
Ambiguous One-Move Nominative Signature
Without Random Oracles?

Dennis Y. W. Liu1,2, Duncan S. Wong2, and Qiong Huang3

1 School of Professional and Continuing Education, University of Hong Kong
2 Department of Computer Science, City University of Hong Kong

3 College of Informatics, South China Agricultural University
dennis.liu@hkuspace.hku.hk, duncan@cityu.edu.hk, csqhuang@gmail.com

Abstract. Nominative Signature is a useful tool in situations where a signature has to be created
jointly by two parties, a nominator (signer) and a nominee (user), while only the user can verify and
prove to a third party about the validity of the signature. In this paper, we study the existing security
models of nominative signature and show that though the existing models have captured the essential
security requirements of nominative signature in a strong sense, especially on the unforgeability
against malicious signers/users and invisibility, they are yet to capture a requirement regarding the
privacy of the signer and the user, and this requirement has been one of the original ones since the
notion of nominative signature was first introduced. In particular, we show that it is possible to build
a highly efficient nominative signature scheme which can be proven secure in the existing security
models, while in practice it is obvious to find out from the component(s) of a nominative signature
on whether a particular signer or user has involved in the signature generation, which may not be
desirable in some actual applications. We therefore propose an enhanced security property, named
“Ambiguity”, and also propose a new one-move nominative scheme for fulfilling this new security
requirement without random oracles, and among the various types of nominative signature, one-move
is the most efficient type. Furthermore, this new scheme is at least 33% more efficient during signature
generation and 17% shorter in signature size when compared with the existing one-move signature
schemes without random oracles even that the existing ones in the literature may not satisfy this new
Ambiguity requirement.

Keywords: nominative signature, undeniable signature, non-self-authenticating signature, security model

1 Introduction

In nominative signature (NS) [16,20], there are two parties: a signer (or nominator) A and a user (or
nominee) B. To generate a nominative signature σ, A and B have to work together. However, once σ
is generated, no one can verify its validity unless B and B is the only one who can show the validity
or invalidity of an alleged nominative signature to a third party via running a confirmation/disavowal
protocol. NS is useful in applications that there is a need in the division of signing and verifying abilities
that two parties have to jointly create a non-self-authenticating signature, and only one of them is able
to perform the verification of the signature, both to himself and to any third-parties. In [12], Huang et
al. exemplified a practical application of NS in a healthcare system. In the system, a hospital may certify
some personal medical records for a patient, for example, after a body checkup. For privacy, the patient
would like to control on who can verify these personal medical records and how many of these records that
a third party, for example, an insurance company, can verify. By using NS, the hospital and the patient
will serve as the signer (or the nominator) and the user (or the nominee), respectively. Some may note that
the hospital may simply release a medical document without participating in the nominative signature
generation, but the patient can accuse the hospital of making false claims on the patient’s medical records.
The role of NS in this scenario is to produce a mutual agreement on the validity of the patient’s personal
medical records.

Since its introduction in 1996 [16], NS has been refined on its definitions and security models, and most
of the security requirements of NS have been properly modeled to date [20,12,21,19] that include (1 and
2): unforgeability against malicious signers and users, (3) non-transferrability, (4) invisibility and (5) user-
only conversion. Unforgeability against malicious signers (resp. users) prevents a signer (resp. user) from
generating a nominative signature alone. A signer and a user have to work together in order to generate a
valid one. Non-transferrability requires that a third party is not able to transfer the proof transcript of a
confirmation/disavowal protocol to further convince other verifiers on the validity/invalidity of an alleged

? This paper is the full version of an extended abstract which will appear at ICISC 2013.

2 D. Y. W. Liu, D. S. Wong and Q. Huang

nominative signature. Invisibility is another main requirement of NS and restricts any party but the user
to tell the validity of an alleged nominative signature, and user-only conversion is an optional property of
NS that allows only the user to transform a valid nominative signature to a publicly verifiable one.

Despite the well modeling [20,12,21,19] of the five security requirements above, we have an ingrained
view that a nominative signature σ is valid only if all the components of σ are verified positively. Suppose
a nominative signature σ consists of 5 tuples σ = (α, β,∆,Λ, θ), the nominative signature verification
carried out by a user always checks the well-formedness and the validity of all these 5 tuples, and if any
of the tuples is found to be invalid, σ is considered invalid. However, an invalid σ may contain some valid
and self-authenticating components and these components might have already leaked the involvement
of the signer A or the user B in the nominative signature generation. For example, suppose (α, β) in σ
represents a digital signature generated by a signer A. If the other components (∆,Λ, θ) in σ are invalid, σ
is deemed invalid. However, from (α, β), one can already tell that A has indeed involved in the generation
of σ regardless whether σ is valid or not, as only the user B can determine its validity (note that σ can still
be invalid even if (α, β) is a valid digital signature generated by A as the other components (∆,Λ, θ) can
be invalid while only B can determine their validity and which makes such a scheme satisfy the invisibility
requirement). More details are given in Sec. 3.2.

Let us use the aforementioned hospital-and-patient scenario as an illustration. Suppose the above NS
is used and there is an alleged nominative signature σ = (α, β,∆,Λ, θ) for certifying a patient’s personal
medical records. The hospital is the signer A and the patient is the user B in the NS. When issuing a
certificate for B’s personal medical records, the hospital A works jointly with B and generates a nominative
signature σ. Although the validity of σ is unknown to the public due to non-transferrability and invisibility
of the NS, everyone can check the validity of the digital signature components (α, β) of the hospital in σ.
This may leak the fact that the hospital A has indeed got involved on issuing a certificate regarding B’s
personal medical records though σ as a whole is not able to be verified by the public.

Our Results. In this paper, we describe an NS scheme and proves that it is secure in the existing
security models which capture the five conventional security requirements, namely unforgeability against
malicious signers or users, non-transferrability, invisibility, and user-only conversion. Then we show that
this nominative signature leaks the information on the involvement of a particular signer A. For capturing
that no one, except the user B, is able to tell whether a particular signer or a user has participated in the
generation of a nominative signature, we formalize a new security model, called “Ambiguity” and show that
any NS scheme which can be proven secure under this new security model would not contain any sensible
components which may leak the involvement of any particular party.

Besides the new Ambiguity model, we propose a new and highly efficient NS scheme which is proven
secure under the existing models with respect to the five conventional security requirements. The new
scheme is at least 33% more efficient, in terms of modular exponentiations during signature generation,
and 17% shorter in signature size when compared with the most efficient NS schemes in the literature
that has been proven secure without the random oracles. Also, we propose an improved NS scheme which
satisfies not only the existing models, but also the new Ambiguity security requirement. Table 1 shows
an efficiency comparison between this new NS scheme and the most efficiency NS schemes available in
the literature that have been proven secure without random oracles, where the columns σ, AKey, and
BKey represent the signature size, signer’s key size, and user’s key size, respectively; the column SigGen
represents the number of modular exponentiation operations carried out by a signer (Sign) and a user
(Receive) individually; and the column Ambiguity indicates whether the corresponding scheme supports
the new notion Ambiguity or not.

Schemea σ AKey BKey SigGenb Ambiguity

SH11 [21] 3G+Zp 2G+(n+2)Zp
c 5G+[2(n+1)+3]Zp 3 + 8

√

LW12 [19] 4G+2Zp 2G+2Zp 3G+3Zp 1 + 5 ×
Our Scheme I 4G+1Zp 2G+2Zp [3+(m+1)]G+2Zp

d 1 + 3 ×
Our Scheme II (EGE) 4G+3Zp 2G+2Zp 3G+5Zp 1 + 7

√

Our Scheme II (LE) 6G+3Zp 2G+2Zp 6G+5Zp 1 + 9
√

a EGE - ElGamal Encryption, LE - Linear Encryption
b No. of Modular Exponentiations in signature generation (Sign + Receive)
c n: No. of bits of message to be signed
d m: The public generators of group G included in the key of the programmable hash function (PHF)

Table 1. Efficiency Comparison Against Existing One-Move NS Schemes Without Random Oracles

Ambiguous One-Move Nominative Signature Without Random Oracles 3

Outline. In Sec. 2, we give the definition of nominative signature and review the existing security models.
In Sec. 3, we discuss about the privacy of signer and user in a nominative signature and introduce the
notion of Ambiguity. We propose a new scheme, which is proven secure in the existing security models, and
show that the public can tell whether a particular signer has involved in the signature generation regardless
an alleged nominative signature is valid or not. We then propose a security model for capturing Ambiguity.
In Sec. 4, we propose a new nominative signature scheme and shows that it satisfies all the existing security
requirements and also the new Ambiguity requirement without random oracles. In Sec. 5, we evaluate its
efficiency and compare it with existing schemes. The paper is concluded in Sec. 6. In Appendix A, we also
review the related work and results of nominative signature in the literature.

2 Nominative Signature: Definitions

A One-Move Nominative Signature (NS) consists of six probabilistic polynomial-time (PPT) algorithms
(SystemSetup, SKeyGen, UKeyGen, NSVer, Conv, Ver) and three protocols (SigGen, Confirmation and Disavowal).

1. SystemSetup: On input a security parameter 1k, where k ∈ N, it outputs a list of system parameters
denoted by param.

2. SKeyGen: On input param, it generates a public/private key pair (pkA, skA) for the signer (i.e. nomi-
nator).

3. UKeyGen: On input param, it generates a public/private key pair (pkB , skB) for the user (i.e. nominee).
4. NSVer: On input a message m ∈ {0, 1}∗, a nominative signature σ, a signer public key pkA and a user

private key skB , it outputs valid or invalid.
5. Conv: On input a message-signature pair (m,σ), pkA and skB , it outputs a standard (publicly verifiable)

signature σstd if valid ← NSVer(m,σ, pkA, skB); otherwise, it outputs ⊥ symbolizing the failure of
conversion.

6. Ver: On input (m,σstd, pkA, pkB), it outputs valid or invalid.
7. SigGen Protocol: A one-move protocol in which A makes one-move message transfer to B only. The

common input of A and B is (param,m, pkA, pkB). A and B take skA, skB as their secret inputs,
respectively. At the end of the protocol, A outputs nothing and B outputs a nominative signature σ.
Let S(pkA, pkB) be the signature space.

8. Confirmation/Disavowal Protocol: On input (m,σ, pkA, pkB), B sets a bit µ to 1 if valid ← NSVer(m,
σ, pkA, skB); otherwise, µ is set to 0. B then sends µ to C. If µ = 1, Confirmation protocol is carried
out; otherwise, Disavowal protocol is carried out. At the end of the protocol, C outputs either accept
or reject while B has no output.

An NS scheme proceeds as follows. SystemSetup is first invoked. SKeyGen and UKeyGen are then executed
to initialize a signer A and a user B. On a message m, A and B carries out SigGen protocol. As SigGen is
one-move, A generates a partial nominative signature denoted by σ′ and sends it to B. B then generates and
outputs a nominative signature denoted by σ. Formally, SigGen consists of two algorithms, (Sign, Receive),
which are carried out by signer A (who is holding (pkA, skA)) and user B (who is holding (pkB , skB)),
respectively. SigGen protocol proceeds as follows:

1. A generates σ′ ← Sign(param, pkB ,m, skA) and sends σ′ to B;
2. B generates σ ← Receive(param, pkA,m, σ

′, skB).

At the end of the protocol, B either outputs a nominative signature σ or ⊥ indicating the failure of the
protocol run.

Unlike the original definition in [20], the SigGen protocol defined above is specific to the one-move
setting, that is, signer A initiates and generates a partial nominative signature σ′, then B generates the
final nominative signature σ upon receiving σ′. Note that the signature space should be specified explicitly
in each NS construction.

For a nominative signature σ in the signature space S(pkA, pkB) (defined above in SigGen), the validity of
σ can be determined by B using NSVer. If σ is valid, B can prove its validity to a third party C using the
Confirmation protocol, otherwise, B can prove its invalidity to C using the Disavowal protocol.

Correctness: An NS scheme is correct if for all param← SystemSetup(1k), (pkA, skA)← SKeyGen(param),
(pkB , skB) ← UKeyGen(param), message-signature pairs (m,σ) such that σ ← Receive(param, pkA,m,
Sign(param, pkB ,m, skA), skB), and σstd ← Conv(m,σ, pkA, skB), we have

– valid← NSVer(m,σ, pkA, skB);

4 D. Y. W. Liu, D. S. Wong and Q. Huang

– C outputs accept at the end of the Confirmation protocol, and;
– valid← Ver(m,σstd, pkA, pkB).

For correctness, we also require that given a message m and a nominative signature σ in the signature space
S(pkA, pkB), if invalid ← NSVer(m,σ, pkA, skB), C outputs accept at the end of the Disavowal protocol.

The soundness of Confirmation (resp. Disavowal) protocol requires that no PPT user can convince a
third party that an invalid (resp. valid) nominative signature is valid (resp. invalid).

Before describing the security games for NS, we begin with the description of oracles.

– OCreateSigner: This oracle generates a key pair (pkA, skA) using SKeyGen, and returns pkA.
– OCreateUser: This oracle generates a key pair (pkB , skB) using UKeyGen, and returns pkB .
– OCorrupt: On input a public key pk, if pk is generated by OCreateSigner or OCreateUser, the corre-

sponding private key is returned; otherwise, ⊥ is returned. pk is said to be corrupted.
– OSign: On input a message m, two distinct public keys, pk1 (signer) and pk2 (user), it returns σ′ where
σ′ is a partial nominative signature generated using Sign.

– OReceive: On input a message m, a partial nominative signature σ′, two distinct public keys, pk1
(signer) and pk2 (user), it returns a nominative signature σ.

– OProof: On input a message m, a nominative signature σ and two public keys pk1 (signer) and
pk2 (user), the oracle, acting as the user (prover) and runs NSVer(m,σ, pk1, sk2) where sk2 is the
corresponding private key of pk2. If the output of NSVer is valid, the oracle returns 1 and carries out
the Confirmation protocol. Otherwise, it returns 0 and runs the Disavowal protocol.

– OConvert: On input (m,σ, pk1, pk2) such that valid← NSVer(m,σ, pk1, sk2), it runs Convert and returns
σstd.

In all the oracles described above, the public keys in the queries of the oracles are assumed to be generated
by the corresponding OCreateSigner or OCreateUser. This approach aligns with the multi-user setting and
also the usual formalization under the registered-key model [2] and is based on that of [21].

We now review the security models for capturing the five conventional requirements of NS that are given
in [20,12,21,19]. These requirements are: (1) Unforgeability Against Malicious Users, (2) Unforge-
ability Against Malicious Signers, (3) Invisibility, (4) Non-transferability, and (5) User-only
Conversion.

2.1 Unforgeability Against Malicious Users

We require that a user cannot forge a nominative signature without the involvement of a signer.

Game Unforgeability Against Malicious Users: Let S be a challenger and F a forger.
1. (Initialization) Let k ∈ N be a security parameter. S runs param ← SystemSetup(1k) and (pkA,
skA) ← SKeyGen(param), then invokes F with (param, pkA).

2. (Attacking Phase) F adaptively queries OCreateSigner, OCreateUser, OCorrupt, and OSign.
3. (Output Phase) F outputs (m∗, σ∗, pkB , skB).
F wins the game if valid← NSVer(m∗, σ∗, pkA, skB) provided that
1. F has never queried OCorrupt(pkA) for getting skA;
2. (pkB , skB) is created through querying OCreateUser;
3. (m∗, pkA, pkB) has never been queried to OSign.
F ’s advantage in this game is defined as the probability that F wins.

Definition 1. An NS is unforgeable against malicious users if no PPT forger F has a non-negligible
advantage in Game Unforgeability Against Malicious Users.

Oracles OProof and OConvert are not provided in the game as F can readily carry out these proto-
col/algorithm as a (malicious) user by making use of OCreateUser and OCorrupt oracles.

2.2 Unforgeability Against Malicious Signers

A malicious signer should not be able to forge a nominative signature without the help of a user.

Game Unforgeability Against Malicious Signers: Let S be a challenger and F a forger.
1. (Initialization) On input a security parameter k ∈ N, S runs param← SystemSetup(1k) and (pkB ,
skB) ← UKeyGen(param) and invokes F with (param, pkB).

Ambiguous One-Move Nominative Signature Without Random Oracles 5

2. (Attacking Phase) F adaptively queries OCreateSigner, OCreateUser, OCorrupt, OReceive, OProof
and OConvert.

3. (Output Phase) F outputs (m∗, σ∗, pkA, skA).

F wins the game if valid← NSVer(m∗, σ∗, pkA, skB) provided that

1. F has never queried OCorrupt(pkB) for getting skB ;

2. (pkA, skA) is created through OCreateSigner;
3. (m∗, σ′

∗
, pkA, pkB) has never been queried to OReceive such that σ∗ is the return.

F ’s advantage in this game is defined as the probability that F wins.

Definition 2. An NS is unforgeable against malicious signers if no PPT forger F has a non-negligible
advantage in Game Unforgeability Against Malicious Signers.

OSign is not provided in the game above as F can readily carry out Sign as (malicious) signers by making
use of OCreateSigner and OCorrupt.

2.3 Invisibility

We require that no verifier C (including signer A) but user B can tell the validity of a nominative signature.
In the formalization, we define an auxiliary algorithm called NSSim (Nominative Signature Simulator).
The algorithm takes (param, pkA, pkB ,m, σ

valid) as input, where σvalid is a valid nominative signature for
message m under pkA and pkB , outputs σinvalid so that σinvalid ∈ S(pkA, pkB) but σinvalid is no longer
a valid nominative signature for m under (pkA, pkB). The purpose of introducing NSSim is to explicitly
define the capability of the public to convert a valid nominative signature to an invalid one while both
σvalid and σinvalid should look indistinguishable to C, and only B can tell which signature is valid and
which one is not. Also note that NSSim has to be explicitly described in the construction of an NS scheme
in order to have the new scheme be proven satisfying the Invisibility requirement.

Game Invisibility: The adversary in the game is a distinguisher D.

1. (Initialization) Same as that of Game Unforgeability Against Malicious Signers.
2. (Attacking Phase) Same as that of Game Unforgeability Against Malicious Signers.
3. (Challenge Signature Generation Phase) D chooses and sends a message m∗ and (pkA, pkB) to the

challenger while acting as a signer (indexed by pkA) to carry out a run of SigGen with the challenger
which acts as a user (indexed by pkB). Let σvalid be the nominative signature generated by the
challenger in a SigGen protocol run, that is, valid ← NSVer(m∗, σvalid, pkA, skB). The challenger
then tosses a random coin b ∈R {0, 1}. If b = 1, the challenges sends σvalid to D; otherwise, the
challenge sends σ∗ ← NSSim(param, pkA, pkB ,m, σ

valid) to D.

4. (Guess Phase) D continues querying the oracles until it outputs a guess b′.

D wins the game if b′ = b provided that

1. D has never queried OCorrupt(pkB) for getting skB ;

2. (pkA, skA) is created by querying OCreateSigner;
3. (m∗, σ′

∗
, pkA, pkB) has never been queried to OReceive such that it returns σ∗;

4. (m∗, σ∗, pkA, pkB) has never been queried to OProof or OConvert.

D’s advantage in this game is defined as P[b′ = b]− 1
2 .

Definition 3. An NS satisfies invisibility if no PPT distinguisher D has a non-negligible advantage in
Game Invisibility.

2.4 Non-transferability

This security property requires that a verifier C cannot convince other verifiers using a previous confirma-
tion/disavowal proof transcript about the validity/invalidity of a given nominative signature. For a secure
NS scheme, the Confirmation and Disavowal protocols should be perfect zero-knowledge so that no PPT
verifier (including the signer) can transfer the proof transcript. The perfect zero-knowledge property im-
plies non-transferability of proof transcripts as a verifier C can simulate the proof transcripts that look
indistinguishable from the actual proof transcripts. A third party C can sample a signature from the sig-
nature space and create a proof transcript which looks indistinguishable from those generated from the
Confirmation/Disavowal protocols running between the corresponding user B and the third party C.

6 D. Y. W. Liu, D. S. Wong and Q. Huang

2.5 User-only Conversion

The following game captures the requirement that no one but the user can convert a valid nominative
signature to a publicly-verifiable one.

Game User-only Conversion: Let C be an adversary.

– (Initialization) Same as that of Game Unforgeability Against Malicious Signers.
– (Attacking Phase) Same as that of Game Unforgeability Against Malicious Signers.
– (Challenge Signature Generation Phase) C is given a challenge message-nominative-signature pair

(m∗, σ∗) and the public keys of signer and user, respectively, (pkA, pkB) such that σ∗ is valid on
m∗ under (pkA, pkB).

– (Conversion Phase) C outputs (m∗, σstd).

C wins if valid← Ver(m,σstd, pkA, pkB) provided that

1. C has never queried OCorrupt(pkB) for getting skB ;
2. (pkA, skA) is created by querying OCreateSigner;
3. (m∗, σ∗, pkA, pkB) has never been queried to OProof or OConvert.
C’s advantage is defined as the probability that C wins.

Definition 4. An NS satisfies user-only conversion if no PPT adversary C has a non-negligible advantage
in Game User-only Conversion.

Theorem 1 ([19]). If an NS satisfies invisibility with respect to Def. 3, the scheme satisfies user-only
conversion.

3 Nominative Signature Supporting Ambiguity

In this section, we motivate the formalization of a new security requirement, “Ambiguity”. It helps prevent
an adversary from determining whether a signer A or a user B has involved in the generation of an alleged
nominative signature σ. To the best of our knowledge, although Ambiguity has been considered as a folklore
in the research of nominative signature for all these years since its first introduction in 1996 [16] and has
also been studied in many other related cryptographic primitives, for example, the Ambiguous Optimistic
Fair Exchange (AOFE) [14], it has never been formalized in the context of nominative signature, while it is
an important and practical requirement. In the following, we first give a new NS construction that satisfies
the existing security models (as defined in Sec. 2 above. The new construction is also more efficient, in
terms computational complexity and signature size, than existing NS schemes. We, however, show that a
nominative signature generated using this NS already leaks the involvement of a particular signer regardless
the validity of the nominative signature. We make use of this NS scheme to illustrate the importance and
practicality of this new “Ambiguity” security requirement.

3.1 An Efficient NS Construction (Our Scheme I)

This scheme employs the Boneh-Boyen short signature (BB) [4] and the Huang-Wong short convertible
undeniable signature (HW) [13]. Particularly in SigGen, a signer A generates a BB signature σ′ = (σBB , rA)
and sends it to a user B, which signs on σ′ using HW convertible undeniable signature. Below are the details,
and the computational assumptions of the construction are given in Appendix B.

SystemSetup: Given a security parameter k ∈ N, the algorithm selects a bilinear group G with generator
g of prime order p, and a collision resistant hash function H : {0, 1}∗ → Zp. It also selects a keyed
group hash function [11] H = (PHF.Gen,PHF.Eval), such that κ ← PHF.Gen(1k) is the key, and we
denote Hκ(m) = PHF.Eval(κ,m), where m ∈ {0, 1}∗. Let param = (k,H,H, G, g, p).

SKeyGen: On input param, it randomly generates xA1
, xA2

∈R Z∗p and calculates yA1
= gxA1 and yA2

=
gxA2 . Set the public key pkA = (yA1

, yA2
) and private key skA = (xA1

, xA2
) for signer A.

UKeyGen: On input param, it randomly picks xB1 , xB2 ∈R Zp, η ∈R G and gets κ ← PHF.Gen(1k).
Calculate yB1 = gxB1 , yB2 = g1/xB2 , and set the public key pkB = (yB1 , yB2 , η, κ) and private key
skB = (xB1

, xB2
) for user B.

SigGen Protocol: On input a message m ∈ {0, 1}∗, A and B carry out the following:

Ambiguous One-Move Nominative Signature Without Random Oracles 7

1. A randomly picks rA ∈ Zp \ −{
xA1

+H(m||yB)

xA2
} where yB = yB1

||yB2
||η||κ, computes σBB =

g1/(xA1
+H(m||yB)+xA2

rA), and sends σ′ ← (σBB , rA) to B. Here, the inverse 1/(xA1
+H(m||yB) +

xA2
rA) is computed modulo p.

2. B verifies if e(g, g)
?
= e(σBB , yA1

gH(m||yB)yrAA2
). B then randomly picks τ ∈R Zp, computes ∆ ←

Hκ(σ′)1/(xB1
+τ), Λ ← yτB2

, θ ← ητ , and sets σU = (∆,Λ, θ). The nominative signature is set to
σ = (σ′, σU).

Signature Space: σ = (σ′, σU) is said to be in the signature space S(pkA, pkB) if σ′ is a valid BB signature
under pkA on m‖yB and ∆,Λ, θ ∈ G.

NSVer: On input (m,σ, pkA, skB), if e(∆, yB1Λ
xB2) = e(Hκ(σ′), g) and e(ΛxB2 , η) = e(g, θ), it outputs

valid; otherwise, it outputs invalid.

Confirmation/Disavowal Protocol: If valid ← NSVer(m,σ, pkA, skB), B sends µ = 1 and carries out the
following proof system for showing the validity of σU to a verifier:

PoK{xB2 : e(∆,Λ)xB2 = e(Hκ(σ′), g) · e(∆, yB1)−1};

otherwise, B sends µ = 0 and carries out the following proof system with the verifier:

PoK{xB2
: e(∆,Λ)xB2 6= e(Hκ(σ′), g) · e(∆, yB1

)−1}.

There exist efficient (3-move) special honest-verifier zero-knowledge protocols [7,8] for the instantiation of
above proof systems. They can also be transformed into 4-move perfect zero-knowledge proofs of knowledge
[9] so that there exists a PPT simulator that produces indistinguishable views for any verifier.

Conv: On input (m,σ, pkA, skB) where σ is a valid nominative signature on m respect to pkA and
pkB , the algorithm computes cvt = ΛxB2 and sets σstdU = (σU , cvt). It outputs a digital signature as
σstd = (σ′, σstdU).

Ver: On input (m,σstd, pkA, pkB), it outputs valid if (1) e(∆, yB1
cvt) = e(Hκ(σ′), g), and (2) e(cvt, η) =

e(g, θ); otherwise, it outputs invalid.

For Invisibility (Sec. 2.3), we define σinvalid ← NSSim(param, pkA, pkB ,m, σ
valid) as follows. Given σvalid :=

(σ′, σU), NSSim outputs σinvalid as (σ′, σ∗U) for randomly chosen ∆∗, Λ∗, θ∗ ∈R G.

The security analysis for the scheme above is given in Appendix C.

3.2 Security Model: Ambiguity

The existing security model treats a nominative signature σ as a whole when determining its validity,
that is, σ is considered valid if all individual components of σ are considered valid. However, this security
model does not consider the self-authenticating individual components in σ. Those components may
leak certain important information, for example, a particular signer/user’s involvement in the signature
generation. In our construction given in Sec. 3.1, the signer A creates a partial NS signature σ′ which is
a standard signature on (m‖pkB). The user B then creates an undeniable signature σU on σ′ to form the
final NS signature σ = (σ′, σU). Note that σ′ can only be generated by A while the unforgeability property
of the NS scheme still holds as neither A nor B is able to forge the entire signature σ alone. On invisibility,
as the second part of σ, that is, σU , can only be verified by B while the public (including A) cannot tell
whether σU is valid or not, even σ′ is publicly verifiable, no one (including A) can conclude on whether the
nominative signature σ as a whole is valid or not. However, the partial NS signature σ′ is self-authenticated
and already reveals A’s participation in the signature generation regardless the validity or invalidity of the
second part σU . We believe that this may act against the interest of the signer/user in real life situations.
The hospital-and-patient scenario mentioned previously provides a good example. Though the certificate
(i.e. σ) of a patient’s personal medical records may not be self-authenticated that public verifiers are not
able to check whether the certificate (as a whole) is valid or invalid, the first part of the certificate, i.e.
σ′, has already leaked the fact that the patient’s personal medical records had been signed by a specific
hospital. The patient, however, may not be happy to disclose this fact to the public. In real life situations,
we believe that it is crucial to hide completely the information about whether a particular signer A or user
B has got involved in the generation of an alleged nominative signature σ.

Informally speaking, given an alleged NS signature, we require that other than user B, no one (including
signer A) can tell whether A or B has been involved in the signature generation protocol SigGen. Here, we
propose two games for formalizing Signer Ambiguity and User Ambiguity.

8 D. Y. W. Liu, D. S. Wong and Q. Huang

Game Signer Ambiguity: The initialization and attacking phases are the same as that of Game Unforge-
ability Against Malicious Signers. In particular, the challenger S runs (pkB , skB) ← UKeyGen(param)
and sends pkB to the adversary/distinguisher DA while keeping skB secret. Below are the subsequent
phases.
1. (Challenge Selection Phase) DA arbitrarily chooses and sends two distinct challenge messages
m∗0, m∗1 and key pairs (pkA0

, skA0
) and (pkA1

, skA1
) of two signers to S. DA then further runs

σ′i ← Sign(param, pkB ,m
∗
i , skAi

) and sends σ′i to S, for i = 0, 1.
2. (Challenge Signature Generation Phase) Upon receiving 〈m∗0,m∗1, (pkA0 , skA0), (pkA1 , skA1), σ′0, σ

′
1〉,

S tosses a coin b ∈R {0, 1} and sends σ∗ ← Receive(param, pkAb
, m∗b , σ

′
b, skB) to DA.

3. (Guess Phase) DA outputs a guess bit b′ for b.

DA wins the game if b′ = b provided that

1. DA has never queried OCorrupt(pkB) for getting skB ;
2. (pkA0 , skA0) and (pkA1 , skA1) are created by querying OCreateSigner;
3. (m∗, σ∗, pkAi

, pkB) has never been queried to OProof or OConvert, for i = 0, 1.

DA’s advantage in this game is defined as P[b′ = b]− 1
2 .

Definition 5. An NS has the property of Signer Ambiguity if no PPT distinguisher DA has a non-negligible
advantage in Game Signer Ambiguity.

Game User Ambiguity: The initialization and attacking phases are the same as that of Game Unforgeability
Against Malicious Signers. In particular, the challenger S generates (pkB0

, skB0
)← UKeyGen(param) and

(pkB1 , skB1) ← UKeyGen(param) and sends pkB0 and pkB1 to the adversary/distinguisher DA while
keeping skB0 and skB1 secret. Below are the subsequent phases.
1. (Challenge Selection Phase) DA arbitrarily chooses and sends two distinct challenge messages m∗0,
m∗1 and a pair (pkA, skA) to S. DA further runs σ′i ← Sign(param, pkBi

,m∗i , skA) and sends σ′i to
S, for i = 0, 1.

2. (Challenge Signature Generation Phase) Upon receiving 〈m∗0, m∗1, pkA, skA, σ′0, σ′1〉, S tosses a
coin b ∈R {0, 1}, computes σ∗b ← Receive(param, pkA, m∗b , σ

′
b, skBb

), and sends σ∗b to DA.
3. (Guess Phase) DA outputs a guess bit b′ for b.

DA wins the game if b′ = b provided that

1. DA has never queried OCorrupt(pkBi
) for getting skBi

for i = 0, 1;
2. (pkA, skA) is created by querying OCreateSigner;
3. (m∗, σ∗, pkA, pkBi

) has never been queried to OProof or OConvert, for i = 0, 1.

DA’s advantage in this game is defined as P[b′ = b]− 1
2 .

Definition 6. An NS has the property of User Ambiguity if no PPT distinguisher DA has a non-negligible
advantage in Game User Ambiguity.

[19] does not satisfy User Ambiguity as the adversary can make use of rA, which is generated by the
adversary as signer A but is not masked in σ∗b , to tell whether σ′0 or σ′1 is used in the generation of σ∗b in
the Game User Ambiguity above.

Definition 7. An NS has the property of ambiguity if it satisfies both Signer Ambiguity and User Ambi-
guity.

We say that a secure nominative signature (NS) scheme satisfies: (1) Unforgeability Against Malicious
Users, (2) Unforgeability Against Malicious Signers, (3) Invisibility, (4) Non-transferability, (5)
User-only Conversion and (6) Ambiguity.

Remark: In [12], Liu et al. proposed a security requirement called Strong Invisibility, which does not imply
“Ambiguity”. A nominative signature σ could have some individual components which are already self-
authenticating, for example, the σ′ part in the NS scheme proposed in Sec. 3.1, and from σ′, it is publicly
verifiable (i.e. self-authenticating) that A has involved (regardless of voluntarily or involuntarily) in the
generation of σ′. Strong Invisibility [12] addresses a different issue, namely, the remaining components of a
nominative signature σ, that is, those non-self-authenticating part of a nominative signature σ, for example,
the σU = (∆,Λ, θ) components of σ in Sec. 3.1, can only be verified by user B even A “memorizes” all her
SigGen transcripts.

Ambiguous One-Move Nominative Signature Without Random Oracles 9

4 A New NS Construction Supporting Ambiguity (Our Scheme II)

We propose a new NS scheme for achieving “Ambiguity”. The scheme is based on the one in [19], and
major modifications include the encryption of the randomness, rA, using ElGamal encryption (EGE), and
the inclusion of the ciphertext in the signature. We will also describe an alternative approach using Linear
Encryption (LE) later in the same section.

SystemSetup: On input a security parameter k ∈ N, the algorithm sets three cyclic groups G1, G2, and
GT of prime order p ≥ 2k and a bilinear map e : G1 × G2 → GT . It also picks a collision resistant
hash function H : {0, 1}∗ → Zp, and randomly selects generators g1 ∈ G1, g2 ∈ G2, and g3 ∈ Z∗p. Set
param = (p,G1, G2, GT , g1, g2, g3, H).

SKeyGen: On input param, it randomly picks xA1
, xA2

∈R Z∗p, and computes yA1
= g

xA1
2 and yA2

= g
xA2
2 .

Set public key pkA = (yA1 , yA2), and private key skA = (xA1 , xA2) for signer A.

UKeyGen: On input param, it randomly generates xB1
, xB2

, xB3
, xB4

∈R Z∗p, and computes yB1
= g

xB1
2 ,

yB2 = g
xB2
2 , yB3 = g

xB3
1 and yB4 = g

xB4
3 . Set public key pkB = (yB1 , yB2 , yB3 , yB4) and private key

skB = (xB1 , xB2 , xB3 , xB4) for user B.

SigGen Protocol: On input a message m ∈ {0, 1}∗, A and B carry out the following.

1. A randomly picks rA ∈R Zp \ −{
xA1

+H(m||yB)

xA2
} where yB = yB1‖yB2‖yB3‖yB4 , computes σBB =

g1
1/(xA1

+H(m||yB)+xA2
rA), and sends σ′ ← (σBB , rA) to B.

2. B checks if e(g1, g2)
?
= e(σBB , yA1

g
H(m||yB)
2 yrAA2

). If so, B computes σ1 = σBByB3
r1 and α1 =

g1
r1 where r1 ∈R Zp, then randomly picks rB ∈R Zp \ −{

xB1
+H(σ1)

xB2
}, and computes σ2 =

g1
1/(xB1

+H(σ1)+xB2
rB)yB3

r2 and α2 = g1
r2 where r2 ∈R Zp. B also computes cA = rAyB4

r3 ,
α3 = g3

r3 where r3 ∈R Zp. The signature is σ = (σ1, σ2, cA, rB , α1, α2, α3).

Signature Space: σ is said to be in the signature space S(pkA, pkB) if σ1, σ2, α1, α2 ∈ G1, cA, α3 ∈ Z∗p,
rB ∈ Zp.

NSVer: On input (m,σ, pkA, skB) where σ is in S(pkA, pkB), set r′A = cA/α3
xB4 and check if

e(α1, yA1
g
H(m‖yB)
2 yrAA2

)xB3
?
= e(σ1, yA1

g
H(m||yB)
2 yrAA2

)/e(g1, g2)

∧ e(α2, yB1
g
H(σ1)
2 yrBB2

)xB3
?
= e(σ2, yB1

g
H(σ1)
2 yrBB2

)/e(g1, g2)

If so, output valid; otherwise, output invalid.

Confirmation/Disavowal Protocol: If valid ← NSVer(m,σ, pkA, skB), B sends µ = 1 and carries out the
following zero-knowledge proof of knowledge with a verifier:

PoK{(xB3, xB4, rA) : g1
xB3 = yB3 ∧ g3

xB4 = yB4

∧ e(α1, yA1
g
H(m||yB)
2 yrAA2

)xB3 = e(σ1, yA1
g
H(m||yB)
2 yrAA2

)/e(g1, g2)

∧ e(α2, yB1g
H(σ1)
2 yrBB2

)xB3 = e(σ2, yB1g
H(σ1)
2 yrBB2

)/e(g1, g2)};

otherwise, B sends µ = 0 and carries out the following zero-knowledge proof of knowledge with the
verifier:

PoK{(xB3, xB4, rA) : g1
xB3 = yB3 ∧ g3

xB4 = yB4

∧ (e(α1, yA1g
H(m||yB)
2 yrAA2

)xB3 6= e(σ1, yA1g
H(m||yB)
2 yrAA2

)/e(g1, g2)

∨ e(α2, yB1
g
H(σ1)
2 yrBB2

)xB3 6= e(σ2, yB1
g
H(σ1)
2 yrBB2

)/e(g1, g2))}.

Conv: On input (m,σ, pkA, skB) where σ is a valid nominative signature on m respect to pkA and pkB ,
the algorithm computes rA = cA/α3

xB4 , then randomly picks r4 ∈R Zp, and sets δ = (δ1, δ2, rA, r4)
where δ1 = σ1/α

xB3
1 and δ2 = g1

1/(xB1
+H(δ1)+xB2

r4).

Ver: On input (m, δ, pkA, pkB), it outputs valid if e(g1, g2) = e(δ1, yA1
g
H(m||yB)
2 yrAA2

) and e(g1, g2) = e(δ2,

yB1
g
H(δ1)
2 yr4B2

); otherwise, it outputs invalid.

10 D. Y. W. Liu, D. S. Wong and Q. Huang

For Invisibility (Sec. 2.3), we define σinvalid ← NSSim(param, pkA, pkB ,m, σ
valid) as follows. Given σvalid :=

(σ1, σ2, cA, rB , α1, α2, α3), NSSim outputs σinvalid as (σ∗1 , σ
∗
2 , cA, rB , α1, α2, α3) where σ∗1 = σ1R1, σ∗2 =

σ2R2 where R1 and R2 are randomly chosen from G1.

Remark: In the security analysis, we will see that the “ambiguity” of the scheme above is based on the
eXternal Diffie-Hellman (XDH) assumption [1] (Appendix B.4). An alternative approach is to use Linear
Encryption [5], a natural extension of ElGamal encryption, to encrypt σBB . Linear encryption (LE) can
be secure even in groups where a DDH-deciding algorithm exists. By using LE, we need to change pkB
to a triple of generators gi, gii, giii ∈ G1, and skB to exponents xi, xii ∈ Zp such that gxi

i = gxii
ii = giii.

To encrypt σBB , we randomly choose a, b ∈R Zp and compute (T1, T2, T3) = (gai , g
b
ii, σ

BBga+biii). To recover
σBB , we compute T3/(T

xi
1 T xii

2). LE is semantically secure against chosen-plaintext attacks, assuming the
Decision Linear Problem (DLIN) assumption (Appendix B.5) holds, which is a weaker assumption and the
scheme can remain secure even in groups where a DDH-deciding algorithm exists. This LE-based variant
can therefore provide a potentially larger class of groups to choose from during implementation, while it is
less efficient than the original EGE-based scheme. A detailed comparison will be given in Sec. 5.

4.1 Ambiguity Proof

Lemma 1. [Signer Ambiguity] Suppose the NS above is unforgeable. If a polynomial-time algorithm DA has
an advantage ε in Game Signer Ambiguity, we can build a polynomial-time algorithm DIND-CPA that breaks
indistinguishability under chosen-plaintext attacks (IND-CPA) of ElGamal encryption PKE with advantage
ε1 = ε

2 .

Game 0 (Game Signer Ambiguity) Game 1 (IND-CPA)

(pkA0 , skA0)← USigGen(param) (pk, sk)← Gen(1k)
(pkA1 , skA1)← USigGen(param)
(m∗0,m

∗
1, pkB , skB , σ

′
0, σ
′
1)← DA(pkA0 , pkA1) (M∗0 ,M

∗
1)← DIND-CPA(pk, sk)

b←R {0, 1} b←R {0, 1}
σ∗b ← Receive(param, pkAb , m∗b , σ′b, skB) c∗b ← Enc(Mb)
b′ ← DA(σ∗b) b′ ← DIND-CPA(c∗b)

Fig. 1. Hopping Games for Signer Ambiguity

Proof. Refer to Fig. 1, suppose there is an adversary DA which has a non-negligible advantage ε in Game
0, we construct an algorithm DIND-CPA which has a non-negligible advantage ε1 in Game 1 where
ε1 = ε

2 . DIND-CPA invokes DA with yB3
= pk obtained from challenger S1 of the IND-CPA Game for PKE.

DIND-CPA randomly picks xB1 , xB2 , xB4 ∈R Z∗p and computes yB1 = g
xB1
2 , yB2 = g

xB2
2 , yB4 = g

xB4
3 . Set

yB3
← pk and xB3

← sk, and pkB = (yB1
, yB2

, yB3
, yB4

) and skB = (xB1
, xB2

, xB3
, xB4

).

– OReceive: Upon receiving (m,σ′) from DA for the generation of σ, DIND-CPA generates σ1 = σBByB3
r1

and α1 = g1
r1 where r1 ∈R Zp, randomly picks rB ∈ Zp \ −{

xB1
+H(σ1)

xB2
} and generates σ2 =

g1
1/(xB1

+H(σ1)+xB2
rB)yB3

r2 and α2 = g1
r2 where r2 ∈R Zp. Also, DIND-CPA generates cA = rAyB4

r3 ,
α3 = g3

r3 , where r3 ∈R Zp. DIND-CPA returns (m, σq) where σq = (σ1, σ2, cA, rB , α1, α2, α3), and
maintains a list LOReceive which contains mapping of randomness r1 to σq of all OReceive queries.

– OConvert: If (m,σ) is valid, due to the unforgeability against malicious signer property of the NS
scheme, (m,σ) must be generated from a previous OReceive query. DIND-CPA looks up LOReceive,
extracts r1, calculates δ1 = σ1/yB3

r1 , ra = cA/α3
xB4 and generates a standard signature (δ2, r4) on δ1.

DIND-CPA then returns δ = (δ1, δ2, ra, r4) to DA.
– OProof: Given a (m,σ) pair with respect to pkA and pkB , DIND-CPA is able to simulate the protocol

to DA by using the standard rewinding strategy because of the zero-knowledgeness of the protocol.

At some point, DA sends m∗0 and m∗1 to DIND-CPA. DIND-CPA run the SigGen protocol with DA twice. The
two partial nominative signatures are σ′A0

= (σA0
BB , rA0) (on m∗0 under pkA0) and σ′A1

= (σA1
BB , rA1) (on

m∗1 under pkA1
). DIND-CPA sets M0 = σA0

BB and M1 = σA1
BB and submits (M0,M1) to the challenger

of the IND-CPA Game of PKE. After S1 returns the challenge “ciphertext” (σ∗1 , α
∗
1), DIND-CPA picks

r∗B ∈R Zp \ −{
xB1

+H(σ∗
1)

xB2
} and generates σ∗2 = g1

1/(xB1
+H(σ∗

1)+xB2
r∗B)yB3

r∗2 , α∗2 = g1
r∗2 where r∗2 ∈R Zp,

cA = rA0yB4
r∗3 and α∗3 = g3

r∗3 , where r∗3 ∈R Zp. The challenge nominative signature is (m∗, σ∗) where

Ambiguous One-Move Nominative Signature Without Random Oracles 11

σ∗ = (σ∗1 , σ
∗
2 , c
∗
A, r
∗
B , α

∗
1, α
∗
2, α
∗
3). The probability that σ∗ is a valid challenge signature is 1

2 ((σ∗1 , α∗1)
encrypts M0) and DA will not abort. If σ∗ is an invalid challenge ((σ∗1 , α∗1) encrypts M1), the probability
that DA can only succeed in guessing the bit is at most 1

2 . For the event that if DA is able to distinguish
that σ∗ is valid under pkA0 or pkA1 , DIND-CPA is also able to distinguish that c∗ = (σ∗1 , α

∗
1) is a ciphertext

of M∗0 or M∗1 . Therefore, the advantage of DIND-CPA is ε1 = ε
2 .

Lemma 2. [User Ambiguity] Assume the NS proposed above is unforgeable. If DA has an advantage ε in
Game User Ambiguity, we can build a DA that breaks anonymity under chosen-plaintext attack (ANO-CPA)
[3] of ElGamal encryption scheme PKE with advantage ε2 = ε

4 .

Game 0 (Game User Ambiguity) Game 1 (NS-ANO-CPA)
(pkB0 , skB0)← UKeyGen(param) (pkB0 , skB0)← UKeyGen(param)
(pkB1 , skB1)← UKeyGen(param) (pkB1 , skB1)← UKeyGen(param)
(m∗0,m

∗
1, pkA, skA, σ

′
0, σ
′
1)← DA(pkB0 , pkB1) (m∗0,m

∗
1, pkA, skA, σ

′
0, σ
′
1)← DNS-ANO-CPA(pkB0 , pkB1)

b←R {0, 1} b←R {0, 1}, d←R {0, 1}
σ∗b ← Receive(param, pkA, m∗b , σ′b, skBb) σ∗b ← Receive(param, pkA, m∗d, σ′d, skBb)
b′ ← DA(σ∗b) b′ ← DNS-ANO-CPA(σ∗b)

Game 2 (ANO-CPA)

(pk0, sk0)← Gen(1k)
(pk1, sk1)← Gen(1k)
M ← DANO-CPA(pk0, pk1)
b←R {0, 1}
c∗b ← Enc(Mb)
b′ ← DANO-CPA(c∗b)

Fig. 2. Hopping Games for User Ambiguity

Proof. [Game 1]: Refer to Fig. 2, suppose there is an adversary DA which has a non-negligible advantage
ε in Game 0, we can construct an algorithm DNS-ANO-CPA which has a non-negligible advantage ε1 in
Game 1 where ε1 = ε

2 . DNS-ANO-CPA invokes DA with the same sets of public key pairs pkB0 and pkB1 ,
obtained from challenger S2 of Game 1.

The simulation of the oracles are the same as those in Game Signer Ambiguity. When DA outputs a pair
(m∗0, m∗1), it runs SigGen twice. The two partial nominative signatures are σ′0 and σ′1 which are submitted
to DNS-ANO-CPA. DNS-ANO-CPA submits σ′0 and σ′1 to S2. S2 returns σ∗b to DNS-ANO-CPA, which then
routes σ∗b to DA. The probability that σ∗b is a valid challenge is 1

2 (skBi is used to generate σ∗ from m∗i ,
σ′i for i ∈ {0, 1}) and DA will not abort. If σ∗b is an invalid challenge (skB1 is used to generate σ∗ from
m∗0, σ′0 or skB0 is used to generate σ∗ from m∗1, σ′1), the probability that DA can only succeed in guessing
the bit is at most 1

2 . Therefore, if DA is able to distinguish that (m∗i , σ
∗
b) is valid under (pkA, pkBi) for

i ∈ {0, 1}, DNS-ANO-CPA is also able to distinguish that (m∗i , σ
∗
b) is valid under (pkA, pkBi) for i ∈ {0, 1}

Obviously, ε1 = ε
2 .

[Game 2]: Suppose there is an algorithm DNS-ANO-CPA which has a non-negligible advantage ε1 in
Game 1, we can construct an algorithm DANO-CPA which has a non-negligible advantage ε2 in Game
2 where ε2 = ε1

2 . DANO-CPA invokes DNS-ANO-CPA by generating randomly xB1 i, xB2 i, xB4 i ∈ Z∗p and

calculates yB1 i = g
xB1 i
2 , yB2 i = g

xB2 i
2 , yB4 i = g

xB4 i
3 . Set yB3 i ← pki and xB3 i ← ski which are obtained

from the challenger S3 of the ANO-CPA Game of PKE. Let (yB1 i, yB2 i, yB3 i, yB4 i) be the public keys, pkBi,
and (xB1 i, xB2 i, xB3 i, xB4 i) be the private keys, skBi, of user Bi where i = 0, 1.

The encryption oracle for PKE can be simulated perfectly with the public key pk0 and pk1. When
DNS-ANO-CPA outputs a pair (m∗0, m∗1), it runs SigGen twice. The two partial nominative signatures
are σ′i (under m∗i ||pkBi

) for i = 0, 1, which are submitted to DANO-CPA. DANO-CPA calculates σ1
∗ =

σBB0 yB30
r∗1 , α∗1 = g1

r∗1 where r∗1 ∈R Zp, encrypts rA
∗ using xB30 to form (c∗A, α

∗
3) and signs σ1

∗ using

the BB signature scheme to obtain M = g1
1/(xB10

+H(σ1
∗)+xB20

rB
∗). DANO-CPA submits M to S3. S3

returns a challenge ciphertext cb = (σ2, α2). DANO-CPA then routes σ∗b = (σ∗1 , σ
∗
2 , c
∗
A, r
∗
B , α

∗
1, α
∗
2, α
∗
3) to

DNS-ANO-CPA. The probability that σ∗b is a valid challenge to DANO-CPA is 1
2 ((σ∗2 , α∗2) is encrypted

under xB30) and DANO-CPA will not abort. If σ∗b is an invalid challenge ((σ∗2 , α∗2) is encrypted under
xB31), the probability that DNS-ANO-CPA can only succeed in guessing the bit is at most 1

2 . Therefore, if
DNS-ANO-CPA is able to distinguish that (m∗i , σ

∗
b) is valid under (pkA, pkBi) for i ∈ {0, 1}, DANO-CPA

is also able to distinguish c∗b where it is a valid encryption of M under pk0 or pk1. Obviously, ε2 = ε1
2 .

12 D. Y. W. Liu, D. S. Wong and Q. Huang

Theorem 2 (Ambiguity). The NS scheme proposed above satifies Ambiguity (Def. 7) if the scheme is
unforgeable and ElGamal encryption satisfies ANO-CPA and IND-CPA.

The theorem follows directly from Lemma 1 and 2.

The improved NS scheme also satisfies (1) Unforgeability Against Malicious Users, (2) Unforge-
ability Against Malicious Signers, (3) Invisibility, (4) Non-transferability, (5) User-only Con-
version. The proof is similar to that for the scheme in [19] and is omitted here.

5 Efficiency Analysis and Comparison

In Table 2, we compare our Scheme I (the one does not satisfy Ambiguity) and Scheme II (the one supports
Ambiguity) with the most efficient NS schemes in the literature. The comparison includes signature size,
signer A and user B key sizes (termed as AKey and BKey), signature generation efficiency in terms of
modular exponentiation calculation by A (Sign) and B (Receive) individually, and the security assumptions
for unforgeability and invisibility. The table also shows whether the schemes satisfy Ambiguity, and whether
the schemes can be proven secure without the assumption of random oracles.

Scheme σ AKey BKey SigGena

ZY09 [25] 1G 2G+2Z∗p 2G+2Z∗p 1 + 2

SH11 [21] 3G+Zp 2G+(n+2)Zp
b 5G+[2(n+1)+3]Zp 3 + 8

LW12 [19] 4G+2Zp 2G+2Zp 3G+3Zp 1 + 5
Our Scheme I 4G+1Zp 2G+2Zp [3+(m+1)]G+2Zp

c 1 + 3
Our Scheme II (EGE) 4G+3Zp 2G+2Zp 3G+5Zp 1 + 7
Our Scheme II (LE) 6G+3Zp 2G+2Zp 6G+5Zp 1 + 9

Unforgeability Invisibility Ambiguity No Random Oracle

ZY09 [25] CDH 3-DDH
√

×
SH11 [21] CDH, DLP, DLIN DLIN

√ √

LW12 [19] q-SDH DDH ×
√

Our Scheme I q-SDH, HSDH DHSDH ×
√

Our Scheme II (EGE) q-SDH XDH
√ √

Our Scheme II (LE) q-SDH DLIN
√ √

a No. of modular exponentiation operations in signature generation (Sign + Receive)
b n: No. of bits of each message to be signed
c m: The public generators of group G included in the key of the programmable hash function (PHF)

Table 2. Comparison with Existing One-Move NS Schemes

Our first efficient scheme is 33% more efficient, in terms of the number of modular exponentiation
operations during signature generation, and 17% shorter in signature size than those in Liu et al’s scheme
[19], which is known to be the most efficient NS scheme proven secure without random oracles to date. The
schemes [25] and [21] also satisfy the Ambiguity property, while the scheme in [25] relies on the random oracle
assumption and in [21], the number of components in signer A’s key is linear to the security parameter. Our
Scheme II (EGE), the ElGamal encryption based variant of Scheme II, has constant size key and is proven
without random oracles. In Scheme II (LE), the linear encryption based variant, though the performance is
slightly lower than Scheme II (EGE), it relies on a weaker assumption (DLIN) and the scheme will remain
secure even in groups where a DDH-deciding algorithm exists.

6 Conclusion

We proposed a new security notion called Ambiguity to Nominative Signature. This new notion ensures
that a nominative signature will remain anonymous in the sense that no one (including the signer) but the
user can tell whether a particular signer or user has involved in the generation of an alleged nominative
signature. We no longer restrict ourselves to look into a nominative signature as a whole, but also require
that any individual components of a nominative signature should not leak any information regarding the
involvement of any particular party with respect to the generation of an alleged nominative signature. We
formalized the Ambiguity notion, showed that it is possible to build a highly efficient nominative signature

Ambiguous One-Move Nominative Signature Without Random Oracles 13

secure in the existing model but not satisfying the ambiguity requirement. We also proposed a new and
secure nominative signature scheme which also satisfies the ambiguity requirement. The new scheme is
proven secure without the random oracle assumption.

References

1. G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable rfid tags via insubvertible encryption. In ACM
Conference on Computer and Communications Security, pages 92–101. ACM, 2005.

2. B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable protocols with relaxed set-up as-
sumptions. In FOCS 2004, pages 186–195. IEEE Computer Society, 2004.

3. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key encryption. In ASIACRYPT
2001, LNCS 2248, pages 566–582. Springer, 2001.

4. D. Boneh and X. Boyen. Short signatures without random oracles and the SDH assumption in bilinear groups.
J. Cryptology, 21(2):149–177, 2008.

5. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO 2004, LNCS 3152, pages 41–55.
Springer, 2004.

6. X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group signatures. In PKC07, volume
4450 of LNCS, pages 1–15. Springer, 2007.

7. E. Bresson and J. Stern. Proofs of knowledge for non-monotone discrete-log formulae and applications. In
ISC02, LNCS 2433, pages 272–288. Springer, 2002.

8. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete logarithms. In D. Boneh,
editor, CRYPTO03, LNCS 2729, pages 126–144. Springer, 2003.

9. R. Cramer, I. Damg̊ard, and P. MacKenzie. Efficient zero-knowledge proofs of knowledge without intractability
assumptions. In PKC 2000, LNCS 1751, pages 354–373. Springer, 2000.

10. L. Guo, G. Wang, D. S. Wong, and L. Hu. Further discussions on the security of a nominative signature scheme.
In SAM 2007, pages 566–572. CSREA Press, June 2007.

11. D. Hofheinz and E. Kiltz. Programmable hash functions and their applications. In CRYPTO08, volume 5157
of LNCS, pages 21–38. Springer, 2008.

12. Q. Huang, D. Y. W. Liu, and D. S. Wong. An efficient one-move nominative signature scheme. IJACT,
1(2):133–143, 2008.

13. Q. Huang and D. S. Wong. Short and efficient convertible undeniable signature schemes without random
oracles. Theor. Comput. Sci., 476:67–83, 2013.

14. Q. Huang, G. Yang, D. S. Wong, and W. Susilo. Ambiguous optimistic fair exchange. In ASIACRYPT 2008,
volume 5350 of Lecture Notes in Computer Science, pages 74–89, 2008.

15. Z. Huang and Y. Wang. Convertible nominative signatures. In ACISP 2004, LNCS 3108, pages 348–357.
Springer, 2004.

16. S. J. Kim, S. J. Park, and D. H. Won. Zero-knowledge nominative signatures. In PragoCrypt’96, pages 380–392,
1996.

17. D. Y. W. Liu, S. Chang, and D. S. Wong. A more efficient convertible nominative signature. In SECRYPT
2007, pages 214–221. INSTICC Press, 2007.

18. D. Y. W. Liu, S. Chang, D. S. Wong, and Y. Mu. Nominative signature from ring signature. In IWSEC 2007,
LNCS 4752, pages 396–411. Springer, 2007.

19. D. Y. W. Liu and D. S. Wong. One-move convertible nominative signature in the standard model. In ProvSec
2012, LNCS 7496, pages 2–20. Springer, 2012.

20. D. Y. W. Liu, D. S. Wong, X. Huang, G. Wang, Q. Huang, Y. Mu, and W. Susilo. Formal definition and
construction of nominative signature. In ICICS 2007, LNCS 4861, pages 57–68. Springer, 2007.

21. J. C. N. Schuldt and G. Hanaoka. Non-transferable user certification secure against authority information leaks
and impersonation attacks. In ACNS 2011, LNCS 6715, pages 413–430, 2011.

22. W. Susilo and Y. Mu. On the security of nominative signatures. In ACISP 2005, LNCS 3547, pages 329–335.
Springer, 2005.

23. G. Wang and F. Bao. Security remarks on a convertible nominative signature scheme. In SEC 2007, IFIP 232.
Springer, 2007.

24. W. Zhao, C. Lin, and D. Ye. Provably secure convertible nominative signature scheme. In INSCRYPT 2008,
LNCS 5487, pages 23–40, 2008.

25. W. Zhao and D. Ye. Pairing-based nominative signatures with selective and universal convertibility. In IN-
SCRYPT 2009, LNCS 6151, pages 60–74. Springer, 2011.

A Related Work

Nominative Signature (NS) was introduced by Kim et al. [16]. In their seminal paper, they also proposed
the first NS, which was later found insecure [15]. The notion convertible nominative signature was also
introduced in [15] and the first construction of a convertible nominative signature was proposed. In [22],

14 D. Y. W. Liu, D. S. Wong and Q. Huang

an attack against the scheme in [15] was described. Though the attack was later found invalid [10], new
attacks against the scheme in [15] was found in [10,23].

In [20], Liu et al. proposed the first set of formal definitions and security models for Convertible NS
(for simplicity, we use NS to represent convertible NS as well). They also proposed the first provably secure
NS scheme under the models they defined. Their scheme requires at least four rounds of communication
between the signer and the user during signature generation. More efficient nominative signature schemes
were later proposed [17,18]. The scheme in [17] requires two rounds during nominative signature generation
and the scheme in [18] is the first one-move (non-interactive) NS in the literature. Later, more one-move
NS schemes [12,24,25] were proposed and proven secure in random oracle model. In [21], Schuldt et al.
proposed a new NS scheme without random oracles, and recently in [19], a more efficient NS scheme than
that in [21] was proposed. The new scheme achieved constant-size keys.

B Computational Assumptions

B.1 q-Strong Diffie-Hellman (q-SDH) Assumption [4,5]

Let G1, G2 be two cyclic groups of prime order p, respectively generated by g1 and g2.

The q-SDH assumption in (G1, G2) is defined as follows: given a (q + 3)-tuple as input (g1, gx1 , gx
2

1 , · · ·,
gx

q

1 , g2, gx2) ∈ Gq+1
1 × G2

2, output a pair (c, g
1/(x+c)
1) where c ∈ Zp for a freely chosen value c ∈ Zp \ {−x}.

We say that the (q, t, ε)-SDH assumption holds in (G1, G2) if there is no algorithm A which runs in time
at most t, and satisfies the following condition:

P[A(g1, g
x
1 , g

x2

1 , · · · , gx
q

1 , g2, g
x
2) = (c, g

1/(x+c)
1)] ≥ ε

where the probability is taken over the random choices of g1 ∈ G1 and g2 ∈ G2, the random choice of x in
Z∗p, and random bits consumed by A.

Remark: The q-SDH assumption applies to all G1 and G2 with an efficient bilinear map e, in which
G1 = G2 or G1 6= G2, and is proven in generic group model in [4].

B.2 HSDH Assumption [6]

The q-Hidden Strong Diffie-Hellman (q-HSDH) assumption (t, ε)-holds in G if there is no algorithm A
which runs in time at most t, and satisfies the following condition:

P[A(g, gx, gβ , {g1/(x+si), gsi , gβsi}qi=1) = (g1/(x+s), gs, gβs)] ≥ ε

where s ∈ Zp and s 6∈ {s1, · · · , sq}, the probability is taken over the random choices of x, β, s1, · · · , sq ∈ Zp
and the random coins used by A.

B.3 DHSDH Assumption [13]

The q-Decisional Hidden Strong Diffie-Hellman (q-DHSDH) assumption (t, ε)-holds in G if there is no
algorithm A which runs in time at most t, and satisfies the following condition:

P[A(g, gx, gβ ,Q, gβs, g1/(x+s)) = 1]− P[A(g, gx, gβ ,Qgβs, Z) = 1]| ≥ ε

where Q = {g1/(x+si), gsi , gβsi}qi=1, and the probability is taken over the random choices of x, β, s1, · · ·,
sq, s ∈ Zp and Z ∈ G, and the random coins used by A.

B.4 External Diffie-Hellman (XDH) Assumption [1]

Let G1, G2 and GT be cyclic groups of prime order p. Let g1 be the generator of G1 and g2 the generator
of G2. Let e : G1 ×G2 → GT be an efficiently computable map, which is asymmetric with only efficiently-
computable isomorphism ψ : G2 → G1. The External Diffie-Hellman (XDH) assumption (t, ε)-holds if
there is no algorithm A which runs in time at most t, and satisfies the following condition:

P [A(g1, g
a
1 , g

b
1, g

cb
1 , g2, e) = b | c0 = ab, c1 ∈R Z∗p, b ∈R {0, 1}] ≥

1

2
+ ε

where the probability is taken over the random choices of g1 ∈ G1, g2 ∈ G2, a, b, c ∈ Z∗p, and the random
coins consumed by A.

Ambiguous One-Move Nominative Signature Without Random Oracles 15

B.5 Decision Linear Problem (DLIN) Assumption [5]

LetG be a cyclic group of prime order p, and g1, g2 and g3 the generators ofG. The Decision Linear Problem
(DLIN) assumption (t, ε)-holds if there is no algorithm A which runs in time at most t, and satisfies the
following condition:

P [A(g1, g2, g3, g
x1
2 , gx2

3 , gzb1 = b | z0 ≡ x1+x2, z1 ∈R Z∗p, b ∈R {0, 1}] ≥
1

2
+ ε

where the probability is taken over the random choices of g1, g2, g3 ∈ G, x1, x2, z ∈ Z∗p, and the random
coins consumed by A.

C The Security Analysis of Our Scheme I

Informally speaking, the unforgeability against malicious users of our NS scheme relies on the unforgeability
property of BB’s [4] standard signature scheme. The unforgeability against malicious signers relies on the
unforgeability property of the HW’s undeniable signature scheme. The Invisibility property relies on the
invisibility property of HW’s undeniable signature scheme.

We now first show that our construction is secure against malicious users with respect to Def. 1.

Theorem 3. Let k ∈ N be a security parameter. For the convertible nominative signature mentioned
in Sec. 3.1, suppose there exists a (t, ε,Q)-user who is able to forge a valid σ with probability at least
ε with running time at most t and number of queries at most Q in Game Unforgeability Against Users,
then a (t′, ε′)-adversary can be constructed which can forge a valid standard signature in Boneh-Boyen full
signature scheme [4] with probability at least ε′ = ε. The total running time t′ is at most Qtq + t+ c where
tq denotes the maximum time required for responding a query and c is some constant time for setting up
the system and generating the public/private keys.

Proof. Suppose there is a (t, ε,Q)-forger F owning user B’s private key xB = (xB1
, xB2

) (using OCorrupt).
We show that F can be transformed into a (t′, ε′)-algorithm S which is able to forge a valid standard
signature in Boneh-Boyen full signature scheme [4]. Assume a public key PK1 and PK2 is given by the
challenger ch of the Strong Existential Unforgeability Game defined in [4].

Game Simulation: S outputs param by invoking SystemSetup. For signer A, set, yA1
= PK1 and yA2

=
PK2. Let (yA1

, yA2
) be the public keys and (xA1

, xA2
) be the private keys of signer A.

For a OSign query on input (m, yA, y2), where yA = (yA1 , yA2), and y2 = (yb1 , yb2 , η, κ), the simulation can
be carried out perfectly by requesting a signature σ′q = (σBBq , rA) on m from ch and routes σ′q to F .

Reduction: Eventually, F outputs a forged NS signature (m∗, σ∗). A forged standard BB signature σ′ =
(σBB , rA) on message m||yB can be extracted by S. Therefore, the probability ε′ = ε and the running time
t′ is at most Qtq + t+ c.

Theorem 4. Let k ∈ N be a security parameter. For the convertible nominative signature mentioned in
Sec. 3.1, if a (t, ε,Q)-signer can forge a valid nominative signature in Game Unforgeability Against Signers
with probability at least ε after running at most time t and making at most Q queries, there exists a (t′, ε′)-
adversary which can forge a valid HW undeniable signature with probability at least ε′ = ε after running
at most time t′ ≤ t + Qtq + c where tq is the maximum time for simulating a query and c denotes some
constant time for system setup and key generation.

Proof. We show how to construct a (t′, ε′)-algorithm S to forge a HW undeniable signature from a (t, ε,Q)-
forger F of a nominative signature who has signer A’s private keys (xA1 , xA2) (obtained by querying
OCorrupt). Set, pkB = PK which is obtained from challenger ch of the Unforgeability Game of the underlying
HW scheme. Let pkB = (yB1

, yB2
, η, κ) as the public key of B and skB = (xB1

, xB2
) as the private key of

B.

The simulation of the oracles are shown below:

– OReceive: Upon receiving (m,σ′) from F for the generation of nominative signature, S requests an
undeniable signature σU on σ′ from ch of the HW scheme and forms the nominative signature (m, σ)
where σ = (σ′, σU).

– OConvert: Given a valid (m,σ) pair with respect to A and B, F is able to convert σ to a standard
signature σstd, since F possesses the universal convertor ucvt, obtained from the challenger of the
underlying HW scheme. F returns σstd = (σ′, σstdU).

16 D. Y. W. Liu, D. S. Wong and Q. Huang

– OProof: Given a (m,σ) pair with respect to A and B, F is able to route the proof conversation between
F and the confirmation/disavowal oracles of the underlying HW scheme.

Reduction: F outputs an NS signature-pair (m∗, σ∗) with σ∗ = (σ′∗, σ∗U) where σ∗U is a valid forgery of a
convertible undeniable signature on σ′∗. For the event that if F forges a valid NS signature successfully, so
does S on forging a valid HW undeniable signature.

Theorem 5 (Invisibility). If the proposed NS construction is unforgeable and the underlying HW unde-
niable signature scheme satisfies invisibility, it has the property of invisibility with respect to Def. 3.

Proof. We show that if there exists a distinguisher D, who has signer A’s private keys skA (obtained by
querying OCorrupt), with an advantage ε in Game Invisibility, we can construct a DCUS that distinguishes
the validity of HW undeniable signatures with advantage ε′. D sends a challenge message m∗ to DCUS and
aims to carry out SigGen with DCUS . Upon receiving (m∗, σ′∗) from D, DCUS sets σ′∗ as the challenge
“message” of the invisibility game of the HW scheme. The challenger ch of the HW scheme returns a
challenge undeniable signature σ∗U on σ′∗. DCUS then returns a challenge NS σ∗ = (σ′∗, σ∗U) to D.

The simulation of the oracles are shown below:

– OReceive: Upon receiving (m,σ′) from D for the generation of nominative signature, DNS requests
an NS signature σU = USig(skB , σ

′) from ch of the HW scheme. DCUS returns an NS signature
σ = (σ′, σU).

– OConvert: If (m,σ) is valid, DCUS is able to convert σ to a standard signature σstd, since DCUS can
route (m,σ) to the selective conversion oracle of HW scheme, which returns cvt of σU . DCUS returns
σstd = (σ′, σstdU).

– OProof: Given a (m,σ) pair with respect to A and B, DCUS is able to route the proof conversation
between D and the confirmation/disavowal oracles of the HW scheme.

For the event that if D distinguishes the validity of σ∗ = (σ′∗, σ∗U) successfully, so does DCUS on distin-
guishing σ∗U on the “message” σ′∗.

By Theorem 1 and 5 we obtain the following corollary immediately.

Corollary 1 (User-only Conversion). The proposed NS scheme satisfies the property of user-only con-
version.

	Ambiguous One-Move Nominative Signature Without Random Oracles
	Introduction
	Nominative Signature: Definitions
	Unforgeability Against Malicious Users
	Unforgeability Against Malicious Signers
	Invisibility
	Non-transferability
	User-only Conversion

	Nominative Signature Supporting Ambiguity
	An Efficient NS Construction (Our Scheme I)
	Security Model: Ambiguity

	A New NS Construction Supporting Ambiguity (Our Scheme II)
	Ambiguity Proof

	Efficiency Analysis and Comparison
	Conclusion
	Related Work
	Computational Assumptions
	q-Strong Diffie-Hellman (q-SDH) Assumption BonehB08,BonehBS04
	HSDH Assumption BoyenWa07
	DHSDH Assumption HuangW13
	External Diffie-Hellman (XDH) Assumption AtenieseCM05
	Decision Linear Problem (DLIN) Assumption BonehBS04

	The Security Analysis of Our Scheme I

