
Outsourced Symmetric Private Information Retrieval

Stanislaw Jarecki∗ Charanjit Jutla† Hugo Krawczyk‡ Marcel Rosu§ Michael Steiner¶

Abstract

In the setting of searchable symmetric encryption (SSE), a data owner D outsources
a database (or document/file collection) to a remote server E in encrypted form such
that D can later search the collection at E while hiding information about the database
and queries from E . Leakage to E is to be confined to well-defined forms of data-access
and query patterns while preventing disclosure of explicit data and query plaintext
values. Recently, Cash et al. presented a protocol, OXT, which can run arbitrary
boolean queries in the SSE setting and which is remarkably efficient even for very large
databases.

In this paper we investigate a richer setting in which the data owner D outsources
its data to a server E but D is now interested to allow clients (third parties) to search
the database such that clients learn the information D authorizes them to learn but
nothing else while E still does not learn about the data or queried values as in the basic
SSE setting. Furthermore, motivated by a wide range of applications, we extend this
model and requirements to a setting where, similarly to private information retrieval,
the client’s queried values need to be hidden also from the data owner D even though
the latter still needs to authorize the query. Finally, we consider the scenario in which
authorization can be enforced by the data owner D without D learning the policy, a
setting that arises in court-issued search warrants.

We extend the OXT protocol of Cash et al. to support arbitrary boolean queries in
all of the above models while withstanding adversarial non-colluding servers (D and E)
and arbitrarily malicious clients, and while preserving the remarkable performance of
the protocol.

1 Introduction

Consider a database DB composed of collection of documents or records and an application
that needs to search DB based on the keywords contained in these records. For example, DB

∗U. California Irvine. Email: stasio@ics.uci.edu.
†IBM Research. Email: csjutla@us.ibm.com
‡IBM Research. Email: hugo@ee.technion.ac.il
§U. California Irvine. Email: marcelrosu@gmail.com
¶IBM Research. Email: msteiner@us.ibm.com

1

can be a medical relational database with records indexed by a set of attributes (e.g., name,
zipcode, medical condition, etc.), an email repository indexed by English words and/or
envelope information (date, sender, receivers, etc.), a collection of webpages indexed by
text and metadata, etc. A search query consists of a boolean expression on keywords that
returns all documents whose associated keywords satisfy that expression. In this paper we
are concerned with applications where the database is outsourced to an external server E
and search is performed at E privately. That is, E stores an encrypted version of the original
database DB (plus some metadata) and answers encrypted queries from clients such that the
client obtains the documents matching his query without E learning plaintext information
about the data and queries.

The most basic setting of private data outsourcing as described above is where the
owner of the data itself, D, is the party performing the search at E . In this setting, D
initially processes DB into an encrypted database EDB and sends it to E . D only keeps a
set of cryptographic keys that allows her to later run encrypted searches on E and decrypt
the matching documents returned by E . This setting is known as searchable symmetric
encryption (SSE) and has been studied extensively [28, 15, 16, 10, 13, 11, 23]. While most
of the research has focused on single-keyword searches (i.e., return all documents containing
a given keyword), recently Cash et al. [9] provided the first SSE solution, the OXT protocol,
that can support in a practical and private way arbitrary boolean queries on sets of keywords
and in very large DBs. The leakage to E , which is formally specified and proven in [9], is
in the form of data-access and query patterns, never as direct exposure of plaintext data or
searched values.

In this work we are concerned with richer outsourcing scenarios where multiple third
parties (clients) access the data at E but only through queries authorized by the data owner
D. For example, consider a hospital outsourcing an (encrypted) database to an external
service E such that clients (doctors, administrators, insurance companies, etc.) can search
the database but only via queries authorized according to the hospital’s policy and without
these clients learning information on non-matching documents. As before, E should learn
as little as possible about data and queries.

In this multi-client scenario (to which we refer as MC-SSE), D provides search tokens
to clients based on their queries and according to a given authorization policy. Security
considers multiple clients acting maliciously and possibly colluding with each other (trying
to gain information beyond what they are authorized for) and a semi-trusted server E which
acts as “honest-but-curious” but does not collude with clients. Extending SSE solutions to
the multi-client scenario is straightforward when (a) search tokens are fully determined by
the query and (b) the SSE protocol does not return false positives (returning false positives,
i.e. documents that do not match a query, is allowed in SSE since the recipient in that case
is the owner of the data but not in the multi-client setting where clients are not allowed to
learn data they were not authorized for). In such cases, D would receive the client’s query,
generate the corresponding SSE search tokens as if D herself was searching the database, and
provide the tokens to the client together with a signature that E can check before processing

2

the search. However, for enabling general boolean queries, the SSE OXT protocol of [9]
requires a number of tokens that is not known a-priori (it depends on the searched data,
not only on the query) and therefore the above immediate adaptation does not work.

Our first contribution is in extending the OXT protocol from [9] to the MC-SSE setting
while preserving its full boolean-query capabilities and performance. In this extension,
D provides the client C with a set of query-specific trapdoors which the client can then
transform into search tokens as required by OXT. The set of trapdoors given to C is fully
determined by the query and independent of the searched data. An additional subtle
technical challenge posed by OXT is how to allow E to verify that the search tokens presented
by C are authorized by D. The simple solution is for D to sign the trapdoors, however
in OXT these trapdoors need to be hidden from E (otherwise E can learn information
about unauthorized searches) so a simple signature on them cannot be verified by E . Our
solution uses a homomorphic signature by D on the trapdoors that C can then transform
homomorphically into signatures on the search tokens. We show that forging the tokens or
their signatures is infeasible even by fully malicious clients.

The resulting MC-OXT protocol preserves the full functional properties of OXT, namely
support for arbitrary boolean queries, the same level of privacy (i.e., same leakage profile)
with respect to E , and the same remarkable performance. Privacy with respect to clients is
near-optimal (see Section 3.1 for why such leakage may be inevitable) with leakage confined
only to information on the number of documents matching one of the query terms (typically,
the least-frequent term).

Next, we extend the MC-OXT protocol to an even more challenging setting we call
Outsourced Symmetric Private Information Retrieval (OSPIR), where on top of the MC-
SSE requirements, one asks that client queries be hidden from D - similarly to the Private
Information Retrieval (PIR) primitive. This requirement arises in important outsourcing
scenarios. In the medical database example mentioned above, the hospital authorizes doc-
tors or other parties to search the medical database according to certain policy; however,
in some cases the actual query values are to be kept secret from the hospital itself (due
to privacy, liability and regulatory requirements). Only the minimal information for deter-
mining the compliance of a query to the policy should be disclosed to the hospital. For
example, the policy may indicate that only conjunctions with a minimal number of terms
are allowed or that the query needs to include at least three of a set of attributes, etc. In
such a case, there is no need for the hospital to learn the particular values being searched
(such as a specific last name or medical condition). In other cases, as in outsourced patent
or financial information search, the provider D may want to enforce that a client C pays for
the type of query it is interested in but C wants to keep his query hidden from both D and
E . Applications to intelligence scenarios are discussed in [18] (see also [31]).

Thus, we relax the query privacy requirement with respect to D to allow for minimal
information needed for D to determine policy compliance. Specifically, we consider the
case where keywords are formed by pairs of attribute-values. For example, in a relational
database, attributes are defined by the database columns (e.g., SSN, name, citizenship,

3

etc.), while in an email repository attributes can refer to envelope information such as
sender and receivers or to the message body (in which case the values are, say, English
words). In this case, a policy defines the class of boolean expressions allowed for a given
client and the attributes that may be used as inputs into these expressions. In order to
enforce the policy, D learns the boolean expression and attributes but nothing about the
searched values. For policies defined via classes of attributes (e.g. allowing any attribute
from the set of attributes {name, city, zipcode}) leakage to D can be further reduced by
revealing the class and not the specific attributes in the query.

Our most advanced result is extending the OXT protocol to the above OSPIR setting.
The resultant protocol, OSPIR-OXT, adds some crucial new ingredients to OXT: It uses
oblivious PRFs (OPRF) for hiding the query values from D, uses attribute-specific keys
for enforcing policy compliance, and uses homomorphic signatures (or the more general
abstraction of shared OPRFs) for query verification by E . A further extension of the protocol
accommodates an external policy manager, e.g., a judge in a warrant-based search, who
checks policy compliance and allows server D to enforce the policy without learning the
attributes being searched.

Performance-wise our extensions to OXT preserve the protocol’s performance in both
pre-processing (creating EDB) and search phases. OSPIR-OXT adds to the computational
cost by adding a few exponentiations but these are generally inexpensive relative to the I/O
cost (especially thanks to common-base exponentiation optimizations). The protocols we
provide for MC-SSE and OSPIR models support encrypted search over database containing
tens of billions record-keyword pairs, for example a full snapshot of English Wikipedia or a
10-TByte, 100M-record US-census database (see Sections 4.3 and 4.4).

We achieve provable security against adaptive adversarial honest-but-curious server E ,
against arbitrarily malicious (but non-colluding1 with E) server D, and against arbitrarily
malicious clients. Our security models extend the SSE model [13, 11, 9] to the more complex
settings of MC-SSE and OSPIR. In all cases security is defined in the real-vs-ideal model
and is parametrized by a specified leakage function L(DB,q). A protocol is said to be secure
with leakage profile L(DB,q) against adversary A if the actions of A on adversarially-chosen
input DB and queries set q can be simulated with access to the leakage information L(DB,q)
only (and not to DB or q). This allows modeling and bounding partial leakage allowed by
SSE protocols. It means that even an adversary that has full information about a database,
or even chooses it, does not learn anything from the protocol execution other than what
can be derived solely from the defined leakage profile.

Related work: Searchable symmetric encryption (SSE) has been extensively studied [28,
15, 16, 10, 13, 11, 23] (see [13, 11] for more on related work). Most SSE research focused on
single-keyword search, and after several solutions with complexity linear in the database size,
Curtmola et al. [13] present the first solution for single-keyword search whose complexity
is linear in the number of matching documents. They also improve on previous security

1See Section 5.2.

4

models, in particular by providing an adaptive security definition and a solution in this
model.

Extending single-keyword SSE to search by conjunctions of keywords was considered
in [16, 7, 2], but all these schemes had O(|DB|) search complexity. The first SSE which
can handle very large DBs and supports conjunctive queries is the OXT protocol discussed
above, given by Cash et al. [9]. The MC-SSE and OSPIR schemes we present are based
on this protocol and they preserve its performance and privacy characteristics.

Extension of the two-party client-server model of SSE to the multi-client setting was
considered by Curtmola et al, [13], but their model disallowed per-query interaction between
the data owner and the client, leading to a relatively inefficient implementation based on
broadcast encryption. Multi-client SSE setting which allows such interaction was considered
by Chase and Kamara [11] as SSE with “controlled disclosure”, and by Kamara and Lauter
[22], as “virtual private storage”, but both considered only single-keyword queries and did
not support query privacy from the data owner. De Cristofaro et al. [12] extended multi-
client SSE to the OSPIR setting, which supports query privacy, but only for the case of
single-keyword queries. In recent independent work, Pappas et al. [26] provide support
for boolean queries in a setting similar to our OSPIR setting (but with honest-but-curious
clients).

SSE schemes which support efficient updates of the encrypted database appeared in
[29, 23] for single-keyword SSE. The OXT SSE scheme of [9] which supports arbitrary
boolean queries, has been extended to the dynamic case in [8], and the same techniques
apply to the MC-SSE and OSPIR schemes presented in this paper.

Recently Islam et al. [19] showed that frequency analysis revealed by access control pat-
terns in SSE schemes can be used to predict single-keyword queries. Such attacks, although
harder to stage, are possible for conjunctive queries as well, but the general masking and
padding countermeasures suggested in [19] are applicable to the MC-OXT and OSPIR-OXT
protocols.

In other directions, SSE was extended to the public key setting, allowing any party to
encrypt into the database, first for single-keyword search [5, 30, 1, 3, 6, 27], and later for
conjunctive queries as well [6], but all these PKSE schemes have O(|DB|) search complexity.
Universally composable SSE was introduced by [24], also with O(|DB|) search complexity.

Multi-client SSE and OSPIR models are related to the work on multi-client ORAM, e.g.
see the recent work of Huang and Goldberg [17], which aims for stronger privacy protection
of client’s queries from server E , but multi-client ORAM supports DB lookups by (single)
indexes instead of (boolean formulas on) keywords, and they can currently support much
smaller DB sizes.

Paper organization. We first present our protocols for the case of conjunctive queries: in
Section 2 we recall the basic OXT protocol [9], suitably reformulated for our generalizations,
in Section 3 we address the multi-client SSE model, and in Section 4 we handle the OSPIR

5

model. In Section 4.2 we explain how to extend support for general boolean queries. Security
models and claims are presented in Section 5. While the main implementation details and
performance analysis is deferred to a companion paper [8], we provide some information on
computational cost and performance measurements from our implementation in Section 4.3
and 4.4, respectively.

2 SSE and the OXT Protocol

We first recall the SSE OXT protocol from [9] that forms the basis for our solution to
searchable encryption in the more advanced MC and OSPIR models.

SSE protocols and formal setting [9]. Let λ be a security parameter. A database
DB = (indi,Wi)

d
i=1 is a list of identifier and keyword-set pairs, where indi ∈ {0, 1}λ is a

document identifier and Wi ⊆ {0, 1}∗ is a list of keywords in that document. We set W to⋃d
i=1 Wi. A query ψ(w̄) is specified by a tuple of keywords w̄ ∈ W∗ and a boolean formula

ψ on w̄. We write DB(ψ(w̄)) for the set of identifiers of documents that “satisfy” ψ(w̄).
Formally, this means that indi ∈ DB(ψ(w̄)) iff the formula ψ(w̄) evaluates to true when we
replace each keyword wj with true or false depending on if wj ∈ Wi or not (in particular
DB(w) = {indi s.t. w ∈Wi}). Below we let d denote the number of records in DB, m = |W|,
and N =

∑
w∈W |DB(w)|.

A searchable symmetric encryption (SSE) scheme Π consists of an algorithm EDBSetup and
a protocol Search fitting the following syntax. EDBSetup takes as input a database DB and a
list of document decryption keys RDK, and outputs a secret key K along with an encrypted
database EDB. The search protocol proceeds between a client C and server E , where C takes
as input the secret key K and a query ψ(w̄) and E takes as input EDB. At the end of the pro-
tocol C outputs a set of (ind, rdk) pairs while E has no output. We say that an SSE scheme
is correct if for all DB,RDK and all queries ψ(w̄), for (K,EDB) ← EDBSetup(DB,RDK),
after running Search with client input (K,φ(w̄)) and server input EDB, the client outputs
DB(φ(w̄)) and RDK[DB(φ(w̄))] where RDK[S] denotes {RDK[ind] | ind ∈ S}. Correctness
can be statistical (allowing a negligible probability of error) or computational (ensured only
against computationally bounded attackers - see [9]).

Note (conjunctive vs. Boolean queries). Throughout the paper we present our protocols
for the case of conjunctive queries where a query consists of n keywords w̄ = (w1, . . . , wn)
and it returns all documents containing all these keywords. The adaptation to the case of
boolean queries is described in Section 4.2.

Note (the array RDK). Our SSE syntax, and the OXT description in Figure 1, includes as
input to EDBSetup an array RDK that contains, for each document in DB, a key rdk used
to encrypt that document. When a client retrieves the index ind of a document matching
its query, it also retrieves the record-decrypting key rdk needed to decrypt that record. This
mechanism is not strictly needed in the SSE setting (where rdk could be derived from ind

6

using a PRF with a secret key known to C) and it is not part of the original OXT in [9], but
it is needed in the more advanced models considered later. This extension does not change
the functionality and security properties of OXT as analyzed in [9]).

Note (retrieval of matching encrypted records). Our formalism defines the output of the
SSE protocol as the set of ind identifiers pointing to the encrypted records matching the
query, together with the associated record decryption key. For the sake of generality, we
do not model the processing and retrieval of encrypted records. This allows us to decouple
the storage and processing of document payloads (which can be done in a variety of ways,
with varying types of leakage) from the storage and processing of the metadata, which is
the focus of our protocols.

SSE Security. The SSE setting considers security w.r.t. an adversarial server E , hence
security is parametrized via a leakage function capturing information learned by E from the
interaction with C. See Section 5.

The TSet Datastructure for Inverted Index. The SSE protocol OXT, on which our
MC-SSE and OSPIR-SSE schemes are based, uses a datastructure TSet which abstracts an
inverted index (a list) in a way which minimizes leakage of information to the server E on
which this index is stored. We adopt the API for this datastructure given by [9]. Specifically,
the abstract TSetSetup operation receives a collection T of lists T[w] for each w ∈ W and
builds the TSet data structure out of these lists; it returns TSet and a key KT . Then, for any
w, procedure TSetGetTag(KT , w) (typically a PRF) generates a search handle, denoted stag,
which allows for retrieval of T[w] from TSet, via procedure TSetRetrieve(TSet, stag). By
convention we define T[w] as an empty list for every bitstring w 6∈W. The elements in the T
lists are called tuples, hence the name “TSet” which stands for a “tuple set”, and their exact
contents are defined by the OXT protocol. A TSet implementation as defined in [9] must
provide privacy, in that the TSet datastructure does not reveal anything about the tuple
lits in T except their total size

∑
w |T[w]|; and correctness, in that TSetRetrieve(TSet, stag)

returns T[w] for stag = TSetGetTag(KT , w). However, here we extend the above correctness
property, because unlike the two-party SSE settings of [9], in the MC-SSE or OSPIR-SSE
settings we must require TSet implementation to have no false positives in addition to no
false negatives. We formally specify this extended notion of TSet correctness in Section 5.1.

2.1 The OXT Protocol

The OXT protocol [9] is presented in Figure 1; see [9] for full design rationale and analysis.
Here we provide a high level description as needed for the extensions to this protocol we
introduce in the following sections.

The basis of OXT is the following simple search algorithm over unencrypted databases.
The algorithm uses two types of data structures. First, for every keyword w there is an
inverted index (a list) Iw pointing to the indices ind of all documents that contain w. Then,
for every document ind there is a list Lind of all keywords contained in document ind. To

7

EDBSetup(DB,RDK)

Key Generation. D picks key KS for PRF Fτ and keys KT ,KX ,KI for PRF Fp. Fτ and Fp are PRF’s
which output strings in respectively {0, 1}τ and Z∗p , and τ is a security parameter.

• Initialize XSet to an empty set, and initialize T to an empty array indexed by keywords from W.

• For each w ∈W, build the tuple list t and insert elements into set XSet as follows:

– Initialize t to be an empty list.

– Set strap← Fτ (KS , w) and (Kz,Ke)← (Fτ (strap, 1), Fτ (strap, 2)).

– Initialize c← 0; then for all ind in DB(w) in random order:

∗ Set rdk← RDK(ind), e← Enc(Ke, (ind|rdk)), xind← Fp(KI , ind).

∗ Set c← c+ 1, zc ← Fp(Kz, c), y ← xind · z−1c . Append (e, y) to t.

∗ Set xtag← gFp(KX ,w)·xind and add xtag to XSet.

– T[w]← t.

• Create (TSet,KT)← TSetSetup(T), and output key K = (KS ,KX ,KT ,KI) and EDB = (TSet,XSet).

Search protocol
Client C on input K defined as above and a conjunctive query w̄ = (w1, . . . , wn):

• Sets stag← TSetGetTag(KT , w1); strap← Fτ (KS , w1), (Kz,Ke)← (Fτ (strap, 1), Fτ (strap, 2)).

• Sends to the server E the message (stag, xtoken[1], xtoken[2], . . .) where xtoken[·] are defined as:

– For c = 1, 2, . . ., until E sends stop:

∗ Set zc ← Fp(Kz, c) and set xtoken[c, i]← gFp(KX ,wi)·zc for i = 2, . . . , n.

∗ Set xtoken[c]← (xtoken[c, 2], . . . , xtoken[c, n]).

Server E on input EDB = (TSet,XSet) responds as follows:

• Retrieve t← TSetRetrieve(TSet, stag) from TSet.

• For c = 1, . . . , |t| do:

– Retrieve (e, y) from the c-th tuple in t

– If ∀i = 2, . . . , n : xtoken[c, i]y ∈ XSet then send e to client C.

• When last tuple in t is reached, sends stop to C and halt.

For each received e client C computes (ind|rdk)← Dec(Ke, e) and outputs (ind, rdk).

Figure 1: OXT: Oblivious Cross-Tags SSE Scheme

search for a conjunction w̄ = (w1, . . . , wn), the client chooses the estimated least frequent

8

keyword 2 in w̄, say w1, and checks for each ind ∈ Iw1 whether wi ∈ Lind, i = 2, . . . , n. If this
holds for all 2 ≤ i ≤ n then ind is added to the result set. As a performance optimization,
instead of maintaining a list Lind for each ind, one can fix a hash function f and keep a
data structure representing the set X = {f(w, ind) : w ∈W, ind ∈ DB(w)}. Thus, the check
w ∈ Lind can be replaced with the check f(w, ind) ∈ X. Protocol OXT adapts this algorithm
to the encrypted setting as follows (we start with the description of a simplified version,
corresponding to protocol BXT in [9], and then move to the more specific details of OXT).

For each keyword w ∈W an inverted index TSet(w) (corresponding to Iw above) is built
pointing to all the ind values of documents in DB(w). Each TSet(w) is identified by a string
stag(w), and ind values in TSet(w) are encrypted under a secret key Ke. Both stag(w) and
Ke are computed as a PRF applied to w with secret keys known to C only. In addition, a
data structure called XSet is built as an “encrypted equivalent” of the above set X as follows.
First, for each w ∈W, a value xtrap(w) = F (KX , w) is computed where KX is a secret PRF
key then for each ind ∈ DB(w) a value xtag = f(xtrap(w), ind) is added to XSet where f is an
unpredictable function of its inputs (e.g., f can be a PRF used with xtrap(w) as the key and
ind as input). The output EDB from the EDBSetup phase includes TSet = {TSet(w)}w∈W
and the set XSet. In the Search protocol for a conjunction (w1, . . . , wn), the client C chooses
the conjunction’s s-term (i.e., the estimated least frequent keyword in the conjunction,
which we assume to be w1), computes stag(w1) and Ke using C’s secret keys and computes
xtrapi = F (KX , wi) for each i = 2, . . . , n. It then sends (Ke, stag, xtrap2, . . . , xtrapn) to the
server E . E uses stag to retrieve TSet(w1), uses Ke to decrypt the ind values in TSet(w1),
and sends back to C those ind for which f(xtrapi, ind) ∈ XSet for all i = 2, . . . , n.

Next, we note that using the protocol described above leads to significant leakage in that
the xtrap value allows E to check whether xtag = f(xtrap, ind) ∈ XSet for each value ind ever
seen by E , revealing correlation statistics between each s-term and each x-term ever queried
by C. This motivates the main mechanism in OXT, i.e. the instantiation of the function f
via a two-party computation in which E inputs an encrypted value ind, C inputs xtrap and
the ind-decryption key, and E gets the value of xtag = f(xtrap, ind) without learning either
the xtrap or ind values themselves. For this OXT uses a blinded DH computation over a
group G (with generator g of prime order p). However, to avoid the need for interaction
between E and C in the Search phase, the blinding factors are pre-computed and stored as
part of the tuples in the TSet lists. Specifically, indexes ind are replaced in the computation
of f with dedicated per-record values xind ∈ Z∗p (computed as Fp(KI , ind) where Fp is a

PRF with range Z∗p), xtrap(w)’s are implemented as gFp(KX ,w) (KI and KX are secret keys

kept by C), and xtag is re-defined as (xtrap(w))xind. The blinding factor in the underlying
two-party computation is pre-computed during EDBSetup and stored in the TSet. Namely,
each tuple corresponding to a keyword w and document index ind contains a blinded value
yc = xind · z−1

c for xind = Fp(FI , ind) where zc is an element in Z∗p derived (via a PRF) from
w and a tuple counter c (this counter, incremented for each tuple in the tuple list associated

2The estimated least frequent keyword is called the conjunction’s s-term; the other terms in a conjunction are
called x-terms.

9

with w, ensures independence of each blinding value zc).

During search, the server E needs to compute the xtag values gFp(KX ,wi)·xind for each xind
in TSet(w1) and then test these for membership in XSet. To enable this the client sends,
for the c-th tuple in t, an n-long array xtoken[c] defined by xtoken[c, i] := gFp(KX ,wi)·zc ,
i = 1, . . . , n, where zc is the precomputed blinding derived by C from w (via a PRF) and
the tuple counter c. E then performs the T-set search to get the results for w1, and for
each c it filters the c-th result by testing if xtoken[c, i]yc ∈ XSet for all i = 2, . . . , n. This

protocol is correct because xtoken[c, i]yc = gFp(KX ,wi)·zc·xind·z−1
c = gFp(KX ,wi)·xind, meaning

that the server correctly recomputes the pseudorandom values in the XSet. Putting these
ideas together results in the OXT protocol of Figure 1. Note that C sends the xtoken arrays
(each holding several values of the form gFp(KX ,wi)·zc) until instructed to stop by E . There
is no other communication from server to client (alternatively, server can send the number
of elements in TSet(w) to the client who will respond with such number of xtoken arrays).

Note. The OXT protocol in Figure 1 derives keys Ke,Kz slightly differently than in the OXT
description of [9]. The modified key derivation is closer to what we need for MC-OXT and
OSPIR-OXT protocols presented in the following sections, without affecting the functionality
or security of OXT.

3 Multi-Client SSE

We present an extension of the OXT protocol for the multi-client SSE (MC-SSE) setting
described in the introduction and in more detail below. The extension preserves the func-
tionality of OXT, supporting any boolean query, and superb performance, while securely
serving multiple clients, all of which can behave maliciously.

Multi-Client SSE Setting. In MC-SSE there is the owner D of the plaintext database
DB, an external server E that holds the encrypted database EDB, and clients that receive
tokens from D in order to perform search queries at E . In other words, D is outsourcing her
search service to a third party but requires clients to first obtain search tokens from her.
Her goal is to ensure service to clients via E while leaking as little as possible information to
E about the plaintext data and queries, and preventing clients from running any other DB
queries than those for which D issued them a token. This is a natural outsourcing setting
of increasing value in cloud-based platforms, and it was described by Chase and Kamara
[11] as an SSE with controlled disclosure.

Formally, the MC-SSE setting changes the syntax of an SSE scheme by including an
additional algorithm GenToken which on input the secret key K, generated by the data
owner D in the EDBSetup procedure, and a boolean query ψ(w̄), submitted by client C,
generates a search-enabling value token. Then, procedure Search is executed by server E on
input EDB, but instead of the client C running on input K and query ψ(w̄) (as in SSE), C
runs on input consisting only of the search token token. Correctness is defined similarly to

10

the SSE case, namely, assuring (except for negligible error probability) that C’s output sets
DB(ψ(w̄)) and RDK[DB(ψ(w̄))]. Security is treated in Section 5.

3.1 The MC-OXT Protocol

We describe the changes to OXT from Figure 1 needed to support boolean queries in the
MC-SSE setting. As before, the protocol is described for conjunctions with the adaptation
to boolean queries described in Section 4.2.

EDBSetup(DB,RDK). This pre-processing phase is identical to the one in OXT except
for the addition of a key KM shared between D and E . The output from this phase is
K = (KS ,KX ,KT ,KM) kept by D and EDB = (KM ,TSet,XSet) stored at E .

GenToken(K, w̄). This is the new MC-specific phase in which D, using key K, authorizes
C for a conjunction w̄ = w1, . . . , wn and provides C with the necessary tokens to enable
the search at E . We assume w1 to be the s-term (and chosen by D who has knowledge
of term frequencies). Specifically, D performs the following operations. She sets stag ←
TSetGetTag(KT , w1) and strap← Fτ (KS , w1), same as C does in OXT. Then, for i = 2, ..., n,
she picks ρi ← Z∗p and sets bxtrapi ← gFp(KX ,wi)·ρi . Finally, she sets env ← AuthEnc(KM ,
(stag, ρ2, ..., ρn)) and outputs token = (env, strap, bxtrap2, . . . , bxtrapn) (which C uses in the
search phase).

To see how this enables search as in OXT, first note that with xtrapi = gFp(KX ,wi),
i = 2, . . . , n, the client can produce the values gFp(KX ,wi)·zc needed in the Search phase
of OXT. Hence, D could just provide the xtrapi values to C. However, D needs to be
able to sign (or MAC) these values so that E can check that C is authorized to this query
and, e.g., did not truncate a conjunction or mix parts from different queries. Signing the
plain xtrap values does not work since these values must not be seen by E (it would allow
E to learn information from unauthorized searches). The solution is to provide C with a
homomorphic signature that C can convert into individual signatures for all tokens sent to E .
This is accomplished as follows: D picks one-time blinding factors ρ2, . . . , ρn and provides
C with blinded (or MAC’ed) xtrap values bxtrapi = xtrapρii for j = 2, . . . , n, while providing
the blinding factors (ρ2, . . . , ρn) to E in an encrypted and authenticated envelope env. To
produce gFp(KX ,wi)·zc during Search, C will compute bxtrapzci and E will raise this value to
1/ρi. Security relies on the fact that if C provides E with values other than those given by
D, then when raised to 1/ρi by E (where ρi is random and unknown to C) the resulting
values will not correspond to elements of XSet except with negligible probability.

Search Protocol. The Search protocol reflects the above changes: On token = (env, strap, bxtrap2, ...,
bxtrapn), C computes (Kz,Ke) from strap as in OXT. Then, it sends to E the value
env as well as the sequence bxtoken[1], bxtoken[2], . . . which contains the same values as
xtoken[1], xtoken[2], . . . in OXT up to the blinding exponents ρi. Specifically, the values
bxtoken[c, i], for i = 2, . . . , n, are computed by C as (bxtrapi)

zc . On the receiving side, E ver-
ifies the authenticity of env and decrypts it to find stag, which it uses to retrieve TSet(w1),

11

and ρ2, . . . , ρn. The only change from OXT is that the operation xtoken[c, i]y is replaced
with bxtoken[c, i]y/ρi .

Note (masking the size of TSet(w1)). MC-OXT leaks to C the size of TSet(w1) = DB(w1)
given by the number of bxtoken vectors requested by E . Note that the exact size of this set
can easily be masked by E requesting more bxtoken values from C than needed. We observe
that some form of leakage on the frequency of the least frequent term in the conjunction
appears to be inherent even for plaintext search algorithms. Indeed, it is likely (though
there seem to be no proven lower bounds) that running time will be noticeably different for
conjunctions with all terms being infrequent from the case that all terms are very frequent,
except if short searches are artificially padded to full database size (or if conjunctions are
pre-computed). Two considerations in masking the size of TSet(w1) are that (i) the masked
size should be chosen as a step function of |TSet(w1)| (and not, say, a fixed linear function);
(ii) During search, E should return to C all results matching a query only after E received all
the bxtoken vectors from C; indeed, sending the results as soon as they are found to match
the query would leak information on |TSet(w)| to C (since no ind’s will be returned after C
sends |TSet(w)| tokens). Alternatively, to avoid delaying the sending of results from E to C,
D can randomly spread the counters c in each TSet(w) during the EDBSetup procedure, so
that counters c range between 1 and |Mask(TSet(w))| rather than between 1 and |TSet(w)|
(note that the number of tuples in TSet(w) is not increased by this approach, only the
counters in these tuples are more sparsely allocated).

4 Outsourced Symmetric PIR

The OSPIR (for Outsourced Symmetric PIR) setting augments the MC-SSE setting with
an additional requirement: The database owner D should learn as little as possible about
queries performed by clients while still being able to verify the compliance of these queries
to her policy. Here we extend MC-OXT to this setting by augmenting the token generation
component GenToken to support “blinding” by the client of query requests sent to D, and
adding a mechanism for D to enforce policy-compliance of the query when only having
access to their blinded versions. OSPIR-OXT supports attribute-based policies where D
learns information about query attributes but nothing about values (e.g., D may learn that
a query includes a last-name, a zipcode and two words from a text field but nothing about
the actual queried keywords). The security model adds D as a new adversarial entity trying
to learn C’s hidden query values. Refer to the introduction for more discussion about the
OSPIR setting and attribute-based policies.

OSPIR SSE Syntax. An OSPIR-SSE scheme replaces the GenToken procedure which in
MC-SSE is executed by the data owner D on the cleartext client’s query w̄, with a two-
party protocol between C and D that allows C to compute a search-enabling token without D
learning w̄. In addition, D should be able to enforce an attribute-based query-authorization

12

policy on these queries. For this, we assume that keyword set W is partitioned into m
attributes, and let I(w) denote the attribute of keyword w.3 An attribute-based policy
is represented by a set of attribute-sequences P s.t. a conjunctive query w̄ = (w1, ..., wn)
is allowed by policy P if and only if the sequence of attributes av(w̄) = (I(w1), ..., I(wn))
corresponding to this query is an element in set P. Using this notation, the goal of the
GenToken protocol is to let C compute token corresponding to its query w̄ only if av(w̄) ∈ P.
Reflecting these goals, an OSPIR-SSE scheme is a tuple Σ = (EDBSetup,GenToken, Search)
where EDBSetup is an algorithm run by D on inputs (DB,RDK) with outputs (EDB,K),
GenToken is a protocol run by C on input w̄ and by D on input (P,K), with C outputting
token or ⊥ and D outputting av, and Search is a protocol run by C on input token and by
E on input EDB, with C outputting a set of ind’s matching his query and the corresponding
set of rdk’s.

4.1 The OSPIR-OXT Protocol

GenToken protocol

• Client C, on input w̄ = (w1, ..., wn) where w1 is chosen as s-term:

– Compute (as, rs)← OPRF.C1(w1), and (ai, ri)← S-OPRF.C1(wi) for each i = 1, ..., n.

– Send (as, a1, ..., an) and av = (I(w1), ..., I(wn)) to D.

• Data owner D, on input policy P and master key K = (KS ,KX ,KT ,KI ,KP ,KM):

– Abort if av is not in policy set P. Otherwise set av as D’s local output.

– Compute bs ← OPRF.D(KS , as).

– Compute (b1, ρ1)← S-OPRF.D(KT , I1, a1), and (bi, ρi)← S-OPRF.D(KX , Ii, ai) for i = 2, .., n.

– Set env← AuthEnc(KM , (ρ1, ρ2, ..., ρn)) and send (env, bs, b1, ..., bn) to C.

• C outputs token = (env, strap, bstag, bxtrap2, ..., bxtrapn) where strap← OPRF.C2(bs, rs),
bstag← S-OPRF.C2(b1, r1), and bxtrapi ← S-OPRF.C2(bi, ri) for i = 2, ..., n.

Figure 2: Token Generation in OSPIR-OXT

The OSPIR-OXT protocol addresses the above OSPIR setting by enhancing MC-OXT
with query-hiding techniques that allow D to authorize queries without learning the queried
values. Most changes with respect to MC-OXT are in the GenToken protocol. EDBSetup
remains mostly unchanged except for the implementation of the PRFs, and Search is essen-
tially unmodified.

We introduce the two main tools used in the design of GenToken. First, instead of the

3 We assume that the string representing w has its attribute encoded into it, i.e. w = (i, val) for i = I(w), so that
Ryan as a first name is distinguished from Ryan as a last name.

13

use of regular PRFs for stag and xtag computations in OXT and MC-OXT, the OSPIR-
OXT protocol uses an an “oblivious PRF” (OPRF) computation between C and D. A PRF
F (K,w) is called oblivious [25] if there is a two-party protocol in which C inputs w, D inputs
K, C learns the value of F (K,w) and D learns nothing. A simple example is the Hashed
DH OPRF which we use in our implementation of the OSPIR-OXT protocol, defined as
F (K,x) = H(x)K where H is a hash function onto G \ {1} where G is a group of prime
order p, and K is chosen at random in Z∗p . In this case, the OPRF protocol consists of C
sending a = H(x)r for random r in Z∗p , D sending back b = aK and C computing H(x)K as

b1/r. The second tool used in GenToken is needed to enforce an attribute-based policy and
guarantee that only queries on authorized attributes can generate valid tokens for search
at E . To enforce such policies we have D use a different key for each possible attribute; for
example, when a stag (or xtag) is requested for attribute ‘zipcode’ the key that D inputs
into the OPRF computation is different than the key used for attribute ‘name’ or attribute
‘text’. The point is that if C claims to be querying zipcode but actually enters the keyword
“Michael” into the OPRF computation, the output for C will be the tag F (Kzip, “Michael”),
where Kzip is a zipcode-specific key, which will match no tag stored at E .

To obtain OSPIR-OXT we combine the above two tools with an authorization mechanism
similar to the one used in MC-OXT via a homomorphic signature (using the ρi exponents)
for binding together the n tokens corresponding to an n-term conjunctive query in a way
that E can verify. We describe the changes to MC-OXT (defined via Figure 1 and the
modifications in Section 3) required by OSPIR-OXT. We first replace the PRF Fp used in
computing xtrap and xtag values with a PRF FG which maps w directly onto the group G
generated by g, i.e. we set xtrap as FG(KX , w) instead of gFp(KX ,w), hence xtag = (xtrap)xind

will now be computed as FG(KX , w)xind instead of gFp(KX ,w)·xind. We similarly replace the
PRF Fτ used in computing the strap value with the PRF FG, i.e. we set strap as FG(KS , w)
instead of Fτ (KS , w). (Since we use strap as a key to Fτ in deriving (Kz,Ke), we assume
that a PRF Fτ key can be extracted from a random group element.)

We also make a specific assumption on the implementation of the function TSetGetTag
used to derive stag(w) value, i.e., the handle pointing to the set TSet(w) which is com-
puted as TSetGetTag(KT , w). First, we assume that TSetGetTag is implemented using
PRF FG. Second, to enable enforcement of attribute-based policies we assume that the
key KT in TSetGetTag is formed by an array of FG keys KT = (KT [1], ...,KT [m]), where
KT [i] is the key to be used only for keywords with attribute I(w) = i. For notational
convenience we define a PRF FmG s.t. FmG (KT , w) = FG(KT [I(w)], w), and we set stag(w) =
TSetGetTag(KT , w) to FmG (KT , w). Since we explicitly handle the keys used in the TSetGetTag
implementation we also need to modify the TSet API: We will initialize TSet as TSet ←
TSetSetup′(T), where T indexes the tuple lists t(w) not by the keywords w but by the cor-
responding stag(w) values. (This API change does not affect existing TSet implementations
[9] because they internally use stag(w) = TSetGetTag(KT , w) to store the t(w) list.) The
PRF we use in the computation of xtag’s will be similarly attribute-partitioned. Namely,
KX is also an array of m independent FG keys KX = (KX [1], . . . ,KX [m]), the xtrap value

14

for keyword w is defined as FmG (KX , w), and the xtag corresponding to keyword w and
index xind is set to (FmG (KX , w))xind.

In OSPIR-OXT, there are two two-party protocols involved in the computation of FG. In
the first case, the protocol implements an OPRF computation in which C enters an input w,
D enters a key KS , and the output is FG(KS , w) for C and ⊥ for D. In the second case, FmG
is computed via a protocol, that we call a shared OPRF (S-OPRF), in which C inputs w and
i = I(w), and D enters a key K and additional input ρ ∈ Z∗p ; the output learned by D is i,
and the output learned by C is (FmG (K,x))ρ = (FG(K[i], x))ρ. Note that the pair of outputs
((FmG (K,x))ρ, ρ) can be seen as a secret sharing of FmG (K,x), hence the name shared-OPRF.
OSPIR-OXT uses the OPRF protocol to let C learn the strap value corresponding to the w1

s-term, i.e. strap = FG(KS , w1), without D learning w1. The S-OPRF protocol is used to
let C compute a blinded stag bstag = [FmG (KT , w1)]ρ1 and the blinded xtraps bxtrapi = [FmG (
KI , wi)]

ρi , for i = 2, ..., n. The functionality of the blinding ρi is the same as in the case of
MC-OXT, namely, as a form of homomorphic signature binding and authorizing stag and
xtrap’s that E can verify. As in MC-OXT, E will receive the corresponding (de)blinding
factors ρ1, . . . , ρn in the authenticated envelope env.

To simplify the description of OSPIR-OXT, we assume that both OPRF and S-OPRF
protocols take a single round of interaction between C and D, as is indeed the case for
several efficient OPRF’s of interest [14, 20], including the Hashed Diffie-Hellman OPRF
[21] used in our implementation below. We denote C’s initial computation in the OPRF
protocol as (a, r) ← OPRF.C1(x) (a is the value sent to D and r is randomness used by
C), D’s response computation as b← OPRF.D(K, a), and C’s local computation of the final
output as OPRF.C2(b, r). We use the corresponding notation in the case of S-OPRF, except
that S-OPRF.D takes as an input a triple (K, i, a) where i is an attribute and outputs a
pair (b, ρ). See below for a simple implementation of these procedures for the case of the
Hashed Diffie-Hellman OPRF.

OSPIR-OXT Specification. With the above ingredients and notation we specify OSPIR-OXT
on the basis of MC-OXT via the following changes.

Keys. Select key KS for FG; KT and KX for FmG ; KI for Fp; and KM for the authenticated
encryption scheme.

EDBSetup. Follow the EDBSetup procedure of MC-OXT except for computing strap ←
FG(KS , w) and xtag← (FmG (KX , w))xind, and for implementing the TSetGetTag procedure
as TSetGetTag(KT , w) = FmG (KT , w), which means that we compute stag(w)← FmG (KT , w);
index t(w) in T by stag(w) instead of by w itself; and generate TSet using the modified
API procedure TSetSetup′(T).

GenToken protocol. This is the main change with respect to OSPIR-OXT; it follows the
above mechanisms and is presented in Figure 2.

Search protocol. Same as MC-OXT except that stag is not included under env but rather it
is provided to E by C as bstag from which E computes stag← (bstag)1/ρ1 .

15

Instantiation via Hashed Diffie-Hellman OPRF. Our implementation and analysis of
OSPIR-OXT assumes the use of Hashed DH OPRF mentioned above, namely, FG(K,x) =
(H(x))K . The instantiations of OPRF and S-OPRF protocols in this case are as follows.
OPRF.C1(x) and S-OPRF.C1(x) both pick random r in Z∗p , set a ← (H(x))r, and output

(a, r). Procedure OPRF.D(K, a), where K ∈ Z∗p is a key for PRF FG, outputs b ← aK .
Procedure S-OPRF.D(K, i, a), where i ∈ {1, ...,m} and K = (K[1], . . . ,K[m]) ∈ (Z∗p)m

is a key for PRF FmG , picks random ρ in Z∗p , computes b ← aK[i]·ρ, and outputs (b, ρ).

Procedures OPRF.C1(b, r) and S-OPRF.C1(b, r) both output b1/r. Note that if parties follow
the protocol, C’s final output is equal to (H(x))K = FG(K,x) in the OPRF protocol, while
in the S-OPRF protocol it is equal to (H(x))K[i]·ρ, which is equal to (FmG (K,x))ρ if i = I(x).
These OPRF and S-OPRF protocols emulate their corresponding ideal functionalities in
ROM under so-called One-More Gap Diffie-Hellman assumption [21], see Section 5.

Figure 4 in Appendix B shows the OSPIR-OXT scheme instantiated with the above
Hashed DH OPRF. It helps visualize the entire protocol and it reflects our actual imple-
mentation. In it we denote keys KT and KX of PRF FmG by vectors of exponents in Z∗p ,
respectively (k1, . . . , km) and (e1, . . . , em), where m is the number of attributes. Also, be-
cause of the specific OPRF instantiation we equate as to a1 in C’s message of the GenToken
protocol, instead of computing these two blinded versions of keyword w1 separately, as in
Figure 2.

4.2 Supporting Boolean Queries

For simplicity we presented our protocols for the case of conjunctions. The protocols can
be readily adapted to search boolean queries in “searchable normal form (SNF)”, i.e., of
the form “w1 ∧ φ(w2, . . . , wm)” (intended to return any document that matches keyword
w1 and in addition satisfies the formula φ on the remaining keywords). In this case, OXT
and its derivatives change only in the way E determines which tuples match a query (i.e.,
which values e it sends back to C). Specifically, in OXT the c-th tuple matches if and only
if xtoken[c, i]y/ρi ∈ XSet for all 2 ≤ i ≤ n. Instead, for boolean queries as above, E will
have a set of boolean variables v2, . . . , vn and will set vi to the truth value of the predicate
xtoken[c, i]y/ρi ∈ XSet. A tuple is matching if and only if the result of evaluating φ on these
values returns true. The complexity of boolean search is same as for conjunctions, i.e.,
proportional to |DB(w1)|, and leakage to E is the same as for a conjunctive query on the
same set of keywords except that E also learns the expression φ being evaluated. See [9] for
details and support of other forms of boolean queries.

In the OSPIR-SSE setting, supporting boolean queries requires policies that are defined
in terms of such queries. Specifically, a policy will determine a set of allowed pairs (ψ, I)
where ψ is a symbolic boolean expression and I a sequence of attributes, one per each
variable in ψ. Thus, leakage to D will include I (as in the case of conjunctions) plus the
symbolic expression being evaluated.

16

4.3 Computational Cost

Here we provide an operations count for OSPIR-OXT when instantiated with the DH-based
OPRF noting its (mild) overhead over the original OXT protocol from [9]. The computa-
tional cost of OSPIR-OXT is easy to quantify by inspecting Figure 4 in Appendix B.

The cost of pre-processing (EDBSetup) is dominated by operations related to the group
G, mainly exponentiations: For every w ∈W:

1. One hashing operation, H(w), of keyword w into an element of the group G.

2. Two exponentiations: strap(w) = (H(w))KS and stag(w) = (H(w))ki .

3. For every ind in DB(w): One exponentiation H(w)ei·xind for computing an XSet ele-
ment.

The first two items are specific to OSPIR-OXT while the third is from the original OXT
protocol, except that here the base for exponentiation is changed from the generator g in
OXT to the value H(w). Hence the overhead introduced by OSPIR-OXT is given by the
first two items and the variable base. Importantly, the overhead for the first two items
is only linear in |W|, typically much smaller than the number of exponentiations in OXT
(item 3), namely one per pair (w, ind) for ind ∈ DB(w). As for the latter exponentiations,
while the bases are variable, each H(w) is typically used with a very large number of
exponentiations (as the number of documents containing w) hence allowing for significant
same-base optimizations. The hashing of w into the groupG (item 1) is modeled as a random
oracle, hence it rules out algebraic implementations such as gh(w). For the elliptic curves
groups we use, H is realized by sampling a field element e and a bit b from a PRNG seeded
with w until (e, b) is the compressed representation of a valid group element. Depending on
the particular nature of a curve, the generic square root algorithms required in solving the
Weierstrass equation, though, can be extremely inefficient: Our original implementation for
the chosen NIST 224p curve using OpenSSL’s standard algorithms was more than an order of
magnitude slower than a normal exponentiation and considerably more when common-base
optimization is used. By implementing our own algorithm inspired by [4] and optimizing it
for this particular field, we could reduce the cost down to the order of an exponentiation.
Once all these optimizations are in place, the performance of OSPIR-OXT is remarkable as
shown in Section 4.4 and, in much more details, in a companion paper [8].

The dominating cost of GenToken is just 2n+ 1 exponentiations for the client and n+ 1
for D.

Finally, the cost of query processing between C and E (Search) on a n-term SNF expres-
sion is as follows:

1. C computes n− 1 exponentiations for each tuple in TSet(w1)

2. E performs up to n− 1 exponentiations for each element in TSet(w1).

17

Note that C can apply same-base optimization to the exponentiations since each term in the
SNF expression has its own fixed base. On the other hand, E cannot use same-base opti-
mizations. However, note that as soon as one of the values xtoken[c, i]y/ρi for a conjunction
is found not to be in XSet, the other terms for this conjunction do not have to be evaluated
(hence avoiding the need for these exponentiations). Similarly, for general Boolean expres-
sions, early termination can be exploited to reduce costly computation. This highlights
an important optimization for query processing (especially for queries with large TSet(w1)
sets): Besides choosing the s-term as a term with high-entropy to keep TSet(w1) small, also
choose the evaluation order of x-terms of an SNF expression such that it maximizes the
probability of early termination and, hence, reduces the number of (expected) exponentia-
tions executed by E , e.g., for conjunctions order the x-terms in descending order of entropy
(equivalently, ascending order of frequency).

Note (frequency ordering). In the OSPIR setting the client may not know the frequency of
terms in the database and D will not know the query values to choose such terms optimally.
Thus, the exact mechanism for determining the above ordering will depend on the specific
setting. In our implementation we decide on ordering based on typical entropy of attributes;
e.g., assuming last names have more entropy than names, and names more entropy than
addresses, etc. (note that an attribute-based ordering is more privacy-preserving for the
client than a value-based one).

4.4 Implementation and performance

The practicality of the proposed schemes was validated by experiments on DBs which in-
cluded e.g. English-language Wikipedia (13,284,801 records / 2,732,311,945 indexed tuples),
and a synthetic US census database (100 million records / 22,525,274,592 index tuples, re-
sulting in EDB with 1.7 TB TSet and 0.4 TB XSet). To illustrate search efficiency, in the
census DB case we executed complex queries like

SELECT id WHERE fname=’CHARLIE’ AND sex=’Female’ AND NOT
(state=’NY’ OR state=’MA’ OR state=’PA’ OR state=’NJ)

in about 4 seconds on an IBM Blade dual Intel 4-core Xeon processor and storage provided
by a (low-end) 6.2TB RAID-5 storage system. Preprocessing of such large DBs (TSet and
XSet creation) has been feasible by, among other things, optimization of common-base
exponentiations, achieving aggregated (parallel) rate of about 500,000 exp.’s/sec. for the
NIST 224p elliptic curve.

See [8] for details on implementation and performance as well as for the extension of OXT
and OSPIR-OXT to support dynamic databases (where documents can be added, deleted
and modified).

18

5 Security

We analyze security of the OSPIR-SSE scheme. We focus on the OSPIR case as it is
the more comprehensive setting and it contains MC-SSE as a special case. The SSE-OXT
protocol is analyzed in the SSE setting in [9].

5.1 Extended Notion of TSet Correctness.

As we mentioned in Section 2, in the context of MC-SSE and OSPIR-SSE setting the
correctness property of the TSet datastructure must be extended to include the (lack of)
false positives in addition to the false negatives. Intuitively, whereas in all SSE settings
we must assure that the metadata T[w] associated with keyword w can be recovered in
its entirety given the stag(w) search handle, in the MC-SSE and OSPIR-SSE settings we
must in addition assure that no data is returned without an explicitely provided search
handle. To simplify stating and using the latter property we restrict it to the case where
TSetGetTag is a deterministic function, i.e. where for each KT , w there exists a unique
stag = TSetGetTag(KT , w).

Formally, we call a T-set scheme (computationally) correct if for every T and every
efficient algorithm A, the following two facts hold, reflecting negligible probability of false
negatives and false positives, respectively. First, there must be at most negligible probability
that t 6= T[w] in the experiment where (TSet,KT)← TSetSetup(T), w ← A(T,TSet,KT),
stag ← TSetGetTag(KT , w), and t ← TSetRetrieve(TSet, stag). Secondly, there must be at
most negligible probability that b = 1 in an experiment where (TSet,KT)← TSetSetup(T),
stag∗ ← Adv(T,TSet,KT), t ← TSetRetrieve(TSet, stag∗), and we assign b ← 1 if it holds
that t is non-empty and stag∗ 6= TSetGetTag(KT , w) for all w ∈W; otherwise b← 0.

It is easy to see that this extended correctness notion is satisfied by TSet implementations
of both [9] and [8].

5.2 OSPIR-SSE Security and Correctness Definitions

SSE security definitions where the only adversarial entity is server E are provided in prior
work. Here we follow the definitions from [9] - which in turn follow [11, 13] - and extend
them to the MC setting by considering multiple malicious clients and to the OSPIR setting
by adding also the data owner D as an adversarial entity. All security definitions follow
the ideal/real model framework of secure computation and are parametrized by a leakage
function L bounding the information leaked to an adversarial party in addition to the
intended output for that party. Specifically, we ask that whatever an adversary can do by
running the real protocol on data and queries chosen by the adversary, a simulator can do
solely on the basis of the leakage function.

19

Correctness. We say that an OSPIR-SSE scheme Σ = (EDBSetup,GenToken,Search) is
computationally correct if for every efficient algorithm A, there is a negligible probability
that the following experiment outputs 0. On inputs (DB,RDK) and w̄(1), . . . , w̄(m) provided
by A, execute (K,EDB) ← EDBSetup(DB,RDK); and for i = 1, 2, . . ., execute protocol
GenToken on C’s input w̄(i) and D’s inputs (P,K), denote C’s output as token(i), execute
protocol Search between C on input token(i) and E on input EDB and denote C’s outputs
as a pair (indSet(i), rdkSet(i)). Output 1 if for each i we have that indSet(i) = DB(w̄(i)) and
rdkSet(i) = RDK[DB(w̄(i))]. Otherwise output 0.

Security against adversarial server E. Security against adversarial (honest-but-curious)
E has been the focus of prior SSE work. Adapting the definition of L-semantic security
against adaptive attacks (by the server E) from [9] to our setting is straightforward and is
omitted here.

Security against adversarial clients. The definition captures the information leaked to
a malicious client in addition to the intended output DB(w̄) and the corresponding record-
decrypting keys RDK[DB(w̄)]. The definition compares the real execution to an emulation
of an interaction with algorithm I-SSEL, which models an ideal functionality of the OSPIR-
SSE scheme instantiated with the leakage function L. The interactive algorithm I-SSEL,
running on local input (DB,RDK,P), answers queries w̄ ∈ W∗ by checking if av(w̄) ∈ P. If
the check verifies, then it replies to this w̄ with a triple (DB(w̄),RDK[DB(w̄)],L(DB, w̄)),
and if av(w̄) 6∈ P then it sends back a rejection symbol ⊥.

Definition 1 Let Π = (EDBSetup,GenToken,Search) be an OSPIR-SSE scheme. Given
algorithms L, A, and S = (S0, S1, S2) we define experiments (algorithms) RealΠA(λ) and
IdealΠA,S(λ) as follows:

RealΠA(λ): A(1λ) chooses (DB,RDK,P), and the experiment runs (K,EDB) ← EDBSetup
(DB,RDK). Adversary A can then adaptively invoke instances of the protocol GenToken
and Search, interacting with party D running on input K and P in the first case and with
party E running on input EDB in the second case. Note that A can behave arbitrarily in all
these protocol instances. Let q be the number of GenToken instances and let avi be D’s local
output in the i-th instance. If at any point A halts and outputs a bit b, the game outputs
(b, av1, . . . , avq).

IdealΠA,S(λ): A(1λ) chooses (DB,RDK,P) as above, while the experiment initializes S =

(S0, S1, S2) by running st ← S0(1λ). Subsequently, each time A invokes an instance of
protocol GenToken, it interacts with the experiment running S1(st,P), whereas if A invokes
an instance of protocol Search, it interacts with the experiment running S2(st). Both S1 and
S2 algorithms are allowed to update the global simulator’s state st while interacting with A.
Both can issue queries w̄ to I-SSEL(DB,RDK,P). Let q be the number of these queries and
let avi = I(w̄i), where w̄i is the i-th query. As above, if at any point A halts and output a
bit b, the game outputs (b, av1, . . . , avq).

20

We call Π L-semantically-secure against malicious clients if for any efficient algorithm A
there is an efficient algorithm S s.t. the statistical difference between tuples (b, av1, . . . , avq)
output by experiments RealΠA and IdealΠA,S is a negligible function of the security parameter
λ.

Security against adversarial data owner. Security against a data-owner D models
privacy of the client’s queries w̄ against malicious D, given an adaptive choice of the client’s
queries. Similarly to the case of security against either the client C or the EDB-storing
server E , this security definition also allows for leakage of some information L(w̄) regarding
the query w̄ to D.

Definition 2 Let Π = (EDBSetup,GenToken,Search) be an OSPIR-SSE scheme. Given
algorithms L, A, and S we define experiments (algorithms) RealΠA(λ) and IdealΠA,S(λ) as
follows:

RealΠA(λ): Adversary A(1λ) can adaptively invoke any number of GenToken instances by
specifying a query w̄ and interacting with party C running the GenToken protocol on input
w̄. At any point A can halt and output a bit, which the game uses as its own output.

IdealΠA,S(λ): Adversary A(1λ) can adaptively invoke any number of GenToken instances as
above, but for any query w̄ which A specifies, it interacts with S running on input L(w̄).
As above if A halts and output a bit, the game uses this bit as its own output.

We call Π L-semantically-secure against malicious data owner if for any efficient alg.
A there is an efficient alg. S s.t. Pr[RealΠA(λ)=1]− Pr[IdealΠA,S(λ)=1] ≤ neg(λ).

Note (non-collusion between D and E). We stress that even though the data owner D can
be arbitrarily malicious, we assume that D and E do not collude. Indeed, client’s security
in the OSPIR-OXT scheme we propose is not maintained against such collusion. Moreover,
providing query-privacy fromD under collusion with E would have the (impractical) cost of a
single-server symmetric PIR protocol. The hospital example mentioned in the introduction,
is a case where such non-collusion requirement makes sense. Indeed, it is the hospital interest
not to learn the queries: It helps avoiding liability and complying with regulations as well
as withstanding potential insider attacks. Similarly, for a service providing private access to
a database (e.g. to a patent repository) preserving client privacy is part of its very business
model. See also [18].

5.3 Security of OSPIR-OXT

Correctness of OSPIR-OXT. We first argue that protocol OSPIR-OXT is correct. As-
suming a computationally correct TSet implementation (see Section 2.1), any correctness

21

errors can only come from collisions in PRF functions, including function FKX ,KI
effectively

used in computing xtag values, defined as FKX ,KI
(w, ind) = (FmG (KX , w))Fp(KI ,ind). But as-

suming the PRF property of Fp, and the PRF property of FmG , which holds under DDH in
ROM, function FKX ,KI

is a PRF too, and so collision probability is negligible, resulting in
negligible error probability over the execution of the OSPIR-OXT correctness experiment.
Thus, we have:

Theorem 3 The OSPIR-SSE scheme OSPIR-OXT instantiated with the Hashed Diffie-
Hellman OPRF is computationally correct assuming that the DDH assumption holds, that
the T-set implementation is computationally correct, that Fp is a secure PRF, and assuming
the Random Oracle Model for hash function H.

Security of OSPIR-OXT. Using the security notions explained above we describe the
security properties of the OSPIR-SSE scheme OSPIR-OXT instantiated with the Hashed
Diffie-Hellman OPRF, as shown in Figure 4 in Appendix B. We first state the OM-GDH
security assumption required for the security of the OPRF and S-OPRF sub-protocols of this
OSPIR-OXT instantiation.

One-More Gap Diffie-Hellman (OM-GDH). Let G = Gλ be a prime order cyclic
group of order p = p(λ) generated by g. We say that the One-More Gap Diffie-Hellman
(OM-GDH) assumption holds in G if Advddh

G,A(λ) is negligible for all efficient adversaries

A, where Advddh
G,A(λ) is defined as the probability that A wins the following game: (1) The

game chooses random t in Z∗p and two random elements h1, h2 in G; (2) A, on input h1, h2,
specifies a single query a to the Diffie-Hellman oracle, which on input a returns b← at; (3)
A can make any number of queries to a Decisional Diffie-Hellman oracle DDHt(·, ·), which
on input (h, v) returns 1 if v = ht and 0 otherwise; (4) Finally A outputs two values v1, v2,
and we say that A wins the game if v1 = (h1)t and v2 = (h2)t.

Security against adversarial server E. The OSPIR-SSE scheme OSPIR-OXT is Loxt-
semantically-secure against adaptive server E under the same assumptions and for the same
leakage function Loxt as the underlying SSE scheme OXT of [9]. This is because the spe-
cific PRF’s used by OSPIR-OXT in EDB construction are instantiations of general PRF’s
considered in OXT, and because E ’s view of the Search protocol in the OSPIR-OXT scheme
can be generated from E ’s view of Search in the OXT scheme. Specifically, each ρi in env
is random in Z∗p , and bstag and each bxtoken[c, i] value in Figure 4 (Appendix B) can be
computed by exponentiating values stag and xtoken[c, i] in Figure 1 to, respectively, ρ1 and
ρi.

Security against adversarial client C. Let Mask(|DB(w1)|) denote an upper bound on
|DB(w1)| used by E to mask the size of TSet(w1) when responding to C’s queries as described
at the end of Section 3.

22

Theorem 4 Let L be a defined as L(DB, w̄) = Mask(|DB(w1)|) for w̄ = (w1, ..., wn).
OSPIR-SSE scheme OSPIR-OXT instantiated with the Hashed Diffie-Hellman OPRF is
L-semantically-secure against malicious clients assuming that the One-More Gap Diffie-
Hellman assumption holds in G, that Fp is a secure PRF, that the T-set implementation is
(computationally) correct, that (AuthEnc,AuthDec) is an IND-CPA and Strongly-UF-CMA
authenticated encryption scheme, and assuming the Random Oracle Model for hash function
H.

Proof: The proof is lengthy and is presented in Appendix A. 2

Security against adversarial data owner D. In our OSPIR-SSE scheme a malicious
D learns nothing about clients’ query w̄ = (w1, . . . , wn) except for the vector of attributes
av(w̄) = (I(w1), . . . , I(wn)).

Theorem 5 Let L be a leakage function defined as L(w̄) = av(w̄). OSPIR-SSE scheme
OSPIR-OXT instantiated with the Hashed Diffie-Hellman OPRF is L-semantically-secure
against malicious data owner.

Proof: The view of D in the GenToken protocol of OSPIR-OXT (Figure 2) consists of the
attribute vector av(w̄) = (I1, ..., In) corresponding to the query w̄ and the values as, a1,
..., an where as is output by OPRF.C1(w1) and each ai is output by S-OPRF.Charlie1(wi).
In the Hashed DH OPRF instantiation of this scheme in Figure 4 (Appendix B), these
values are formed as aj ← H(wj)

rj for random rj ’s in Z∗p (additionally, as is set to a1).
Since G is of prime order, every element in G \ {1} is a generator, and thus each aj is
uniform in G. Thus, it is straightforward to simulate D’s view of the GenToken protocol
from L(w̄) = av(w̄). 2

5.4 Extensions: Reducing Leakage to D

In the full version we show how to adapt OSPIR-OXT to a setting where a third party,
called a policy manager, authorizes queries while D can enforce them without learning the
policy, the boolean expression or the queried attributes; only the number of such attributes
is learned by D. This setting is precisely what is needed to implement searches authorized
by a warrant while keeping the searched information hidden from all parties except the
authorized searcher.

In addition, OSPIR-OXT can be extended (even without introducing a policy manager)
so that the leakage about queried attributes to D is further limited to the minimum needed
to make policy decisions (e.g., D may not need to know the exact attributes in a query but
only the attribute classes they belong to).

23

Acknowledgment

Supported by the Intelligence Advanced Research Projects Activity (IARPA) via Depart-
ment of Interior National Business Center (DoI / NBC) contract number D11PC20201.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and
conclusions contained herein are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements, either expressed or implied, of
IARPA, DoI/NBC, or the U.S. Government.

References

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee,
G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consistency proper-
ties, relation to anonymous IBE, and extensions. In V. Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 205–222. Springer, Aug. 2005.

[2] L. Ballard, S. Kamara, and F. Monrose. Achieving efficient conjunctive keyword
searches over encrypted data. In S. Qing, W. Mao, J. López, and G. Wang, editors,
ICICS 05, volume 3783 of LNCS, pages 414–426. Springer, Dec. 2005.

[3] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable
encryption. In A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 535–
552. Springer, Aug. 2007.

[4] D. J. Bernstein. Faster square roots in annoying finite fields. http://cr.yp.to/

papers/sqroot.pdf, 2001.

[5] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with
keyword search. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 506–522. Springer, May 2004.

[6] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data.
In S. P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 535–554. Springer,
Feb. 2007.

[7] J. W. Byun, D. H. Lee, and J. Lim. Efficient conjunctive keyword search on encrypted
data storage system. In EuroPKI, pages 184–196, 2006.

[8] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner.
Dynamic Searchable Encryption in Very Large Databases: Data Structures and Imple-
mentation. 21st Annual Network and Distributed System Security Symposium, NDSS
2014, San Diego, 2014., 2014.

24

http://cr.yp.to/papers/sqroot.pdf
http://cr.yp.to/papers/sqroot.pdf

[9] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable
searchable symmetric encryption with support for boolean queries. Crypto’2013. Cryp-
tology ePrint Archive, Report 2013/169, Mar. 2013. http://eprint.iacr.org/2013/
169.

[10] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. In J. Ioannidis, A. Keromytis, and M. Yung, editors, ACNS 05, volume
3531 of LNCS, pages 442–455. Springer, June 2005.

[11] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In ASI-
ACRYPT 2010, LNCS, pages 577–594. Springer, Dec. 2010.

[12] E. D. Cristofaro, Y. Lu, and G. Tsudik. Efficient techniques for privacy-preserving
sharing of sensitive information. In J. M. McCune, B. Balacheff, A. Perrig, A.-R.
Sadeghi, A. Sasse, and Y. Beres, editors, TRUST, volume 6740 of Lecture Notes in
Computer Science, pages 239–253. Springer, 2011.

[13] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric en-
cryption: improved definitions and efficient constructions. In A. Juels, R. N. Wright,
and S. Vimercati, editors, ACM CCS 06, pages 79–88. ACM Press, Oct. / Nov. 2006.

[14] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious
pseudorandom functions. In J. Kilian, editor, TCC 2005, volume 3378 of LNCS, pages
303–324. Springer, Feb. 2005.

[15] E.-J. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. http:
//eprint.iacr.org/.

[16] P. Golle, J. Staddon, and B. R. Waters. Secure conjunctive keyword search over en-
crypted data. In M. Jakobsson, M. Yung, and J. Zhou, editors, ACNS 04, volume 3089
of LNCS, pages 31–45. Springer, June 2004.

[17] Y. Huang and I. Goldberg. Outsourced private information retrieval with pricing and
access control. Technical Report 2013-11, Centre for Applied Cryptographic Research
(CACR), University of Waterloo, Feb. 2013.

[18] IARPA. Security and Privacy Assurance Research (SPAR) Program - BAA, 2011.
http://www.iarpa.gov/solicitations_spar.html/.

[19] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In Proceedings of the Symposium on
Network and Distributed Systems Security (NDSS 2012), San Diego, CA, Feb. 2012.
Internet Society.

[20] S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In O. Reingold, editor,
TCC 2009, volume 5444 of LNCS, pages 577–594. Springer, Mar. 2009.

25

http://eprint.iacr.org/2013/169
http://eprint.iacr.org/2013/169
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.iarpa.gov/solicitations_spar.html/

[21] S. Jarecki and X. Liu. Fast secure computation of set intersection. In SCN 10, LNCS,
pages 418–435. Springer, 2010.

[22] S. Kamara and K. Lauter. Cryptographic cloud storage. In Financial Cryptography
Workshops, pages 136–149, 2010.

[23] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryp-
tion. In Proc. of CCS’2012, 2012.

[24] K. Kurosawa and Y. Ohtaki. UC-secure searchable symmetric encryption. In Financial
Cryptography, page 285, 2012.

[25] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random
functions. In 38th FOCS, pages 458–467. IEEE Computer Society Press, Oct. 1997.

[26] V. Pappas, B. Vo, F. Krell, S. G. Choi, V. Kolesnikov, A. Keromytis, and T. Malkin.
Blind Seer: A Scalable Private DBMS. Manuscript, 2013.

[27] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional
range query over encrypted data. In 2007 IEEE Symposium on Security and Privacy,
pages 350–364. IEEE Computer Society Press, May 2007.

[28] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted
data. In 2000 IEEE Symposium on Security and Privacy, pages 44–55. IEEE Computer
Society Press, May 2000.

[29] P. van Liesdonk, S. Sedhi, J. Doumen, P. H. Hartel, and W. Jonker. Computation-
ally efficient searchable symmetric encryption. In Proc. Workshop on Secure Data
Management (SDM), pages 87–100, 2010.

[30] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters. Building an encrypted and
searchable audit log. In NDSS 2004. The Internet Society, Feb. 2004.

[31] WSJ. U.S. Terrorism Agency to Tap a Vast Database of Citizens. Wall Street Journal
12/13/12. http://alturl.com/ot72x.

A Proof of Theorem 4: Security Against Malicious Clients

Here we prove Theorem 4 formulated in Page 22.

The simulator algorithm S = (S0, S1, S2) for this security proof is shown in Figure 3.
Let Π denote the scheme OSPIR-OXT instantiated with the Hashed Diffie-Hellman PRF, let
A be an adversary’s algorithm and let G0 denote the experiment RealΠA(λ), which models
A’s interaction with the real scheme OSPIR-OXT. We will denote by Gi a sequence of
modifications of G0, s.t. the last game, G12 is identical to the experiment IdealΠA,S(λ). Let

26

http://alturl.com/ot72x

S0(1τ)

• Select key KS for FG, KX and KT for FmG , KP for Fp, and KM for authenticated encryption.

• Initialize an empty table QList, which will be indexed by ciphertexts env, and a table TList, indexed by
keywords w in W, which initially holds an empty set for each w.

• Set st← (KS ,KX ,KT ,KP ,KM ,QList,TList).

S1(st,P)

• On input (as, a1, ..., an), (I1, ..., In) from A, abort if (I1, ..., In) 6∈ P.

• Pick ρ′i, ρi
$← Z∗p for each i = 1, ..., n.

• Set bs ← (as)
KS , b1 ← (a1)KT [I1]·ρ1 , and bi ← (ai)

KX [Ii]·ρi for i = 2, ..., n.

• Update QList in st by setting QList(env)← (I1, ..., In, ρ1, ..., ρn).

• Set env← AuthEnc(KM , (ρ
′
1, ..., ρ

′
n)) and output (env, bs, b1, ..., bn).

S2(st), on message (env, bstag, xtoken[1], xtoken[2], ...) from A:

• Retrieve (I1, ..., In, ρ1, ..., ρn)← QList(env). Abort if QList(env) =⊥.

• Set stag ← (bstag)1/ρ1 . If there exists w1 ∈ W s.t. stag = (H(w1))KT [I1] and I(w1) = I1 then set
strap← FG(KS , w1) and (Kz,Ke)← (Fτ (strap, 1), Fτ (strap, 2)). Abort if no such w1 found.

• Set c← 0 and found← F, and perform the following loop while found = F.

– Set c ← c + 1 and zc ← Fp(Kz, c). For xtoken[c] = (xtoken[c, 2], ..., xtoken[c, n]), if ∃(w2, ..., wn) ∈
Wn−1 s.t. xtoken[c, i] = (H(wi))

KX [Ii]·zc·ρi and I(wi) = Ii, for i = 2, ..., n, then set found← T.

– Abort if found = F and xtoken[c] is the last element in A’s message.

• Send w̄ = (w1, w2, ..., wn) to I-SSEL(DB,RDK,P) where w1, w2, ..., wn are the keywords found
above. Since av(w̄) = (I1, ..., In) is guaranteed to be included in P, S2 receives back
(DB(w̄),RDK(DB(w̄)),TSetL).

• Set S′ ← ∅ and D ← DB(w̄). ∀ind ∈ D s.t. (c, ind, e) ∈ TList(w1), add c to S′ and delete ind from D.

• Pick S as random |D|-element subset in {1, ...,TSetL} \ S′, and while S is non-empty do:

– Remove a random element c from S and a random element ind from D.

– Set rind← Pτ (KP , ind), rdk← RDK(ind), e← Enc(Ke, (rind|rdk)).

– Update TList in st by adding (c, ind, e) to TList(w1).

• Starting from the last counter c encountered above, perform the following loop while c ≤ TSetL:

– Set zc ← Fp(Kz, c). If xtoken[c, i] = (H(wi))
KX [Ii]·zc·ρi for each i = 2, ..., n, and if there exists

(c, ind, e) in TList(w1) s.t. ind ∈ DB(w̄), then send e to A, and set c← c+ 1.

• Send stop to A and halt.

Figure 3: S = (S0, S1, S2): Simulators for the security proof of the OSPIR-OXT protocol

27

pi be the probability that game Gi outputs 1. We argue that the difference between p0 and
p12 is a negligible function of the security parameter λ.

Games G1 and G2. In G1 we modify game G0 by adding an abort if any authenticated
ciphertext env accepted by the server in the Search protocol has not been generated and
signed by the data owner in the GenToken procedure. p1 ≈ p0 by Strong-UF-CMA unforge-
ability of the authenticated encryption scheme. In game G2 we add an abort if ever two
GenToken instances generate the same env ciphertext. p2 ≈ p1 e.g. because ρi’s are generated
at random from Z∗p , and collision in the ciphertext implies collision in the plaintext.

Game G3. We add an abort if for any two keywords w,w′ ∈ W s.t. w′ 6= w and ei-
ther FmG (KT , w

′) = FmG (KT , w) or FmG (KX , w
′) = FmG (KX , w). Such collisions occur with

negligible probability because Km
G is a PRF, and therefore p3 ≈ p2.

Game G4. In the EDBSetup procedure we skip the step when TSet is created from the
array T, and we change the way the game responds in the Search protocol. As in G0, the
game computes stag ← bstag1/ρ1 , but then it searches through the keyword space W for
w1 s.t. stag = FmG (KT , w1). If such w1 is found it assigns t ← T[w1], and otherwise it
aborts. Since in game G3 we have eliminated collisions in function FmG , if stag computed
above is equal to stag(w1) for some w1 ∈W then by the no-false-negatives part of the TSet
correctness property the t retrieved in game G3 via TSetRetrieve(TSet, stag) is the same as
T[w1] retrieved in game G4, except for a negligible probability of error. On the other hand,
if stag 6= stag(w) for all w ∈ W, then by the no-false-positives part of the TSet correctness
property the t retrieved in game G3 is an empty list just like in game G4, again except for
a negligible error probability. It follows that p4 ≈ p3.

Game G5. Instead of encrypting (ρ1, ρ2, ..., ρn) in env, G5 encrypts a string of indepen-
dent random values (ρ′1, ρ

′
2, ..., ρ

′
n). In addition, game G5 keeps an array QList indexed by

ciphertexts env, and when servicing GenToken requests G5 stores in QList(env) the list of
attribute indexes (I1, ..., In) and the true blinding values (ρ1, ..., ρn) used in the GenToken
instance which generated ciphertext env. Therefore in the Search procedure, instead of de-
crypting ρi’s from env, which now encrypts independent random values, G5 retrieves these
ρi’s from QList(env). p5 ≈ p4 by IND-CCA of the authenticated encryption, and because
already in game G2 the only env’s which are accepted in Search are uniquely identifying
some GenToken instance.

Game G6. We modify the test for identifying w1 given bstag and ρ1 recovered from
QList(env), to w1 s.t. (bstag)1/ρ1 = (H(w1))KT [I1] and I(w1) = I1. In other words, compared
to G5, G6 ignores w1’s s.t. stag = (bstag)1/ρ1 = (H(w1))KT [I(w1)] but I(w1) 6= I1. We argue
that the probability of finding such w1 is negligible even against all-powerful adversary.
Denote the exponent KT [I1] · ρ1 used in computing b1 from a1 in j-th GenToken instance as
tj . Note that each tj is uniformly random in Z∗p . Using this notation, the way game G6 tests
each keyword w1 given bstag in the Search procedure can be rewritten as testing whether
bstag = (H(w1))(KT [I(w1)]/KT [I1])·tj where tj is used in GenToken instance that generated

28

ciphertext env used in this Search instance. In particular, the discrete logarithm between
(H(w1))tj and bstag must be equal to KT [I(w1)]/KT [I1]. Note that G6 does not use the
KT key array in any other way except in this test. Therefore, since KT component keys are
all random in Z∗p , and the game makes polynomially-many such tests, the probability that
such test ever succeeds for I(w1) 6= I1 is negligible, and hence p6 ≈ p5.

Game G7. We add an abort if A ever invokes two instances of Search protocol which
involve the same env ciphertext but two different values bstag and bstag′ s.t. there exists
two keywords w1, w

′
1 s.t. (bstag)1/ρ1 = (H(w1))KT [I1] and (bstag′)1/ρ1 = (H(w′1))KT [I1]. Use

the notation tj for KT [I1] · ρ1 used in the j-th GenToken instance as in game G6. Note that
the above condition implies that bstag = (H(w1))tj and bstag′ = (H(w′1))tj if ciphertext
env was generated by the j-th instance of GenToken. It is easy to see that the probability of
encountering such two pairs of values (w1, bstag) and (w′1, bstag′) must be negligible under
the OM-GDH assumption if H is modeled as a random oracle, hence p7 ≈ p6.

Let ε be the probability of the above event. The reduction on the input a OM-GDH
challenge h1, h2, emulates game G3 except that on each A’s query w to H, it picks random
r1, r2 in Z∗p and sets H(w) ← (h1)r1(h2)r2 . Furthermore, the reduction picks a random
index j between 1 and the maximum number of GenToken instances A can invoke, and when
servicing the j-th instance of GenToken, the reduction sends the a1 value in this instance to
the OM-GDH challenger, who replies with b1 ← (a1)t for t chosen by the OM-GDH challenge
game. The reduction passes this b1 in its response to A. Finally, for each Search protocol
instance on which A sends ciphertext env, the reduction takes bstag sent by A along with
env, and for each query w made by A to H it consults the DDH oracle if (a1, b1, H(w), bstag)
is a DDH tuple. If the reduction finds two instances of Search on which the above check
verifies, one for (w, bstag) and the other for (w′, bstag′) 6= (w, bstag), it computes ht1 and ht2
as, respectively, (bstagr2(bstag′)−r2)1/(r1r′2−r

′
1r2) and (bstagr1(bstag′)−r1)1/(r′1r2−r1r

′
2), where

H(w) = (h1)r1(h2)r2 and H(w′) = (h1)r
′
1(h2)r

′
2 . The probability of reduction’s success is

(1/m) · ε where m is the upper-bound on the number of GenToken instances A invokes,
minus the negligible probability that r1r

′
2 = r′1r2.

Game G8. We replace the PRF Fp(KI , ·) with a random function FI(·) onto Z∗p . p8 ≈ p7

by the PRF property of Fp.

Game G9. We modify the way G8 processes the Search procedure as follows: Once
G9 identifies w1 given bstag and the (I1, ρ1) in QList(env) as described above, it com-
putes strap ← FG(Ks, w1) and (Kz,Ke) ← (Fτ (strap, 1), Fτ (strap, 2)). Then, for each c,
G9 computes zc ← Fp(Kz, c), and given xtoken[c] = (xtoken[c, 2], ..., xtoken[c, n]), for each
i = 2, ..., n, G9 searches for wi in W s.t. xtoken[c, i] = (FG(KX , wi))

zc·ρi and indc ∈ DB(wi),
where indc corresponds to the c-th tuple (e, y) in t = T[w1]. If G9 finds such wi for all i
then it sends e to A.

Let us use the notation W (ind) for the set of keywords in record ind, i.e. the set of
w’s in W s.t. ind ∈ DB(w). Note that if the above check succeeds for any c, i in game
G9 then it must also succeed in game G8, because if xtoken[c, i] = (FG(KX , wi))

zc·ρi then

29

(xtoken[c, i])yc/ρi is equal to (FG(KX , wi))
xindc , and if indc ∈ DB(wi) then this xtrap value

is included in set XSet. Hence the only difference between G9 and G8 can occur if for
some c, i we have that (xtoken[c, i])yc/ρi ∈ XSet but xtoken[c, i] 6= (FG(KX , w))zc·ρi for all
w ∈W (indc).

Let us denote exponentKX [Ii]·ρi used in exponentiating ai in the j-th GenToken instance
as ti,j . Clearly, G8 can pick ti,j ’s at random in Z∗p and define the corresponding ρi value

as ti,j/KX [Ii]. Using this notation, the event that (xtoken[c, i])yc/ρi matches some value in
XSet is equivalent to existence of some ind∗ and w∗ ∈W (ind∗) s.t.

(xtoken[c, i])1/zc = (H(w∗))
ti,j ·Kx[I(w∗)]

Kx[Ii]
·FI (ind

∗)
FI (indc) (1)

At the same time, the constraint that xtoken[c, i] 6= (FG(Kx, w))zc·ρi for all w ∈ W (indc)
implies that for all w ∈W (indc) we have

(xtoken[c, i])1/zc 6= (H(w))
ti,j ·Kx[I(w)]

Kx[Ii] (2)

We will argue that there is at most negligible probability that equation (1) holds while
equation (2) also holds for every w ∈W (indc). It will follow that p9 ≈ p8.

Observe that if equation (1) holds for ind∗ = indc and I(w∗) = Ii, then (xtoken[c, i])1/zc =
(H(w∗))ti,j for w∗ ∈W (indc), but this contradicts equation (2), which in the case I(w∗) = Ii
implies that (xtoken[c, i])1/zc 6= (H(w∗))ti,j . Below we argue that equation (1) can hold only
with negligible probability for either if ind∗ 6= indc or if I(w∗) 6= Ii, which together implies
that the two equations can hold together only with negligible probability.

(Case a:) We argue that equation (1) can hold for ind∗ 6= indc with at most negligible
probability. Let us modify game G8 into G′ s.t. G′ does not append pair (e, y) into the
T[w] tuple list, but instead appends triples (e, ind, z), i.e. in particular G′ does not query
FI in creating the T lists. Secondly, game G′ also does not create the XSet data structure
during EDBSetup. Instead, it modifies the test procedure performed by G8 for each c and
i in the Search protocol: Instead of checking whether (xtoken[c, i])(yc/ρi) is in the XSet, G′

searches for w∗ ∈ W and ind∗ ∈ DB(w) s.t. equation (1) holds, using the indc, zc values
kept in the c-th tuple in T[w1]. As we argued above, these are equivalent conditions, and
therefore G′ provides an identical view as G8. Note furthermore that the test in equation
(1) can be implemented by testing whether a = bFI(ind∗)/FI(indc) where a = (xtoken[c, i])1/zc

and b = (H(w∗))ti,j ·(KX [I(w∗)]/KX [Ii]). In other words, game G′ can operate with an access
to FI restricted as follows: G′ specifies a tuple (a, b, x, x∗) and the oracle returns 1 if
aFI(x) = bFI(x∗), and 0 otherwise. Since H is a random function with range G, we have
that except for negligible probability all (a, b, x, x∗) queries of G′ involve b 6= 1. Since FI
is a random function onto Z∗p and game G′ makes polynomially-many such queries, there
is only a negligible probability that the oracle returns 1 for any query s.t. x 6= x∗, which
implies that there is at most negligible probability that equation (1) holds for indc 6= ind.

(Case b:) Using a similar reasoning, we argue that equation (1) can hold for I(w∗) 6= Ii
also with at most negligible probability. Note that the only time game G′ accesses key array

30

KX is also in testing equation (1), which is equivalent to specifying a query (a, b, I, I∗) for
a = (xtoken[c, i])(1/zc)·FI(indc), b = (H(w∗))ti,j ·FI(ind∗), I = Ii, and I∗ = I(w∗), and receiving
back 1 if aKX [I] = bKX [I∗]. Note that probability that b = 1 is negligible because H is a
random function onto G. Since the individual keys in array KX are independently chosen
in Z∗p and bG′ makes polynomially many such queries, it follows that there is a negligible
probability that any such query succeeds for I 6= I∗, i.e. for Ii 6= I(w∗).

Game G10. We modify the test game G9 uses to identify wi given xtoken[c, i] and zc, ρi
by amending verification that xtoken[c, i] = (FG(KX , wi))

zc·ρi and indc ∈ DB(wi) with
the additional constraint that I(wi) = Ii for Ii is retrieved from QList(env). The event
that differentiates the two games is that xtoken[c, i] = (H(wi))

KX [I(wi)]·zcρi for indC ∈
DB(wi) but I(wi) 6= Ii. We argue that this event occurs with negligible probability,
and hence p10 ≈ p9, even against an all-powerful adversary. Using the notation ti,j
for KX [Ii] · ρi used on the j-th GenToken session, the above equation can be rewrit-

ten as xtoken[c, i] = (H(wi))
zc·ti,j ·

KX [I(wi)]

KX [Ii] . In particular, the discrete logarithm between
xtoken[c, i] and (H(wi))

zc·ti,i must be equal to KX [Ii]/KX [I(wi)]. Note the G10 does not
use the key array KX in any other way except in this test. Therefore, since KX component
keys are random in Z∗p , and the game makes polynomially-many such tests, the probability
that such test ever succeeds for I(wi) 6= Ii is negligible, and hence p10 ≈ p9.

Game G11. We add an abort if the game ever encounters a ciphertext env, index i, a
pair of counters c, c′ and two keywords w 6 = w′i s.t. xtoken[c, i] = (H(wi))

KX [Ii]·zc·ρi and
xtoken[c′, i] = (H(w′i))

KX [Ii]·zc′ ·ρi . We intend this abort to include any Search session that
some ciphertext env is used, including the case that this “collision” occurs on two different
Search sessions using the same env for the same counter c′ = c. Using the ti,j notation
for KX [I1] · ρi used in the j-th session of GenToken, we rewrite this as xtoken[c, i]1/zc =
(H(wi))

ti,j and xtoken[c′, i]1/zc′ = (H(w′i))
ti,j . It is easy to see that the probability of

encountering such two tuples (wi, xtoken[c, i], zc) and (w′i, xtoken[c′, i], zc′) for wi 6= w′i must
be negligible under the OM-GDH assumption in the ROM model for H, and hence p11 ≈ p10.

The reduction is essentially the same as the one given in the argument for game G7. Let
ε be the probability of the above event. The reduction on the input a OM-GDH challenge
h1, h2, emulates game G11 except that on each A’s query w to H, it picks random r1, r2

in Z∗p and sets H(w) ← (h1)r1(h2)r2 . The reduction also picks a random index j between
1 and the maximum number of GenToken instances A can invoke, and when servicing the
j-th instance of GenToken, the reduction picks i at random between 2 and n, sends the ai
value in this GenToken instance to the OM-GDH challenger, who replies with bi ← (ai)

t

for the exponent t chosen in the OM-GDH challenge game. The reduction passes this bi
in its response to A. Finally, for each Search protocol instance on which A sends cipher-
text env, for each c, the reduction takes xtoken[c, i] sent by A along with env, and for each
query w made by A to H it consults the DDH oracle if (a1, b1, H(w), (xtoken[c, i])1/zc)
is a DDH tuple. If the reduction finds two such instances on which the above check
verifies, one for (w, xtoken[c, i], zc) and the other for (w′, xtoken[c′, i], zc′) s.t. w 6= w′, it

31

computes ht1 and ht2 as, respectively, ((xtoken[c, i])r2/zc(xtoken[c′, i])−r2/zc′)1/(r1r′2−r
′
1r2) and

((xtoken[c, i])r1/zc(xtoken[c′, i])−r1/zc′)1/(r′1r2−r1r
′
2), where H(w) = (h1)r1(h2)r2 and H(w′) =

(h1)r
′
1(h2)r

′
2 . The probability of reduction’s success is (1/(mn)) · ε where m is the upper-

bound on the number of GenToken instances A invokes and n an upper-bound on the length
of a conjunctive query, minus the negligible probability that r1r

′
2 = r′1r2.

Game G12. Note that in game G11 there is at most one vector w̄ = (w1, ..., wn) of keywords
the game finds in all Search protocol instances for a given ciphertext env which the game
produced in some GenToken protocol instance. This is because from game G7 on, the game
finds at most one w1 corresponding to any env, and from game G11 on, the game also finds
at most one wi corresponding to any env and i between 2 and the index n used in the
GenToken session which produced env. This unique query w̄ corresponding to env should be
thought of as the effective query A made in the GenToken instance which produced the env.
Note, moreover, that av(w̄) is equal to the vector of attributes (I1, ..., In) which A specified
in that GenToken instance, and therefore the only way this instance produced a ciphertext
env is if (I1, ..., In) ∈ P. Note finally, that the only ciphertext e the game G11 supplies to
A correspond to indexes indc in DB(w1) s.t. indc ∈ DB(wi) for i = 2, ..., n, i.e. for indc’s in
DB(w̄).

These observations lead us to the new game G12, a modification of G11, which operates
as follows. Game G12 does not create either TSet or XSet data structure in EDBSetup, only
picks keys KS , FX ,KT ,KP ,KM (it skips choosing key KI , which it will not need). Game
G12 services the GenToken instances as G11, but on calls to Search, when it finds counter c s.t.
xtoken[c, i] = FG(KX , wi))

zc·ρi , indc ∈ DB(wi), and I(wi) = Ii, for all i = 2, ..., n, it assem-
bles query w̄ from the identified w1, ..., wn terms, and sends it to I-SSEL(DB,RDK,P). Since
av(w̄) = (I1, ..., In) ∈ P, it receives back (DB(w̄),RDK(DB(w̄)),Mask(|DB(w1)|)). Game G12

then assigns the indexes in DB(w̄) to random indexes between 1 and Mask(|DB(w1)|), unless
some of these were previously assigned. To keep track of previously seen indexes, G12 keeps
a list TList, indexed by w1’s, s.t. TList(w1) stores tuples (c, ind, e) s.t. counter c in T[w1]
was assigned during some Search instance to index ind, and the corresponding ciphertext
was created as e. Initially TList(w1) is empty for all w1 ∈ W, but when G12 identifies the
query w̄ = (w1, ..., wn) in the Search protocol, sends it to I-SSEL, and receives the tuple
(DB(w̄),RDK(DB(w̄)),Mask(|DB(w1)|)), G8 checks if for any ind ∈ DB(w̄) the ind value was
already in the TList(w1). For all ind’s in DB(w̄) which are not in TList(w1), G8 assigns them
to a random subset of remaining counters c between 1 and TSetL, and for each (c, ind) pair it
computes a corresponding ciphertext e using the Ke key computed using KS from w1 as in
game G9 above, setting rind← Pτ (KP , indc), rdk← RDK(ind), and e← Enc(Ke, (rind|rdk)).

In this way G12 creates a view which the adversary gets of some T-set TSet(w1) through-
out its interaction with the MC-OXT scheme, and this view matches that created by G11,
where the assignment between indexes ind ∈ DB(w1) and the counters in {1, ...,Mask(|DB(w1)|)}
is done during the EDBSetup procedure, because in both cases this assignment is random.
The full description of game G12 is shown in Figure 3 as a code of a simulator algorithm S,
broken down into three subprocesses S0, S1, S2, servicing respectively EDBSetup, GenToken,

32

and Search protocols. It follows that p12 = p11.

This completes the proof of security because it concludes the argument that there is at
most negligible difference between p0, which is the probability that RealΠA(λ) outputs 1,
and p12, which is the probability that IdealΠA,S(λ) outputs 1. Moreover, the simulator S
maintains the constraint demanded by the security definition that the number of unique
queries w̄ it makes to I-SSEL does not exceed the number of GenToken instances which
adversary A makes.

B OSPIR-OXT Instantiated with Hashed-DH OPRF

In Figure 4 we present the instantiation of protocol OSPIR-OXT with the Hashed-DH OPRF
described at the end of Section 4.1. It serves as an illustration of a concrete realization of the
protocol and it is the basis for our analysis and implementation. We note some notational
differences relative to the abstract OSPIR-OXT protocol that arise from the specific Hashed-
DH instantiation: We denote keys KT and KX of PRF FmG by vectors of exponents in
Z∗p , respectively (k1, . . . , km) and (e1, . . . , em), where m is the number of attributes. Also,
because of the specific OPRF instantiation we equate as to a1 in C’s message of the GenToken
protocol, instead of computing these two blinded versions of keyword w1 separately, as in
Figure 2.

Group operations. G is a cyclic group of prime order p generated by an element g. H is a hash function with range
in G \ {1}.

EDBSetup(DB,RDK)

Key Generation. D picks key KS and two vectors of elements KT = (k1, . . . , km) and KX = (e1, . . . , em) at random
in Z∗p (m = number of attributes); key KI for PRF Fp; and key KM for a symmetric authenticated encryption AuthEnc.
Fp and Fτ are PRF’s which outputs strings in respectively Z∗p and {0, 1}τ , and τ is a security parameter.

• Initialize XSet to an empty set, and initialize T to an empty array indexed by group elements in G.

• For each w = (i, val) ∈W, build the tuple list t and add elements to set XSet as follows:

– Initialize t to an empty list.

– Set strap← (H(w))KS , stag← (H(w))ki [= FmG (KT , w)], (Kz,Ke)← (Fτ (strap, 1), Fτ (strap, 2)).

– Initialize c← 0; then for all ind in DB(w) in random order:

∗ Set rdk← RDK(ind), e← Enc(Ke, (ind|rdk)), xind← Fp(KI , ind).

∗ Set c← c+ 1, zc ← Fp(Kz, c), y ← xind · z−1c . Append (e, y) to t.

∗ Set xtag← H(w)ei·xind [= (FmG (KX , w))xind] and add xtag to XSet.

– T[stag]← t.

• Create TSet← TSetSetup′(T), and output key K = (KS ,KX ,KT ,KI ,KM) and EDB = (TSet,XSet,KM).

GenToken protocol
Client C on input a conjunctive query w̄ = (w1, ..., wn), where w1 is chosen as s-term, proceeds as follows:

• Pick r1, ..., rn
$← Z∗p and set aj ← (H(wj))

rj for j = 1, . . . , n.

• Send to D the blinded queries a1, . . . , an and the attribute sequence av = (I(w1), . . . , I(wn)).

Data owner D on input policy P and key K proceeds as follows:

• Abort if av 6∈ P . Otherwise set av as a local output. Pick ρ1, . . . , ρn
$← Z∗p .

• Set strap′ ← (a1)s, bstag′ ← (a1)ki1 ·ρ1 [= (a1)KT [i1]·ρ1], and bxtrap′j ← (aj)
eij ·ρj [= (aj)

KX [ij]·ρj] for j = 2, . . . , n.

• Reply to C with (strap′, bstag′, bxtrap′2, . . . , bxtrap′n) and env = AuthEncKM
(ρ1, . . . , ρn).

C sets:

• strap← (strap′)r
−1
1 ; bstag← (bstag′)r

−1
1 ; bxtrapj ← (bxtrap′j)

r−1
j (∀j=2,...,n);

• token← (env, strap, bstag, bxtrap2, . . . , bxtrapn).

Search protocol

Client C on input token proceeds as follows:

• Set (Kz,Ke)← F (τ (strap, 1), F (strap, 2)); send to E the message (env, bstag, bxtoken[1], bxtoken[2], . . .) defined as:

– For c = 1, 2, . . ., until E sends stop:

∗ Set zc ← Fp(Kz, c) and set bxtoken[c, i]← (bxtrapi)
zc for i = 2, . . . , n.

∗ Set bxtoken[c]← (bxtoken[c, 2], . . . , bxtoken[c, n]).

Server E on input EDB = (TSet,XSet,KM) responds as follows:

• Upon receiving env, bstag from C, decrypt/verify env; if verification fails return “no results” and stop.

• Set stag← (bstag)1/ρ1 and retrieve t← TSetRetrieve(TSet, stag) from TSet.

• For c = 1, . . . , |t| do:

– Receive bxtoken[c] from C and retrieve value (e, y) from the c-th tuple in t.

– Check if bxtoken[c, i]y/ρi ∈ XSet for all i = 2, . . . , n. If so, send e to C (else nothing is returned for this tuple).

– When last tuple in t is reached, send stop to C and halt.

For each received e client C computes (ind|rdk)← Dec(Ke, e) and outputs (ind, rdk).

Figure 4: OSPIR-OXT Instantiated for Conjuntions with the Hashed Diffie-Hellman OPRF

	Introduction
	SSE and the OXT Protocol
	The OXT Protocol

	Multi-Client SSE
	The MC-OXT Protocol

	Outsourced Symmetric PIR
	The OSPIR-OXT Protocol
	Supporting Boolean Queries
	Computational Cost
	Implementation and performance

	Security
	Extended Notion of TSet Correctness.
	OSPIR-SSE Security and Correctness Definitions
	Security of OSPIR-OXT
	Extensions: Reducing Leakage to D

	References
	Proof of Theorem 4: Security Against Malicious Clients
	OSPIR-OXT Instantiated with Hashed-DH OPRF

