i ∈ [q]:

(a) Compute untampered output: Compute (xi, si) = SC(si−1) and give xi to A.

(b) Compute tampered output: Receive fi ∈ F from A. Compute (x′i, s
′
i) = SC(fi(s

′
i−1)) and

give x′i to A.

3. The output of the experiment is defined as x = (x1, . . . , xq) and x′ = (x′1, . . . , x
′
q).

Definition 6.1. Let SC : {0, 1}n → {0, 1}v ×{0, 1}n. We say that SC is continuous (F , ε)-tamper-
resilient if for all PPT adversary A

CDA
(
(xq+1, viewA,F (q)); (Uv, viewA,F (q))

)
≤ ε,

where viewA,F (q) is defined as above, xq+1 := SCq(s0), and SCq denotes q executions of the stream
cipher.

The construction. Recall that a pseudorandom generator (PRG) is a function prg : {0, 1}k1 →
{0, 1}k2 ; we say that prg is ε-secure if for all PPT adversaries A we have CDA(prg(Uk1);Uk2) ≤ ε.

Consider the following construction of a stream cipher SCh,prg, based on a PRG prg : {0, 1}k →
{0, 1}n+v and a non-malleable key-derivation function h : {0, 1}n → {0, 1}k (see also Figure 2). At

18

the beginning a description of the function h and of the pseudorandom generator prg are output as
public parameters. Then a key s0 ← {0, 1}n is sampled uniformly at random and for each i ∈ [q]
we define the output of the stream cipher at round i as (si, xi) := prg(h(si−1)).

Theorem 6.2. Assume that prg is an εprg-secure pseudorandom generator and that h is an (F , ε)-
non-malleable key-derivation function. Then the stream cipher SCh,prg defined above is continuous
(F , ε′)-tamper-resilient, where ε′ ≤ (2q + 1)ε+ 2qεprg.

Proof. Consider the distribution Df,h over {0, 1}k ∪ same?, which samples s ← Un and outputs
same? if f(s) = s and h(f(s)) otherwise.

Before giving the formal proof, let us discuss some intuition. We show the desired computational
indistinguishability through several intermediate hybrid games. Notice that the interaction of the
challenger and the adversary in the definition, can be viewed as if there were two chains of values: (i)
an “untampered” chain, similar to the standard stream cipher game (c.f. Step 2a in the definition);
and (ii) a “tampered chain”, where the adversary can tamper with each input of the function h
(c.f. Step 2b in the definition). In the i-th hybrid we replace the i-th output of h in the untampered
chain, by a uniform random value. In the tampered chain, if the adversary is yet to tamper, then
we replace the output of h with a random sample from the distribution Dfi,h. In case Dfi,h returns
some value which is not same?, i.e. the adversary tampered, then we stop sampling further and
continue to simulate the output from that point on using the last sampled value. Non-malleability
of the key-derivation function h guarantees that, once the adversary tampers, the modified value
reveals almost no information about the “extracted” key. Notice that, if before entering the i-
th round the adversary had already tampered, then there is no difference between the i-th and
(i+ 1)-th hybrids in the tampered chain. We now proceed with the formal proof.

Define the following hybrid games for all i ∈ {0, . . . , q} and all b ∈ {0, 1}.

Gamei(b):

1. Sample s0 ← Un and let s′0 := s0. Set initial mode to normal mode.

2. For all j = 1, . . . , i do the following.

(a) Compute untampered output: Sample κj ← Uk. Compute (xj , sj) ← prg(κj) and
give xj to A.

(b) Compute tampered output: Receive fj ∈ F from A. Depending on the current mode
behave in one of the following ways:

• Normal Mode: Sample κ̃j ← Dfj ,h. If κ̃j = same?, then set (x′j , s
′
j) := (xj , sj)

and give x′j to A. Else, if κ̃j 6= same?, then set the current mode to overwritten
mode, set (x′j , s

′
j) := prg(κ̃j) and give x′j to A.

• Overwritten Mode: Compute (x′j , s
′
j)← prg(h(fj(s

′
j−1))), give x′j to A.

3. For all j = i+ 1, . . . , q do the following.

(a) Compute untampered output: Compute (xj , sj)← prg(h(sj−1)) and give xj to A.

(b) Compute tampered output: Receive fj ∈ F from A. Compute (x′j , s
′
j)← prg(h(fj(s

′
j−1)))

and give x′j to A.

4. Challenge Phase. If b = 0, then set (xq+1, sq+1)← prg(h(sq)); otherwise, sample xq+1 ←
Uv. The output of the experiment is defined as Gamei(b) = (xq+1,x,x

′) where x =
(x1, . . . , xq) and x′ = (x′1, . . . , x

′
q).

19

Notice that the output distribution of Game0(b) is either equal to (xq+1, viewA,F (q)) (in case b =
0) or to (u← Uv, viewA,F (q)) (in case b = 1); thus our goal is to bound CDA

(
Game0(0);Game0(1)

)
.

By using the triangle inequality, we write:

CDA
(
Game0(0);Game0(1)

)
≤ CDA

(
Game0(0);Game1(0)

)
+ CDA

(
Game1(0);Gameq(0)

)
+ CDA

(
Gameq(0);Gameq(1)

)
+ CDA

(
Gameq(1);Game1(1)

)
+ CDA

(
Game1(1);Game0(1)

)
≤ 3ε+ 2εprg +

∑
b∈{0,1}

q−1∑
i=1

CDA
(
Gamei(b);Gamei+1(b)

)
(21)

≤ (2q + 1)ε+ 2qεprg. (22)

Eq. (21) follows by applying Claim 6.3 and Claim 6.5 whereas Eq. (22) follows from Claim 6.4.
This concludes the proof of the theorem except the proofs of the claims which are given below.

Claim 6.3. CDA
(
Gameq(0); (Gameq(1)

)
≤ ε+ 2εprg.

Proof. Consider the following modified games.

Game′q: First run Gameq(0) until Step 3. In Step 4 sample sq ← Un and compute (xq+1, sq+1)←
prg(h(sq)). Output Game′q = (xq+1,x,x

′).

Game′′q : First run Gameq(1) until Step 3. In Step 4 sample κq+1 ← Uk and compute (xq+1, sq+1)←
prg(κq+1). Output view′′q = (xq+1,x,x

′).

We notice that the only difference between Gameq(0) and Game′q is in the challenge phase: in
the former sq is computed as the output of prg(κq−1) for some uniformly random κq−1 ← Uk,
whereas in the latter sq is uniformly random. Clearly, CDA

(
Gameq(0);Game′q

)
≤ εprg. By a similar

argument, CDA
(
Game′′q ;Gameq(1)

)
≤ εprg.

Let us now compare the output distribution of Game′q and Game′′q . Again, the only difference
is in the challenge phase: in the former the input of prg is computed as h(sq) for some uniformly
random sq ← Un, whereas in the latter the input of prg is sampled uniformly as κq+1 ← Uk. Now
the fact that h is non-malleable clearly implies that the output of h on a random input is close to
uniform.6 This shows that CDA

(
Game′q;Game′′q

)
≤ ε.

Combining the above arguments, we conclude

CDA
(
Gameq(0);Gameq(1)

)
≤ CDA

(
Gameq(0);Game′q

)
+ CDA

(
Game′q;Game′′q

)
+ CDA

(
Game′′q ;Gameq(1)

)
≤ ε+ 2εprg,

as desired.

Claim 6.4. For all b ∈ {0, 1} and all i ∈ [q − 1], CDA
(
Gamei(b);Gamei+1(b)

)
≤ ε+ εprg.

Proof. Fix some b ∈ {0, 1} and i ∈ [q − 1]. Consider the following modified game.

6In this step we only require that the output of h is close to uniform, which is obviously a weaker property than
non-malleability.

20

Game′i(b): First run Gamei(b) until Step 2. In Step 3 first sample si ← Un and then do the
following for all j = i+ 1, . . . , q:

(a) Compute untampered output: Compute (xj , sj)← prg(h(sj−1)) and give xj to A.

(b) Compute tampered output: Receive fj ∈ F from A. In case the execution is still in
normal mode, set s′i := si. In the next step, irrespective of the mode, compute (x′j , s

′
j)←

prg(h(fj(s
′
j−1))) and give x′j to A.

Step 4 is defined exactly as in Gamei(b).

We notice that the only difference between Gamei(b) and Game′i(b) is in Step 3: in the i-th
round the last output of prg (i.e., si) is replaced by a uniform random value in the latter. Note
that in case the execution has already entered the overwritten mode, this change does not affect
the tampered output; on the other hand, in case the execution is still in normal mode, then in the
tampered output the i-th output of prg is replaced by the above uniform value si. Thus, clearly,
CDA

(
Game′i(b);Gamei(b)

)
≤ εprg.

Let us now compare the output distribution of Game′i(b) and Gamei+1(b). Again the only
differences are as follows:

• Regarding the untampered output, the (i+1)-th output of h is replaced by a uniform random
value κi+1 in Gamei+1(b) whereas in Game′i(b) it is computed as h(si) for some uniform si.

• Regarding the tampered output, there is no difference in case the execution has already
entered the overwritten mode. In case the execution is still normal mode, then Gamei+1(b)
samples κ̃i+1 ← Dfi+1,h. If κ̃i+1 is not same?, then the output will be computed by running
prg on κ̃i+1; else, the output is just copied from the untampered output.

We observe that Game′i(b) can be computed as a deterministic function of Realh(fi+1) and
Gamei+1(b) as a deterministic function of Simh(fi+1) (c.f. Figure 1). This shows that CDA

(
Game′i(b);

Gamei+1(b)
)
≤ ε.

Combining the above arguments, we conclude that for any b ∈ {0, 1} and all i ∈ [q − 1]

CDA
(
Gamei(b);Gamei+1(b)

)
≤ CDA

(
Gamei(b);Game′i(b)

)
+ CDA

(
Game′i(b);Gamei+1(b)

)
≤ ε+ εprg,

as desired.

Claim 6.5. For all b ∈ {0, 1}, CDA
(
Game0(b);Game1(b)

)
≤ ε.

Proof. The statement can be shown in a similar way as in the proof of Claim 6.4, with the only
difference that in this case the first input to h is a uniformly random value s0 (rather that some
“pseudorandom” value), and thus the modified game Game′0(b) collapses to Game0(b).

Acknowledgements

We thank Ivan Damg̊ard for useful discussions at the early stages of this research.

21

References

[1] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. Electronic Colloquium on Computational Complexity (ECCC), 20:81, 2013.

[2] Ross Anderson, Markus Kuhn, and England U. S. A. Tamper resistance — a cautionary note.
In In Proceedings of the Second Usenix Workshop on Electronic Commerce, pages 1–11, 1996.

[3] Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security under related-key
attacks and applications. In ICS, pages 45–60, 2011.

[4] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure
against related-key attacks. In CRYPTO, pages 666–684, 2010.

[5] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In EUROCRYPT, pages 491–506, 2003.

[6] Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. RKA security beyond the linear
barrier: IBE, encryption and signatures. In ASIACRYPT, pages 331–348, 2012.

[7] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In FOCS, pages
276–287. IEEE Computer Society, 1994.

[8] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of eliminating
errors in cryptographic computations. J. Cryptology, 14(2):101–119, 2001.

[9] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. Electronic
Colloquium on Computational Complexity (ECCC), 20:118, 2013.

[10] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. IACR Cryptology ePrint Archive, 2013:565, 2013.

[11] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. BiTR: Built-in tamper resilience. In
ASIACRYPT, pages 740–758, 2011.

[12] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit to multi-
bit public-key encryption via non-malleable codes. IACR Cryptology ePrint Archive, 2014:324,
2014.

[13] Jean-Sébastien Coron, Antoine Joux, Ilya Kizhvatov, David Naccache, and Pascal Paillier.
Fault attacks on rsa signatures with partially unknown messages. In Christophe Clavier and
Kris Gaj, editors, CHES, volume 5747 of Lecture Notes in Computer Science, pages 444–456.
Springer, 2009.

[14] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. Detection of
algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In
Nigel P. Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science,
pages 471–488. Springer, 2008.

[15] Ivan Damg̊ard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. Bounded tamper
resilience: How to go beyond the algebraic barrier. In ASIACRYPT (2), pages 140–160, 2013.

22

[16] Francesco Dav̀ı, Stefan Dziembowski, and Daniele Venturi. Leakage-resilient storage. In
Juan A. Garay and Roberto De Prisco, editors, SCN, volume 6280 of Lecture Notes in Com-
puter Science, pages 121–137. Springer, 2010.

[17] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryptography
from weak secrets. In STOC, pages 601–610, 2009.

[18] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput.,
30(2):391–437, 2000.

[19] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-
source extractors. In CRYPTO (2), pages 239–257, 2013.

[20] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS,
pages 434–452, 2010.

[21] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous
non-malleable codes. In TCC, pages 465–488, 2014.

[22] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits: How to
trade leakage for tamper-resilience. In ICALP (1), pages 391–402, 2011.

[23] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hardware tamper-
ing. In TCC, pages 258–277, 2004.

[24] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash functions. In
TCC, pages 182–200, 2011.

[25] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits II: Keeping
secrets in tamperable circuits. In EUROCRYPT, pages 308–327, 2006.

[26] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with tamperable
and leaky memory. In CRYPTO, pages 373–390, 2011.

[27] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model.
In CRYPTO, pages 517–532, 2012.

[28] Krzysztof Pietrzak. Subspace LWE. In TCC, pages 548–563, 2012.

[29] Ananth Raghunathan, Gil Segev, and Salil P. Vadhan. Deterministic public-key encryption
for adaptively chosen plaintext distributions. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages 93–110.
Springer, 2013.

[30] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks. pages 2–12.
Springer-Verlag, 2002.

[31] Hoeteck Wee. Public key encryption against related key attacks. In Public Key Cryptography,
pages 262–279, 2012.

23

A One-Time Tamper Simulatability

Similarly to [20], we show that a non-malleable key-derivation function can be use to protect any
stateless functionality against tampering attacks. We consider two main differences with respect to
the setting considered in [20]: (i) the original functionality is stateless and works with a uniformly
chosen state; (ii) the attacker can only tamper once.

A stateless functionality 〈G, κ〉 consists of a public (possibly randomized) function G : {0, 1}k×
{0, 1}u → {0, 1}v and a secret initial state κ ∈ {0, 1}k. Whenever the state κ is chosen uniformly at
random from {0, 1}k, we say that the functionality is regular. The main idea is to transform 〈G, κ〉
into some “hardened” functionality 〈Gh, s〉 via a non-malleable key-derivation function h.

Definition A.1 (Hardened functionality). Let h : {0, 1}n → {0, 1}k be a function. Let G : {0, 1}k×
{0, 1}u → {0, 1}v be any stateless, regular functionality with k-bit state. We define the hardened
functionality Gh : {0, 1}n × {0, 1}u → {0, 1}v to be the functionality that takes as input (s, x) ∈
{0, 1}n × {0, 1}u and outputs y ← G(h(s), x).

Security of Gh is defined via the comparison of a real and an ideal experiment. The real
experiment features an adversary A interacting with Gh; the adversary is allowed to honestly run
the functionality on any chosen input, but also to tamper with the original state and interact with
the modified functionality. The ideal experiment features a simulator S; the simulator is given
black-box access to the original functionality G and to the adversary A, but is not allowed any
tampering query. The two experiments are formally described below.

Experiment Real
Gh(s,·)
A,F . A value s ← {0, 1}n is chosen uniformly at random. Then A can issue

the following commands (in any order):

• 〈Eval, x〉: In response to an evaluation query, return y ← G(h(s), x). This command can be
run a polynomial number of times.

• 〈Tamper, f〉: Upon input f : {0, 1}n → {0, 1}n, with f ∈ F , replace s by f(s). This command
can be run a single time.

The output of the experiment is defined as

Real
Gh(s,·)
A,F = ((x1, y1), (x2, y2), . . .)).

Experiment Ideal
G(κ,·)
S . A value κ ← {0, 1}k is chosen uniformly at random. The simulator

is given black-box access to the functionality G(κ, ·) and the adversary A. The output of the
experiment is defined as

Ideal
G(κ,·)
S = ((x1, y1), (x2, y2), . . .),

where (xj , yj) are the input/output tuples simulated by S.

Definition A.2 (One-time tamper simulatability). Let h : {0, 1}n → {0, 1}k be a function and con-
sider a stateless, regular functionality G. Denote with Gh the hardened functionality corresponding
to G. We say that h is one-time (F , ε)-tamper simulatable for G, if for all PPT adversaries A there
exists a PPT simulator S such that for any initial state κ,

Real
Gh(s,·)
A,F ≈ Ideal

G(κ,·)
S ,

where ≈ refers either to statistical or computational indistinguishability.

24

The theorem below states that whenever h is a non-malleable key-derivation function, then it
is also one-time tamper simulatable.

Theorem A.3. Consider a stateless, regular functionality G. Let h be an (F , ε)-non-malleable
key-derivation function, then h is one-time (F , ε)-tamper simulatable for G.

Proof. Define the following distribution Df,h over {0, 1}k ∪ same? (which is efficiently samplable
given black-box access to functions f and h): Sample s← {0, 1}n and define κ̃ = same? if f(s) = s
and κ̃ = h(f(s)) otherwise. The simulator S, having black-box access to the adversary A and the
original functionality 〈G, κ〉, will use Df,h to answer A’s tampering query.

At the beginning, S runs A and then it works in one of two modes defined below (starting with
the “normal mode”):

1. Normal mode. While A continues issuing queries, answer as follows:

• Upon input 〈Eval, x〉, forward x to G(κ, ·) and return the output y back to A.

• Upon input 〈Tamper, f〉, sample κ̃← Df,h. Hence,

– In case κ̃ = same?, stay in the current mode.

– In case κ̃ 6= same?, go to the “overwritten mode” defined below with state κ̃.

2. Overwritten mode. Given state κ̃ simulate all further evaluation queries by running G(κ̃, ·).

3. Output whatever A does.

We argue that Real
Gh(s,·)
A,F ≈ Ideal

G(κ,·)
S . By non-malleability of the key-derivation function h, we

know that for all functions f ∈ F it holds that:

Realh(f) :=


s← {0, 1}n

If f(s) = s, Output: (h(s), same?)
Else Output: (h(s), h(f(s)))

 ≈ε
{
κ̃← Df,h, κ← {0, 1}k

Output: (κ, κ̃)

}
:= Simh(f).

To argue indistinguishability of the simulation, we observe that the real experiment and the ideal
experiment are identical after the simulator enters in overwritten mode. To conclude the proof, we
show that they are also indistinguishable for each round up to and including the round in which
the simulator enters in overwritten mode. Without loss of generality, assume that A applies the

tampering function f at round q, for some q ∈ N. Denote with Real
Gh(s,·)
A,F the random variable

corresponding to the output of the real experiment until round q. The random variable Ideal
G(κ,·)
S

is defined analogously.
Consider now the following function g, taking as input a pair of values κ∗ ∈ {0, 1}k and κ̃ ∈

({0, 1}k ∪ same?), together with any sequence of inputs x1, . . . , xq ∈ {0, 1}u: Output yi = G(κ∗, xi)
for all i ≤ q − 1 and yq = G(κ∗, xq) if κ̃ = same? and yq = G(κ̃, xq) otherwise. It is not hard to see
that

Real
Gh(s,·)
A,F = g(Realh(f)) and Ideal

G(κ,·)
S = g(Simh(f)).

Thus,

SD(Real
Gh(s,·)
A,F ; Ideal

G(κ,·)
S) = SD(g(Realh(f)); g(Simh(f))) ≤ SD(Realh(f);Simh(f)) ≤ ε,

concluding the proof.

25

	Introduction
	Our Contribution
	Our Techniques
	Related Works

	Preliminaries
	Definitions of Non-Malleable Codes

	Improved Leakage-Resilient Codes
	Non-Malleable Codes
	Proof of Theorem 4.1

	Non-Malleable Key-Derivation
	Proof of Lemma 5.3

	A Tamper-resilient Stream Cipher
	One-Time Tamper Simulatability

