
A REDUCTION OF SEMIGROUP DLP TO CLASSIC DLP

MATAN BANIN AND BOAZ TSABAN

Abstract. We present a polynomial-time reduction of the discrete logarithm problem in
any periodic (or torsion) semigroup (Semigroup DLP) to the classic DLP in a subgroup
of the same semigroup. It follows that Semigroup DLP can be solved in polynomial time
by quantum computers, and that Semigroup DLP has subexponential complexity whenever
the classic DLP in the corresponding groups has subexponential complexity. We also con-
sider several natural constructions of nonperiodic semigroups, and provide polynomial time
solutions for the DLP in these semigroups.

1. introduction

For Discrete Logarithm Problem (DLP) based cryptography, it is desirable to find ef-
ficiently implementable groups for which sub-exponential algorithms for the DLP are not
available. Thus far, the only candidates for such groups seem to be (carefully chosen) groups
of points on elliptic curves [4, 7]. Groups of invertible matrices over a finite field, proposed
in [9], where proved by Menezes and Wu [6] inadequate for this purpose. In their paper [3],
Kahrobaei, Koupparis and Shpilrain propose to use semigroups—sets equipped with an as-
sociative multiplication, but where element are not necessarily invertible—as a platform for
the Diffie–Hellman protocol. Specifically, they propose to use the semigroup of all matrices
over a certain finite group-ring as a platform for the Diffie–Hellman protocol.

Let S be a semigroup. The order of an element g ∈ S is the cardinality of the set
{ gk : k ∈ N }, where N = {1, 2, 3, . . . } is the set of natural numbers. A semigroup S is
periodic (or torsion) if each element of S has finite order. The DLP in a periodic semigroup
S is the problem of finding, given an element g ∈ S and a power h of g, a natural number
k such that gk = h. Semigroup DLP is the general problem of solving the DLP in periodic
semigroups.1

We will demonstrate that the Semigroup DLP is not harder than the classic DLP in groups.
Moreover, the DLP in a semigroup S reduces, in polynomial time, to the DLP in a subgroup
G of S. Thus, if there is a subexponential time algorithm for the DLP in subgroups of S
(which is the case, for example, when S is a semigroup of matrices over a finite field, by the
Menezes–Wu result [6]), then there is one for the DLP in S. In particular, as the DLP in
groups is efficiently solvable by quantum computers, it follows that the Semigroup DLP is
efficiently solvable by quantum computers.

Related work. The Semigroup DLP is known at least since K. McCurley’s 1989 survey
[5]. In [8], A. Myasnikov and A. Ushakov reduce the DLP in the semigroup proposed in
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[3] to the DLP in a group of invertible matrices over a finite field, and deduce that the
DLP in that semigroup can be solved by quantum computers. They achieve this goal by
embedding the semigroup in the semigroup of all matrices over a finite field, and then
applying Jordan Canonical Form theory to reduce the problem to the DLP in the group of
invertible matrices over the same field. Our solution shows, in particular, that specialized
methods are not necessary to solve this problem. We have reported our solution, without
details, to Myasnikov and Ushakov, and suggested that they ask experts whether this was
known. Following that, they consulted R. Steinwandt, who mentioned the problem to some,
including A. Childs and G. Ivanyos. Unaware of our solution, Childs and Ivanyos came up
with an independent proof that the Semigroup DLP can be solved by quantum computers
[2, Sections 1–3]. The Childs–Ivanyos solution uses quantum computational assumptions,
whereas our reduction uses only classic computational assumptions. Our approach is useful
when quantum computers are not available, but subexponential algorithms are available for
the DLP in the relevant groups, e.g., in matrix semigroups over finite fields.

2. A solution of the Semigroup DLP using a classic DLP oracle

2.1. Assumptions. Let G be a finite cyclic group. We assume that the group G is described
by a specification of a generator g of G and an oracle for multiplication in G. We do not
assume the explicit availability of an oracle for inversion in G.

By DLP oracle for G we mean an oracle that, whenever provided with the group G (i.e.,
its generator g and a multiplication oracle) and a power h of g, returns a natural number k,
of size polynomial in the relevant parameters (including the length of g and the order of G),
such that h = gk.

The assumption that the oracle does not request an explicit inversion oracle is important
for our reduction. However, we are not aware of any practical constraint imposed by it. For
example:

(1) The known DLP algorithms do not request inversion, or can be easily transformed
into ones without inversion.

(2) If m is any nonzero multiple of the order of a group element h, then hm−1 = h−1.
Thus, it suffices to have a method to find a nonzero multiple of the order of a group
element.

Example 1. Shor’s proof that quantum computers can solve the DLP efficiently shows that
quantum computers can find, efficiently, the order of any group element.

Example 2. Assume that g is an element of a group H of known cardinality m := |H|, and
the number logm is polynomial in the relevant parameters. Then gm = 1.

Let A be an n × n matrix over a finite field F. The vector space Fn decomposes to the
direct sum ker(An) ⊕ im(An). Let r be the dimension of im(An). Then the matrix An is
conjugate to a direct sum of an invertible r × r matrix and the zero matrix. It follows that
the group generated by An is isomorphic to GLr(F) the group of all invertible r× r matrices
of F, which is a subgroup of GLn(F). Thus, for m := |GLn(F)|, we have that (An)m is the
identity element of the group generated by An.

Once we show that the DLP in the semigroup generated by the (not necessarily invertible)
matrix A can be reduced to the DLP in the mentioned group with a multiplication oracle,
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there is no need for an explicit inversion oracle in that group. We thus obtain a generalization
of the quantum-based cryptanalysis of the Kahrobaei–Koupparis–Shpilrain scheme [3] in [8].
Moreover, this provides a subexponential cryptanalysis using standard computational power.

In the Semigroup DLP, we assume that each element in the considered semigroups has a
unique representation; equivalently for our purposes, a canonical representative that can be
computed in polynomial time. We also assume that multiplication in the given semigroup
can be carried out in polynomial time.

2.2. The reduction. The following lemma should be well known. For completeness, we
include a proof.

Lemma 3. Let S be a periodic semigroup, and g be a member of S. Let l, n be minimal2

with gl+n = gl, and let t be minimal with tn > l. Then the set

G := gl · { gk : 0 ≤ k < n } = { gl+k : 0 ≤ k < n }
is a cyclic group of order n, with identity element gtn and generator gtn+1. Moreover, gtn =
gsn for all s ≥ t.

Proof. As gl+n = gl, the set G is closed under products. The element gtn is neutral: As

gtngl = gtn+l = gl+tn = gl,

we have that gtnglgk = glgk for each element glgk ∈ G. Let s ≥ t. Then gsn = gtn+(s−t)n =
gtn.

Inversion: Given gl+k ∈ G, let d be such that l + k + d = tn− l (mod n). Then

gl+kgl+d = glgl+k+d = glgtn−l = gtn.

Generator: As gtn is neutral, for each element ga in G we have that

ga = (gtn)aga = gtna+a = (gtn+1)a. �

Let S be a semigroup and let g be an element of S. Let l, n, t and G be as in Lemma 3.

Reduction 4. Finding n, using a DLP oracle for G.

Procedure. Fix a number N with N � l + n. This can be done by beginning with a fixed
number N , and doubling it until the following procedure works. Choose random number k ∈
{dN/2e, . . . , N}, and compute h := gk. The distribution of h is statistically indistinguishable
from the uniform distribution on G. As ϕ(n)/n is greater than 1/(eγ log log n+ 3/ log log n)
for n > 2 [1, Theorem 8.8.7] (and is at least 1/2 for n = 1 or 2), we assume, for a while, that
h is a generator of G.

It is known that the order of a group G can be computed given a generator h and a DLP
oracle for that group. Briefly, this can be done, using our notation, as follows. Choose a
random number k ∈ {1, . . . , N}, and compute k′ := logh(h

k). It may be that calling the
oracle twice with the same input, we obtain different values of k′. However, the distribution
of k′ depends only on k mod n and not on k itself. Thus, taking the greatest common divisor
of O(1) differences k − k′ of this kind, we will obtain n.

2It does not matter whether we first minimize l and then n, or vice versa.
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Now, in any case, h generates a subgroup of G, whose order is found by the above-
mentioned algorithm. This order divides the order of G. Repeating this procedure for
O(log log n) elements h, the maximum (or least common multiple) of the obtained orders
will be the order of G. �

We now find t, using our knowledge of n. The identity element of a group is its unique
element e satisfying e = e2, an idempotent element. By Lemma 3, we need to find the
minimal t such that gtn is an idempotent. Given that gsn = gtn for all s ≥ t and gsn 6= gtn

for s < t, this can be done by binary search, as in the following algorithm.

Algorithm Finding the minimal t such that gtn is the identity element of G
1. b← 1
2. while gnb 6= (gnb)2

3. b← 2b
4. e← gnb (this is the identity element of G)
5. a← b

2
6. repeat
7. c← a+b

2
8. if gnc 6= e
9. then
10. a← c
11. else
12. b← c
13. until b− a = 1
14. return b

Remark 5. One can use a variation of the above algorithm, that precomputes a logarithmic
number of powers g2

i
, and replaces each power computation by one multiplication. This

applies to all algorithms in this paper.

Let gx be given. There are two cases to consider. First, assume that gx ∈ G. Find t and
n as above. Compute tn. Let r = gtn+1, a generator of G. Using the oracle, we obtain a
number x′ such that rx

′
= gx. Then gx = rx

′
= gx

′(tn+1). Take k = x′(tn+ 1). Then gk = gx,
and we are done. We next treat the remaining case.

The following immediate fact shows that membership in G can be tested efficiently.

Lemma 6. For each x ∈ N, we have that gx ∈ G if and only if gngx = gx. �

If gx /∈ G, we use binary search to find the minimal b such that gbngx ∈ G, as follows.

Algorithm Finding the minimal b such that gbngx ∈ G
1. b← 1
2. while gbngx /∈ G
3. b← 2b
4. a← b

2
5. repeat
6. c← a+b

2
7. if gcngx /∈ G
8. then
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9. a← c
10. else
11. b← c
12. until b− a = 1
13. return b

Similarly, if gk ∈ G and k is known, we can use binary search to find the maximal c such
that k − cn > 0 and gk−cn ∈ G.

Reduction 7. Computing a discrete logarithm of gx, using a DLP oracle for G.

Procedure. It remains to consider the case where gx /∈ G. Let r = gtn+1 be the generator of
G. Use the above algorithm to find the minimal b such that gbngx ∈ G. As n is the order of
G, for each a with gbn+x = ga, we have that bn+ x ≤ a.

Using the oracle, compute x′ := logr g
bn+x. Then gbn+x = gx

′(tn+1), and thus bn + x ≤
x′(tn+1). Note that the number x′(tn+1) is known. Using binary search, find the maximal
c such that gx

′(tn+1)−cn ∈ G. Then bn+x = x′(tn+1)− cn, and thus x = x′(tn+1)− cn− bn
is found. �

3. Comments on nonperiodic semigroups

Our consideration of periodic semigroups is natural in the context of the DLP, but it is
still interesting to consider the case where the element g of S has infinite order. In this
case, the semigroup 〈g〉 generated by g is isomorphic to the additive semigroup of natural
numbers N. However, the isomorphism may be infeasible to compute.

The consideration of the DLP in infinite semigroups was proposed by Vladimir Shpilrain,
at the conference Algebraic Methods in Cryptography, Ruhr Universität Bochum, Germany,
2005. As the second named author commented in that conference, there is a correlation
between the bitlength of gk and the power k (for each fixed coding of the semigroup elements).
In such a case, for distinct powers gk and gl, one may take many random powers gkr, glr,
compare their lengths, and decide by majority whether k < l. This implies a binary search
algorithm for solving the DLP in the ambient semigroup. We have verified, by experiments,
that this approach succeeds 100% of the time in Artin’s braid group, with the Garside normal
form as the length function.

Let p be a prime number, and π be a random permutation on {0, . . . , p− 1}. The permu-
tation π defines a group structure Gπ = ({0, . . . , p−1},+π) by viewing π as an isomorphism
from the group (Zp,+) to Gπ. In other words, addition in Gπ is defined by

x+π y := π(π−1(x) + π−1(y)) mod p,

and the generator of Gπ is π(1). Shoup’s classic theorem asserts that the DLP in Gπ cannot
be solved with less than O(

√
p) queries to the group operation [10]. Consequently, the

following problem is very appealing.

Problem 8. Let p be a prime number. Can an infinite cyclic semigroup C be constructed,
using a random permutation π on {0, . . . , p−1} as an oracle, such that the DLP in C cannot
be solved with less than O(

√
p) group operations?

For this problem, one must define a reasonable distribution on N for choosing the DLP ex-
ponent. To this end, one may either use a Gaussian distribution with large enough deviation,
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as is often done in Lattice-based cryptography, or fix a large enough interval {1, 2, . . . , N}
and choose the exponent uniformly from that interval.

A simple approach to Problem 8 is to define a permutation P on N as follows: Given a
natural number k, represent k in base p and apply the permutation π to the least significant
digit of k.

Definition 9. For a permutation P on N, let SP := (N,+P ) be the semigroup obtained by
declaring P an isomorphism from (N,+) to (N,+P ), that is, where

x+P y := P (P−1(x) + P−1(y)).

The semigroup SP is generated by its element P (1). In the DLP for SP we are provided
with the generator g := P (1) and, since we use additive notation, the element kg = P (k)
for some random secret k in a large interval, and we need to find k. The addition operator
+P is given as an oracle.

Consider the simple case with P defined using a permutation π on {0, . . . , p− 1} as in the
last paragraph preceding Definition 9. Assume that the exponent k is in {1, . . . , N}, where
N is exponential in the security parameters. If p is much larger than N (say, exponential
in N), then the element π(1) is likely to be too large to store. Thus, for the problem to be
reasonable, we request that p is smaller, or not much larger than N . Still, the length-based
algorithm described above solves the DLP in semigroups constructed this way. We thus
consider the following, more general construction.

Definition 10. Let m0 = 0. For each n = 0, 1, 2, . . . , let mn+1 > mn be a natural number
and Pn be a permutation on {mn, . . . ,mn+1 − 1}. The block permutation P =

⊕∞
n=1 Pn on

N is defined as follow: Given a natural number k, let n be the unique natural number such
that mn ≤ k < mn+1. Then

P (k) := Pn(k).

Let P be a block permutation, with mn growing rapidly. E.g., mn := 22n . Then the
length-based algorithm fails in SP . Indeed, consider distinct k and l. For large random r,
the values kr and lr are, with high probability, in the same block {mn, . . . ,mn+1 − 1}, and
consequently, nothing about the size of k and l can be learned from P (kr) and P (lr).

However, for each block permutation P on N, the DLP in the semigroup SP associated to P
can be solved in polynomial time. Indeed, given P (k), let n be such that mn ≤ P (k) < mn+1;
equivalently, mn ≤ k < mn+1. For each m, we are able to compute P (m) = mP (1) and
P (k + m) = P (k) +P P (m). Since mn+1 ≤ P (r) if and only if mn+1 ≤ r, we can find the
minimal m such that mn+1 ≤ P (k+m) by binary search on m, and this is also the minimal
m such that mn+1 ≤ k +m, that is, k +m = mn+1. We then have k = mn+1 −m.

This approach can be extended to more complicated situations. We conclude this discus-
sion with an interesting example.

Let P be a block permutation as above, with mn growing rapidly. For each n, let kn :=
(mn + mm+1)/2, and let Q be a block permutation consisting of random permutations Qn

on the blocks {kn, . . . , kn+1 − 1}. Let R = QP , the composition of Q and P , and consider
the semigroup SR associated to the permutation R. For a pair of elements k and l that we
wish to compare, either both are in the same P -block, or both are in the same Q-block, so
there seems to be little hope to see which is larger. We provide, however, with an efficient
solution for the DLP in the semigroup SR.
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Let R(l) and n be given. We will show how to test whether mn ≤ l, assuming that the
numbers mn and kn are known. Let M := 127, for example. Compute R(mn), and the
values R(l), R(l + 1), . . . , R(l +M). We consider all possible cases.
Case 1. Assume that one of the computed values R(l + i) is R(mn). Then l + i = mn, and
then l = mn if i = 0, and l < mn if i > 0, and we are done.
Case 2. Assume that we are not in Case 1, that is, mn /∈ {l, l + 1, . . . , l + M}. Then
l < mn −M or mn < l.
Case 2.1. Assume that l < mn−M . Since l, l+ 1, . . . , l+M < mn, we have that P (l), P (l+
1), . . . , P (l+M) < mn ≤ kn, and thus QP (l), QP (l+ 1), . . . , QP (l+M) < kn. Thus, in this
case, all values R(l), . . . , R(l +M) are smaller than kn.
Case 2.2 . Assume that mn < l. If mn+1 ≤ l + M , then kn ≤ mn+1 ≤ P (l + M), and thus
kn ≤ QP (l + M) = R(l + M), and this proves that we are not in Case 2.1, and thus that
mn < l. It remains to consider the case where mn < l, l + 1, . . . , l + M < mn+1. In this
case, the numbers P (l), P (l + 1), . . . , P (l + M) are M + 1 uniformly distributed numbers
in the set {mn,mn + 1, . . . ,mn+1 − 1}, subject only to the condition that they are distinct.
Since kn is the middle point of this set, we have that, with overwhelming probability, at
least one of these numbers P (l + i) is greater than kn. Then, as in Case 2.1, we have that
kn ≤ QP (l + i) = R(l + i), this proves that mn < l.

In summary, the following decision procedure, for the question whether l ≤ mn, is correct
with overwhelming probability: If R(mn) ∈ {R(l), . . . , R(l +M)}, decide according to the i
with R(mn) = R(l+ i). If R(mn) /∈ {R(l), . . . , R(l+M)}: If max{R(l), . . . , R(l+M)} < kn,
decide that l < mn. Otherwise, decide that mn < l.

The problem of finding a meaningful infinite cyclic semigroup where the DLP has no
polynomial-time solution remains, thus, challenging.
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