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Abstract. Public key exchange protocol is identified as an important application in the
field of public-key cryptography. Most of the existing public key exchange schemes are
Diffie-Hellman (DH)-type, whose security is based on DH problems over different group-
s. Note that there exists Shor’s polynomial-time algorithm to solve these DH problems
when a quantum computer is available, we are therefore motivated to seek for a non-DH-
type and quantum resistant key exchange protocol. To this end, we turn our attention to
lattice-based cryptography. The higher methodology behind our roadmap is that in anal-
ogy to the link between ElGamal, DSA, and DH, one should expect a NTRU lattice-based
key exchange primitive in related to NTRU-ENCRYPT and NTRU-SIGN. However, this
excepted key exchange protocol is not presented yet and still missing. In this paper, this
missing key exchange protocol is found, hereafter referred to as NTRU-KE, which is stud-
ied in aspects of security and key-mismatch failure. In comparison with ECDH (Elliptic
Curve-based Diffie-Hellman), NTRU-KE features faster computation speed, resistance to
quantum attack, and more communication overhead. Accordingly, we come to the conclu-
sion that NTRU-KE is currently comparable with ECDH. However, decisive advantage
of NTRU-KE will occur when quantum computers become a reality.
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1 Introduction

1.1 Application Background

The first practical public key exchange protocol was introduced by Diffie and Hellman in their
epoch-making paper [1], allowing two parties that have never met to establish a shared secret
key by exchanging information over an untrusted and insecure channel. An adversary is unable
to retrieve the key even with the ability to eavesdrop the communication channel. In practical
applications, public key exchange protocols play an important role in the use of shared-key
cryptography to protect transmitted data over insecure networks. For instance, they are a central
building block of today’s most commonly used cryptographic protocols (such as SSL [2], IPSec
[3], and SSH [4]), which have enabled today’s proliferation of secure electronic commerce over
the Internet. Consequently, public key exchange, since its proposal, has stimulated considerable
research efforts.

1.2 Related Work

Let us begin with the classic Diffie-Hellman (DH) primitive protocol. A prime p and a generator
g ∈ Z×

p are public generated, they are known not only to all parties but also the adversary. The
detailed steps of DH are as follows.
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– Step 1: entity i picks x ∈ [1, p − 2] at random and let X = gx(mod p). Then, he sends X
to entity j.

– Step 2: entity j picks y ∈ [1, p − 2] at random and let Y = gy(mod p). Then, he sends Y
to entity i.

It holds thatXy=(gx)y=(gy)x=Y x over group Z×
p . Entity i computes Y x(mod p), and entity j

computesXy( mod p), then both entities come up with the common secret keyK=gxy( mod p).

After the invention of the DH protocol, most of the subsequent public key exchange protocols
appear to be DH-type protocols. By DH-type we mean that these protocols are essentially the
DH protocol, but works over different groups. These DH-type protocols are summarized below.

– Elliptic curve-based DH. Elliptic curve-based DH (ECDH) is a variant of the DH protocol
using group that consists of points on an elliptic curve (see [5] for details). Compared with
DH, the primary benefit possessed by ECDH is a smaller key size, thereby reducing storage
and transmission requirements.

– Recurrence equations-based DH. This class of DH-type public key exchange protocols
are based on recurrence equations, see e.g., GH [6], LUC [7], and Chebyshev-based [8, 9].
These cryptosystems are all based on recurrence equations, but with different forms. We
explicitly note that there always exists a DH-type key exchange protocol in each cryptosys-
tem. In these cryptosystems, the basic group operation is iteration of a certain recurrence
equation, and the group members are generated by iterations of the recurrence equation
from certain initial values.

– XTRDH. In XTR [10] cryptosystem, it follows that the corresponding key exchange proto-
col XTRDH is a DH-type protocol. In essence, XTRDH is also a recurrence equation-based
DH. We list it separately because the significant feature of XTRDH is that it uses the trace
over GF(p2) to represent elements of a subgroup of GF(p6)∗. This leads to a smaller key size
and substantial savings both in communication and computation overhead in applications.

We are now concerned with the hard problems, on which the security of these DH-type
protocols depends. Let g denote a generator of a group (e.g., the multiplicative group Z×

p , an
elliptic curve group, or a group generated by iterations of a certain recurrence equation). Let x
and y be randomly chosen elements in this group.

Definition 1. i) The computational DH (CDH) problem is informally stated as follows:
given an generator g and the values of gx and gy in a group, compute the value of gxy.

ii) The CDH assumption: for appropriate parameters, it is computational intractable to
solve CDH problem.

iii) The discrete logarithm (DL) problem is informally stated as follows: given an gen-
erator g and the value of gx in a group, compute the value of x.

iv) The DL assumption: for appropriate parameters, it is computational intractable to solve
DL problem.

The security of these DH-type protocols relies on the CDH assumption (in stronger semantic
security notion, decisional DH (DDH) assumption is required). Notice that we can break CDH
assumption if we already know an algorithm to break DL assumption. We denote this relationship
by CDH assumption>DL assumption. To date, the most efficient means known to solve the DH
problem is to solve the DL problem, and there is a strong heuristic argument showing that DL
problem and DH problem are very likely to be equivalent [11]. Accordingly, we may also say
that the security of these DH-type protocols relies on the DL assumption.



1.3 Research Motivations

Two motivations of our research are identified.

– Motivation 1. It is disappointed to observe that over three decades after the discovery of
the DH protocol, the cryptographer’s toolbox still contains very few public key exchange
primitive schemes. Despite the fact that a tremendous amount of key exchange protocols
have been proposed and analyzed, many of these protocols are dependent on DH problem,
see, e.g., MTI [12], Unified Model [13], MQV [14], HMQV [15], to just list a few. This
motivates us to seek for high-performance non-DH-type key exchange primitives.

– Motivation 2. Shor in [16,17] showed that quantum computers, when they become a reality,
will render DH-type protocols insecure. It is shown that the quantum computer is developed
rapidly [18], leading to that quantum resistant key exchange protocols are urgently needed.

Target at designing a non-DH-type and quantum resistant key exchange primitive, we should
turn our attention to new hard problems. Ironically, over the past years, very few convincingly
efficient key exchange protocols were well designed by using other hard problems despite of
considerable research efforts. The seek for new schemes appears sometimes hopeless as new
schemes are immediately broken or, if they survive, are compared with the DH-type protocols,
which are obviously elegant, simple, and efficient. Consequently, the search for new key exchange
protocols still remains a major challenge.

1.4 Roadmap

In the complexity-theoretic-based modern cryptography, the security of a public-key protocol
should depend on a hard problem. To design a non-DH-type scheme, we start by review the
existing cryptosystems and the underlying hard problems. Three of the most successful practical
cryptosystems are taken into account.

1. DL cryptosystem that is based on DL problem in the multiplicative group Z×
p ;

2. ECDL cryptosystem that is based on ECDL problem in an elliptic curve group; and
3. NTRU cryptosystem that is related to shortest vector problem (SVP) and closest vector

problem (CVP) in a NTRU lattice.

Generally speaking, a public cryptosystem primarily consists of three important members:
1) public key encryption, 2) digital signature, and 3) public key exchange. The representative
members in the above three cryptosystems are displayed in Table. 1. It is clearly observed
from Table. 1 that the public key exchange protocol in the NTRU cryptosystem is missing. In
analogy to the link between ElGamal, DSA, and DH, one should expect a NTRU lattice-based
key exchange primitive in related to NTRU-ENCRYPT and NTRU-SIGN. Following the naming
rule, this key exchange protocol, if exists, should be named as NTRU-KE. Our roadmap is now
clear, namely exploring this potentially existed NTRU-KE.

Table 1. Representative Members in DL, ECDL, and NTRU Cryptosystems

XXXXXXXXXXXprotocol

hard problem
DL Problem ECDL Problem

SVP and CVP

in a NTRU lattice

public key encryption ElGamal [19] ECElGamal NTRU-ENCRYPT [20]

digital signature DSA [21] ECDSA [22] NTRU-SIGN [23,24]

public key exchange DH ECDH ?

Note: the prefix ”EC” denotes the corresponding elliptic curves-based hard problem or protocols.
The symbol ”?” denotes the item is missing currently.



1.5 Main Contributions

We regard our main contributions as three-fold:

1. contributing towards a successful construction of a non-DH-type and quantum resistant
key exchange primitive scheme NTRU-KE, whose security is related to hard problems in a
NTRU lattice;

2. estimating the key-mismatch failure of NTRU-KE theoretically; and
3. performing a detailed comparative study between NTRU-KE and ECDH.

1.6 Paper Organization

The remainder of this paper is organized as follows. Section 2 introduces technical and math-
ematical preliminaries. In Section 3, we describe NTRU-KE, formalize the underlying hard
problem, and analyze the lattice attacks. In Section 4, the probability of key-mismatch failure
of NTRU-KE is estimated. Then, the performance of NTRU-KE is theoretically compared with
ECDH in Section 5. Finally, some conclusions are drawn in Section 6.

2 Notions, Mathematical and NTRU-ENCRYPT Background

A generic execution of a key exchange protocol between two entities is called a run of the
protocol. Any particular run of a protocol is called a session. The keying information exchanged
in the course of a protocol run is referred to as a session key. The individual messages that form
a protocol run are called flows.

We denote by Z the integer ring and by Zq the residue class ring Z/Zq. The truncated
polynomial ring Rq = Zq[x]/(X

N − 1) consists of all polynomials with degree less than N and
coefficients in Zq. An element f ∈ Rq can be written as a polynomial or a vector,

f =

N−1∑
i=0

fix
i = [f0, · · · , fN−1].

Elements in Rq are written in bold type, if the vector description is needed. Two polynomials
f, g ∈ Rq are multiplied by the ordinary convolution,

(f ∗ g)k ≡
∑

i+j≡k( mod N)

(fi · gj), k = 0, · · · , N − 1,

which is commutative and associative. The convolution product is presented by ∗ to distinguish
it from the multiplication in Zq. We define a center l2-norm of an element f ∈ Rq by

|f |2 = (

N−1∑
i=0

(fi − f))1/2,

where f = 1
N

∑N−1
i=0 fi. Let a

r←A denote the process of picking an element a from the set A
uniformly at random. A real-valued function ϵ(k) < k−c is negligible if for every c > 0 there
exists kc > 0 such that ϵ(k) < k−c for all k > kc.

The NTRU-ENCRYPT depends on three global integers (N, p, q) and four set Lf , Lg, Lr, Lm

of polynomials of degree N−1 with small integer coefficients. The previous parameter choices for
NTRU-ENCRYPT often take the small integer coefficients of polynomials to be binary {0, 1} or



trinary {−1, 0, 1}. We adopt the trinary polynomials because they are better to resist the recent
hybrid meet-in-the-middle (MITM) and lattice reduction attack [25]. We set the notation:

L(d1, d2)=
{
F ∈Rq :F has d1 coefficients equal to 1,
d2 coefficients equal to − 1, the rest 0.

}
With this notation, we proceed to set

Lf = L(df , df − 1), Lg = L(dg, dg), Lr = L(dr, dr). (1)

We take Lf = L(df , df−1) instead of Lf = L(df , df ) because it is required that f is invertible
and a polynomial satisfying f(1) = 0 can never be invertible.

The NTRU-ENCRYPT algorithm starts by setting up three global integers (N, p, q), such
that:

– N is prime,
– p and q are coprime, gcd(p, q) = 1, and
– q is considerably larger than p.

Key Generation.
Step 1: Choose f

r← Lf and g
r← Lg such that there exist Fq, Fp ∈ Rq satisfying

Fq ∗ f ≡ 1(mod q), Fp ∗ f ≡ 1(mod p).

Step 2: Let
h ≡ f−1

q ∗ g(mod q).

public key: h, private key: f , Fp.

Encryption.
Step 1: To encrypt m ∈ Lm, we first choose an r

r← Lr, then compute the ciphertext as

c ≡ pr ∗ h+m(mod q).
Decryption.

Step 1: We first compute
a = f ∗ c (mod q)

= pr ∗ g + f ∗m (mod q).

For appropriate parameter choices, the absolute value of coefficients in (pr∗g+f ∗m) is small,
together with the fact that q is chosen to be large, we almost derive

a = pr ∗ g + f ∗m.

Step 2: We then recover the message m by computing

m = Fp ∗ a(mod p).

Note that, the latest parameters selection for NTRU-ENCRYPT always set f = 1+pF , where
F ∈ Lf in the key generation process, then the Step 2 in the decryption process is eliminated
since Fp ≡ 1(mod p).

The security of NTRU-ENCRYPT depends on the following computational assumption.

Definition 2. ([26] ) i) The NTRU-ENCRYPT inversion problem: For a given security
parameter k, which specifies (N, p, q) and the spaces Lf , Lg, Lm, and Lr, as well as a random
public key h and ciphertext c ≡ h ∗ r +m(mod q), where m ∈ Lm and r ∈ Lr, find m.

ii) The NTRU-ENCRYPT assumption: for appropriate parameters, it is computational
intractable to solve the NTRU-ENCRYPT inversion problem.



entity i entity j

Step 1:

fi
r← Lf , gi

r← Lg

hi ≡ f−1
i ∗ gi(mod q)

hi--- Step 2:

fj
r←Lf , gj

r←Lg, rj
r←Lr

hj ≡ f−1
j ∗ gj(mod q)

ej ≡ prj∗hi +fj(mod q)
hj , ej���Step 3:

ri
r← Lr

ei ≡ pri ∗ hj + fi(mod q)

ei ---
ai = fi ∗ ej (mod q)

Ki = ai (mod p)

= fi ∗ fj (mod p)

Step 4:

aj = fj ∗ ei (mod q)

Kj = aj (mod p)

= fi ∗ fj (mod p)

Fig. 1. Data Flows in NTRU-KE

3 NTRU-KE Construction

The classic DH protocol and the subsequent DH-type protocols have given cryptographers a
strong impression that a key exchange primitive protocol typically consists of two flows. However,
it seems impossible to design a two-flow-based key exchange primitive in related to NTRU-
ENCRYPT, this is because the special structure of the public key in NTRU-ENCRYPT. This,
from our point of view, is the main reason why the NTRU-KE protocol has been missing up till
now. Notably, there is no restriction that a key exchange primitive must consist of two flows,
and indeed, most of applicable key exchange protocols consist of more than two flows. In view
of this consideration, the three-flow-based NTRU-KE primitive protocol is proposed.

The NTRU-KE protocol starts by setting up three global integers (N, p, q) at first, this process
is the same with that of NTRU-ENCRYPT. The data flows of NTRU-KE are depicted in Fig.
1. Here is a detailed verbal description of these steps.

– Step 1: entity i picks fi
r← Lf such that there exists the inverse of fi in Rq, and picks

gi
r← Lg. Then, he computes hi ≡ f−1

i ∗ gi(mod q) and sends hi to j.

– Step 2: upon receipt of hi, entity j picks fj
r← Lf such that there exists the inverse of

fj in Rq, and picks gj
r← Lg, rj

r← Lr. Then, he computes hj ≡ f−1
j ∗ gj(mod q) and

ej ≡ prj ∗ hi + fj(mod q). Afterwards, he sends hj and ej to i.

– Step 3: upon receipt of hj and ej , entity i picks ri
r← Lr and computes ei ≡ pri ∗ hj +

fi(mod q). Then, he sends ei to j and computes ai = fi ∗ ej(mod q), Ki = ai(mod p) =
fi ∗ fj(mod p).

– Step 4: upon receipt of ei, entity j computes aj = fj ∗ ei(mod q), Kj = aj(mod p) =
fi ∗ fj(mod p).

It can be easily checked that the resultant common session key is

Ki=Kj=fi ∗ fj(mod p). (2)



The NTRU-KE protocol consists of three flows, which is one more flow than these DH-type
protocols. Compared with NTRU-ENCRYPT, it does not need to compute the inverse of f
modulo p in NTRU-KE. Like DH-type protocols, the NTRU-KE protocol features elegant and
simple.

3.1 Security

When a new public key protocol is proposed, in very few instances is there a rigorous proof that
breaking this public key protocol is equivalent to solving an existing well studied hard problem.
What frequently occurs is a definition of a new hard problem, which may relate to a previously
well-defined hard problem. In the same manner, the proposed NTRU-KE follows this routine.
The security of NTRU-KE depends on the following NTRU-KE assumption.

Definition 3. i) The NTRU-KE problem: For a given security parameter k, which specifies
(N, p, q) and the spaces Lf , Lg, Lm, and Lr, as well as hi, hj, ei, and ej, where these variables
are clearly defined in Fig. 1, find fi ∗ fj(mod p).

ii) The NTRU-KE assumption: for appropriate parameters, it is computational intractable
to solve the NTRU-KE problem.

Despite it is hard to prove this assumption, the relationship between the NTRU-ENCRYPT
assumption and the NTRU-KE assumption can be investigated. Suppose that there exists an
efficient algorithm A to solve the NTRU-ENCRYPT inversion problem. Then, A can be reduced
to an efficient algorithm to find fj from ej and find fi from ei. Finally, A can derive the session
key by computing K = fi∗fj(mod p). This implies NTRU-KE assumption>NTRU-ENCRYPT
assumption (in analogy to CDH assumption>DL assumption).

3.2 Lattice Attacks

The security of NTRU-ENCRYPT is related to CVP and SVP in a convolution modular lattice
(CML) Lh (also called as a NTRU lattice). Lh is the 2N dimensional lattice with basis given
by the rows of the matrix,

Lh =

[
I H
0 qI

]
, (3)

where I is an N ×N identity matrix, 0 is an N ×N zero matrix, and H is a circulant matrix
generated from h,

Hi,j = hj−i( mod N).

Another way to describe CML Lh (3) is the set of vectors

Lh = {[f ,g] ∈ Z2N | f ∗ h ≡ g(mod q)}. (4)

For appropriate parameters and a padding scheme, the best known attack on NTRU-ENCRYPT
appears to be lattice attacks. Likewise, based on current knowledge, these lattice attacks are also
the best known attack on NTRU-KE. Two lattice attacks on NTRU-KE are discussed below.

1) Lattice attack on hi (or hj). Suppose that a passive adversary A tries to recover secret
information [fi,gi] from hi. We here drop the subscript i, because it is the same case for entity
j. By h ≡ f−1 ∗ g(mod q), there exists u ∈ Rq with

u =
−f ∗ h+ g

q
, (5)



such that
[f ,u] · Lh = [f ,g].

Therefore, Lh contains the vector [f ,g]. By choosing appropriate parameters, then the vector
[f ,g] is quite short, so it can be found by solving SVP (or approximate SVP) in Lh. Indeed,
this lattice attack corresponds to the lattice attack on a NTRU-ENCRYPT private key.

2) Lattice attack on ei (or ej). In the light of

ei ≡ pri ∗ hj + fi(mod q), (6)

we can rewrite this relation in the vector form as

[0, ei] ≡ [ri, ri ∗ (phj)(mod q)] + [−ri, fi]. (7)

Recall the description of CML in (4), we can deduce from (7) that [ri, ri ∗ (phj)(mod q)] is in
the lattice Lphj . The point [0, ei] is only [−ri, fi] away from a lattice point of Lphj . By choosing
appropriate parameters, then the vector [−ri, fi] is quite short, so [−ri, fi] can be recovered
if we can find a vector in Lphj that is closest to the vector [0, ei]. Indeed, this lattice attack
corresponds to the lattice attack on a NTRU-ENCRYPT message.

It can be easily found that either of the above two lattice attacks, if succeed, will lead to a
recovery of the session key. They indicate how NTRU-KE relate to SVP and CVP. The ideal
lattice basis reduction algorithms can be used to solve SVP and CVP in CML, and therefore,
they can be applied to carry out the above two lattice attacks. However, the lattice attacks do not
necessarily imply that NTRU-KE is insecure, as currently known lattice reduction algorithms
(such as LLL [27] algorithm or its improved variants, e.g., BKZ-LLL [28]) still remain exponential
time algorithms in terms of security parameters.

4 Key-mismatch Failure Analysis

It is well-known that NTRU-ENCRYPT algorithm has a probability of description failure. A
similar failure is also found in NTRU-KE, hereafter referred to as key-mismatch failure. We now
proceed to estimate the probability of key-mismatch failure in NTRU-KE. We first set{

Pi = Prob[(fi ∗ ej(mod q)) ̸= fi ∗ ej ],
Pj = Prob[(fj ∗ ei(mod q)) ̸= fj ∗ ei].

Because of symmetry, Pi =Pj holds immediately. Some parameter choices for NTRU-KE may
cause occasional key-mismatch failure. The probability of key-mismatch failure PKM is formally
defined as

PKM = Prob[Ki ̸= Kj ].

For appropriate parameters, Pi and Pj can be very small quantities, this leads to

PKM ≈ 2Pi = 2Pj . (8)

The probability Pi can be conservatively bounded by the probability that one or more coefficients
of

ai = fi ∗ ej = prj ∗ gi + fi ∗ fj
have an absolute value greater than q/2. We set

P (c) = Prob

[
a given coefficient of prj ∗ gi+
fi ∗ fj has absolute value ≥ c.

]
(9)



Let Xj denote a coefficient of prj ∗ gi + fi ∗ fj , then Xj is a sum of N terms,

Xj =
N∑
i=1

(pyi + zi),

with each yi = rkgl and zi = fsft for some k, l, s, t. Because of (1) and (6), the mathematical
expectation of Xj can be obtained. For sufficiently large N , it holds that E(Xj) = 0. Then, the
variance of Xj is

σ2 = D(Xj) = E(X2
j )− E2(Xj)

= E(X2
j ) =

N∑
i=1

(p2E(y2i ) + E(z2i ))

=
4

N
(p2drdg + d2f ). (10)

Combining (6) and (10) yields

σ =

√
4

N
(p2d2r + d2f ). (11)

Suppose that N is sufficiently large and Xj are independent variables. Note that Xj are identi-
cally distributed, Central Limit Theorem is applied to Xj , one has

Prob[Xj ≥ c] = Prob[Xj ≤ −c] <
1√
2π

∫ ∞

c/σ

e−x2/2dx. (12)

We can rewrite (12) as a single inequality,

Prob[|Xj | ≥ c] <
2√
2π

∫ ∞

c/σ

e−x2/2dx. (13)

Translating this into the notation of the complementary error function, we arrive at

P (c) = Prob[|Xj | ≥ c] < erfc(c/(
√
2σ)). (14)

Recall that one or more Xj have an absolute value greater than c = q/2 will lead to fi ∗
ej(mod q) ̸= fi ∗ ej , it holds that

Pi =
N∑
i=1

(
N
i

)
P i(c)(1− P (c))N−i, c = q/2. (15)

We can always ensure that P (c) is a very small quantity via choosing appropriate parameters,
therefore ignoring the high order small quantities in (15) yields

Pi ≈ N · P (c). (16)

Combining (8), (14), (16), and ignoring approximation errors leads to

PKM < U, (17)

where
U = 2N · erfc(c/(

√
2σ)), (18)
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Fig. 2. (a) Data points are given by (18). (b) Data points are obtained by average over 105 simulations.

with c = q/2, and σ is given by (11). It is indicated from (17) that the probability of key-
mismatch failure in NTRU-KE is approximately bounded above by U .

Since several assumptions and approximations are made in deriving (17), a simulation is
carried out to validate the correctness of (17). In this simulation, we let

p = 3, dr = ⌊N/3⌋, df = ⌊N/4⌋,

with p and N being x- and y-coordinates in Fig. 2. Simulation results in Fig. 2 show that the
bound in (18) is a little conservative estimation of reality. Accordingly, (18) can be applied to
have an estimation of key-mismatch failure in NTRU-KE.

5 Comparison

It is currently impossible to have an experimental comparison of performance for NTRU-KE
and ECDH (the state-of-the-art benchmark). This is because how to choose secure parameters
of NTRU-KE remains unsolved and this is a nontrivial task. According to the performance
report of NTRU-ENCRYPT [20, 29], NTRU-KE shares an identical performance with that of
NTRU-ENCRYPT since they have an identical underlying basic operation, i.e., convolution
multiplication in Rq. Several merits and drawbacks are summarized as follows.

Merits:

1. Computation speed. NTRU-KE is faster than ECDH.
2. Space cost of domain parameters. NTRU-KE is smaller than ECDH.
3. Domain parameters selection. NTRU-KE is easier than ECDH. This is because the selection

of secure elliptic curves is always cumbersome [30].
4. Hardware implementation. The convolution multiplication in the NTRU cryptosystem offers

better performance in hardware implementation than the basic operation in ECDH [31].
5. Resistance to parallelized and distributed attack. NTRU-KE is better resistance to paral-

lelized and distributed attack. This is because lattice reduction algorithms (e.g., LLL) are
highly sequential.

6. Resistance to quantum attack. NTRU-KE is considered to be quantum resistant, whereas
ECDH is not. This is because lattice-based cryptography is currently quantum resistant [32].



Drawbacks:

1. Communication Overhead. NTRU-KE is heavier than ECDH. Moreover, NTRU-KE needs
one more communication flow.

2. Space cost for private key. NTRU-KE is larger than ECDH.
3. Key-mismatch failure. NTRU-KE has a probability of key-mismatch failure. This probability

can be restricted to be negligible via choosing appropriate parameters.

According to the above summary, we come to the conclusion that NTRU-KE is comparable
with ECDH based on current knowledge. The decisive advantage of NTRU-KE, however, will
occur when a quantum computer is available.

6 Conclusions

In this paper, we have helped the NTRU cryptosystem to find its long missing member NTRU-
KE, which has been studied in aspects of security and key-mismatch failure. It worth noting that
the proposed NTRU-KE is only an anonymous key exchange primitive, and therefore, it does not
provide authentication of the entities, making it vulnerable to man-in-the-middle attacks. A wide
variety of cryptographic authentication schemes and protocols have been developed to provide
authenticated key agreement to prevent man-in-the-middle and related attacks. These methods
generally mathematically bind the agreed key to other agreed-upon data, such as public/private
key pairs, shared secret keys, and passwords. We will not elaborate how to enable NTRU-KE
to provide authentication. One meaningful future work is to investigate the parameter choices
of NTRU-KE.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61170249).

References

1. W. Diffie, M. Hellman, New directions in cryptography, Information Theory, IEEE Transactions on
22 (6) (1976) 644–654.

2. A. Freier, P. Karlton, P. Kocher, The secure sockets layer (ssl) protocol version 3.0.
3. S. Kent, R. Atkinson, Security architecture for the internet protocol (1998).
4. T. Ylonen, C. Lonvick, The secure shell (ssh) protocol architecture.
5. D. Hankerson, A. Menezes, S. Vanstone, Guide to Elliptic Curve Cryptography, Springer-Verlag

New York, Inc, 2004.
6. G. Gong, L. Ham, Public-Key Cryptosystems Based on Cubi Finite Field Extensions, IEEE Trans.

Inform. Theory 45 (7) (1999) 2601–2605.
7. P. Smith, M. Lennon, LUC: A New Public Key System, in: Proc. Ninth IFIP Int. Symp. Computer

Security, 1999, pp. 103–117.
8. L. Kocarev, Z. Tasev, Public-Key Encryption Based on Chebyshev Maps, in: Proc. 2003 IEEE Int.

Symp. Circuit and Systems, Vol. 3, 2003, pp. 28–31.
9. X. Liao, F. Chen, K. W. Wong, On the security of public-key algorithm based on chebyshev poly-

nomials over the finite field Zn, IEEE Trans. Computers 59 (10) (2010) 1392–1401.
10. A. Lenstra, E. Verheul, The XTR Public Key System, in: Proceedings of Crypto 2000, LNCS 1880,

Springer-Verlag, 2000, pp. 1–19.
11. U. Maurer, S. Wolf, The relationship between breaking the Diffie-Hellman protocol and computing

discrete logarithm, SIAM Journal of Computing 28 (5) (1999) 1689–1721.



12. T. Matsumoto, Y. Takashima, On seeking smart public-key-distribution systems, IEICE TRANS-
ACTIONS (1976-1990) 69 (2) (1986) 99–106.

13. R. Ankney, D. Johnson, M. Matyas, The unified model, Contribution to X9F1.
14. L. Law, A. Menezes, M. Qu, J. Solinas, S. Vanstone, An efficient protocol for authenticated key

agreement, Designs, Codes and Cryptography 28 (2) (2003) 119–134.
15. H. Krawczyk, Hmqv: A high-performance secure diffie-hellman protocol, in: Advances in

Cryptology–CRYPTO 2005, Springer, 2005, pp. 546–566.
16. P. Shor, Algorithms for Quantum Computation: Discrete Logarithms and Factoring, in: Proc. 35th

Annual IEEE Symposium on Foundations of Computer Science, IEEE Press, Piscataway, 1994, pp.
124–134.

17. P. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quan-
tum Computer, SIAM J. Comput. 26 (5) (2006) 1484–1509.

18. A. Daskin, A. Grama, G. Kollias, S. Kais, Universal programmable quantum circuit schemes to
emulate an operator, The Journal of chemical physics 137 (2012) 234112.

19. T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, in:
Advances in Cryptology, Springer, 1985, pp. 10–18.

20. J. Hoffstein, J. Pipher, J. H. Silverman, Ntru: A ring-based public key cryptosystem, in: Algorithmic
number theory, Springer, 1998, pp. 267–288.

21. NIST, Announcing the Standard for DIGITAL SIGNATURE STANDARD (DSS)Federal Informa-
tion Processing Standards Publication 186.

22. D. Johnson, A. Menezes, S. Vanstone, The elliptic curve digital signature algorithm (ecdsa), Inter-
national Journal of Information Security 1 (1) (2001) 36–63.

23. J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. Silverman, W. Whyte, NTRUSign: Digital signa-
tures using the NTRU lattice, in: J. Buhler (Ed.), Proceedings of CT-RSA2003, Lecture Notes in
Computer Science, Vol. 2612, Berlin, Germany: Springer-Verlag, 2003, pp. 112–140.

24. Y. Hu, B. Wang, W. He, NTRUSign With a New Perturbation, IEEE Trans. Inform. Theory 54 (7)
(2008) 3216–3221.

25. N. Howgrave-Graham, A Hybird Meet-in-the-Middle and Lattice Reduction Attack on NTRU, in:
CRYPTO, 2007, pp. 150–169.

26. P. Nguyen, D. Pointcheval, Analysis and Improvements of NTRU Encryption Paddings, in: Cryp-
to’02, LNCS, Vol. 2442, Springer-Verlag, Berlin, 2002, pp. 210–225.

27. A. Lenstra, H. W. Lenstra, L. Lovasz, Factoring polynomials with rational coefficients 261 (1982)
515–534.

28. C. P. Schnorr, M. Euchner, Lattice basis reduction: improved practical algorithms and solving subset
problems, Math. Programming 66, Ser. A (1994) 181–199.

29. J. Hermans, F. Vercauteren, B. Preneel, Speed records for ntru, in: Topics in Cryptology-CT-RSA
2010, Springer, 2010, pp. 73–88.

30. M. Lochter, J. Merkle, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve
Generation.

31. C. O’Rourke, B. Sunar, Achieving NTRU with Montgomery Multiplication, IEEE. Trans. Comput.
52 (4) (2003) 440–448.

32. R. Perlner, D. Cooper, Quantum resistant public key cryptography: a survey, in: Proceedings of
the 8th Symposium on Identity and Trust on the Internet, ACM New York, NY, USA, 2009, pp.
85–93.


