
Method to secure data in the cloud while
preserving summary statistics

Sanchita Barman, Bimal Roy

Indian Statistical Institute

Abstract. In this paper we propose a method which will preserve sum-
mary statistics of data organized in a two way table. We have shown that
fully homomorphic encryption is a powerful solution. However it has a
number of disadvantages which makes it impractical. We have proposed
a Restricted homomorphic encryption method which uses Pailier encryp-
tion and order preserving encryption. This new method can be used for
practical purposes owing to it’s efficiency in terms of both speed and
storage.

Keywords: Fully homomorphic encryption, Paillier encryption, Sum-
mary statistics, Order preserving encryption, Restricted homomorphic
encryption

1 Introduction

Summary statistics mainly includes mean, median, range and standard devi-
ation. At present, institutes which preserve and handle statistical data store
them with themselves. This requires them to use a lot of space and computa-
tional power. The existing system does not support variable storage requirement
and takes a lot of time for calculating summary statistics. Thus it is very costly
and inefficient. We suggest to keep the data in the cloud in an encrypted format
in such a way that most of the computations in summary statistics can be done
on it without decryption. We propose two ways to solve this problem.The first
method uses Fully homomorphic encryption which enables us to encrypt data
and perform all the operations of summary statistics without decrypting the
ciphertexts. The second method is a “hybrid algorithm”which uses Pailier en-
cryption and Order Preserving encryption designed by Popa, Li and Zelkovich.
This method can be termed as restricted homomorphic encryption. In this paper
we will see why the first method is not enough and how the second method can
remove the drawbacks .
We can observe that the operations in summary statistics would mainly need ad-
dition multiplication and comparisons. Thus we will focus on the methods which
will preserve these operations. Without loss of generality we have assumed that
data is stored in an n× n two way table. These methods are also valid for data
tables of higher dimensions. Space required to store the values encrypted by the
fully homomorphic encryption method is n2.p(number of bits in the elements)

2 Sanchita Barman, Bimal Roy

whereas that of the hybrid methods is n2.pdelement/pe; where p is the public
key of the encryption methods used. For our experiment we have taken a 7× 7
matrix of 142 bytes. For the fully homomorphic encryption method the space
required to store the encrypted values was 727 Kb. We found out max and min
of a row or column with a program written in C++ in 2 minutes. We used the
same matrix and implemented the hybrid method. It took only 34 Kb of space
and less than about a second to find the min or max of a row or column. We
will denote the any cloud provider by the term ‘server’.

2 Methods used in our paper

We have used the following methods for preserving the summary statistics in a
two way table.

2.1 Fully Homomorphic Encryption

This is a ground breaking discovery made by Craig Gentry [1]. His work has
been improved quite a lot since his discovery. However none on them could
be practical yet. None of the implementations are bootstrapable. In practice
polynomials used in statistical calculations do not exceed order three. This is
done in order to avoid the usage of more coefficients in the calculation which
will in turn affect the accuracy. Hence we can use fully homomorphic encryption
for calculating summary statistics. In our paper we have used the homomorphic
encryption by Smart and Vercauteren [5] for simplicity. This could be done using
any other fully homomorphic encryption.
The public key consists of a prime p and an integer αmodp. The private key
consists of an integer z . For somewhat homomorphic scheme :-

KeyGen(PK):

1 Set the plaintext space to be P = {0, 1};
2 Choose a monic irreducible polynomial F (x)Z[x] of degree N;
3 Repeat:-
4 S(x)← B∞,N (η/2);
5 G(x)← 1 + 2S(x);
6 p← resultant(G(x), F (x)).;
7 Until p is prime
8 D(x)← gcd(G(x), F (x))over Fp[x];
9 Let α ∈ Fp denote the unique root of D(x);

10 Apply the XGCD-algorithm over Q[x] to obtain Z(x) =

N−1∑
i=1

zi ∗ xi ∈ Z[x] such

that;
11 Z(x)G(x) = pmodF (x);
12 B ← z0(mod2p);
13 The public key is PK = (p, α), while the private key is SK = (p,B).

Method to secure data in the cloud while preserving summary statistics 3

Encrypt(M,PK):

1 Parse PK as (p, α);
2 . If M ∈ {0, 1} then abort;
3 R(x)← B∞,N (µ/2);
4 C(x)←M + 2R(x);
5 c← C(α)(modp);
6 Output c.

Decrypt(c, SK):

1 Parse SK as (p,B);
2 M ← (c− cB/p)(mod2);
3 Output M .

Add(c1, c2, PK):

1 Parse PK as (p, α);
2 c3← (c1 + c2)(modp);
3 Output c3 .

Mult(c1, c2, PK):

1 Parse PK as (p, α);
2 c3← (c1 ∗ c2)(modp);
3 Output c3 .

In order to make the scheme fully homomorphic Smart et all introduces a con-
cept of recrypt which takes the “dirty ciphertext ”as input and produces“cleaner
output”. They also modify their KeyGen algorithm accordingly.

KeyGenF(PK):

1 Generate s1 uniformly random integers Bi in [p, ..., p] such that there exists a

subset S of s2 elements with
∑
j∈S

Bj = B over the integers;

2 Define ski = 1 if i ∈ S and 0 otherwise. Notice that only s2 of the bits {ski} are
set to one;

3 Encrypt the bits ski under the somewhat homomorphic scheme to obtain
ci ←Encrypt(ski, PK);

4 The public key now consists of PK = (p, α, s1, s2, {ci, Bi}s1i=1).

2.2 Pailier Encryption

There exists quite a number of additive homomorphic encryption methods. The
Pailier encryption[3] is most efficient among them. It is an extension of the
Okamoto-Uchiyama scheme. It is based on the Decisional composite residuosity
assumption: Given N = pq, it is hard to decide whether an element in Z∗

2 is
an N-th power of an element in Z∗

N2 . No adaptive chosen-ciphertext attacks
recovering the secret key is known.
If k is the security parameter. Two k-bit primes p and q are chosen uniformly
at random N = pq. g ∈ B is a random base.To encrypt a message m < N , one
chooses a random value r ∈ Z∗

N and computes the ciphertext as:

c = gmrNmodN2 (1)

When receiving a ciphertext c, it is checked whether that c < N2 . If yes,the

4 Sanchita Barman, Bimal Roy

message m is retrieved as:

m = L(cλ(N)modN2)/L(gλ(N)modN2)modN (2)

It has useful properties like multiplication of encrypted message results in the
addition of the original plaintext mod n:

D[E(m1)× E(m2)modn2] = m1 +m2modn (3)

Also raising a ciphertext to a constant power results in the constant multiple of
the original plaintext:

D[E(m)kmodn2] = k ×mmodn (4)

2.3 Order Preserving Encryption

An Order Preserving Encryption can be considered as a Partial Homomorphic
Encryption where the operation is order comparison. Range queries are made
often in summary statistics. Hence it might be helpful if we can preserve the sort
order while keeping all the other informations intact in the ciphertext. We have
used a very recent scheme of order preserving encryption by Raluca Ada Popa,
Frank H. Li, and Nickolai Zeldovich [4]. It is the first order preserving scheme
which achieves ideal security, IND-OCPA. Database can be efficiently maintaied
since update, insertion, deletion, and query can be done without decryption.
We have modified and used their scheme to preserve summary statistics. In this
section we will only talk about the parts that we have adopted. They construct
a binary search tree based on the sort order of the elements which they call the
OPE tree. They encrypt the the elements in the data using any standard IND-
CCA2 symmetric key encryption scheme or a deterministic encryption scheme
whose security property is that of a pseudo-random function. They store this
tree in an untrusted server. The server cannot construct the tree by itself since
it does not know the underlying plaintexts.
Tree Construction and OPE encoding :- The path of the element from the
root denotes it’s order. The right edge is labeled as “1 ”and each left edge is
labeled as “0 ”. The path of each node is padded with 1000... to achieve the
same length for every OPE encoding. The length of the OPE encoding is 1 + h
where h is the height of the binary search tree. Thus we have:
OPE encoding = [path]1000...
Popa et al have ensured that the tree maintains a logarithmic tree height. Thus
their scheme requires to re-balance occasionally. They have presented a technique
by which encoding updates can be performed in an one pass over the required
values. We can adopt this technique in case of any maintenance required for the
database.
The following is an algorithm for tree traversal for a particular value in their
scheme :-

Method to secure data in the cloud while preserving summary statistics 5

OPE tree traversal for a value v:
Input: A plaintext m
Output: Whether the corresponding ciphertext c is present

1 The client asks the server for the root of the OPE Tree c′;
2 The client decrypts c′ and obtains m′;
3 if If m < m′ then
4 The client tell the server ’right’;
5 end
6 else
7 The client tell the server ’left’;
8 end
9 The server returns the next ciphertext c′′ based on the above instruction;

10 The algorithm is terminated if m is found or the server arrives at an empty spot
in the tree .

3 Methods preserving summary statistics

3.1 Method using fully homomorphic encryption

We have used fully homomorphic encryption scheme by Smart and Vercauteren.
We have however avoided the lattice dimensions 2048 and 8192 since they are
proven to be insecure[2].

Setup. The client will generate the public and the secret keys. It uses the secret
key to encrypt the plaintext and keep them in the server. The server has the
public key and hence it can do any operations on the ciphertext as desired by
the client . The client can thus use the computational power of the cloud i.e
the server compute any summary statistics . The server returns the resultant
ciphertext value. The client can decrypt it to get the desired answer.

How does it work. Every Computable Function has a circuit version. A Fully
Homomorphic Encryption can handle every boolean circuit. So any operation in
summary statistics can be executed using this method.

Security. We have seen that in somewhat homomorphic encryption scheme as
defined by Smart et al. decryption works only as long as the cypher text noise is
within certain bounds say r. These bounds depend mainly on the parameter N .
In Perl’s implementation the security parameter is r = 2v/(2 ∗

√
N) = 2384/16.

For a detailed discussion of the implementation please refer to The rest of the
implementation relies on fully homomorphic scheme. Hence this method is se-
cure.

Observation. This method is very accurate in their result. It is perfectly se-
cure since the server only gets the ciphertexts and all the operations can be done

6 Sanchita Barman, Bimal Roy

without decrypting the ciphertexts. Hence any computation apart from the de-
cryption can be done by the server. Thus the client do not need to store anything
else apart from the private key and if it is concerned about the authentication ,
then it can save the Merkle hashes of the ciphertexts. Summary statistics does
not involve computation of a high degree polynomial [three is maximum] in
practice, since it increases the number of atributes and hence lowers the accu-
racy.
However this method has it’s drawbacks too. We have implemented this method
on a machine which has RAM of size 7.7 Gb, Intel i5 processor with a speed of
3.6 GHz. My input file was of 148 bytes and the output file was of 727 KB. This
exponential increase in file size can render this method completely impractical
if space is costly. Also my program took about 2 minutes to be executed. Thus
as the theory had rightly suggested, fully homomorphic encryption will take a
lot of time to be executed.
Thus we have suggested a different method in which we have addressed these
issues.

3.2 Hybrid method using Restricted Homomorphic Encryption

The previous method generates a huge space expansion for creating the cipher-
text. Thus although the first method is computationally accurate, it is econom-
ically not practical. Hence we can look at a different method which will not
produce such huge ciphertexts and at the same time serve our purpose.
This method will not preserve all the operations for summary statistics . We
observe that addition is the most used operation in summary statistics. Thus
we will choose an encryption method which is additive homomorphic. Range
querries is another common requirement. Thus we suggest the use of an Order
Preserving Encryption .
We have used Paillier encryption system for additive homomorphism and the Or-
der preserving encryption method by Popa, Li, and Zeldovich. A similar model
was also used in database encryption .The client will encrypt the data and up-
load it on the server . The server will time to time send back the ciphertext as
according to the need of the client and also do the operations as asked by the
client. We will deviate from the model proposed by Zelcovich to suit our purpose
in some places.
We will also prove that this method is secure for deploying in a third party
server like the cloud. Beside preserving summary statistics it can also be used
for carrying out database operations like insertion, deletion and update which
we will not cover in this paper.

Setup. The server has the n× n table, in which each cell has three values :-

– The data encrypted by Pailler encryption method.Let us call it P-ciphertext.
– OPE encoding according to the row to which the element belongs. Let us

call this OPE col.

Method to secure data in the cloud while preserving summary statistics 7

– OPE encoding according to the column to which the element belongs. Let
us call this OPE row.

The client encrypts the message by Paillier encryption. It does not reveal
both the public and secret keys used for Paillier encryption to the server. Both
the keys always remains with the institute which handles the data. The secret
key can be shared with some authenticated client outside the institute who are
only be able to decrypt the ciphertexts. The idea is to only allow the institute
to encrypt data and do the computations which the server would not be able
to do. The ciphertext consists of three parts. The OPE encodings are computed
according to that of Popa et al. The server can compute both OPE col and
OPE row by traversing the tree as done in the method by Popa et al. The
decimal conversion of this gives us the OPECode. The path of the node can be
easily recovered from the OPECode. However unlike the scheme by Popa et al in
our case we need not re-balance the tree since the sort order remains the same
without it. The first element in any row or column in out data table is the root
of the tree.
Since we are not revealing any of our keys we will not require to authenticate
the elements like Popa et al.

How does it work. The server stores the n×n table containing the ciphertexts.
Since the public key for Paillier Encryption, (n, g) is not revealed to the server it
does the multiplication and exponent operation and returns the result without
doing the modn2 operation . The client does the rest of the operation. The result
will remain the same. Thus operations which require addition and difference
like mean, weighted mean, and range can be calculated without decrypting the
ciphertext. If multiplication is required [like for calculating standard deviation]
the client calls back the ciphertext corresponding to the region it wants to do
operation . Exploiting the property of Pailier encryptions, it just has to decrypt
one of the ciphertext if two corresponding plaintext has to be multiplied. Thus
the number of decryptions will be considerably reduced, hence reducing the
compelxity of the algorithm.
Range queries is most frequent requirement for summary statistics. This can be
done easily since the order of the underlying plaintext is known. We make a
binary search tree of the rows and the columns of plaintext matrix to find the
OPECode and hence the order of the plaintext. The following are some common
operations of summary statistics which are usually used. However any other
operation like finding the trend or measure of shape of the distribution can be
found with this method.

Range of a row or column: For the particular row or column the element
with the highest and the lowest OPECode can be obtained The correspond-
ing P-ciphertexts say ch and cl are obtained from the table. The client can
find out the multiplicative inverse for one of the P-ciphertexts and send it
to the server. Without loss of generality let us assume that the inverse for
cl is obtained say c−1

l . Since this requires the the public key for the Paillier

8 Sanchita Barman, Bimal Roy

encryption the client cannot find out the inverse. The server then multiplies
ch and c−1

l and send it to the authenticated client to decrypt the answer.

Mean and weighted mean: The server multiplies the P-ciphertexts of the re-
quired row or column. For weighted mean the P-ciphertexts are raised to the
power of their corresponding weights before multiplying them together. The
server the send the result to the client who will do the modn2 operation and
decrypt to get the result.

Standard Deviation: The server and the client find the mean of the row or
column. The client finds the inverse of P-ciphertext of the mean. The server
returns the multiplication of the P-ciphertexts and the inverse of the mean
to the client. The client has decrypt the P-ciphertexts and do the rest of the
operations to find the standard deviation.

Correctness and Security. In the Order Preserving encryption proposed by
Popa et al they have used a deterministic encryption scheme or a IND-CCA2
symmetric encryption scheme . They have shown that their scheme is IND-OCPA
secure. We will show that our adaptation of their method is secure in a certain
standard that we will just describe.
A scheme is IND-OCPA (indistinguishability under orderer plaintext attacks)
when the adversary which notices interaction between the server and the client
guesses the security parameter by less than a probability of half. In our case
we have not used any security parameter for producing the OPECodes which
actually reveals the order. We will mostly depend on the security of the Pailier
encryption method. We are not revealing either the public key or the private
keys. Thus it is not possible for anyone else except the client to either encrypt
or decrypt . Our proof is similar to that done by Popa et al, only that we will
use it in our setting on the modified scheme that we have suggested.
Let us consider an adversary Adv and two sequence of values Adv asks v =
(v1, v2.....vn) and w = (w1, w2....w) . The view of the Adv consists of the infor-
mation the server receives. We will consider two cases when the client chooses
to encrypt v and the case when it chooses to encrypt w. We will show that the
view of the two cases in the view of Adv is same.
We will proceed inductively as the number of values to be encrypted. The base
case is when no values are encrypted which is also seen by the Adv. Now consider
that after i encryptions , Adv has the same information distribution for both
the cases . We need to show that it remains same after the next step as well. At
the i+1 th step there are two possibilities:-
The first possibility is that the encryption of vi is in the ciphertext table. Then
the encryption of wi is also in the corresponding ciphertext table, since both
the sequence have the same order relation. So now what the Adv sees is a table
which consists of ciphertexts and the same pattern of OPECodes. Now since
Pailler encryption is IND-CPA secure it cannot distinguish between the encryp-
tion of the sequences it has used. So no information is leaked other than the
pattern of the ciphertexts.
The second possibility is that the encryption of the sequences are not in the

Method to secure data in the cloud while preserving summary statistics 9

ciphertext table. Now since both the sequences have the same order relation the
path taken by them will be the same. So the only information obtained by the
client is the path and nothing else.
Having said this, we should also mention the security breach this scheme suffers
from. Pailler encryption is IND-CPA secure. However if an adversary asks the
client to encrypt two values of it’s choice, it can definitely distinguish between
the encryptions of the two corresponding plaintexts. Thus in order to prevent
this attack, we will not reveal any of the keys. Also care must be taken to prevent
exposure to such attacks.

Observation. As we can see that not all the operations can be done without
decrypting the ciphertext in this method. Since Pailier encryption is preserves
only addition , we will need to decrypt the ciphertext whenever multiplication
will be needed. However due to the self binding properly of Pailier encryption
, the underlying plaintext can be multiplied with a known constant without
decryption. Thus we can easily compute weighted mean and mean without de-
cryption.
The main advantage lies in the size of the ciphertext. We took the same file as
we did in the previous method as the input. The size of the output is 34KB
which is lesser than that of the previous method. Also the time taken to do the
computations will be less , since the complexity will depend on the number of
values in the database rather than the number of their bits.
Thus if the client keeps a buffer space with itself for multiplication ,this method
can be more advantageous for deploying in the cloud.

References

1. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, STOC, pages 169–178. ACM, 2009.

2. Chunsheng Gu. Cryptanalysis of the smart-vercauteren and gentry-halevi’s fully
homomorphic encryption. IACR Cryptology ePrint Archive, 2011:328, 2011.

3. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, EUROCRYPT, volume 1592 of Lecture Notes in
Computer Science, pages 223–238. Springer, 1999.

4. Raluca A. Popa, Frank H. Li, and Nickolai Zeldovich. An ideal-security protocol for
order-preserving encoding. IACR Cryptology ePrint Archive, 2013:129, 2013.

5. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with rel-
atively small key and ciphertext sizes. IACR Cryptology ePrint Archive, 2009:571,
2009.

