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Abstract

Extractability, or “knowledge,” assumptions have recently gained popularity in the crypto-
graphic community, leading to the study of primitives such as extractable one-way functions,
extractable hash functions, succinct non-interactive arguments of knowledge (SNARKs), and
differing-inputs obfuscation (diO), and spurring the development of a wide spectrum of new
applications relying on these primitives. For most of these applications, it is required that the
extractability assumption holds even in the presence of attackers receiving some auxiliary infor-
mation that is sampled from some fixed efficiently computable distribution Z.

We show that, assuming the existence of collision-resistant hash functions, there exist efficient
distributions Z,D such that either

• extractable one-way functions w.r.t. auxiliary input Z do not exist, or

• diO for a distribution of Turing machines and auxiliary input specified by D does not exist.

A corollary of this result shows that assuming existence of fully homomorphic encryption with
decryption in NC1, there exist efficient distributions Z,D such that either

• SNARKs for NP w.r.t. auxiliary input Z do not exist, or

• diO for a distribution of NC1 circuits and aux input specified by D does not exist.

To achieve our results, we develop a “succinct punctured program” technique, mirroring the
powerful punctured program technique of Sahai and Waters (STOC’14), and present several other
applications of this new technique.

We additionally demonstrate that diO w.r.t. any distribution D of programs and bounded-
length auxiliary input is directly implied by any obfuscator that satisfies the weaker indistin-
guishability obfuscation (iO) security notion and diO for a slightly modified distribution D′ of
programs (of slightly greater size) and no auxiliary input. As a consequence, we directly obtain
negative results for diO in the absence of auxiliary input.
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1 Introduction

Extractability Assumptions. Extractability, or “knowledge,” assumptions (such as the “knowledge-
of-exponent” assumption), have recently gained in popularity, leading to the study of primitives such
as extractable one-way functions, extractable hash-functions, SNARKs (succinct non-interactive ar-
guments of knowledge), and differing-inputs obfuscation:

• Extractable OWF: An extractable family of one-way (resp. collision-resistant) functions
[Dam91, HT98, CD09], is a family of one-way (resp. collision-resistant) functions {fi} such
that any attacker who outputs an element y in the range of a randomly chosen function fi given
the index i must “know” a pre-image x of y (i.e., fi(x) = y). This is formalized by requiring
for every adversary A, the existence of an “extractor” E that (with overwhelming probability)
given the view of A outputs a pre-image x whenever A outputs an element y in the range of
the function.

For example, the “knowledge-of-exponent” assumption of Damgard [Dam91] stipulates the ex-
istence of a particular such extractable one-way function.

• SNARKs: Succinct non-interactive arguments of knowledge (SNARKs) [Mic94, Val08, BCCT12]
are communication-efficient (i.e., “short” or “succinct”) arguments for NP with the property
that if a prover generates an accepting (short) proof, it must “know” a corresponding (poten-
tially long) witness for the statement proved, and this witness can be efficiently “extracted” out
from the prover.

• Differing-inputs obfuscation: [BGI+12, BCP14, ABG+13] A differing-inputs obfuscator O
for a class of programs C is an efficient procedure which ensures if any efficient attacker A can
distinguish obfuscations O(C1) and O(C2) of any two programs C1, C2 in the class C, then it
must “know” an input x such that C1(x) 6= C2(x), and this input can be efficiently “extracted”
(as above) from A.

The above primitives have proven extremely useful in constructing cryptographic tools for which in-
stantiations under complexity-theoretic hardness assumptions are not known (e.g., [HT98, BCCT12,
GLR11, DFH12, BCP14, ABG+13]).

Extraction with (Distribution-Specific) Auxiliary Input. In all of these applications, we
require a notion of an auxiliary-input extractable one-way function [HT98, CD09], where both the
attacker and the extractor may receive an auxiliary input. The strongest formulation requires ex-
tractability in the presence of an arbitrary auxiliary input. Yet, as informally discussed already
in the original work by Hada and Tanaka [HT98], extractability w.r.t. an arbitrary auxiliary in-
put is an “overly strong” (or in the language of [HT98], “unreasonable”) assumption. Indeed, a
recent result of Bitansky, Canetti, Rosen and Paneth [BCPR14] (formalizing earlier intuitions from
[HT98, BCCT12]) demonstrates that assuming the existence of indistinguishability obfuscators for
the class of polynomial-size circuits1 there cannot exist auxiliary-input extractable one-way functions
that remain secure for an arbitrary auxiliary input.

However, for most of the above applications, we actually do not require extractability to hold
w.r.t. an arbitrary auxiliary input. Rather, as proposed by Bitansky et al [BCCT12, BCCT13], it

1The notion of indistinguishability obfuscation [BGI+12] requires that obfuscations O(C1) and O(C2) of any two
equivalent circuits C1 and C2 (i.e., whose outputs agree on all inputs) from some class C are computationally indistin-
guishable. A candidate construction for general-purpose indistinguishability obfuscation was recently given by Garg et
al [GGH+13].
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often suffices to consider extractability with respect to specific distributions Z of auxiliary input.2

More precisely, it would suffice to show that for every desired output length `(·) and distribution Z
there exists a function family FZ (which, in particular, may be tailored for Z) such that FZ is a
family of extractable one-way (or collision-resistant) functions {0, 1}k → {0, 1}`(k) with respect to Z.
In fact, for some of these results (e.g., [BCCT12, BCCT13]), it suffices to just assume that extraction
works for just for the uniform distribution.

In contrast, the result of [BCPR14] can be interpreted as saying that (assuming iO), there do
not exist extractable one-way functions with respect to every distribution of auxiliary input: That
is, for every candidate extractable one-way function family F , there exists some distribution ZF of
auxiliary input that breaks it.

Our Results. In this paper, we show limitations of extractability primitives with respect to
distribution-specific auxiliary input (assuming the existence of collision-resistant hash functions).
Our main result shows a conflict between differing-inputs obfuscation for Turing machines [BCP14,
ABG+13] and extractable one-way functions.

Theorem 1.1 (Main Theorem – Informal). Assume the existence of collision-resistant hash func-
tions. Then for every polynomial `, there exist efficiently computable distributions Z,D such that
one of the following two primitives does not exist:

• extractable one-way functions {0, 1}k → {0, 1}`(k) w.r.t. auxiliary input from Z.

• differing-inputs obfuscation for distribution D of Turing machines and auxiliary inputs.

By combining our main theorem with results from [BCCT12] and [BCP14], we obtain the follow-
ing corollary:

Theorem 1.2 (Informal). Assume the existence of fully homomorphic encryption with decryption
in NC1.3 Then there exist efficiently computable distributions Z,D such that one of the following
two primitives does not exist:

• SNARKs w.r.t. auxiliary input from Z.

• differing-inputs obfuscation for distribution D of NC1 circuits and auxiliary inputs.

To prove our results, we develop a new proof technique, which we refer to as the “succinct
punctured program” technique, extending the “punctured program” paradigm of Sahai and Waters
[SW14]; see Section 1.1 for more details. This technique has several other interesting applications,
as we discuss in Section 1.3.

As a final contribution, we demonstrate that even in the absence of auxiliary input, care must
be taken when making use of extractability assumptions. Specifically, we show that differing-inputs
obfuscation (diO) for any distribution D of programs and bounded-length auxiliary inputs, is directly
implied by any obfuscator that satisfies a weaker indistinguishability obfuscation (iO) security notion
(which is not an extractability assumption) and diO security for a related distribution D′ of programs
(of slightly greater size) which does not contain auxiliary input. Thus, negative results ruling out
existence of diO with bounded-length auxiliary input directly imply negative results for diO in a
setting without auxiliary input.

2As far as we know, the only exceptions are in the context of zero-knowledge simulation, where the extractor is
used in the simulation (as opposed to being used as part of a reduction), and we require simulation w.r.t. arbitrary
auxiliary inputs. Nevertheless, as pointed out in the works on zero-knowledge [HT98, GS12], to acheive “plain” zero-
knowledge [GMR89, BLV06] (where the verifier does not receive any auxiliary input), weaker “bounded” auxiliary
input assumptions suffice.

3As is the case for nearly all existing FHE constructions (e.g., [GSW13, BV14]).
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Theorem 1.3 (Informal). Let D be a distribution over pairs of programs and `-bounded auxiliary
input information P × P × {0, 1}`. There exists diO with respect to D if there exists an obfuscator
satisfying iO in addition to diO with respect to a modified distribution D′ over P ′ × P ′ for slightly
enriched program class P ′, and no auxiliary input.

As a consequence, diO for the distributions D in our theorems above can be directly replaced by
iO plus diO for modified distributions D′ of programs that remain within the respective classes (i.e.,
TM or NC1), but no longer include auxiliary input.

Our transformation further applies to a recent result of Garg et al. [GGHW14], which shows that
based on a new assumption (pertaining to special-purpose obfuscation of Turing machines) general-
purpose diO w.r.t. auxiliary input cannot exist, by constructing a distribution over circuits and
bounded-length auxiliary inputs for which no obfuscator can be diO-secure. Our resulting conclusion
is that, assuming such special-purpose obfuscation exists, then general-purpose diO cannot exist, even
in the absence of auxiliary input.

Interpretation of Our Results. Our results suggest that one must take care when making ex-
tractability assumptions, even in the presence of specific distributions of auxiliary inputs, and in
certain cases even in the absence of auxiliary input. In particular, we must develop a way to distin-
guish “good” distributions of instances and auxiliary inputs (for which extractability assumptions
may make sense) and “bad” ones (for which extractability assumptions are unlikely to hold). As
mentioned above, for some applications of extractability assumptions, it in fact suffices to consider a
particularly simple distribution of auxiliary inputs—namely the uniform distribution.4 We empha-
size that our results do not present any limitations of extractable one-way functions in the presence
of uniform auxiliary input, and as such, this still seems like a plausible assumption at this point.

Comparison to [GGHW14]. An interesting subsequent5 work of Garg et al. [GGHW13, GGHW14]
contains a related study of differing-inputs obfuscation. In [GGHW14], the authors propose a new
“special-purpose” circuit obfuscation assumption, and demonstrate based on this assumption an aux-
iliary input distribution (whose size grows with the desired circuit size of circuits to be obfuscated)
for which general-purpose diO cannot exist. Using similar techniques of hashing and obfuscating
Turing machines as in the current work, they further conclude that if the new obfuscation assump-
tion holds also for Turing machines, then the “bad” auxiliary input distribution can have bounded
length (irrespective of the circuit size).

Garg et al. [GGHW14] show the “special-purpose” obfuscation assumption is a falsifiable as-
sumption (in the sense of [Nao03]) and is implied by virtual black-box obfuscation for the relevant
restricted class of programs, but plausibility of the notion in relation to other primitives is otherwise
unknown. In contrast, our results provide a direct relation between existing, studied topics (namely,
diO, EOWFs, and SNARKs). Even in the case that the special-purpose obfuscation assumption
does hold, our primary results provide conclusions for diO with natural “lightweight” auxiliary input
distributions (e.g., descriptions of a collision-resistant hash function), whereas the auxiliary input
considered in [GGHW14] is somewhat unlikely to occur naturally, itself consisting of an obfuscated
program.

And, utilizing our final observation (which occurred subsequent to [GGHW14]), we show that
based on their same special-purpose obfuscation assumption for Turing machines, we can in fact rule
out general-purpose diO for circuits even in the absence of auxiliary input.

4Note that this is not the case for all applications; for instance [HT98, GKP+13, BGI14, GS12] require considering
more complicated distributions.

5A version of our paper has been on ePrint since October 2013 [BP13].
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1.1 Proof Techniques

To explain our techniques, let us first explain earlier arguments against the plausibility of extractable
one-way functions with auxiliary input. For simplicity of notation, we focus on extractable one-way
function over {0, 1}k → {0, 1}k (as opposed to over {0, 1}k → {0, 1}`(k) for some polynomial `), but
emphasize that the approach described directly extends to the more general setting.

Early Intuitions. As mentioned above, already the original work of Hada and Tanaka [HT98],
which introduced auxiliary input extractable one-way functions (EOWFs) (for the specific case of
exponentiation), argued the “unreasonableness” of such functions, reasoning informally that the aux-
iliary input could contain a program that evaluates the function, and thus a corresponding extractor
must be able to “reverse-engineer” any such program. Bitansky et al [BCCT12] made this idea
more explicit: Given some candidate EOWF family F , consider the distribution ZF over auxiliary
input formed by “obfuscating” a program Πs(·) for uniformly chosen s, where Πs(·) takes as input a
function index e from the alleged EOWF family F = {fi}, applies a pseudorandom function (PRF)
with hardcoded seed s to the index i, and then outputs the evaluation fi(PRFs(i)). Now, consider
an attacker A who, given an index i, simply runs the obfuscated program to obtain a “random”
point in the range of fi. If it were possible to obfuscate Πs in a “virtual black-box (VBB)” way (as
in [BGI+12]), then it easily follows that any extractor E for this particular attacker A can invert fi.
Intuitively, the VBB-obfuscated program hides the PRF seed s (revealing, in essence, only black-box
access to Πs), and so if E can successfully invert fi on A’s output fi(PRFs(i)) on a pseudorandom
input PRFs(i), he must also be able to invert for a truly random input. Formally, given an index i
and a random point y in the image of fi, we can “program” the output of Πs(i) to simply be y, and
thus E will be forced to invert y.

The problem with this argument is that (as shown by Barak et al [BGI+12]), for large classes of
functions VBB program obfuscation simply does not exist.

The Work of [BCPR14] and the “Punctured Program” Paradigm of [SW14]. Intrigu-
ingly, Bitansky, Canetti, Rosen and Paneth [BCPR14] show that by using a particular PRF and
instead relying on indistinguishability obfuscation, the above argument still applies! To do so, they
rely on the powerful “punctured-program” paradigm of Sahai and Waters [SW14] (and the closely re-
lated work of Hohenberger, Sahai and Waters [HSW14] on “instantiating random oracles”). Roughly
speaking, the punctured program paradigm shows that if we use indistinguishability obfuscation to
obfuscate a (function of) a special kind of “puncturable” PRF6 [BW13, BGI14, KPTZ13], we can
still “program” the output of the program on one input (which was used in [SW14, HSW14] to show
various applications of indistinguishability obfuscation). Bitansky et al. [BCPR14] show that by
using this approach, then from any alleged extractor E we can construct a one-way function inverter
Inv by “programming” the output of the program Πs at the input i with the challenge value y.
More explicitly, mirroring [SW14, HSW14], they consider a hybrid experiment where E is executed
with fake (but indistinguishable) auxiliary input, formed by obfuscating a “punctured” variant Πs

i,y

of the program Πs that contains an i-punctured PRF seed s∗ (enabling evaluation of PRFs(j) for any
j 6= i) and directly outputs the hardcoded value y := fi(PRFs(i)) on input i: indistinguishability of
this auxiliary input follows by the security of indistinguishability obfuscation since the programs Πs

i,y

and Πs are equivalent when y = fi(PRFs(i)) = Πs(i). In a second hybrid experiment, the “correct”

6That is, a PRF where we can surgically remove one point in the domain of the PRF, keeping the rest of the PRF
intact, and yet, even if we are given the seed of the punctured PRF, the value of the original PRF on the surgically
removed point remains computationally indistinguishable from random.
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hardcoded value y is replaced by a random evaluation fi(u) for uniform u; here, indistinguishability
of the auxiliary inputs follows directly by the security of the punctured PRF. Finally, by indistin-
guishability of the three distributions of auxiliary input in the three experiments, it must be that E
can extract an inverse to y with non-negligible probability in each hybrid; but, in the final experiment
this implies the ability to invert a random evaluation, breaking one-wayness of the EOWF.

The Problem: Dependence on F . Note that in the above approach, the auxiliary input distri-
bution is selected as a function of the family F = {fj} of (alleged) extractable one-way functions.
Indeed, the obfuscated program Πs must be able to evaluate fj given j. One may attempt to mitigate
this situation by instead obfuscating a universal circuit that takes as input both F and the index j,
and appropriately evaluates fj . But here still the size of the universal circuit must be greater than
the running time of fj , and thus such an auxiliary input distribution would only rule out EOWFs
with a-priori bounded running time. This does not suffice for what we aim to achieve: in particular,
it still leaves open the possibility that for every distribution of auxiliary inputs, there may exist a
family of extractable one-way functions that remains secure for that particular auxiliary input dis-
tribution (although the running time of the extractable one-way function needs to be greater than
the length of the auxiliary input).

A First Idea: Using Turing Machine Obfuscators. At first sight, it would appear this problem
could be solved if we could obfuscate Turing machines. Namely, by obfuscating a universal Turing
machine in the place of a universal circuit in the construction above, the resulting program Πs would
depend only on the size of the PRF seed s, and not on the runtime of fj ∈ F . Indeed, recently
[BCP14] showed candidate constructions of obfuscators for Turing machines, based on the existence
of differing-inputs obfuscators for NC1, fully homomorphic encryption with decryption in NC1, and
succinct non-interactive arguments of knowledge (SNARKs).

But there is a catch. To rely on the punctured program paradigm, we must be able to obfuscate
the program Πs in such a way that the result is indistinguishable from an obfuscation of a related
“punctured” program Πs

i,y; in particular, the size of the obfuscation must be at least as large as
|Πs

i,y|. Whereas the size of Πs is now bounded by a polynomial in the size of the PRF seed s, the
description of this punctured program must specify a punctured input i (corresponding to an index
of the candidate EOWF F) and hardcoded output value y, and hence must grow with the size of F .
We thus run into a similar wall: even with obfuscation of Turing machines, the resulting auxiliary
input distribution Z would only rule out EOWF with a-priori bounded index length.

Our “Succinct Punctured Program” Technique. To deal with this issue, we develop a “suc-
cinct punctured program” technique. That is, we show how to make the size of the obfuscation be
independent of the length of the input, while still retaining its usability as an obfuscator. The idea is
two-fold: First, we modify the program Πs to hash the input to the PRF, using a collision-resistant
hash function h. That is, we now consider a program Πh,s(j) = fj(PRFs(h(j))). Second, we make
use of differing-inputs obfuscation, as opposed to just indistinguishability obfuscation. Specifically,
our constructed auxiliary input distribution Z will sample a uniform s and a random hash func-
tion h (from some appropriate collection of collision-resistant hash functions) and then output a
differing-inputs obfuscation of Πh,s.

To prove that this “universal” distribution Z over auxiliary input breaks all alleged extractable
one-way functions over {0, 1}k → {0, 1}k, we define a one-way function inverter Inv just as before,

except that we now feed the EOWF extractor E the obfuscation of the “punctured” variant Πh,s
i,y
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which contains a PRF seed punctured at point h(i). The program Πh,s
i,y proceeds just as Πh,s except

on all inputs j such that h(j) is equal to this special value h(i); for those inputs it simply outputs

the hardcoded value y. (Note that the index i is no longer needed to specify the function Πh,s
i,y —

rather, just its hash h(i)—but is included for notational convenience). As before, consider a hybrid
experiment where y is selected as y := Πh,s(i).

Whereas before the punctured program was equivalent to the original, and thus indistinguisha-
bility of auxiliary inputs in the different experiments followed by the definition of indistinguishability
obfuscation, here it is no longer the case that if y = Πh,s(i), then Πh,s

i,y is equivalent to Πh,s—in fact,
they may differ on many points. More precisely, the programs may differ in all points j such that
h(j) = h(i), but j 6= i (since fj and fi may differ on the input PRFs(h(i))). Thus, we can no longer
rely on indistinguishability obfuscation to provide indistinguishability of these two hybrids.

We resolve this issue by relying differing-inputs obfuscation instead of just indistinguishability
obfuscation. Intuitively, if obfuscations of Πh,s and Πh,s

i,y can be distinguished when y is set to Πh,s(i),
then we can efficiently recover some input j where the two programs differ. But, by construction,
this must be some point j for which h(j) = h(i) (or else the two program are the same), and j 6= i
(since we chose the hardcoded value y = Πh,s(i) to be consistent with Πh,s on input i. Thus, if the
obfuscations can be distinguished, we can find a collision in h, contradicting its collision resistance.

To formalize this argument, we require a notion of differing-inputs obfuscation with auxiliary
input. As it turns out, we only require extractability to hold with respect to the distribution that
samples a random hash function h from the CRHF family. We have thus achieved our goal of demon-
strating two distributions Z,D such that either extractable one-way functions {0, 1}k → {0, 1}k do
not exist w.r.t. Z, or differing-inputs obfuscators do not exists w.r.t. D. Finally, note that assuming
the existence public-coin collision-resistant hash functions [HR04], then the auxiliary input portion
of D can be uniform.

1.2 Removing Auxiliary Input in diO

We then turn our focus to differing-inputs obfuscation. We observe that in the case of diO, the
situation of “bad side information” cannot be circumvented simply by disallowing auxiliary input,
but rather such information can appear in the input-output behavior of the programs to be obfuscated.
Namely, we show that for any distribution D over P × P × {0, 1}` of programs P and bounded-
length auxiliary input, the existence of diO w.r.t. D is directly implied by the existence of any
indistinguishability obfuscator (iO) that is diO-secure for a slightly enriched distribution of programs
D′ over P ′ × P ′, without auxiliary input.

Intuitively, this transformation works by embedding the “bad auxiliary input” into the input-
output behavior of the circuits to be obfuscated themselves. That is, the new distribution D′ is formed
by sampling first a triple (P0, P1, z) of programs and auxiliary input from the original distribution
D, and then instead considering the tweaked programs P z0 , P

z
1 that have a special additional input

x∗ (denoted later as “mode = ∗”) for which P z0 (x∗) = P z1 (x∗) is defined to be z. This introduces no
new differing inputs to the original program pair P0, P1, but now there is no hope of preventing the
adversary from learning z without sacrificing correctness of the obfuscation scheme.

A technical challenge arises in the security reduction, however, in which we must modify the
obfuscation of the z-embedded program P zb to “look like” an obfuscation of the original program Pb.
Interestingly, this issue is solved by making use of a second layer of obfuscation, and is where the iO
security of the obfuscator is required. We refer the reader to Section 5 for details.
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1.3 Other Applications of the “Succinct Punctured Program” Technique

As mentioned above, the “punctured program” paradigm of [SW14] has been used in multiple ap-
plications (e.g., [SW14, HSW14, GGHR, BZ14]). Many of them rely on punctured programs in an
essentially identical way to the approach described above, and in particular follow the same hybrids
within the security proof. Furthermore, for some of these applications, there are significant gains
in making the obfuscation succinct (i.e., independent of the input size of the obfuscated program).
Thus, for these applications, if we instead rely on differing-inputs obfuscation (and the existence
of collision-resistant hash functions), by using our succinct punctured program technique, we can
obtain significant improvements. For instance, relying on the same approach as above, we can show
based on these assumptions:

• “Succinct” Perfect Zero-Knowledge Non-Interactive Universal Argument System (with commu-
nication complexity kε for every ε), by relying on the non-succinct Perfect NIZK construction
of [SW14].

• A universal instantiation of Random Oracles, for which the Full Domain Hash (FDH) signature
paradigm [BR93] is (selectively) secure for every trapdoor (one-to-one) function (if hashing
not only the message but also the index of the trapdoor function), by relying on the results
of [HSW14] showing how to provide a trapdoor-function specific instantiation of the random
oracle in the FDH.7

We explore these applications further in Section 4.

2 Preliminaries

2.1 Differing-Inputs Obfuscation

For each distribution D = {Dk} over Mk ×Mk × {0, 1}∗ (specifying program pairs and auxiliary
input), we define differing-inputs obfuscation secure with respect to D. We present a definition as
formalized in [BCP14], which is a variant of the notion of “differing-inputs” obfuscation of [BGI+12].8

Definition 2.1 (Differing-Inputs Obfuscator w.r.t. Distribution D). A uniform PPT machine diO is
a differing-inputs obfuscator w.r.t. distribution D overMk×Mk×{0, 1}∗ if it satisfies the following
correctness and security properties:

• Correctness: There exists a negligible function negl(k) such that for every security parameter
k ∈ N, for all M ∈Mk, for all inputs x, we have

Pr[M̃ ← diO(1k,M) : M̃(x) = M(x)] = 1− negl(k).

7That is, [HSW14] shows that for every trapdoor one-to-one function, there exists some way to instantiate the random
oracle so that the resulting scheme is secure. In constrast, our results shows that there exists a single instantation that
works no matter what the trapdoor function is.

8Formally, our notion of differing-inputs obfuscation departs from differing-inputs obfuscation of [BGI+12] in three
ways: First, we consider a setting in which the adversary (and extractor) may receive auxiliary input. Second, [BGI+12]
require the extractor E to extract a differing input for M0,M1 given any pair of programs M ′0,M

′
1 evaluating equivalent

functions. Third, [BGI+12] consider also adversaries who distinguish with negligible advantage ε(k), and require that
extraction still succeeds in this setting, but within time polynomial in 1/ε. In contrast, we restrict our attention only
to adversaries who succeed with noticeable advantage.
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• Security: For every non-uniform PPT adversary A and polynomial p(k), there exists a non-
uniform PPT extractor E and polynomial q(k) such that for every k ∈ N, it holds with over-
whelming probability over (M0,M1, z)← D that

Pr
[
b← {0, 1}; M̃ ← diO(1k,Mb) : A(1k, M̃ , z) = b

]
≥ 1

2
+

1

p(k)

=⇒ Pr
[
w ← E(1k,M0,M1, z) : M0(w) 6= M1(w)

]
≥ 1

q(k)
.

Definition 2.2 (Differing-Inputs Obfuscator for TM). A uniform PPT machine diOTM is called a
differing-inputs obfuscator for the class TM of polynomial-size Turing machines if it satisfies the
following. For each k, letMk be the class of Turing machines Π containing a description of a Turing
machine M of size bounded by k, such that Π takes two inputs, (t, x), with |t| = k, and the output
of Π(t, x) is defined to be the the output of running the Turing machine M(x) for t steps. Then
diOTM is a differing-inputs obfuscator for {Mk}.9

2.2 Extractable One-Way Functions

For this work, we consider a slightly weakened version of EOWFs w.r.t. distributional auxiliary
input information, from some distribution Z. Namely, we require one-wayness and extractability
to hold with overwhelming probability over auxiliary input z sampled from Z. In contrast, typical
definitions require these properties to hold for any auxiliary input z in some auxiliary input set Z
(e.g., all length-bounded values). For example, “standard” auxiliary-input-secure EOWFs [CD08]
are required to be Z-auxiliary-input EOWFs for every (possibly non-uniform) distribution Z.

We present a non-uniform version of the definition, in which both one-wayness and extractability
are with respect to non-uniform polynomial-time adversaries.

Definition 2.3 (Z-Auxiliary-Input EOWF). Let `,m be polynomially bounded length functions.

An efficiently computable family of functions F =
{
fi : {0, 1}k → {0, 1}`(k)

∣∣∣ i ∈ {0, 1}m(k), k ∈ N
}
,

associated with an efficient probabilistic key sampler KF , is a Z-auxiliary-input extractable one-way
function if it satisfies:

• One-wayness: For non-uniform polynomial-time A and sufficiently large k ∈ N,

Pr
[
z ← Zk; i← KF (1k); x← {0, 1}k; x′ ← A(i, fi(x); z) : fi(x

′) = fi(x)
]
≤ negl(k).

• Extractability: For any non-uniform polynomial-time adversary A, there exists a non-uniform
polynomial-time extractor E such that, for sufficiently large security parameter k ∈ N:

Pr
[
z ← Zk; i← KF (1k); y ← A(i; z); x′ ← E(i; z) : ∃x s.t. fi(x) = y ∧ fi(x′) 6= y

]
≤ negl(k).

9Note that applying the properties of differing-inputs obfuscation to this class of Turing machines {Mk} implies
that for programs Π0,Π1 ∈ Mk defined above (corresponding to underlying size-k Turing machines M0,M1), efficiently
distinguishing between obfuscations of Π0 and Π1 implies that one can efficiently extract an input pair (t′, x′) for
which Π0(t′, x′) 6= Π1(t′, x′). In particular, either M0(x′) 6= M1(x′) or Runtime(M0, x

′) 6= Runtime(M1, x). Thus, if
restricting attention to a subclass of Mk for which each pair of programs satisfies Runtime(M0, x) = Runtime(M1, x)
for each input x, then “standard” extraction is guaranteed (i.e., such that the extracted input contains x′ satisfying
M0(x′) 6= M1(x′)). In the sequel, when referring to a differing-inputs obfuscation of a Turing machine M , we will
implicitly mean the related program ΠM as above, but will suppress notation of the additional input t. For our
application, it will be the case for the relevant class of Turing machines that every pair of programs M0,M1 has same
runtime per input (and thus we will achieve “standard” input-extraction guaranteed).
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2.3 Succinct Non-Interactive Arguments (SNARGs and SNARKs)

We focus attention to publicly verifiable succinct arguments.
We consider succinct non-interactive arguments of knowledge (SNARKs) with adaptive soundness

in Section 3.2, and consider the case of specific distributional auxiliary input.

Definition 2.4 (Z-Auxiliary Input Adaptive SNARK). A triple of algorithms (CRSGen,Prove,Verify)
is a publicly verifiable, adaptively sound succinct non-interactive argument of knowledge (SNARK)
for the relation R if the following conditions are satisfied for security parameter k:

• Completeness: For any (x,w) ∈ R,

Pr[crs← CRSGen(1k);π ← Prove(x,w, crs) : Verify(x, π, crs) = 1] = 1.

In addition, Prove(x,w, crs) runs in time poly(k, |y|, t).
• Succinctness: The length of the proof π output by Prove(x,w, crs), as well as the running

time of Verify(x, π, crs), is bounded by p(k + |X|), where p is a universal polynomial that does
not depend on R. In addition, CRSGen(1k) runs in time poly(k): in particular, crs is of length
poly(k).

• Adaptive proof of knowledge: For any non-uniform polynomial-size prover P ∗ there exists
a non-uniform polynomial-size extractor EP ∗ , such that for all sufficiently large k ∈ N and
auxiliary input z ← Z, it holds that

Pr[z ← Z; crs← CRSGen(1k); (x, π)← P ∗(z, crs); (x,w)← EP ∗(z, crs) :

Verify(crs, x, π) = 1 ∧ w /∈ R(x)] ≤ negl(k).

We also consider the following notion of zero-knowledge (ZK) succinct non-interactive arguments
(SNARGs) without the extraction property, in Section 4.1.

Definition 2.5 (Perfect ZK-SNARG). A triple of algorithms (CRSGen,Prove,Verify) is a publicly
verifiable perfect zero-knowledge (ZK) succinct non-interactive argument (SNARG) for the relation
R (corresponding to language L) if it satisfies the Correctness and Succinctness properties as in
Definition 2.4, in addition to the following properties:

• (Non-Adaptive) Soundness: For every PPT P ∗, for every x /∈ L, it holds that

Pr[crs← CRSGen(1k); π ← P ∗(1k, x, crs) : Verify(x, π, crs) = 1] ≤ negl(k).

• Perfect Zero Knowledge: There exist PPT algorithms S = (Scrs,SProof) such that for any
polynomial collection (xi, wi) ∈ R, i ∈ [`(k)], the following distributions are identical:

{crs← CRSGen(1k); π1 ← Prove(x1, w1, crs); · · · ; π` ← Prove(x`, w`, crs) : (crs, π1, . . . , π`)}.

{(crssim, td)← Scrs(1k); πsim1 ← SProof(x1, crs, td); · · · ; πsim` ← SProof(x`, crs, td) : (crssim, πsim1 , . . . , πsim` )}.

Definition 2.6 ((Perfect ZK) Universal Arguments). [BG08] We say that (CRSGen,Prove,Verify)
is a (perfect zero-knowledge) universal argument if it is a (Perfect ZK) SNARG for the universal
relation RU , defined to be the set of instance-witness pairs (y, w), where y = (M,x, t), |w| ≤ t, and
M is a Turing machine, such that M accepts (x,w) after at most t steps.

Note that while the witness w for each instance y = (M,x, t) in the relation RU is of size at most
t, there is no a-priori polynomial bounding t in terms of |x|.
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2.4 Puncturable PRFs

Our result makes use of puncturable PRFs, which are PRFs with an extra capability to generate
keys that allow one to evaluate the function on all bit strings of a certain length, except for any
polynomial-size set of inputs. We focus on the simple case of puncturing PRFs at a single point.
The definition is formulated as in [SW14], following the specific exposition of [BCPR14].

Definition 2.7 (Puncturable PRFs). Let m′, ` be polynomially bounded length functions. An
efficiently computable family of functions

PRF =
{
PRFs : {0, 1}m′(k) → {0, 1}`(k)

∣∣∣ s ∈ {0, 1}k, k ∈ N
}
,

associated with an efficient (probabilistic) seed sampler KPRF , is a puncturable PRF if there exists
a puncturing algorithm Punct that takes as input a seed s ∈ {0, 1}k and a point x∗ ∈ {0, 1}m′(k), and
outputs a punctured seed sx∗ , so that the following conditions are satisfied:

• Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}m′(k),

Pr
[
s← KPRF (1k); sx∗ ← Punct(k, x∗) : ∀x 6= x∗, PRFs(x) = PRFsx∗ (x)

]
= 1.

• Indistinguishability at punctured points: The following ensembles are computationally
indistinguishable:

{s← KPRF (1k), sx∗ ← Punct(s, x∗) : x∗, sx∗ ,PRFs(x
∗)}x∗∈{0,1}m(k),k∈N

{s← KPRF (1k), sx∗ ← Punct(s, x∗), u← {0, 1}`(k) : x∗, sx∗ , u}x∗∈{0,1}m(k),k∈N.

Note that the definition is “selectively secure,” where x∗ is specified before sampling the public
parameters. For notational simplicity, (and without loss of generality), we will assume the punctured
key sx∗ explicitly includes x∗ in the clear.

As observed in [BW13, BGI14, KPTZ13], the GGM tree-based PRF construction [GGM86] yields
puncturable PRFs as defined above, based on any one-way function. The size of such a punctured key
sx∗ in this construction is O(m′(k) · `(k)) (specifically, a punctured key at input x∗ = x1x2 · · ·xm′(k)
can be attained by providing m′(k) size-`(k) partial evaluations in the GGM tree, corresponding to
prefixes (x̄1), (x1x̄2), . . . , (x1x2 · · · x̄m′(k)).)

Theorem 2.8 ([BW13, BGI14, KPTZ13]). If one-way functions exist, then for all efficiently com-
putable functions m′(k) and `(k), there exists a puncturable PRF family that maps m′(k) bits to `(k)
bits, such that the size of a punctured key is O(m′(k) · `(k)).

3 Differing-Inputs Obfuscation or Extractable One-Way Functions

In this section, we present our main result: a conflict between differing-inputs obfuscation (“diO”)
and extractable one-way functions (EOWF) w.r.t. particular fixed distributions of auxiliary informa-
tion.
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3.1 From D-Distributional diO to Impossibility of Z-Auxiliary-Input EOWF

We demonstrate bounded polynomial-time uniformly samplable distributions Z (with bounded poly-
size output length) and D (over TM × TM × {0, 1}p(k) for bounded poly-size p(k)) such that if
there exists differing-inputs obfuscation for Turing machines w.r.t. distribution D of programs and
auxiliary inputs, and there exist collision-resistant hash functions (CRHF), then there do not exist
extractable one-way functions (EOWF) w.r.t. auxiliary information sampled from distribution Z. In
our construction, Z consists of an obfuscated Turing machine, and the auxiliary input portion of
D is precisely the distribution of CRHF function descriptions. In particular, if there exist CRHFs
whose indices are random (e.g., public-coin CRHFs), then the auxiliary input in D can be uniform.

We emphasize that we provide a single distribution Z of auxiliary inputs for which all candidate
EOWF families F with given output length will fail. This is in contrast to the result of [BCPR14],
which show for each candidate family F that there exists a tailored distribution ZF (whose size
grows with |F|) for which F will fail.

Theorem 3.1. For every polynomial `, there exists an efficient, uniformly samplable distributions
Z,D such that, assuming the existence of collision-resistant hash functions and D-distributional
differing-inputs obfuscation for Turing machines, then there cannot exist Z-auxiliary-input extractable
one-way functions {fi : {0, 1}k → {0, 1}`(k)}.

Proof. We construct an adversary A and desired distribution Z on auxiliary inputs, such that for any
alleged EOWF family F , there cannot exist an efficient extractor corresponding to A given auxiliary
input from Z (assuming existence of the listed tools).

The Universal Adversary A. We consider a universal PPT adversary A that, given (i, z) ∈
{0, 1}poly(k) × {0, 1}n(k), parses z as a Turing machine and returns z(i). Note that in our setting, i
corresponds to the index of the selected function fi ∈ F , and (looking ahead) the auxiliary input z
will contain an obfuscated program.

The Auxiliary Input Distribution Z. Let PRF = {PRFs : {0, 1}m(k) → {0, 1}k}s∈{0,1}k be a
puncturable pseudorandom function family, and H = {Hk} a collision-resistant hash function family
with h : {0, 1}∗ → {0, 1}m(k) for each h ∈ Hk. (Note that by Theorem 2.8, punctured PRFs for these
parameters exist based on OWFs, which are implied by CRHF). We begin by defining two classes of
Turing machines:

M =
{

Πh,s
∣∣∣ s ∈ {0, 1}k, h ∈ Hk, k ∈ N

}
,

M∗ =
{

Πh,s
i,y

∣∣∣ s ∈ {0, 1}k, y ∈ {0, 1}`(k), h ∈ Hk, k ∈ N
}
,

which we now describe. We assume without loss of generality for each k that the corresponding
collection of Turing machines Πh,s ∈ Mk, Πh,s

i,y ∈ M∗k are of the same size; this can be achieved by
padding. (We address the size bound of each class of machines below). In a similar fashion, we may

further assume that for each k the runtime of each Πh,s and Πh,s
i,y on any given input fi is equal (see

discussion in Section 2.1).
At a high level, each machine Πh,s accepts as input a poly-size circuit description of a function fi

(with canonical description, including a function index i), computes the hash of the corresponding
index i w.r.t. the hardcoded hash function h, applies a PRF with hardcoded seed s to the hash,
and then evaluates the circuit fi on the resulting PRF output value x: that is, Πh,s

i,y (fi) outputs

Uk(fi,PRFs(h(i))), where Uk is the universal Turing machine. See Figure 1. Note that each Πh,s can
be described by a Turing machine of size O(|s|+ |h|+ |Uk|), which is bounded by p(k) for some fixed
polynomial p.
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Turing Machine Πh,s:

Hardwired: Hash function h : {0, 1}∗ → {0, 1}m(k), PRF seed s ∈ {0, 1}k.
Inputs: Circuit description fi

1. Hash the index: v = h(i).

2. Compute the PRF on this hash: x = PRFs(v).

3. Output the evaluation of the universal Turing machine on inputs fi, x: i.e., y = Uk(fi, x).

Figure 1: Turing machines Πh,s ∈M.

Auxiliary Input Distribution Zk:
1. Sample a hash function h← Hk and PRF seed s← KPRF (1k).

2. Output an obfuscation Π̃← diO(Πh,s).

Figure 2: The auxiliary input distribution Zk.

The machines Πh,s
i,y perform a similar task, except that instead of having the entire PRF seed s

hardcoded, they instead only have a punctured seed s∗ derived from s by puncturing it at the point
h(i) (i.e., enabling evaluation of the PRF on all points except h(i)). In addition, it has hardwired
an output y to replace the punctured result. More specifically, on input a circuit description fj
(with explicitly specified index j), the program Πh,s

i,y first computes the hash h = h(j), continues
computation as usual for any h 6= h(i) using the punctured PRF key, and for h = h(i), it skips
the PRF and Uk evaluation steps and directly outputs y. Note that because h is not injective, this
puncturing may change the value of the program on multiple inputs fj (corresponding to functions

fj ∈ F with h(j) = h(i)). When the hardcoded value y is set to y = fi(PRFs(h(i))), then Πh,s
i,y

agrees with Πh,s additionally on the input fi, but not necessarily on the other inputs fj for which
h(j) = h(i). (Indeed, whereas the hash of their indices collide, and thus their corresponding PRF
outputs, PRF(h(j)), will agree, the final step will apply different functions fj to this value). We
remark that indistinguishability obfuscation arguments will thus not apply to this scenario, since we
are modifying the computed functionality. In contrast, differing-inputs obfuscation will guarantee
that the two obfuscated programs are indistinguishable, otherwise we can efficiently find one of the
disagreeing inputs, which will correspond to a collision in the CRHF.

Note that each Πh,s
i,y can be described by a Turing machine of size O(|s∗| + |h| + |y| + |Uk|).

Recall by Theorem 2.8 the size of the punctured PRF key |s∗| ∈ O(m′(k)`(k)), where the PRF has
input and output lengths m′(k) and `(k). In our application, note that the input to the PRF is not

the function index i itself (in which case the machine Πh,s
i,y would need to grow with the size of the

alleged EOWF family), but rather the hashed index h(i), which is of fixed polynomial length. Thus,

collectively, we have |Πh,s
i,y | is bounded by a fixed polynomial p′(k), and finally that there exists a

single fixed polynomial bound on the size of all programs Πh,s ∈ M,Πh,s
i,y ∈ M∗. This completely

determines the defined auxiliary input distribution Z = {Zk}, described in full in Figure 2. (Note
that the size of the auxiliary output generated by Z, which corresponds to an obfuscation of an
appropriately padded program Πh,s is thus also bounded by a fixed polynomial in k).

A Has No Extractor. We show that, based on the assumed security of the underlying tools, the
constructed adversary A given auxiliary input from the constructed distribution Z = {Zk}, cannot
have an extractor E satisfying Definition 2.3:
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Turing Machine Πh,s
i,y :

Hardwired: Hash function h : {0, 1}∗ → {0, 1}m(k), punctured PRF seed s∗ ∈ {0, 1}k, punctured
point h(i), bit string y ∈ {0, 1}`(k).

Input: Circuit description fj (containing index j)

1. Hash the index: v = h(j).

2. If v 6= h(i), compute x = PRFs∗(v), and output Uk(fj , x).

3. If v = h(i), output y.

Figure 3: “Punctured” Turing machines Πh,s
i,y ∈M∗.

Auxiliary Input Distribution Zk(i, y):

1. Sample a hash function h← Hk and PRF seed s← KPRF (1k).

2. Sample a punctured PRF seed s∗ ← Punct(s, h(i)), punctured at point h(i).

3. Compute the “correct” punctured evaluation: y = fi(PRFs(h(i))).

4. Output an obfuscation M̃ ← diO(Πh,s
i,y ), where Πh,s

i,y is defined from (h, s∗, y), as in Figure 10.

Figure 4: The “punctured” distribution Zk(i, y).

Proposition 3.2. For any non-uniform polynomial-time candidate extractor E for A, it holds that
E fails with overwhelming probability: i.e.,

Pr
[
z ← Zk; i← KF (1k); y ← A(i; z); x′ ← E(i; z) : ∃x s.t. fi(x) = y ∧ fi(x′) 6= y

]
≥ 1− negl(k).

Proof. First note that given auxiliary input z ← Zk, A produces an element in the image of the
selected fi with high probability. That is,

Pr
[
z ← Zk; i← KF (1k); y ← A(i; z) : ∃x s.t. fi(x) = y

]
≥ 1− negl(k).

Indeed, by the definition of A and Zk, and the correctness of the obfuscator diO, then we have with
overwhelming probability

A(i; z) = M̃(fi) = Πh,s(fi) = fi(PRFs(h(i))),

where z = M̃ is an obfuscation of Πh,s ∈M; i.e., z = M̃ ← diO(Πh,s).
Now, suppose for contradiction that there exists a non-negligible function ε(k) such that for

all k ∈ N the extractor E successfully outputs a preimage corresponding to the output A(i; z) ∈
Range(fi) with probability ε(k): i.e.,

Pr
[
z ← Zk; i← KF (1k); x′ ← E(i; z) : fi(x

′) = A(i; z) = fi(PRFs(h(i)))
]
≥ ε(k).

where as before, s, h are such that z = diO(Πh,s). We show that this cannot be the case, via three
steps.
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Step 1: Replace Z with “punctured” distribution Z(i, y). For every index i of the EOWF
family F and k ∈ N, consider an alternative distribution Zk(i, y) that, instead of sampling and
obfuscating a Turing machine Πh,s from the class M, as is done for Z, it does so with a Turing
machine Πh,s

i,y ∈ M∗ as follows. First, it samples a hash function h← Hk and PRF seed s as usual.
It then generates a punctured PRF key s∗ ← Punct(s, h(i)) that enables evaluation of the PRF on
all points except the value h(i). For the specific index i, it computes the correct full evaluation

y := fi(PRFs(h(i))). Finally, Zk(i, y) outputs an obfuscation of the constructed program Πh,s
i,y as

specified in Figure 10 from the values (h, s∗, y): i.e., M̃ ← diO(Πh,s
i,y ). See Figure 4 for a full

description of Z(i, y).
We now argue that the extractor E must also succeed in extracting a preimage when given a

value z∗ ← Zk(i, y) from this modified distribution instead of Zk. At a high level, the argument runs
as follows. If E ’s extraction success drops by a non-negligible amount when instead given a sample
from this new distribution, then he can be used to distinguish between obfuscations of corresponding
pair of programs Πh,s,Πh,s

i,y . By the differing-inputs obfuscation property, this implies that we can
efficiently extract an input j on which the two programs differ. But, by construction, the only such
inputs j are those that collide with i with respect to the collision-resistant hash function. Thus, such
an extractor cannot exist, as it can be used to efficiently find collisions in the CRHF.

We now formalize this intuition.

Lemma 3.3. It holds that

Pr
[
i← KF (1k); z∗ ← Zk(i, y); x′ ← E(i; z∗) :

fi(x
′) = A(i; z∗) = fi(PRFs(h(i)))

]
≥ ε(k)− negl(k). (1)

Proof. Suppose, to the contrary, there exists a non-negligible function α(k) for which the probability
in Equation (1) is less than ε(k) − α(k). In particular, there exists a polynomial p(k) such that for
infinitely many values of k, there exists an index ik in the range of KF (1k) for which

Pr
[
z∗ ← Zk(ik, y∗); x′ ← E(ik; z

∗) : fik(x′) = A(ik; z
∗) = fik(PRFs(h(ik)))

]
< ε(k)− 1

p(k)
. (2)

Denote by I = {ik} this ensemble of function indices.
Consider the following non-uniform obfuscation adversary AIobf making use of E , hardcoded with

the ensemble of “good” index values I, and given auxiliary input a hash function description h (note
that we eventually wish to turn E into an adversary for the CRHF family).

Obfuscation adversary AIobf(1k, M̃ , h):

1. Execute the EOWF extractor E , giving ik (from the hardcoded ensemble I) as the target
index, and the obfuscated program M̃ as auxiliary input. That is, x′ ← E(ik; M̃).

2. Output 0 if E succeeded in extracting a preimage: i.e., if fik(x′) = M̃(ik). Otherwise,
output a random bit b′ ← {0, 1}.

Now, expanding out the sampling procedures of the distributions Zk,Zk(ik, y), Equation (2) implies
that for the hardcoded ensemble E = {ik}, it holds for infinitely many values of k that

Pr
[
h← Hk; (M0,M1)← ProgSample(1k, ik, h);

b← {0, 1}; M̃ ← diO(Mb) : AIobf(1k, M̃ , h) = b
]
≥ 1

2
+

1

2p(k)
, (3)

where ProgSample(1k, ik, h) is given by:
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1. s← KPRF (1k).

2. s∗ ← Punct(s, h(ik)).

3. Output M0 := Πh,s, M1 := Πh,s
i,y .

Indeed, note that if b = 0 then the obfuscated program M̃ given to AIobf in Equation (3) is distributed
as M̃ ← Zk, in which case E extracts a preimage with probability at least ε(k). In contrast, if b = 1,
then M̃ given to AEobf is distributed as M̃ ← Zk(ik, y), in which case (for infinitely many k) E extracts
a preimage with probability ε(k)− 1/p(k).

Thus, with probability at least 1/4p(k) over h← Hk; (M0,M1)← ProgSample(1k, ik, h), it holds
that

Pr
[
b← {0, 1}; M̃ ← diO(Mb) : AIobf(1k, M̃ , h) = b

]
≥ 1

2
+

1

4p(k)
. (4)

Now, by the differing-inputs obfuscation security of diO (with respect to distribution D of pro-

grams and auxiliary input corresponding to sampled Πh,s,Πh,s
i,y and auxiliary input h) there exists a

non-uniform PPT algorithm EI′obf (with some non-uniform advice ensemble I ′) and a polynomial q(k)
corresponding to AIobf and p(k), such that for any pair of programs M0,M1 for which AIobf success-
fully distinguishes between the obfuscations diO(M0) and diO(M1) with advantage 1/4p(k) (when
given auxiliary input h ← Hk), then EI′obf (given the pair M0,M1) will extract a disagreeing input
j such that M0(j) 6= M1(j) with non-negligible probability 1/q(k) when given the same auxiliary
input h← Hk.

By (4), this means that for infinitely many k, with probability 1/4p(k) over h← Hk; (M0,M1)←
ProgSample(1k, ik, h), we have

Pr
[
j ← EI′obf(1k,M0,M1, h) : M0(j) 6= M1(j)

]
≥ 1

q(k)
. (5)

We now argue that this contradicts the collision resistance of the hash familyH. Namely, consider the

following non-uniform PPT collision-finding adversary AI,I
′

CR , who is given both advice ensembles I, I ′.

Collision-finding adversary AI,I
′

CR (1k):

1. Receive a random hash function h← Hk from the CRHF challenger.

2. Sample a corresponding pair of programs (M0,M1) ← ProgSample(1k, ik, h) where ik is
specified by the advice ensemble I. Recall that M0 is a program Πh,s and M1 is a corre-
sponding “ik-punctured” program Πh,s

i,y .

3. Execute the (non-uniform) extractor EI′obf from above on this pair of programs, hash function
descriptor h, and advice from I ′: that is, j ← EI′obf(1k,M0,M1, h).

4. Output the pair (ik, j) as the alleged collision for h.

By Equation (5), we have that with probability at least 1/4p(k) over the sampling of the challenge
function h← Hk andAICR’s sampling of (M0,M1)← ProgSample(1k, ik, h) that the extractor EI′obf suc-
ceeds in extracting a disagreeing input with probability 1/q(k). Thus, with probability 1/4p(k)q(k),

the value j output by AI,I
′

CR (1k) satisfies M0(j) 6= M1(j); that is, Πh,s(j) 6= Πh,s
i,y (j). But, by construc-

tion of Πh,s
i,y , the set of such inputs consists exactly of the values {j 6= ik|h(j) = h(ik)}. (Indeed, recall

that for all inputs j with h(j) = h(ik), we hardcoded their final output to the value corresponding to

Πh,s(ik)). Therefore, with non-negligible probability (1/4p(k)q(k) for infinitely many k), AI,I
′

CR has
found a collision in h, yielding a contradiction to the security of H. The lemma follows.
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Step 2: Replace “correct” hardcoded y in Z(i, y) with random fi evaluation. Next,
we consider another experiment where Zk(i, y) is altered to a nearly identical distribution Zk(i, u)
where, instead of hardcoding the “correct” i-evaluation value y = fi(PRFs(h(i))) in the generated

“punctured” program Πh,s
i,y , the distribution Zk(i, u) now simply samples a random fi output y =

fi(u) for an independent random u ← {0, 1}k. We claim that the original EOWF extractor E still
succeeds in finding a preimage when given this new auxiliary input distribution:

Lemma 3.4. It holds that

Pr
[
i← KF (1k); z∗∗ ← Zk(i, u); x′ ← E(i; z∗∗) :

fi(x
′) = A(i; z∗∗) = fi(u)

]
≥ ε(k)− negl(k). (6)

Proof. This follows from the fact that PRFs(h(i)) is pseudorandom, even given the h(i)-punctured
key s∗.

Formally, consider an algorithm A0
PRF which, on input the security parameter 1k, a pair of values

i, h, and a pair s∗, x (that will eventually correspond to a challenge punctured PRF key, and either
PRFs(h(i)) or random u), performs the following steps.

Algorithm A0
PRF(1k, i, h, s∗, x):

1. Take y = fi(x), and obfuscate the associated program Πh,s
i,y : i.e., z∗∗ ← diO(1k,Πh,s

i,y ).

2. Run the EOWF extractor given index i and auxiliary input z∗∗: x′ ← E(i; z∗∗).

3. Output 0 if E succeeds in extracting a valid preimage: i.e., if fi(x
′) = y∗ = fi(x). Otherwise,

output a random bit b← {0, 1}.

Now, suppose Lemma 3.4 does not hold: i.e., the probability in Equation (6) differs by some non-
negligible amount from ε(k). Then, expanding out the sampling procedure of Zk(i, y) and Zk(i, u),
we have for some non-negligible function α(k) that

Pr
[
i← KF (1k); h← Hk; s← KPRF (1k); s∗ ← Punct(s, h(i)); u← {0, 1}k;

b← {0, 1} : A0
PRF(1k, i, h, xb) = b

]
≥ 1

2
+ α(k), (7)

where x0 := PRFs(h(i)) and x1 := u. Indeed, in the case b = 0, the auxiliary input z∗∗ generated by
APRF and given to E has distribution exactly Z(i, y), whereas in the case b = 1, the generated z∗∗

has distribution exactly Z(i, u).
In particular, there exists a polynomial p(k) such that for infinitely many k, there exists an index

ik and hash function hk ∈ Hk with

Pr
[
s← KPRF (1k); s∗ ← Punct(s, h(ik)); u← {0, 1}k;

b← {0, 1} : A0
PRF(1k, ik, h, xb) = b

]
≥ 1

2
+

1

p(k)
, (8)

where x0, x1 are as before.
Consider a non-uniform punctured-PRF adversary AIPRF (with the ensemble I = {ik, hk} hard-

coded) that first selects the challenge point hk(ik); receives the PRF challenge information (s∗, x)
for this point; executes A0

PRF on input (1k, ik, hk, s
∗, x), and outputs the corresponding bit b output

by A0
PRF. Then by (8), it follows that AIPRF breaks the security of the punctured PRF.
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Step 3: Such an extractor breaks one-wayness of EOWF. Finally, we observe that this
means that E can be used to break the one-wayness of the original function family F . Indeed, given
a random key i and a challenge output y = fi(u), an inverter can simply sample a hash function h and

h(i)-punctured PRF seed s∗ on its own, construct the program Πh,s
i,y with its challenge y hardcoded

in, and sample an obfuscation z∗∗ ← diO(Πh,s
i,y ). Finally, it runs E(i, z∗∗) to invert y∗, with the same

probability ε(k)− negl(k).

This concludes the proof of Theorem 3.1.

3.2 Differing-Inputs Obfuscation or SNARKs

We link the existence of differing-inputs obfuscation for NC1 and the existence of succinct non-
interactive arguments of knowledge (SNARKs), via an intermediate step of proximity extractable one-
way functions (PEOWFs), a notion related to EOWFs, introduced in [BCCT12]. Namely, building
upon the results of the previous subsection, and results of [BCP14, BCCT12], we show:

1. Assuming the existence of fully homomorphic encryption (FHE) with decryption in NC1 and
SNARKs for NP, there exist efficient distributions Z,D such that D-distributional differing-
inputs obfuscation for NC1 implies that there cannot exist PEOWFs {f : {0, 1}k → {0, 1}k}
w.r.t. Z.

2. PEOWFs {f : {0, 1}k → {0, 1}k} w.r.t. this auxiliary input distribution Z are implied by the
existence of SNARKs for NP secure w.r.t. a second efficient auxiliary input distribution Z ′′ (and
collision-resistant hash functions), as shown in [BCCT12].

3. Thus, one of these conflicting hypotheses must be false. That is, there exist efficient distributions
Z ′′,D such that assuming existence of FHE with decryption in NC1 and collision-resistant hash
functions, then either: (1) D-distributional differing-inputs obfuscation for NC1 does not exist,
or (2) SNARKS for NP w.r.t. Z ′′ do not exist.

Note that we focus on the specific case of PEOWFs with k-bit inputs and k-bit outputs, as this
suffices to derive the desired contradiction; however, the theorems following extend also to the more
general case of PEOWF output length (demonstrating an efficient distribution Z to rule out each
potential output length `(k)).

3.2.1 Proximity EOWFs

We begin by defining Proximity EOWFs.

Proximity Extractable One-Way Functions (PEOWFs). In a Proximity EOWF (PEOWF),
the extractable function family {fi} is associated with a “proximity” equivalence relation ∼ on the
range of fi, and the one-wayness and extractability properties are modified with respect to this
relation. The one-wayness is strengthened: not only must it be hard to find an exact preimage of
v, but it is also hard to find a preimage of any equivalent v ∼ v′. The extractability requirement
is weakened accordingly: the extractor does not have to output an exact preimage of v, but only a
preimage of of some equivalent value v′ ∼ v.

As an example, consider functions of the form f : x 7→ (f1(x), f2(x)) and equivalence relation on
range elements (a, b) ∼ (a, b′) whose first components agree. Then the proximity extraction property
requires for any adversary A who outputs an image element (a, b) ∈ Range(f) that there exists an
extractor E who finds an input x for which f(x) = (a, b′) for some b′ not necessarily equal to b.
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In this work, we allow the relation ∼ to depend on the function index i, but require that the
relation ∼ is publicly (and efficiently) testable. We further consider non-uniform adversaries and ex-
traction algorithms, and (in line with this work) auxiliary inputs coming from a specified distribution
Z.

Definition 3.5 (Z-Auxiliary-Input Proximity EOWFs). Let `,m be polynomially bounded length
functions. An efficiently computable family of functions

F =
{
fi : {0, 1}k → {0, 1}`(k)

∣∣∣ i ∈ {0, 1}m(k), k ∈ N
}
,

associated with an efficient probabilistic key sampler KF , is a Z-auxiliary-input proximity extractable
one-way function if it satisfies the following (strong) one-wayness, (weak) extraction, and public
testability properties:

• (Strengthened) One-wayness: For non-uniform polynomial-time A and sufficiently large
security parameter k ∈ N,

Pr
[
z ← Zk; i← KF (1k); x← {0, 1}k; x′ ← A(i, fi(x); z) : fi(x

′) ∼ fi(x)
]
≤ negl(k).

• (Weakened) Extractability: For any non-uniform polynomial-time adversary A, there exists
a non-uniform polynomial-time extractor E such that, for sufficiently large security parameter
k ∈ N,

Pr
[
z ← Zk; i← KF (1k); y ← A(i; z); x′ ← E(i; z) : ∃x s.t. fi(x) = y ∧ fi(x′) 6∼ y

]
≤ negl(k).

• Publicly Testable Relation: There exists a deterministic polytime machine T such that,
given the function index i, T accepts y, y′ ∈ {0, 1}`(k) if and only if y ∼k y′.

3.2.2 ( diO for NC1 + FHE + SNARK ) =⇒ No Z-PEOWF

We now show that, assuming the existence of fully homomorphic encryption (FHE) with decryption
in NC1,10 then for some efficiently computable distributions Dobf ,ZSNARK,ZPEOWF, if there exist
differing-inputs obfuscators w.r.t distributionDobf ofNC1 circuits and auxiliary inputs, and SNARKs
w.r.t. auxiliary input ZSNARK, then there cannot exist PEOWFs w.r.t. auxiliary input ZPEOWF. This
takes place in two steps.

First, we remark that an identical proof to that of Theorem 3.1 rules out the existence of Z-
auxiliary-input proximity EOWFs in addition to standard EOWFs, based on the same assumptions:
namely, assuming differing-inputs obfuscation w.r.t. D for Turing machines and collision-resistant
hash functions (which are implied by FHE [IKO05]). Indeed, assuming the existence of a PEOWF
extractor E for the adversaryA and auxiliary input distribution Z (who extracts a “related” preimage
to the target value), the same procedure yields a PEOWF inverter who similarly extracts a “related”
preimage to any challenge output. In the reduction, it is merely required that the success of E is
efficiently and publicly testable (this is used to construct a distinguishing adversary for the differing-
inputs obfuscation scheme, in Step 1). However, this is directly implied by the public testability of
the PEOWF relation ∼, as specified in Definition 3.5.

Theorem 3.6. There exist efficient, uniformly samplable distributions Z,D such that, assum-
ing the existence of collision-resistant hash functions and differing-inputs obfuscation w.r.t. D for
polynomial-size Turing machines, there cannot exist (publicly testable) Z-auxiliary-input PEOWFs
{fi : {0, 1}k → {0, 1}k}.

10As is the case for nearly all existing FHE constructions (e.g., [GSW13, BV14]).
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Now, in [BCP14], it was shown that differing-inputs obfuscation for all polynomial-size Turing
machines can be achieved by bootstrapping up from differing-inputs obfuscation for NC1, assuming
the existence of FHE with decryption in NC1 and SNARKs.11 The resulting Turing machine ob-
fuscator will be secure w.r.t. D if the underlying SNARK scheme is secure w.r.t. auxiliary input D,
and the original NC1 obfuscator is secure w.r.t. an augmented program and auxiliary input distri-
bution Dobf = Dobf ||Zcrs, formed by concatenating a sample from D′ with additional auxiliary input
composed of a CRS generated for the SNARK scheme.

Putting this together with Theorem 3.6, we thus have the following corollary.

Corollary 3.7. There exist efficient, uniformly samplable distributions Z,Dobf (and polynomial p)
such that, assuming the existence of SNARKs and FHE with decryption in NC1, then assuming the
existence of differing-inputs obfuscation w.r.t. Dobf over NC1 ×NC1 × {0, 1}p(k), there cannot exist
PEOWFs {fi : {0, 1}k → {0, 1}k} w.r.t. auxiliary input Z.

3.2.3 ( SNARK + CRHF ) =⇒ Z-PEOWF

As shown in [BCCT12], Proximity EOWFs (PEOWFs) with respect to an auxiliary input distribution
Z are implied by collision-resistant hash functions (CRHF) and SNARKs secure with respect to a
related auxiliary input distribution.12

Loosely, the transformation converts any collision-resistant hash function family F into a PEOWF
by appending to the output of each f ∈ F a succinct SNARK argument πx that there exists a
preimage x yielding output f(x). (If the Prover algorithm of the SNARK system is randomized,
then the function is also modified to take an additional input, which is used as the random coins for
the SNARK generation). The equivalence relation on outputs is defined by (y, π) ∼ (y′, π′) if y = y′

(note that this relation is publicly testable). More explicitly, consider the new function family F ′
composed of functions

f ′crs(x, r) =
(
f(x),Prove(1k, crs, f(x), x; r)

)
,

where a function f ′crs ∈ F ′ is sampled by first sampling a function f ← F from the original CRHF
family, and then sampling a CRS for the SNARK scheme, crs← CRSGen(1k).

Now (as proved in [BCCT12]), the resulting function family will be a PEOWF with respect to
auxiliary input Z if the underlying SNARK system is secure with respect to an augmented auxiliary
input distribution ZSNARK := (Z,Z ′), formed by concatenating a sample from Z with a function
index sampled from the collision-resistant hash function family F .

Theorem 3.8 ([BCCT12]). There exist efficient, uniformly samplable distributions Z,ZSNARK such
that, assuming the existence of collision-resistant hash functions and SNARKs for NP secure w.r.t.
auxiliary input distribution ZSNARK, then there exist PEOWFs {fi : {0, 1}k → {0, 1}k} w.r.t. Z.

3.2.4 Reaching a Standoff

Observe that the conclusions of Corollary 3.7 and Theorem 3.8 are in direct contradiction. Thus, it
must be that one of the two sets of assumptions is false. Namely,

11Explicitly, [BCP14] prove that bootstrapping can be based on the weaker assumption of P -certificates (succinct
arguments for languages in P ) in the case where there is a polynomial bound on the input size. A slight modification
to their construction, in which the user instead generates a SNARK with respect to the hash of the input, admits boot-
strapping for unbounded input length based on SNARKs. Indeed, the extraction property of the SNARK guarantees
that the entire input will be recovered, as required.

12[BCCT12] consider the setting of arbitrary auxiliary input; however, their construction directly implies similar
results for specific auxiliary input distributions.
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Corollary 3.9. Assuming the existence of fully homomorphic encryption with decryption in NC1,
there exist efficiently samplable distributions ZSNARK,Dobf such that one of the following two objects
cannot exist:

• SNARKs w.r.t. auxiliary input distribution ZSNARK.

• Differing-inputs obfuscation w.r.t. distribution Dobf of NC1 circuits and auxiliary input.

More explicitly, we have that ZSNARK = (Z,Z ′) and Dobf = D||Zcrs, where Z is composed of an
obfuscated program, Z ′ consists of a randomly sampled index from a CRHF family, Zcrs corresponds
to a randomly sampled CRS from a SNARK system, and D||Zcrs denotes concatenation of additional
auxiliary input to the distribution D.

4 Applications of “Succinct Punctured Programs” Technique

We now demonstrate a variety of applications of our “succinct punctured programs” technique.

4.1 Perfect NIZK Universal Arguments

In [SW14], Sahai and Waters demonstrated a construction of a Non-Interactive Zero-Knowledge
(NIZK) argument system with perfect zero knowledge from indistinguishability obfuscation, sup-
porting fixed NP languages with statements (and witnesses) up to an a-priori bounded size. Using
our succinct punctured programs technique, we achieve a non-interactive universal argument sys-
tem, also perfectly zero knowledge, for languages and statements of unbounded polynomial size (see
Definition 2.6).

Theorem 4.1. Assume the existence of auxiliary-input-secure differing-inputs obfuscation for TM
and collision-resistant hash functions. Then for any constant ε > 0 there exists a perfect zero-
knowledge universal argument system, as in Definition 2.6.

As with the construction of [SW14], the obfuscation scheme we use must be secure with respect
to a particular distribution Z consisting of a second obfuscated program. For simplicity, however,
we state our result with respect to obfuscation secure against arbitrary auxiliary input.

NIZK of [SW14]. We first recall the NIZK construction of [SW14]. The system consists of two
obfuscated circuits (serving as the CRS):

• A Prove circuit, which has hardcoded a PRF seed s, takes as input a statement and witness pair
(x,w) and outputs the PRF evaluation PRFs(x) on x if w is a valid witness (i.e., R(x,w) = 1).

• A Verify circuit, which has hardcoded the same PRF seed s and a description of a one-way
function f , takes as input a statement and alleged proof (x, π), and outputs 1 exactly if f(π) is
equal to f(PRFs(x)). (The introduction of the one-way function f is not needed for correctness,
but rather to argue security by use of the “punctured programs” technique).

Sahai and Waters show this scheme satisfies perfect zero knowledge and (non-adaptive) soundness
assuming the obfuscation scheme used is a secure indistinguishability obfuscator with respect to
arbitrary auxiliary input [SW14].

Note that here the size of the Prove and Verify circuits must grow with the size of potential
statements x, thus inherently fixing an upper bound on the handled statement size at the time of
CRS generation.
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Succinct ZK Universal Arguments. Following our technique of succinct punctured programs,
we modify the construction of [SW14] in two ways.

First, we replace the obfuscated Prove and Verify circuits (which depend on a fixed NP rela-
tion R) with obfuscated Turing machines, which can accept arbitrary polynomial-size relations as
part of their input. That is, we now consider instances of the universal relation RU , as described
in Definition 2.6. To obtain obfuscation of Turing machines, we use differing-inputs obfuscation in
the place of indistinguishability obfuscation. On the surface, this modification almost appears to
suffice for our goal. However, one problem remains: to prove soundness of the resulting scheme for
an instance (M,x, t) /∈ RU , we must argue that the obfuscated Turing machines are indistinguish-
able from obfuscations of corresponding (M,x, t)-punctured programs, whose size must grow with
|(M,x, t)|. However, this requires the size of the obfuscated Turing machines to grow with |(M,x, t)|,
thus annihilating our universality.

To solve this problem, we incorporate a second modification to the [SW14] construction, by first
computing a collision-resistant hash of the input statement, and proceeding with this hashed value
h(M,x, t). Now we need only that the obfuscated Prove and Verify programs are indistinguishable
from an obfuscation of a program that is punctured at h(M,x, t), whose size can now be made
independent of |(M,x, t)|. As in the previous section, indistinguishability of these programs will
follow from the security of the differing-inputs obfuscation together with the collision resistance of
h.

Formally, consider the following tools:

1. PRF = {PRFs : {0, 1}m(k) → {0, 1}k}s∈{0,1}k a puncturable PRF family.
Note that by Theorem 2.8, punctured PRFs for these parameters exist based on OWFs, which
are implied by CRHF.

2. H = {Hk} a CRHF family with h : {0, 1}∗ → {0, 1}m(k) for each h ∈ Hk.
3. F = {f : {0, 1}k → {0, 1}kε} be a OWF family.

We now present our construction.

Succinct ZK Universal Argument Construction (CRSGen,Prove,Verify):

CRSGen(1k): on input the security parameter, the CRS generation procedure samples a PRF seed
s ← KPRF (1k), a hash function h ← Hk, and a OWF f ← Fk. It then generates obfuscations
of the corresponding Turing machines P h,s and V h,s,f , as defined in Figures 5 and 7. That
is, P̃ ← diO(1k, P h,s) and Ṽ ← diO(1k, V h,s,f ). Output the pair of obfuscated programs
crs = (P̃ , Ṽ ).

Prove(crs, ~x, w): Evaluate the obfuscated program P̃ ∈ crs on input (~x,w): i.e., output P̃ (~x,w).

Verify(crs, ~x, π): Evaluate the obfuscated program Ṽ ∈ crs on input (~x, π): i.e., output Ṽ (~x, π).

Proof of Theorem 4.1. Perfect zero knowledge holds as the distribution of proofs can be perfectly
simulated given the PRF seed s (without knowledge of any witness).

The size and time complexities follow from a straightforward analysis of the programs P h,s, V h,s,f .
In particular, for any input (M,x, t), the proof size is kε bits (independent of |M |, t) corresponding
to the output of the OWF, and verification of a proof on (M,x, t) requires only computing a hash
and PRF, and not executing M .

(Non-adaptive) soundness follows an analogous sequence of hybrids as Theorem 3.1, mirroring
the approach of [SW14]. Namely, for ~x = (M,x, t) /∈ RU , the obfuscated programs P h,s, V h,s,f are

sequentially replaced with their “~x-punctured” counterparts P h,s~x and V h,s,f
~x,y (as defined in Figures 6
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Turing Machine P h,s:

Hardwired: Hash function h : {0, 1}∗ → {0, 1}m(k), PRF seed s ∈ {0, 1}k.
Inputs: Universal statement ~x = (M,x, t), alleged witness w.

1. Check validity of w as witness for ~x = (M,x, t) by executing the Turing machine M on
input (x,w) for t steps. If M(x,w) 6= 1, output ⊥ and terminate. Otherwise, continue.

2. Hash the statement description: v = h(~x).

3. Compute the PRF on this hash: y = PRFs(v).

4. Output y.

Figure 5: Turing machines P h,s.

Punctured Turing Machine P h,s~x :

Hardwired: Hash function h : {0, 1}∗ → {0, 1}m(k), punctured PRF seed s∗ ∈ {0, 1}k, punctured
PRF input h(~x).

Inputs: Universal statement ~x′ = (M ′, x′, t′), alleged witness w.

1. Check validity of w as witness for ~x′ = (M ′, x′, t′) by executing the Turing machine M ′ on
input (x′, w) for t′ steps. If M(x′, w) 6= 1, output ⊥ and terminate. Otherwise, continue.

2. Hash the statement description: v = h(~x).

3. Compute the PRF on this hash: y = PRFs(v).

4. Output y.

Figure 6: Punctured Turing machines P h,s~x . Note for (M,x, t) /∈ RU , the punctured output is ⊥.

and 8), and then replacing the hardcoded output y in the V h,s,f
~x,y program with a random output

f(u) of the OWF f for uniform u ∈ {0, 1}k. By the security of the differing-inputs obfuscator, an
adversary’s success probability in generating a proof on ~x cannot decrease by too much, or such
adversary can be used to find collisions in the hash function h. Producing a verifying proof on ~x
within this final hybrid then corresponds to inverting a random evaluation of the OWF, contradicting
its one-wayness.

Turing Machine V h,s,f :

Hardwired: Hash function h : {0, 1}∗ → {0, 1}m(k), PRF seed s ∈ {0, 1}k,
function f ∈ F from the OWF family.

Inputs: Universal statement ~x = (M,x, t), alleged proof π.

1. Compute the “correct” proof for ~x: i.e., π′ = PRFs(h(~x)).

2. Verify whether f(π) = f(π′). If so, output 1; otherwise output 0.

Figure 7: Turing machines V h,s,f .

22



Punctured Turing Machine V h,s,f
~x,y :

Hardwired: Hash function h : {0, 1}∗ → {0, 1}m(k), punctured PRF seed s ∈ {0, 1}k, punctured
PRF input h(~x), punctured output y, OWF f ∈ F .

Inputs: Universal statement ~x′ = (M ′, x′, t′), alleged proof π.

1. If h(~x′) 6= h(~x), then compute the “correct” proof for x′ as π′ = PRFs(h(~x′)), and output 1
if and only if f(π) = f(π′).

2. If h(~x′) = h(~x), then output 1 if and only if f(π) = y, where y is hardcoded.

Figure 8: Punctured Turing machines V h,s,f
~x,y .

4.2 Universal Instantiation of Full-Domain Hash

The full-domain hash (FDH) signature paradigm, first proposed by Bellare and Rogaway [BR93,
BR96], provides a means of building a signature scheme from any trapdoor permutation, within the
heuristic random oracle model. Specifically, a signature on a message m is generated by evaluating
the random oracle at input m, and then computing the inverse of the trapdoor permutation on
this value RO(m). This work has been very influential and formed the foundation for part of the
PKCS#1 standard [KS98]. However, negative results in later years called into question the rigorous
implications of security proofs in the random oracle model [CGH04, GK03, BBP04], showing e.g.
that for some such applications no concrete instantiation of the random oracle can yield security.

In a recent work, Hohenberger, Sahai, and Waters [HSW14] presented a methodology for in-
stantiating the random oracle that provides (selective) security for full-domain hash signatures in
the standard model, building on recent advances in indistinguishability obfuscation (in particular,
using the punctured programs paradigm of [SW14]). They demonstrate for every trapdoor permu-
tation f that there exists a hash function Rf (tailored to f) such that the FDH signature scheme is
(selectively) secure in the standard model when using f and instantiating the random oracle by Rf .

We show that our succinct punctured programs technique yields a universal instantiation of the
random oracle providing security for full-domain hash signatures. That is, we provide a single family
of Turing machines R = {Rk} such that, for any injective trapdoor function f , the Bellare-Rogaway
Full-Domain Hash signature scheme [BR93, BR96] using f and instantiating the random oracle by R
is selectively secure in the standard model. This construction involves a tweak to the FDH signature
structure, in which the random oracle takes as input a description of the trapdoor permutation f in
addition to the message to be signed: i.e., Sign(m) = f−1(RO(m, f)).

Our construction. Intuitively, to instantiate the random oracle, we would like for each message m
to be able to sample a random image of a given trapdoor function f , without revealing information
about the corresponding preimage. In [HSW14], this is done by providing an (indistinguishability)
obfuscation of a circuit that computes a PRF on the input m and then evaluates f on this outcome.
Using the technique of punctured programs [SW14], Hohenberger et al. [HSW14] show that given this
obfuscated circuit, no information is revealed about the evaluation of the PRF on the (pre-selected)
forgery challenge message m, so that forging on message m implies inverting a random(-looking)
output f(PRFs(m)) of the trapdoor function, contradicting its assumed security. In this construction,
however, the obfuscated circuit (i.e., the instantiation of the random oracle) inherently depends on
the trapdoor function f .

We avoid this dependency by obfuscating a Turing machine that takes as input a message m
and description of the desired trapdoor function f (described as a poly-size circuit), and outputs a
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Program Πh,s:

Hardwired: Collision-resistant hash function h : {0, 1}∗ → {0, 1}m(k), PRF seed s ∈ {0, 1}k.
Inputs: Message m, circuit description f

1. Hash the input: v = h(m, f).

2. Compute the PRF on this hash: x = PRFs(v).

3. Evaluate the universal Turing machine on inputs f, x: i.e., y = Uk(f, x).

4. Output y.

Figure 9: Program Πh,s that is obfuscated to form Rh,s ∈ Rk.

seemingly random evaluation of f . As in our constructions from the previous sections, in order to
allow the size of the obfuscated program to be independent of the size of the input trapdoor function
(while still maintaining security), we first hash the input (m, f), and then proceed with this hashed
value. Indeed, security of the construction will be shown by replacing the obfuscated program with
a corresponding obfuscated “punctured” program, with the punctured (challenge) input and output
hardcoded; this hardcoded input corresponds to a challenge pair (m, f) in the näıve case, forcing the
obfuscated program to grow in size with |f |, but is reduced to a short hashed value h(m, f) in the
latter case. Again, to provide security in this modified setting, we rely on differing-inputs obfuscation.
Signature queries m′ with h(m′, f) 6= h(m, f) can be simulated in the security reduction given the
punctured PRF key; any query of the form m′ with h(m′, f) = h(m, f) yields a collision in h (and
thus will not occur).

More explicitly, each program Rh,s ∈ Rk in our random oracle instantiation is a (differing-
inputs) obfuscation of a program Πh,s, indexed by a PRF seed s and collision-resistant hash function
h. Πh,s accepts as input a message m, and a description of the trapdoor function f (modeled as
a polynomial-size circuit), and it functions by: (1) computing the hash of (m, f) with respect to h
(using a Merkle-Damgard hash tree approach), (2) applying a PRF with hardcoded seed s to this
hash value, and then (3) evaluating f on the resulting PRF output value x. That is,

Πh,s(m, f) = Uk (f,PRFs(h(m, f))) ,

where Uk is the universal Turing machine, and

Rh,s ← diO(1k,Πh,s).

(See Figure 9 for details). Denote by M the class of Turing machines

M =
{

Πh,s
∣∣∣ s ∈ {0, 1}k, h ∈ Hk, k ∈ N

}
.

To prove security of the resulting FDH signature scheme, we consider a second, related class of
(“punctured”) Turing machines

M∗ =
{

Πh,s
m,y

∣∣∣ s ∈ {0, 1}k, h ∈ Hk, k ∈ N
}
,

where each Turing machine Πh,s
m,y is defined as in Figure 10. The obfuscator we use is with respect

to the class of Turing machines M∪M∗.
Now, consider the instantiation of the full-domain hash signature scheme using a hash function

Rh,s ∈ Rk in the place of a random oracle, and with an injective trapdoor function family F .
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Program Πh,s
m,y:

Hardwired: Hash function h : {0, 1}∗ → {0, 1}m(k), punctured PRF seed s∗ ∈ {0, 1}k (punctured
at point h(m, f)), bit string y ∈ {0, 1}`′(k).

Inputs: Message m′, circuit description f ′

1. Hash the input: v′ = h(m′, f ′).

2. If v′ 6= h(m, f), compute x = PRFs∗(h), and output Uk(f
′, x).

3. If v′ = h(m, f), output y.

Figure 10: “Punctured” program Πh,s
m,y, used within the security proof.

Setup(1k) : On input the security parameter 1k, the setup algorithm samples a program Rh,s ← Rk
to be used as a random oracle. That is, it samples a random seed for a puncturable PRF
s ← FPRF (1k), and an underlying hash function h ← Hk from the collision-resistant hash
function family. This uniquely defines a program Πh,s. Then, the algorithm obfuscates this
program as Rh,s ← diO(1k,Πh,s).

The setup algorithm then samples (f, f−1) ← TDFSetup(1k) that produces a public index f
and trapdoor f−1 (that allows inversion)

The verification key for the signature scheme is set to vk = (f,Rh,s), consisting of the TDF
description f and the “random oracle” Rh,s. The secret key sk is the trapdoor f−1 and Rh,s.

Sign(sk,m) : The signature algorithm outputs σ = f−1(Rh,s(m, f)).

Verify(vk,m, σ) : The verification algorithm tests if f(σ)
?
= (Rh,s(m, f)) and outputs accept if and

only if this holds.

Theorem 4.2. Assuming the existence of collision-resistant hash functions, and differing-inputs
obfuscation for the class TM, then for any injective trapdoor function family F , the scheme described
above is a selectively secure signature scheme.

Proof. The proof follows an analogous sequence of hybrids as in Theorem 3.1, mirroring the approach
of [HSW14]. Namely, for challenge forgery message m and injective trapdoor function f , the hybrids
are (loosely) as follows:

Hybrid 0: The real (selective) security experiment.

Hybrid 1: The obfuscated program Rh,s ← diO(1k,Πh,s) is replaced by an obfuscation of the

corresponding “(m, f)-punctured” program Πh,s
m,y with the “correct” hardcoded output y =

Πh,s(m, f). Indistinguishability follows by the security of the differing-inputs obfuscator, to-
gether with the collision resistance of h. (Note that in the reduction, signature queries can be
simulated using the inversion trapdoor to f).

Hybrid 2: The obfuscated program is replaced by an obfuscation of Πh,s
m,y, with hardcoded output

y set to a random evaluation of f : i.e., f(u) for uniform u. Indistinguishability follows by
the pseudo randomness of PRF. (Note that in the reduction, signature queries can again be
simulated using the inversion trapdoor to f).

By the indistinguishability of hybrids, it follows that a forging adversary must continue to suc-
cessfully forge in this final experiment, Hybrid 2. But, this implies the adversary can invert a random
output of the trapdoor function, yielding the desired contradiction.
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5 Removing Auxiliary Input in diO
We now demonstrate that even in the absence of auxiliary input, care must be taken when making
use of differing-inputs obfuscation (diO). Specifically, we observe a general transformation obtaining
diO with respect to any distribution D over P × P × {0, 1}p(k) of program pairs and polynomial
bounded-length auxiliary input from any O that satisfies a weaker notion of indistinguishability
obfuscation (iO) security (which is not an extractability assumption; see Section 5.1 below), and
is diO-secure with respect to distribution D′ over slightly enriched program pairs P ′ × P ′, with no
auxiliary input.13

Intuitively, we demonstrate that “bad side information” cannot be avoided by disallowing auxil-
iary input, but rather can appear embedded within the input-output behavior of the programs to be
obfuscated. Since any candidate obfuscator O must preserve the input-output functionality of the
underlying programs, this “bad” information is unavoidably released.

Theorem 5.1 (Removing Auxiliary Input in diO). For any polynomial p and distribution D over P×
P×{0, 1}p(k), there exists a polynomial q, a class of programs P ′ with maxP ′∈P ′ |P ′| ≤ q(maxP∈P |P |),
and a distribution D′ over P ′×P ′ for which the following holds. The existence of diO w.r.t. D (with
auxiliary input) is implied by the existence of obfuscation that is iO secure and diO secure w.r.t. D′
(without auxiliary input).

In the following two subsections, we present a formal definition of iO, and then present our
transformation and proof for Theorem 5.1.

5.1 Indistinguishability Obfuscation

We begin by defining the notion of indistinguishability obfuscation (iO), which we rely on as a tool
in our transformation. Note that in general, iO is weaker than (and implied by) diO. However, in
our setting, we consider general-purpose iO, versus diO that is secure with respect to a particular
distribution. In such case, the two notions are incomparable.

Definition 5.2 (Indistinguishability Obfuscation). A uniform PPT machine iO is an indistinguisha-
bility obfuscator (iO) (w.r.t. worst-case inputs) for a class of Turing machines {Mk}k∈N if the fol-
lowing conditions are satisfied:

• Correctness: There exists a negligible function negl(k) such that for every security parameter
k ∈ N, for all M ∈Mk, for all inputs x, we have

Pr[M ′ ← diO(1k,M) : M ′(x) = M(x)] = 1− negl(k).

• Security: For every non-uniform PPT adversary A and polynomial p(k), for every k ∈ N,
every pair of Turing machines M0,M1 ∈Mk,

Pr
[
b← {0, 1}; M̃ ← iO(1k,Mb) : A(1k, M̃) = b

]
≥ 1

2
+

1

p(k)

=⇒ ∃x s.t. M0(x) 6= M1(x).

Remark 5.3 (iO and Auxiliary Input). In contrast to diO obfuscation, indistinguishability ob-
fuscation directly implies security against arbitrary auxiliary input. Indeed, for any non-uniform
adversary A and auxiliary input z, we can simply consider a modified non-uniform adversary Az

13Note that standard iO security (for P/poly) is not implied by diO for a specific distribution.
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who has z, and the same conclusion holds. (Recall the issue in the more demanding diO setting is
that one must demonstrate an extractor algorithm E for the original adversary A such that the same
extractor works for any possible auxiliary input z).

5.2 diO with Auxiliary Input from iO + diO without Axuiliary Input

We now present our “auxiliary input removal” transformation, constituting the proof of Theorem 5.1.
Formally, for class of programs P, and distributionD over P×P×{0, 1}p(k), we define generic program
modifiers, and then corresponding “enriched” variants P ′,D′ below. (Note that the p-notation will
mostly be suppressed).

Definition 5.4 (Program Modifiers). For program class P, define the following program “wrappers”:

• Expand(P, z): For P ∈ P, z ∈ {0, 1}p(k), the program Expand(P, z) takes as input a pair (x,mode)
for x a valid input to P and mode ∈ {∅, ∗} (corresponding to “standard” and “special” modes),
and embeds z into the program input-output as follows:

1. If mode = ∅: Output P (x).

2. If mode = ∗: Output z.

We will sometimes use shorthand notation and denote by P z the program Expand(P, z)

• ztoZero(P z): For P z for some P ∈ P, z ∈ {0, 1}p(k), the program ztoZero(P z) takes as input a
pair (x,mode) but “zeroes” out the special embedded output of P z, as follows:

1. If mode = ∅: Output P z(x,mode).

2. If mode = ∗: Output 0.

• pad(P, size): For any program P (or P z) with |P | ≤ size, the program pad(P, size) has identical
input-output behavior to P , but satisfies |pad(P, size)| = size.

• Restrict(P z,mode∗): For P z for some P ∈ P, z ∈ {0, 1}p(k), and mode∗ ∈ {∅, ∗}, the program
Restrict(P z,mode∗) takes as input a single value x, and outputs P z(x,mode∗), with mode∗

hardcoded.

Definition 5.5 (Enriched Program Classes). Let P = {P} be a class of programs, and D be a
distribution over P × P × {0, 1}p(k) for polynomial p. We define the (p-)enriched variants P ′,D′ as:

• P ′ :=
{
Expand(P, z) : P ∈ P, z ∈ {0, 1}p(k)

}
, where Expand(P, z) is as above.

• D′ is sampled over P ′ × P ′ as follows:

1. Sample (P0, P1, z)← D.

2. Output the pair (Expand(P0, z),Expand(P1, z)) ∈ P ′ × P ′.

Proof of Theorem 5.1. Suppose O′ is a program obfuscation algorithm such that: (1) O′ is iO-secure,
as in Definition 5.2, and (2) O′ is diO-secure w.r.t. program distribution D′ over P ′ × P ′ (with no
auxiliary input), as in Definition 2.1. We define a new obfuscation algorithm O and show that it is a
differing-inputs obfuscator secure w.r.t. D over P ×P × {0, 1}p(k) (which includes auxiliary input).

The Obfuscator O: To obfuscate a program P ∈ P, the algorithm O first “expands” P to include a
new input (“mode = ∗”) with hardcoded output 0 ∈ {0, 1}p(k). It then pads the expanded program to
an appropriate size, and runs the obfuscator O′ on the padded program. Finally, it “wraps” the result
to accept a single input x and run the obfuscated program with the second input mode hardcoded
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to ∅ (i.e., “standard” evaluation mode). More formally, let size = |O′(ztoZero(Expand(P, z)))| for
P ∈ P, z ∈ {0, 1}p(k). Then we define

O(1k, P ; r) := Restrict
(
O′
(
pad
(
Expand(P, 0), size

)
; r
)
, ∅
)
.

Correctness: Follows directly by the correctness of O′. Namely,[
Restrict

(
O′
(
pad
(
Expand(P, 0), size

)
; r
)
, ∅
)]

(x)

= O′
(
pad
(
Expand(P, 0), size

)
; r
)
(x, ∅) by defn of Restrict

= pad
(
Expand(P, 0), size

)
(x, ∅) whp, by correctness of O′

= Expand(P, 0)(x, ∅) since pad does not affect input-output

= P (x) by the defn of Expand (in “standard” mode ∅).

Security: Consider a (non-uniform) PPT adversary A and polynomial qA. To prove the theorem,
we must construct an extractor algorithm E , polynomial qE , and negligible function ν, and show that
for all but negligible probability ν(k) over (P0, P1, z)← D, if

Pr
[
b← {0, 1}; P̃ ← O(1k, Pb) : A(1k, P̃ , z) = b

]
≥ 1

2
+

1

qA(k)

for these P0, P1, z, then E succeeds with probability 1/qE(k) in extracting a differing input for P0, P1,
given input (1k, P0, P1, z). Roughly we will do this in three steps: (1) We first show for any O-
adversary A that distinguishes as above, there is an O′-adversary that distinguishes in the diO
challenge w.r.t. D′ with similar success (making use of the iO security of O′ in the process). (2) By
the assumed diO security of O′ w.r.t. D′, this guarantees existence of an extractor E ′ who succeeds
in extracting differing inputs from programs sampled as in D′. (3) As the final step, we tweak the
extractor E ′ to instead work for programs sampled as in D, yielding the desired extractor algorithm.

From the O-adversary A, we begin by constructing a (non-uniform) PPT adversary A′ for the
original obfuscator O′ for diO security w.r.t. program distribution D′. Recall the distribution D′
corresponds to program pairs (P z0 , P

z
1 ) where z has been “embedded” into programs P0, P1 (where

(P0, P1, z) are as in D), and with no auxiliary input.
At a high level, there are two challenges we must solve in order for A′ to make use of the

adversary A:

• First, A′ must generate from his challenge O′(P zb ) an appropriate value of auxiliary input z to
give to A. This will be done by reading the embedded value z at the “special input” of O′(P zb ).

• Second (and slightly more complicated), he must convert his O′-obfuscated program O′(P zb ) to
“look like” anO-obfuscationO(Pb), where recallO(Pb) = Restrict(O′(pad(Expand(Pb, 0), size)), ∅).
Indeed, it is possible that A may successfully distinguish given z and obfuscations of the latter
type, yet may not succeed when given z and obfuscations of the former. In particular, note
that the program O′(P zb ) contains information z that agrees with the auxiliary input, whereas
O(Pb) has only 0 in this role; since we make no assumptions on the structure of the obfuscator
O′, there is no direct way to “strip off” this extra information from the obfuscation O′(P zb ).

Instead, to achieve this goal, we make use of a second layer of obfuscation. Namely, given the
(obfuscated) codeO′(P zb ) in theO′ challenge, we can generate a second program M0

b that has the
same input-output behavior and size as the desired underlying program pad(Expand(Pb, 0), size)
that appears within O′ in the obfuscation O(Pb). Explicitly,[

pad
(
Expand(Pb, 0), size

)]
≡
[
ztoZero

(
O′(P zb )

)]
, (9)
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(i.e., are functionally equivalent), where recall the second program bypasses the code of O′(P zb )
on the special input mode = ∗ and directly outputs 0 (see Definition 5.4). Indeed, both programs
evaluate to 0 on any input of the form (x, ∗) and to Pb(x) on any input of the form (x, ∅).
Define M0

b := ztoZero(O′(P zb )). Note that the value of size for pad was precisely chosen to be
comparable with the size of the program M0

b (see Definition 5.4).

Now, because M0
b and pad(Expand(Pb, 0), size) have identical input-output behavior (and size),

by the indistinguishability obfuscation security of O′ (which, recall, supports auxiliary input;
see Remark 5.3), it must be that their O′-obfuscations are indistinguishable, even given z:(

O′(M0
b ), z

) c∼=
(
O′(pad(Expand(Pb, 0), size)), z

)
.

This indistinguishability must further be preserved when applying the Restrict(·, ∅) operation
to both programs:(

Restrict
(
O′(M0

b ), ∅
)
, z
) c∼=

(
Restrict

(
O′(pad(Expand(Pb, 0), size)), ∅

)
, z
)
.

But, note that the right-hand distribution is now precisely (O(Pb), z). We have thus succeeded
in converting challenges between O′ and O: if the original O-adversary A succeeded in predict-
ing b from (1k,O(Pb), z), he must also succeed when given (1k,Restrict(O′(M0

b ), ∅), z), where
Restrict(O′(M0

b ), ∅) = Restrict(O′(ztoZero(O′(P zb ))), ∅) can be directly simulated using the O′-
challenge O′(P zb ).

We now formally define the new O′-adversary A′. On input the security parameter 1k and an
obfuscated program O′(P zb ) (where the underlying program P zb is sampled via (P z0 , P

z
1 ) ← D′; b ←

{0, 1}), A′ performs the following:

1. Evaluate O′(P zb ) on the special “mode = ∗” input to learn z := O′(P zb )(x, ∗), for arbitrary x.

2. Construct a new program to simulate the O-challenge program distribution. Namely,

1: Define M0
b := ztoZero(O′(P zb )).

2: Sample an obfuscation M̃0
b ← O′(1k,M0

b ), using the original obfuscator O′.
3: Define Mb := Restrict(M̃0

b , ∅).
3. Execute the adversary A on input (1k,Mb, z), and output the resulting bit b′.

We now show that A′ as constructed succeeds in the diO security challenge for O′ w.r.t. D′ with
essentially as much advantage as A in the security challenge for O. Let ν(·) be the negligible function
provided in the iO security guarantee for O (see Definition 5.2).

Claim 5.6. By the iO security of O′, for every triple (P0, P1, z) ∈ P ×P × {0, 1}p(k) in the support
of D, for P zb := Expand(Pb, z), and for the adversary A′ constructed above, it holds that

Pr
[
b← {0, 1};O′(P zb )← O′(1k, P zb ); guess′ ← A′(1k,O′(P zb )) : guess′ = b

]
≥ Pr

[
b← {0, 1};O(Pb)← O(1k, Pb); guess← A(1k,O(Pb), z) : guess = b

]
− ν(k).

Proof. Denote these two probabilities by winA′ and winA. Suppose, to the contrary, there is a triple
(P0, P1, z) for which A′ predicts b in the O′-challenge with probability strictly less than ν(k) below
the probability that A succeeds in predicting b in the O-challenge: i.e., that winA′ < winA − ν(k).
From this, we construct a (non-uniform) adversary AziO who has z hardcoded and breaks the iO
security of O′ for the pair of functionally equivalent programs constructed in Equation 9, where one
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program appears within the obfuscation O(Pb) as per the definition of O, and the second appears
within the strategy of A′ given his challenge O′(P zb ).

Recall that by the definition of O and of A′, we have:

• O(Pb)← O(1k, Pb) is equivalent to
[
Restrict(P̃ , ∅) : P̃ ← O′(1k, [pad(Expand(Pb, 0), size)])

]
.

• guess′ ← A′(1k,O′(P zb )) is equivalent to[
guess′ ← A(1k, P̃ , z) : z = O′(P zb )(x, ∗); P̃ ← O′(1k, [ztoZero(O′(P zb ))])

]
.

Thus, winA′ and winA correspond to the probabilities of the following experiments:

winA′ : winA :

b← {0, 1}; b← {0, 1};
O′(P zb )← O′(1k, P zb );
z := O′(P zb )(x, ∗);
M ′b := ztoZero(O′(P zb )); Mb := pad(Expand(Pb, 0), size);

M̃ ′b ← O′(1k,M ′b); M̃b ← O′(1k,Mb);

guess′ ← A(1k, M̃ ′b, z); guess← A(1k, M̃b, z);
: guess′ = b : guess = b

If winA′ < winA − ν(k), then in particular there must exist b ∈ {0, 1} and O′(P zb ) ∈ O′(1k, P zb ) such
that for the pair of programs M ′b := ztoZero(O′(P zb )) and Mb := pad(Expand(Pb, 0), size),

Pr[M̃ ′b ← O′(1k,M ′b); guess′ ← A(1k, M̃ ′b, z) : guess′ = b]

<Pr[M̃b ← O′(1k,Mb); guess← A(1k, M̃b, z) : guess = b]− ν(k).

But, recall that the programs M ′b,Mb are functionally equivalent (and of comparable size). Indeed,
both accept a pair of inputs (x,mode), and satisfyM ′b(x, ∗) = Mb(x, ∗) = 0 andM ′b(x, ∅) = Mb(x, ∅) =
Pb(x) (in addition, Mb was padded precisely to the appropriate value of size; see Definition 5.4). Thus,
the algorithm A directly gives us an adversary who breaks the iO security of O′ for the program pair
M ′b,Mb. That is, consider the (non-uniform) PPT adversary AziO who has hardcoded the program
pair M ′b,Mb, the bit b, and the value z from the original triple (P0, P1, z). In the iO security challenge,
AziO is given as input the security parameter 1k and a O′-obfuscated program M̃ , which is either
generated as M̃ ← O′(1k,M ′b) or as M̃ ← O′(1k,Mb).
The adversary AziO(1k, M̃):

1: Evaluate guess← A(1k, M̃ , z).
2: If guess = b, output 1 (i.e., guess of Mb); otherwise, output 0.

By construction, in combination with the above, the probability that AziO outputs 1 in the case that
M̃ ← O′(1k,M ′b) is strictly smaller than ν(k) less than the probability that AziO outputs 1 in the
case that M̃ ← O′(1k,Mb). This contradicts the iO security of O′. The claim follows.

Now, suppose for some (P0, P1, z) ∈ supp(D) that A succeeds in guessing b in the O-obfuscation
challenge:

Pr
[
b← {0, 1}; P̃ ← O(1k, Pb) : A(1k, P̃ , z) = b

]
≥ 1

2
+

1

qA(k)
.

By Claim 5.6, it must thus be that A′ similarly succeeds in guessing b in the O′-obfuscation challenge
for the corresponding pair (P z0 , P

z
1 ) ∈ supp(D′):

Pr
[
b← {0, 1}; P̃ ← O′(1k, P zb ) : A′(1k, P̃ ) = b

]
≥ 1

2
+

1

qA(k)
− ν(k) (10)

≥ 1/2 + 1/[2qA(k)]. (11)
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By the diO security of O′, we know that for this adversary A′ and polynomial 2qA, there exists
an extractor E ′ and polynomial qE ′ such that, with all but negligible probability over (P z0 , P

z
1 ) ←

D′, if (11) holds, then with probability at least 1/qE ′(k), running the extractor (x∗,mode) ←
E ′(1k, P z0 , P z1 ) succeeds in finding a differing input (x∗,mode) for which P z0 (x∗) 6= P z1 (x∗,mode).

As the final step, we wish to construct from E ′ a new extractor E that instead, given a tuple
(1k, P0, P1, z), outputs a differing input x∗ for which the programs P0 and P1 disagree. Define
the algorithm E ′ that, on input (1k, P0, P1, z), constructs the programs P z0 := Expand(P0, z) and
P z1 := Expand(P1, z), executes the original extractor algorithm E ′ as (x∗,mode) ← E ′(1k, P z0 , P z1 ),
and outputs the value x∗. Since by construction, P z0 (x, ∗) = P z1 (x, ∗) = z for every value of x
(corresponding to “special” input mode), it must be that the differing input (x∗,mode) generated
by E ′ satisfies mode = ∅ (i.e., “standard” mode evaluation). That is, it must be that P z0 (x∗, ∅) 6=
P z1 (x∗, ∅), which means precisely that P0(x

∗) 6= P1(x
∗).

Theorem 5.1 follows.

Applying the theorem to [GGHW14]. In [GGHW14], the authors propose a new “special-
purpose” Turing machine obfuscation assumption, and demonstrate based on this assumption a
distribution of circuits and bounded-length auxiliary input for which diO cannot exist. Applying
Theorem 5.1, we conclude that, assuming such special-purpose obfuscation exists, there exists a
distribution of circuits that is diO-unobfuscatable for any iO obfuscator, even when no auxiliary
input is present.

Intuitively, their counterexample is for diO obfuscation of circuits that differ exactly on inputs
corresponding to valid message-signature pairs (with respect to a secure digital signature scheme).
Their “bad” auxiliary input distribution amounts to a “special” obfuscated program with side infor-
mation on the signing key: the program takes as input a circuit description C, signs a hash of the
circuit (to produce unique messages), and outputs the bit obtained by running C on the resulting
message-signature pair. Access to this program allows an adversary to distinguish obfuscations of cir-
cuits as above, but (by their special obfuscation assumption) does not enable any efficient algorithm
to extract a message-signature pair.

More formally, let H be a collision-resistant hash function family, and (Gen,Sign,Verify) a signa-
ture scheme (with keys denoted (sk, vk)). The “special-purpose” obfuscation assumption of [GGHW14]
is given below, in Definition 5.7 and Conjecture 5.8.

Definition 5.7 (Special-Purpose TM Class {P ∗H,sk}). [GGHW14].
Program P ∗H,sk: (for hardcoded H ∈ H, signing key sk)
Input: circuit description C of size s(k) with 1-bit output.

1: Compute m = H(C) and σ = Sign(sk,m) .
2: Output the bit C(m,σ, 0).

Conjecture 5.8 (Special-Purpose TM Obfuscation [GGHW14]). There exists a deterministic sig-
nature scheme (Gen, Sign,Verify), collision-resistant hash function family H, and an obfuscator spO,
such that spO satisfies correctness and the following security property. There exists a negligible
function ν such that for any PPT attacker A,

Pr
[
(sk, vk)← Gen(1k);H ← H(1k); P̃ ← spO(1k, P ∗H,sk); (m,σ)← A(1k, vk, P̃ )

: Verify(vk,m, σ) = 1
]
≤ ν(k),

where P ∗H,sk is the Turing machine defined in Definition 5.7.
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Garg et al. [GGHW14] prove the following theorem.

Theorem 5.9 ([GGHW14]). Under the special-purpose Turing machine obfuscation conjecture (Con-
jecture 5.8), there exists a distribution D over P/poly×P/poly×Z of circuit pairs and bounded-length
auxiliary input information for which there cannot exist secure differing-inputs obfuscation.

Combining this with Theorem 5.1, we thus obtain the following corollary.

Corollary 5.10. Under the Special-Purpose TM Obfuscation Conjecture 5.8, there exists a distri-
bution of circuit pairs D′ over P/poly×P/poly with respect to which no iO-secure obfuscator can be
diO-secure, even in the absence of auxiliary input.

In particular, this implies that if the special-purpose obfuscator conjecture holds, then general-
purpose diO cannot exist, even without auxiliary input.

Corollary 5.11. Under the Special-Purpose TM Obfuscation Conjecture 5.8, there cannot exist diO
for P/poly, even in the absence of auxiliary input.

Proof. Follows from Corollary 5.10, since any diO obfuscator for P/poly is also iO secure for P/poly
and diO-secure for any efficiently samplable distribution of circuits D′ over P/poly × P/poly.
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