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A REDUCTION OF SEMIGROUP DLP TO CLASSIC DLP

MATAN BANIN AND BOAZ TSABAN

Abstract. We present a polynomial-time reduction of the discrete logarithm problem in
any periodic (a.k.a. torsion) semigroup (Semigroup DLP) to the classic DLP in a subgroup
of the same semigroup. It follows that Semigroup DLP can be solved in polynomial time
by quantum computers, and that Semigroup DLP has subexponential algorithms whenever
the classic DLP in the corresponding groups has subexponential algorithms.

1. introduction

For Discrete Logarithm Problem (DLP) based cryptography, it is desirable to find ef-
ficiently implementable groups for which sub-exponential algorithms for the DLP are not
available. Thus far, the only candidates for such groups seem to be (carefully chosen) groups
of points on elliptic curves [4, 6]. Groups of invertible matrices over a finite field, proposed
in [8], where proved by Menezes and Wu [5] inadequate for this purpose. In their paper
[3], Kahrobaei, Koupparis and Shpilrain propose to use semigroups and, in particular, the
semigroup of all matrices over a certain finite group-ring as a platform for the Diffie–Hellman
protocol.

Let S be a semigroup. The order of an element g ∈ S is the cardinality of the set
{ gk : k ∈ N }. A semigroup S is periodic (a.k.a. torsion) if each element of S has finite
order. The DLP in a periodic semigroup S is the problem of finding, given an element g ∈ S
and a power h of g, a natural number k such that gk = h. Semigroup DLP is the general
problem of solving the DLP in periodic semigroups.1

We will demonstrate that the Semigroup DLP is not harder than the classic DLP in groups.
Moreover, the DLP in a semigroup S reduces, in polynomial time, to the DLP in a subgroup
G of S. Thus, if there is a subexponential time algorithm for the DLP in subgroups of S
(which is the case, for example, when S is a semigroup of matrices over a finite field, by the
Menezes–Wu result [5]), then there is one for the DLP in S. In particular, as the DLP in
groups is efficiently solvable by quantum computers, it follows that the Semigroup DLP is
efficiently solvable by quantum computers.

Related work. In [7], Myasnikov and Ushakov reduce the DLP in the semigroup proposed
in [3] to the DLP in a group of invertible matrices over a finite field, and deduce that
the DLP in that semigroup can be solved by quantum computers. They achieve this goal
by embedding the semigroup in the semigroup of all matrices over a finite field, and then
applying Jordan Canonical Form theory to reduce the problem to the DLP in the group of
invertible matrices over the same field. Our solution shows, in particular, that specialized
methods are not necessary to solve this problem. We have reported our solution, without
details, to Myasnikov and Ushakov, and suggested to ask experts whether this was known.
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Following that, Myasnikov and Ushakov consulted Steinwandt, who mentioned the problem
to some, including Childs and Ivanyos. Unaware of our solution, Childs and Ivanyos came up
with an independent proof that the Semigroup DLP can be solved by quantum computers [2,
Sections 1–3]. Their method is different, and uses quantum computers directly. Our solution
is slightly more general, since we our reduction uses only classic computational assumptions.
This is useful when quantum computers are not available, but subexponential algorithms
are available for the DLP in the relevant groups, e.g., in matrix semigroups over finite fields.

2. A solution of the Semigroup DLP using a classic DLP oracle

Let G be a finite group. By DLP oracle for G we mean an oracle that, whenever provided
with a generator g of G and a power h of g, returns a natural number k, of size polynomial
in the relevant parameters (including the length of g and the order of G), such that h = gk.
Note that the oracle is not provided with G directly, but via its generator and the definition
of multiplication in the group.

We assume that each element in the considered semigroup has a unique representation, or,
equivalently for our purposes, a canonical representative that can be computed in polynomial
time. We also assume that multiplication in the semigroup can be carried out in polynomial
time.

The following lemma should be well known. For completeness, we include a proof.

Lemma 2.1. Let S be a periodic semigroup, and g be a member of S. Let l, n be minimal
with gl+n = gl, and let t be minimal with tn > l. Then the set

G := gl · { gk : 0 ≤ k < n } = { gl+k : 0 ≤ k < n }
is a cyclic group of order n, with neutral element gtn and generator gtn+1. Moreover, gtn = gsn

for all s ≥ t.

Proof. As gl+n = gl, the set G is closed under products. The element gtn is neutral: As

gtngl = gtn+l = gl+tn = gl,

we have that gtnglgk = glgk for each element glgk ∈ G. Let s ≥ t. Then gsn = gtn+(s−t)n =
gtn.

Inversion: Given gl+k ∈ G, let d be such that l + k + d = tn− l modulo n. Then

gl+kgl+d = glgl+k+d = glgtn−l = gtn.

Generator: As gtn is neutral, for each element ga in G we have that

ga = (gtn)aga = gtna+a = (gtn+1)a. �

Let S be a semigroup and let g be an element of S. Let l, n, and t be the numbers defined
in Lemma 2.1.

Reduction 2.2. Finding n, using a DLP oracle for G.

Procedure. Fix a number N with N � l + n. This can be done by beginning with a
fixed number N , and doubling it until the following procedure works. Choose random k ∈
{dN/2e, . . . , N}, and compute h := gk. The distribution of h is statistically indistinguishable
from the uniform distribution on G. As ϕ(n)/n is greater than 1/(eγ log log n + 3/ log log n)
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for n > 2 [1, Theorem 8.8.7] (and is at least 1/2 for n = 1 or 2), we assume, for a while, that
h is a generator of G.

It is known that the order of a group G can be computed given a generator h and a DLP
oracle for that group. Briefly, this can be done, using our notation, as follows. Choose a
random k ∈ {1, . . . , N}, and compute k′ := logh(h

k). It may be that calling the oracle
twice with the same input, we obtain different values of k′. However, the distribution of k′

depends only on k mod n and not on k itself. Thus, taking the greatest common divisor of
O(1) differences k − k′ of this kind, we will obtain n.

Now, in any case, h generates a subgroup of G, whose order is found by the above-
mentioned algorithm. This order divides the order of G. Repeating this procedure for
O(log log n) elements h, the maximum (or least common multiple) of the obtained orders
will be the order of G. �

We now find t, using our knowledge of n. The neutral element of a group is its unique
element e satisfying e = e2, an idempotent element. By Lemma 2.1, we need to find the
minimal t such that gtn is an idempotent. Given that gsn = gtn for all s ≥ t and gsn 6= gtn

for s < t, this can be done by binary search, as in the following algorithm.

Algorithm Finding the minimal t such that gtn is the neutral element of G
1. b← 1
2. while gnb 6= (gnb)2

3. b← 2b
4. e← gnb (this is the neutral element of G)
5. a← b

2
6. repeat
7. c← a+b

2
8. if gnc 6= e
9. then
10. a← c
11. else
12. b← c
13. until b− a = 1
14. return b

Remark 2.3. One can use a variation of the above algorithm, that precomputes a logarithmic
number of powers g2

i
, and replaces each power computation by one multiplication. This

applies to all algorithms in this paper.

Let gx be given. There are two cases to consider. First, assume that gx ∈ G. Find t and
n as above. Compute tn. Let r = gtn+1, a generator of G. Using the oracle, we obtain a
number x′ such that rx

′
= gx. Then gx = rx

′
= gx

′(tn+1). Take k = x′(tn+ 1). Then gk = gx,
and we are done.

The following immediate fact shows that membership in G can be tested efficiently.

Lemma 2.4. For each x ∈ N, we have that gx ∈ G if and only if gngx = gx. �

If gx /∈ G, we use binary search to find the minimal b such that gbngx ∈ G, as follows.

Algorithm Finding the minimal b such that gbngx ∈ G
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1. b← 1
2. while gbngx /∈ G
3. b← 2b
4. a← b

2
5. repeat
6. c← a+b

2
7. if gcngx /∈ G
8. then
9. a← c
10. else
11. b← c
12. until b− a = 1
13. return b

Similarly, if gk ∈ G and k is known, we can use binary search to find the maximal c such
that k − cn > 0 and gk−cn ∈ G.

Reduction 2.5. Computing a discrete logarithm of gx, using a DLP oracle for G.

Procedure. It remains to consider the case where gx /∈ G. Let r = gtn+1 be the generator of
G. Use the above algorithm to find the minimal b such that gbngx ∈ G. As n is the order of
G, for each a with gbn+x = ga, we have that bn + x ≤ a.

Using the oracle, compute x′ := logr g
bn+x. Then gbn+x = gx

′(tn+1), and thus bn + x ≤
x′(tn+1). Note that the number x′(tn+1) is known. Using binary search, find the maximal
c such that gx

′(tn+1)−cn ∈ G. Then bn+x = x′(tn+1)− cn, and thus x = x′(tn+1)− cn− bn
is found. �

3. A comment on nonperiodic semigroups

Our assumption on the given semigroups are natural, but it may be still interesting to
consider the case where the element g of S has infinite order. Indeed, this case was pro-
posed, by Vladimir Shpilrain, at the conference Algebraic Methods in Cryptography, Ruhr
Universität Bochum, Germany, 2005. In this case, the semigroup 〈g〉 generated by g is iso-
morphic to the additive semigroup N, but the isomorphism may be infeasible to compute.
However, as the second named author commented in that conference, there is likely to be
a strong correlation between the bitlength of gk and the power k (for each fixed coding of
the semigroup elements). The following algorithm should be able to recover k from gk in
many cases of interest. In this algorithm, the function len(g) may be the bitlength of the
presentation of g as a bitstring, or any other reasonable length function that tends to get
larger for larger powers of g. Line 6 of the following algorithm should be implemented by
binary search.

Algorithm Find k given h := gk, for g of infinite order.
1. Choose large P and m, polynomial in the relevant parameters.
2. for i from 1 to m
3. Choose a random element r ∈ {dP/2e, . . . , P}.
4. g̃ ← gr

5. h̃← hr
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6. k ← max{ k : len(g̃k) ≤ len(h̃) }
7. if gk = h,
8. return k

The rational of this proposal is that a small number of bits can only code a limited number
of semigroup elements, and thus a limited number of powers of g. Thus, on average, the
higher the power of g is, the more bits are needed to code this power.

We have tested this algorithm in the case where G is the braid group, m (the number of
tries) is 1 (!), P is 16, and len(g) is the number of generators in the canonical form of g.2

For several parameter settings tested, the algorithm never failed. The algorithm did fail,
occasionally, when we took P to be very small, so the contribution of the random power
seems important.

It may be possible to fool this algorithm if the coding is chosen in a malicious way.
The question whether there is, for each prescribed (black-box) infinite cyclic semigroup, an
efficient solution to the the DLP remains, at present, open.
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2There are much better length functions for this group. We wanted to make life hard for our algorithm.


