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Abstract

We introduce the problem of Multi-Input Functional Encryption, where a secret key SKf
can correspond to an n-ary function f that takes multiple ciphertexts as input. Multi-input
functional encryption is a general tool for computing on encrypting data which allows for mining
aggregate information from several different data sources (rather than just a single source as in
single input functional encryption). We show wide applications of this primitive to running SQL
queries over encrypted database, non-interactive differentially private data release, delegation
of computation, etc.

We formulate both indistinguishability-based and simulation-based definitions of security
for this notion, and show close connections with indistinguishability and virtual black-box def-
initions of obfuscation. Assuming indistinguishability obfuscation for circuits, we present con-
structions achieving indistinguishability security for a large class of settings. We show how to
modify this construction to achieve simulation-based security as well, in those settings where
simulation security is possible. Assuming differing-inputs obfuscation [Barak et al., FOCS’01],
we also provide a construction with similar security guarantees as above, but where the keys
and ciphertexts are compact.
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1 Introduction

Traditionally, encryption has been used to secure a communication channel between a unique
sender-receiver pair. In recent years, however, our networked world has opened up a large
number of new usage scenarios for encryption. For example, a single piece of encrypted data,
perhaps stored in an untrusted cloud, may need to be used in different ways by different users.
To address this issue, the notion of functional encryption (FE) was developed in a sequence of
works [SW05, GPSW06, BW07, KSW08, LOS+10, BSW11, O’N10]. In functional encryption,
the owner of the master secret key MSK can create a secret key SKf for any function f from a
family F . Given any ciphertext CT with underlying plaintext x, using SKf a user can efficiently
compute f(x). The security of FE requires that the adversary “does not learn anything” about x,
other than the computation result f(x).

How to define “does not learn anything about” x is a fascinating question which has been
addressed by a number of papers, with general formal definitions first appearing in [BSW11,
O’N10]. The definitions range from requiring a strict simulation of the view of the adversary,
which enlarges the range of applications, but has been shown to either necessitate a secret key
whose size grows with the number of ciphertexts that will ever be released [BSW11, BO13]
(or a ciphertext whose size grows with the number of functions for which secret keys will ever
be released [AGVW13, CIJ+13]), to an indistinguishability of ciphertexts requirement which
supports the release of an unbounded number of function keys and ciphertexts.

Functional encryption seems to offer the perfect non-interactive solution to many problems
which arise in the context of delegating services to outside servers. A typical example is the
delegation of spam filtering to an outside server as follows: Alice publishes her public key
online and gives the spam filter a key for the filtering function; users sending email to Alice
will encrypt the email with her public key. The spam filter can now determine by itself, for
each email, whether to pass it along to Alice’s mailbox or to deem it as spam, but without
ever learning anything else about Alice’s email. This example inherently requires computing a
function f on a single ciphertext.

Multi-Input Functional Encryption. It is less clear, however, how to define or achieve
functional encryption in the context of computing a function defined over multiple plaintexts
given their corresponding ciphertexts, or further, given their ciphertexts each encrypted under
a different key. Yet, these settings, which we formalize as Multi-Input Functional Encryption
(MI-FE), encompass a vast landscape of applications, going way beyond delegating computation
to an untrusted server or cloud. Multi-input functional is a very general tool for computing
on encrypting data, which allows for mining aggregate information from several different data
sources (rather than just a single source as in single input functional encryption).

Let us begin by clarifying the setting of Multi-Input Functional Encryption: Let f be an
n-ary function where n > 1 can be a polynomial in the security parameter. In MI-FE, the
owner of a master secret key MSK can derive special keys SKf whose knowledge enables the
computation of f(x1, . . . , xn) from n ciphertexts CT1, . . . ,CTn of underlying messages x1, . . . , xn
with respect to the same master secret key MSK. We allow the different ciphertexts ci to be each
encrypted under a different encryption key EKi to capture the setting in which each ciphertext
was generated by an entirely different party.

Let us illustrate a few settings that illustrate the applicability of MI-FE.

Example 1: Running SQL Queries on Encrypted Database. Suppose we have an
encrypted database. A natural goal in this scenario would be to allow a party Alice to perform
a certain class of general SQL queries over this database (e.g., Alice may only be authorized
to access records created on a certain date). If we use ordinary functional encryption, Alice
would need to obtain a separate secret key for every possible valid SQL query, a potentially
exponentially large set. Multi-input functional encryption allows us to address this problem in
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a flexible way. We highlight two aspects of how MI-FE can apply to this example:

• Let f be the function where f(Q, x) first checks if Q is a valid SQL query from the allowed
class, and if so f(Q, x) is the output of the query Q on the database x. Now, if we give the
secret key SKf and the encryption key EK1 to Alice, then Alice can choose a valid query
Q and encrypt it under her encryption key EK1 to obtain ciphertext CT1. Then she could
use her secret key SKf on ciphertexts CT1 and CT2, where CT2 is the encrypted database,
to obtain the results of the SQL query.

• Furthermore, if the database is dynamic (rather than static) with individual entries being
added, modified, or, deleted, the most natural way to build such a database would be to
have different ciphertexts for each entry in the database. In this case, for a database of
size n, we could let f be an (n + 1)-ary function where f(Q, x1, . . . , xn) is the result of a
(valid) SQL query Q on the database (x1, . . . , xn).

Example 2: Computing over Encrypted Data Stream. Suppose ciphertexts correspond to
a stream of encrypted phone calls (or video frames produced by surveillance cameras), produced
separately by several different devices. Law enforcement agencies may require the ability to run
algorithms which check the calls or videos for suspicious activities (these algorithms need to
analyze sequences of calls or frames rather than individual calls/frames) in which case (and only
in this case) court orders can be obtained to decrypt the phone calls (or videos) in their entirety.
Here, the need is to compute a function f(p1, . . . , pn) where pi is the i’th phone call, encrypted
to form the ciphertext ci .

More generally, suppose ciphertexts c1, . . . , cn correspond to a list of encrypted inputs to
some algorithm, e.g. a list of edges x1, . . . , xn in a graph for a routing algorithm f . Then, we
need to run the algorithm f(x1, . . . , xn) across multiple ciphertexts. It is likely that this type
of algorithm would be the rule rather than the exception in the context of algorithms run over
large inputs.

Example 3: Non-Interactive Differentially Private Data Release. Suppose there are
several hospitals each of which holds a collection of individual blood samples. They would like
to participate in clinical trials performed by various researchers. The hospitals cannot simply
release the blood samples records because of various patient privacy laws. However, the hospitals
are willing to allow a clinical study researcher to compute an aggregate function f over multiple
samples xi to learn y = f(x1, . . . , xn) as long as f achieves a sufficient level of privacy.

While such a scenario is addressed by differential privacy [DMNS06], existing solutions
require each hospital to interact with the researcher in every trial (potentially via a multi-
party computation protocol when several hospitals are involved). Indeed, it is known that
non-cryptographic methods for allowing the hospitals to non-interactively prepare their records
in a way that would later allow for meaningful and diverse research studies must incur high
accuracy loss [DNR+09].

Multi-input functional encryption can address this problem by having the hospitals encrypt
the samples xi to obtain ciphertexts CTi, and publish all the ciphertexts. This step can be
performed by the hospitals non-interactively before any research trial f is decided (in contrast
to the standard differential-privacy setting where f is decided upon first and then the “differ-
entially private” information collection algorithm takes place). Later, a researcher who wishes
to compute an algorithm f ′ (that is guaranteed to provide sufficient privacy) would be given a
secret key SKf ′ (potentially by a trusted agency such as the government) that she can use to
obtain the output of her algorithm on the blood samples. In this manner, we can obtain high
accuracy while still guaranteeing good (computational) privacy.

We remark that this example requires MI-FE to support randomized functionalities. Our
positive results, discussed later, handle this case.

Example 4: Multi-client Delegation of Computation. In a multi-client delegation scheme
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[CKKC13], multiple weak clients C1, . . . , Cn wish to jointly delegate the computation of an n-
ary function f on their inputs x1, . . . , xn to a computationally powerful server. The efficiency
requirement of a delegation scheme is that the computation of the clients should be independent
of the size of f . From a security viewpoint, we require that a dishonest server should not be
able to convince the (honest) clients on an incorrect output.

Multi-input functional encryption provides a natural solution to this problem similar to how
single-input functional encryption provides a solution for single-client delegation of computation
[PRV12, GVW13, GGH+13b, GKP+13b, GGH+13a]. Details of this are provided in Section
1.1.3.

Our Goal. As these examples illustrate, extending the scope of functional encryption to
address functions defined over multiple ciphertexts can be highly beneficial. In short, it could
provide a non-interactive method to compute n-ary functions on encrypted inputs (possibly
by different parties), analogously to interactive multi-party secure computations defined over
multiple inputs held by n different parties.

Extending functional encryption to address the multi-input setting is the focus of this work.

1.1 This paper

This paper is dedicated to the study of multi-input functional encryption, starting with for-
malizations of security. We provide both feasibility results and negative results with respect to
different definitions of security. Following the single-input setting, we consider two notions of
security, namely, indistinguishability-based security (or IND security for short) and simulation-
based security (or SIM security for short).

1.1.1 Indistinguishability-based Security

We start by considering the notion of indistinguishability-based security for functional encryp-
tion for n-ary functions: Informally speaking, in IND security for MI-FE, we consider a game
between a judge and an adversary. First, the judge generates the master secret key MSK, n en-
cryption keys {EK1, . . . ,EKn} and gives to the adversary a subset of the encryption keys (chosen
by the adversary). Then the adversary can request any number of secret keys SKf for functions

f of her choice. Next, the adversary declares two “challenge vectors” ~X0 and ~X1, where every
Xb
i ∈ ~Xb is a set of plaintexts {xbi,1, . . . , xbi,n}. The judge chooses a bit b at random, and for

each j ∈ [n], the judge encrypts every element xbi,j of Xb
i (for every i) using encryption key EKj

to obtain a tuple of “challenge ciphertexts” ~CT, which is given to the adversary. After this,
the adversary can again request any number of secret keys SKf for functions f of her choice.
Finally, the adversary has to guess the bit b that the judge chose.

If the adversary has requested a secret key for any function f such that there exist splitting
input vectors ~y0 and ~y1 that satisfy the following two properties:

1. For every j ∈ [n], either ∃i such that ybj ∈ Xb
i or the adversary has EKj , and

2. f(~y0) 6= f(~y1),

then the adversary loses the game – because the legitimate functionalities that he has access to
already allow him to distinguish between the scenario where b = 0 and b = 1. If the adversary
never queries a secret key for such a function but nevertheless guesses b correctly, we say that
she wins. The IND security definition requires that the adversary’s probability of winning be at
most negligibly greater than 1

2 .
This definition generalizes the indistinguishability-based definition of (single-input) func-

tional encryption, which was historically the first security notion considered for functional en-
cryption [SW05]. Informally speaking, this definition captures an information-theoretic flavor of
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security, where the adversary should not learn anything beyond what is information-theoretically
revealed by the function outputs it can obtain.

With regards to IND-secure MI-FE, we obtain the following results:

IND-secure MI-FE from Indistinguishability Obfuscation. Assume the existence
of an indistinguishability obfuscator [BGI+01] for general circuits (the first candidate construc-
tion for the same was recently put forward by [GGH+13a]) and one-way functions, we provide a
construction for IND-secure MI-FE for general circuits for any polynomial-size challenge vectors,
with any subset of encryption keys given to the adversary. Furthermore, our construction has
security when the adversary can obtain any unbounded polynomial number of secret keys SKf .
We prove the security in the selective model, where where the adversary must begin by declaring
the challenge vectors. By using complexity leveraging (and thereby assuming sub-exponentially
secure indistinguishability obfuscation and sub-exponentially secure one-way functions, we can
achieve full security in a standard manner.

Compact IND-secure MI-FE from Differing-Inputs Obfuscation. Our first con-
struction only supports challenge vectors with an a priori fixed (polynomial) size q. In particular,
the size of the encryption keys and ciphertexts in the scheme grows with q. Towards this end,
assuming the existence of the stronger notion of differing-inputs obfuscation [BGI+01] and one-
way functions, we provide a second construction for IND secure MI-FE with “compact” keys
and ciphertexts, i.e., the size of the keys and ciphertexts in the scheme is independent of q.
Further, we directly prove full security of our scheme against adversaries that know any subset
of encryption keys and an unbounded polynomial number of secret keys SKf .

IND-secure MI-FE implies Indistinguishability Obfuscation. Finally, we show
that the existence of IND-secure MI-FE for general circuits implies the existence of an indistin-
guishability obfuscator for general circuits, even when:

1. The MI-FE scheme is only secure against adversaries that can obtain a single secret key.

2. The adversary does not know any encryption keys, i.e., the MI-FE scheme is a secret-key
scheme.

This stands in stark contrast to the single-input setting, where [SS10] showed how to obtain
single-key secure (single input) functional encryption for all circuits, under only the assumption
that public-key encryption exists. Indeed, further research in single-key security for functional
encryption has largely focused on efficiency issues [GKP+13b, GKP+13a] such as succinctness
of ciphertexts, that enable new applications. In the setting of multi-input security, in contrast,
even single key security must rely on the existence of indistinguishability obfuscation.

1.1.2 Simulation-based security

In simulation-based security, informally speaking, we require that every adversary can be sim-
ulated using only oracle access to the functions f for which the adversary obtains secret keys,
even when it can obtain a set of “challenge” ciphertexts corresponding to unknown plaintexts
– about which the simulator can only learn information by querying the function f at these
unknown plaintexts. We highlight two natural settings for the study of SIM-secure MI-FE: (1)
the setting where an adversary has access to an encryption key (analogous to the public-key
setting), and (2) the setting where the adversary does not have access to any encryption keys
(analogous to the secret key setting). The security guarantees which are achievable in these
settings will be vastly different as illustrated below.

Several works [BSW11, AGVW13, BO13, CIJ+13] have shown limitations on parameters
with respect to which SIM security can be achieved for single-input functional encryption. For
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multi-input functional encryption, due to the connection to obfuscation discussed above, the
situation for SIM security is more problematic. We provide the following results for SIM-secure
MI-FE:

SIM-secure MI-FE implies Virtual Black-Box Obfuscation. We first show that
SIM-secure MI-FE implies virtual black-box (VBB) obfuscation in various settings. Specifically,
we show:

1. If there exists a secret-key MI-FE scheme for general circuits that achieves SIM security
against adversaries that request: (a) a single key for a general function f and (b) a set of
challenge ciphertexts that can (informally speaking) form a super-polynomial number of
potential inputs to f , then VBB obfuscation must be possible for general circuits.

2. If there exists an MI-FE scheme for 2-ary functions that achieves SIM security against
adversaries that request: (a) a single key for a 2-ary function, and (b) one of the two
encryption keys and one challenge ciphertext, then VBB obfuscation must be possible for
general circuits.

Since VBB obfuscation is known to be impossible for general circuits [BGI+01], this yields us
impossibility results for SIM-secure MI-FE beyond those known in the single-input setting. See
Section 6 for details.

SIM-secure Secret-Key MI-FE against Unbounded Collusions. In light of these
negative results, the only hope for obtaining a positive result lies in a situation where: (a) no
encryption keys are given to the adversary, and (b) the challenge ciphertexts given to the
adversary can only form a polynomial number of potential inputs to valid functions.

Towards this end, assuming one-way functions and indistinguishability obfuscation, for any
fixed polynomial bound q on the size of challenge plaintexts, we give a construction for SIM-
secure secret-key MI-FE for general circuits against adversaries that can obtain an unbounded
polynomial number of secret keys SKf after obtaining the challenge ciphertexts. The size of the
encryption keys and ciphertexts in this scheme grows with q.

We also provide another construction based on one-way functions and differing-inputs obfus-
cation that achieves the same security guarantees as above. The encryption keys and ciphertexts
in this scheme are “compact”, i.e., their sizes are independent of q.

1.1.3 Extensions and Applications

MI-FE for Randomized Functions. Very recently, Goyal et al. [GJKS13] first studied
the question of constructing single-input functional encryption schemes for randomized function-
alities. By building on their techniques, we show how to extend our positive results to handle
general n-ary randomized functionalities. In particular, this allows us to obtain a non-interactive
computationally differentially private mechanism, as discussed earlier.

MI-FE for Turing Machines. The problem of single-input functional encryption for
turing machines was first studied by Goldwasser et al. [GKP+13a]. Very recently, Boyle et al.
[BCP13] and Ananth et al. [ABG+13] provide constructions of single-input functional encryption
for turing machines against an unbounded polynomial number of key queries. We observe that
their techniques can be leveraged to extend our results to MI-FE for turing machines, thereby
achieving input-specific running times. The resulting construction would inherit from these
works the underlying assumptions of differing-inputs obfuscation, succinct non-interactive argu-
ment of knowledge (SNARK) [BCCT12], fully-homomorphic encryption [Gen09] and collision-
resistant hash functions. We omit the details from this manuscript and refer the reader to
[ABG+13, BCP13].
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Hierarchical MI-FE. The notion of hierarchical identity-based and attribute-based en-
cryption is well studied in the literature (see e.g., [GS02, BW06, LOS+10]). In the context
of (single-input) functional encryption, this problem is stated as follows: We require that the
owner of a secret key SKf can derive new keys corresponding to any function g that can defined
as a composition of f ′ on f (i.e., f ′ ◦ f) for some function f ′.

Recently, [ABG+13] observe that the construction [GGH+13a] is already flexible enough to
yield a hierarchical (single-input) functional encryption scheme. We note that the same ideas
carry over to our constructions of MI-FE. We refer the reader to [ABG+13] for details.

Multi-Client Delegation of Computation. Here we briefly discuss how an MI-FE
scheme provides a solution for multi-client delegation of computation. We follow the approach
of Parno et al. [PRV12], adapted to the multi-client setting. Given an MI-FE scheme, the
clients first participate in a pre-processing phase where they jointly compute two pairs of master
secret and encryption keys (MSK1,EK1), (MSK2,EK2) and random values (r1, r2). Let f be the
function that the clients wish to delegate. The clients use MSK1 to compute a secret key SKg for
a function g that takes as input n tuples (x1, r), . . . , (xn, r) and outputs r if f(x1, . . . , xn) = 1.
Similarly, the clients use MSK2 to compute a secret key S̄Kg for the function ḡ that is the same
as g except that it outputs r if f(x1, . . . , xn) = 0. While these are computationally expensive
operations, note that this phase is executed only once. The keys SKg and S̄Kg are sent over to
the worker.

Later, in an “online” phase, when the clients wish to compute f on a set of inputs x1, . . . , xn,
each client Ci sends over encryption of (x1, r1) under key MPK1 and (x1, r2) under MPK2 to the
worker. Now, from the properties of the MI-FE scheme, it follows that if f(x1, . . . , xn), then the
server would obtain r1 using SKg and ⊥ using S̄Kg and no information about r2 (and vice-versa,
if f(x1, . . . , xn) = 0). Thus, r1 provides a proof of the fact that the function output is 1.1

The main advantage of this approach is that the online phase is non-intractive: each client
can execute the online phase independently of the other clients, without any interaction.

1.1.4 Our Techniques

We have several results in this work, but to provide a flavor of the kind of difficulties that arise
in the MI-FE setting, we now discuss some of the issues that we deal with in the context of our
positive result for IND-secure MI-FE. (We note that similar issues arise in our positive results
for SIM-secure MI-FE.)

The starting point for our construction and analysis is the recent single-input functional en-
cryption scheme for general circuits based on indistinguishability obfuscation due to [GGH+13a].
However, the central issue that we must deal with is one that does not arise in their context:
Recall that in the indistinguishability security game, the adversary is allowed to get secret keys
for any function f , as long as this function does not “split” the challenge vectors ~X0 and ~X1.
That is, as long as it is not the case that there exist vectors of plaintexts ~x0 and ~x1 where
for every i ∈ [n], either there exists j such that xbi ∈ Xb

j or the adversary has EKi, such that

f(x0) 6= f(x1). A crucial point here is what happens for an index i where the adversary does
not have EKi. Let us consider an example with a 3-ary function, where the adversary has EK1,
but neither EK2 nor EK3.

Suppose the challenge ciphertexts (CT1,CT2,CT3) are encryptions of either (y01 , y
0
2 , y

0
3) or

(y11 , y
1
2 , y

1
3). Now, any function f that the adversary queries is required to be such that f(·, y02 , y03) ≡

f(·, y12 , y13) and f(y01 , y
0
2 , y

0
3) = f(y11 , y

1
2 , y

1
3). However, there may exist an input plaintext (say) z

such that f(y01 , y
0
2 , z) 6= f(y11 , y

1
2 , z). This is not “supposed” to be a problem because the adver-

sary does not have EK3, and therefore it cannot actually query f with z as its third argument.

1We note that this solution easily extends to functions with multi-bit outputs. See [PRV12] for details.
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However, in the obfuscation-based approach to functional encryption of [GGH+13a] that we
build on, the secret key for f is essentially built on top of an obfuscation of f . Let CT∗ denote
an encryption of z w.r.t. EK3. Then, informally speaking, in one of our hybrid experiments, we
will need to move from an obfuscation that on input (CT1,CT2,CT

∗) would yield the output
f(y01 , y

0
2 , z) to another obfuscation that on the same input would yield the output f(y11 , y

1
2 , z).

Again, while an adversary may not be able explicitly perform such a decryption query, since we
are building upon indistinguishability obfuscation – which only guarantees that obfuscations of
circuits that implement identical functions are indistinguishable – such a hybrid change would
not be indistinguishable since we know that f(y01 , y

0
2 , z) 6= f(y11 , y

1
2 , z) are not identical. (We

remark that we must address this issue even when using differing-inputs obfuscation in order to
obtain a formal contradiction.)

Solving this problem is the core technical aspect of our constructions and their analysis. At
a very high level, we address this problem by introducing a new “flag” value that can change
the nature of the function f that we are obfuscating to “disable” all plaintexts except for the
ones that are in the challenge vectors. We describe the details and our analysis in Section 4.

1.2 Related Works

Single-input Functional Encryption. The notion of (single-input) functional encryp-
tion was developed in a sequence of works [SW05, GPSW06, BW07, KSW08, LOS+10, BSW11,
O’N10]. For general functions, [SS10] first showed how to obtain single-key SIM-secure FE
based on standard public-key encryption. Gorbunov et al [GVW12] showed how to obtain
SIM-secure FE for general circuits for a polynomially bounded number of (non-adaptive) key
queries, based on public-key encryption and pseudorandom generators in NC1. Goldwasser et
al. [GKP+13b] improved this result to obtain constructions with “compact” ciphertexts based
on sub-exponential learning with errors assumption. Garg et al. [GGH+13a] construct an IND-
secure FE scheme based on indistinguishability obfuscation and one-way functions, that supports
an unbounded polynomial number of ciphertexts and key queries. Combining their result with
[CIJ+13], one can obtain SIM-secure FE for general circuits supporting an unbounded number
of (adaptive) key queries.

Goldwasser et al. [GKP+13a] give a construction of an FE scheme for turing machines based
on extractable witness encryption [GGSW13] and SNARK [BCCT12]. Recently, the works of
Boyle et al. [BCP13] and Ananth et al. [ABG+13] provide constructions of functional encryption
for turing machines, supporting an unbounded number of key queries. Both of these results rely
on the notion of differing-inputs obfuscation, introduced by Barak et al. [BGI+01] (and some
other assumptions; see Section 1.1.3). We note that our usage of differing-inputs obfuscation is
very similar to [BCP13, ABG+13].

Order-Preserving Encryption. The notion of order-preserving encryption was intro-
duced by Boldyreva et al. [BCLO09]. Very roughly, in an order-preserving encryption scheme,
for any two plaintexts x1 and x2 such that x1 > x2, the encryptions of x1 and x2 must also satisfy
the same order relationship. Thus, given two ciphertexts CT1 and CT2, one can simply compare
them to (publicly) determine the order relationship between their underlying plaintexts.

Positive results for order-preserving encryption were given by [BCLO09, BCO11]. These
results, however, achieve very weak security guarantees (in particular, they show that an order-
preserving encryption scheme cannot achieve IND security). We note that one can cast the
problem of computing order relationships between (encrypted) plaintexts as multi-input function
encryption for comparison functionality. Specifically, instead of requiring that ciphertexts obey
the same order relationship as their underlying plaintexts, we can now release secret keys to
enable the computation of order relationship between encrypted plaintexts. This allows us to
achieve IND security as well as SIM security, both of which provide much stronger guarantees
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than [BCLO09, BCO11]. Indeed, achieving stronger security guarantees in this context was left
as an open problem by [BCLO09, BCO11].

Property-Preserving Encryption. Recently, Pandey and Rouselakis [PR12] studied the
problem of property-preserving encryption as a generalization of order-preserving encryption.
As above, we note that this problem can be viewed as a multi-input functional encryption, where
the function family is determined by the class of properties that one wishes to support. Again,
we note that the security definitions considered in [PR12] are weaker than what we consider
in this work. In particular, this is because we do not require the ciphertexts to satisfy the
same property as their underlying plaintexts; instead in our setting, given a secret key SKf
for a property f , one can test f on the plaintexts via a joint decryption of the corresponding
ciphertexts.

1.3 Organization

The rest of this paper is organized as follows. We start by presenting our definitions for multi-
input functional encryption in Section 2. Next, in Section 3, we recall the definitions for various
cryptographic primitives used in our constructions. We then present our constructions for multi-
input functional encryption in Section 4 and Section 5. In Section 6, we show how to construct
general obfuscation from multi-input functional encryption and also provide impossibility re-
sults for SIM-secure MI-FE. Finally, we discuss how to extend our positive results to handle
randomized functionalities in Section 7.

2 Multi-Input Functional Encryption

In this work, we study functional encryption for n-ary functions, where n > 1 (and in gen-
eral, a polynomial in the security parameter). In other words, we are interested in encryption
schemes where the owner of a “master” secret key can generate special keys SKf that allow
the computation of f(x1, . . . , xn) from n ciphertexts CT1, . . . ,CTn corresponding to messages
x1, . . . , xn, respectively. We refer to such an encryption scheme as multi-input functional en-
cryption. Analogously, we will refer to the existing notion of functional encryption (that only
considers single-ary functions) as single-input functional encryption.

Intuitively, while single-input functional encryption can be viewed as a specific (non-interactive)
way of performing two-party computation, our setting of multi-input functional encryption cap-
tures multiparty computation. Going forward with this analogy, we are interested in modeling
the general scenario where the n input ciphertexts are computed by n different parties. This
raises the following two important questions:

1. Do the parties (i.e., the encryptors) share the same encryption key or do they use different
encryption keys EKi to compute input ciphertexts CTi.

2. Are the encryption keys secret or public?

As we shall see, these questions have important bearing on the security guarantees that can be
achieved for multi-input functional encryption.

Towards that end, we present a general, unified syntax and security definitions for multi-
input functional encryption. We consider encryption systems with n encryption keys, some of
which may be public, while the rest are secret. When all of the encryption keys are public, then
this represents the “public-key” setting, while when all the encryption keys are secret, then
this represents the “secret-key” setting. Looking ahead, we remark that our modeling allows
us to capture the intermediary cases between these two extremes that are interesting from the
viewpoint of the security guarantees possible.

8



The rest of this section is organized as follows. We first present the syntax and correctness
requirements for multi-input FE in Section 2.1). Then, in Section 2.2, we present our security
definitions for multi-input FE.

2.1 Syntax

Throughout the paper, we denote the security parameter by k. Let X = {Xk}k∈N and Y =
{Yk}k∈N be ensembles where each Xk and Yk is a finite set. Let F = {Fk}k∈N be an ensemble
where each Fk is a finite collection of n-ary functions. Each function f ∈ Fk takes as input n
strings x1, . . . , xn, where each xi ∈ Xk and outputs f(x1, . . . , xn) ∈ Yk.

A multi-input functional encryption scheme FE for F consists of four algorithms (FE.Setup,
FE.Enc, FE.Keygen, FE.Dec) described below.

• Setup FE.Setup(1k, n) is a PPT algorithm that takes as input the security parameter k
and the function arity n. It outputs n encryption keys EK1, . . . ,EKn and a master secret
key MSK.

• Encryption FE.Enc(EK, x) is a PPT algorithm that takes as input an encryption key
EKi ∈ (EK1, . . . ,EKn) and an input message x ∈ Xk and outputs a ciphertext CT.

In the case where all of the encryption keys EKi are the same, we assume that each
ciphertext CT has an associated label i to denote that the encrypted plaintext constitutes
an i’th input to a function f ∈ Fk. For convenience of notation, we omit the labels from the
explicit description of the ciphertexts. In particular, note that when EKi’s are distinct, the
index of the encryption key EKi used to compute CT implicitly denotes that the plaintext
encrypted in CT constitutes an i’th input to f , and thus no explicit label is necessary.

• Key Generation FE.Keygen(MSK, f) is a PPT algorithm that takes as input the master
secret key MSK and an n-ary function f ∈ Fk and outputs a corresponding secret key SKf .

• Decryption FE.Dec(SKf ,CT1, . . . ,CTn) is a deterministic algorithm that takes as input
a secret key SKf and n ciphertexts CTi, . . . ,CTn and outputs a string y ∈ Yk.

Definition 1 (Correctness). A multi-input functional encryption scheme FE for F is correct
if for all f ∈ Fk and all (x1, . . . , xn) ∈ Xnk :

Pr

[
( ~EK,MSK)← FE.Setup(1k) ; SKf ← FE.Keygen(MSK, f) ;

FE.Dec (SKf ,FE.Enc (EK1, x1) , . . . ,FE.Enc (EKn, xn)) 6= f(x1, . . . , xn)

]
= negl(k)

where the probability is taken over the coins of FE.Setup, FE.Keygen and FE.Enc.

2.2 Security for Multi-Input Functional Encryption

We now present our security definitions for multi-input functional encryption. Following the
literature on single-input FE, we consider two notions of security, namely, indistinguishability-
based security (or IND-security, in short) and simulation-based security (or SIM-security, in
short).

Notation. We start by introducing some notation that is used in our security definitions. Let
N denote the set of positive integers {1, . . . , n} where n denotes the arity of functions. For any
two sets S = {s0, . . . , s|S|} and I = {i1, . . . , i|I|} such that |I| ≤ |S|, we let SI denote the subset
{si}i∈I of the set S. Throughout the text, we use the vector and set notation interchangeably,
as per convenience. For simplicity of notation, we omit explicit reference to auxiliary input to
the adversary from our definitions.
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2.2.1 Indistinguishability-based Security

Here we present an indistinguishability-based security definition for multi-input FE.

Intuition. We start by giving an overview of the main ideas behind our indistinguishability-
based security definition. To convey the core ideas, it suffices to consider the case of 2-ary
functions. We will assume familiarity with the security definitions for single-input FE.

Let us start by considering the natural extension of public-key single-input FE to the two-
input setting. That is, suppose there are two public encryption keys EK1, EK2 that are used
to create ciphertexts of first inputs and second inputs, respectively, for 2-ary functions. Let
us investigate what security can be achieved for one pair of challenge message tuples (x01, x

0
2),

(x11, x
1
2) for the simplified case where the adversary makes secret key queries after receiving the

challenge ciphertexts.
Suppose that the adversary queries secret keys for functions {f}. Now, recall that the IND-

security definition in the single-input case guarantees that an adversary cannot differentiate
between encryptions of x0 and x1 as long as f(x0) = f(x1) for every f ∈ {f}. We note,
however, that an analogous security guarantee cannot be achieved in the multi-input setting.
That is, restricting the functions {f} to be such that f(x01, x

0
2) = f(x11, x

1
2) is not enough since

an adversary who knows both the encryption keys can create its own ciphertexts w.r.t. each
encryption key. Then, by using the secret key corresponding to function f , it can learn additional
values {f(xb1, ·)} and {f(·, xb2)}, where b is the challenge bit. In particular, if, for example, there
exists an input x∗ such that f(x01, x

∗) 6= f(x11, x
∗), then the adversary can learn the challenge

bit b! Therefore, we must enforce additional restrictions on the query functions f . Specifically,
we must require that f(x01, x

′) = f(x11, x
′) for every input x′ in the domain (and similarly

f(x′, x02) = f(x′, x12)). Note that this restriction “grows” with the arity n of the functions.
Let us now consider the secret-key case, where all the encryption keys are secret. In this

case, for the above example, it suffices to require that f(x01, x
0
2) = f(x11, x

1
2) since the adversary

cannot create its own ciphertexts. Observe, however, that when there are multiple challenge
messages, then an adversary can learn function evaluations over different “combinations” of
challenge messages. In particular, if there are q challenge messages per encryption key, then
the adversary can learn q2 output values for every f . Then, we must enforce that for every
i ∈ [q2], the i’th output value y0i when challenge bit b = 0 is equal to the output value y1i when
the challenge bit b = 1.

The security guarantees in the public-key and the secret-key settings as discussed above are
vastly different. In general, we observe that the more the number of encryption keys that are
public, the smaller the class of functions that can be supported by the definition. Bellow, we
present a unified definition that simultaneously captures the extreme cases of public-key and
secret-key settings as well as all the “in between” cases.

Compatible Functions and Input Plaintexts. To facilitate the presentation of our
IND security definition, we first introduce the following notion:

Definition 2 (I-Compatibility). Let {f} be any set of functions f ∈ Fk. Let N = {1, . . . , n}
and I ⊆ N. Let ~X0 and ~X1 be a pair of input vectors, where ~Xb =

{
xb1,j , . . . , x

b
n,j

}q
j=1

. We say

that F and ( ~X0, ~X1) are I-compatible if they satisfy the following property:

• For every f ∈ {f}, every I′ = {i1, . . . , it} ⊆ I ∪ ∅, every j1, . . . , jn−t ∈ [q], and every
x′i1 , . . . , x

′
it
∈ Xk,

f
(〈
x0i1,j1 , . . . , x

0
in−t′ ,jn−t

, x′i1 , . . . , x
′
it

〉)
= f

(〈
x1i1,j1 , . . . , x

1
in−t,jn−t

, x′i1 , . . . , x
′
it

〉)
,

where 〈yi1 , . . . , yin〉 denotes a permutation of the values yi1 , . . . , yin such that the value yij
is mapped to the `’th location if yij is the `’th input (out of n inputs) to f .
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IND-secure MI-FE. Our security definition is parameterized by two variables t and q, where
t denotes the number of encryption keys known to the adversary, and q denotes the number of
challenge messages per encryption key. Thus, in total, the adversary is allowed to make Q = q ·n
number of challenge message queries. We are now ready to present our formal definition for
(t, q)-IND-secure multi-input functional encryption.

Definition 3 (Indistinguishability-based security). We say that a multi-input functional en-
cryption scheme FE for for n-ary functions F is (t, q)-IND-secure if for every PPT adversary
A = (A0,A1,A2), the advantage of A defined as

AdvFE,INDA (1k) =

∣∣∣∣Pr[INDFEA (1k) = 1]− 1

2

∣∣∣∣
is negl(k), where:

Experiment INDFEA (1k):
(I, st0)← A0(1k) where |I| = t

( ~EK,MSK)← FE.Setup(1k)

( ~X0, ~X1, st1)← AFE.Keygen(MSK,·)
1 (st0, ~EKI) where ~X` =

{
x`1,j , . . . , x

`
n,j

}q
j=1

b← {0, 1} ; CTi,j ← FE.Enc(EKi, x
b
i,j) ∀i ∈ [n], j ∈ [q]

b′ ← AFE.Keygen(MSK,·)
2 (st1, ~CT)

Output: (b = b′)

In the above experiment, we require:

• Let {f} denote the entire set of key queries made by A1. Then, the challenge message

vectors ~X0 and ~X1 chosen by A1 must be I-compatible with {f}.

• The key queries {g} made by A2 must be I-compatible with ~X0 and ~X1.

Selective Security. We also consider selective indistinguishability-based security for multi-
input functional encryption. Formally, (t, q)-sel-IND-security is defined in the same manner as

Definition 3, except that the adversaryA1 is required to choose the challenge message vectors ~X0,
~X1 before the evaluation keys ~EK and the master secret key MSK are chosen by the challenger.
We omit the formal definition to avoid repetition.

2.2.2 Simulation-based Security

Here we present a simulation-based security definition for multi-input FE. We consider the case
where the adversary makes key queries after choosing the challenge messages. That is, we only
consider adaptive key queries. The “opposite” case where the adversary makes key queries before
choosing the challenge messages (i..e, non-adaptive key queries) is discussed in Section D.

Our definition extends the simulation-based security definition for single-input FE that sup-
ports adaptive key queries[BSW11, O’N10, BO13, CIJ+13]. In particular, we present a general
definition that models both black-box and non-black-box simulation.

Intuition. We start by giving an overview of the main ideas behind our simulation-based
security definition. To convey the core ideas, it suffices to consider the case of 2-ary functions.
Let us start by considering the natural extension of public-key single-input FE to the two-input
setting. That is, suppose there are two public encryption keys EK1, EK2 that are used to create
ciphertexts of first inputs and second inputs, respectively, for 2-ary functions. Let us investigate
what security can be achieved for one challenge message tuple (x1, x2).

11



Suppose that the adversary queries secret keys for functions {f}. Now, recall that the SIM-
security definition in the single-input case guarantees that for every f ∈ {f}, an adversary cannot
learn more than f(x) when x is the challenge message. We note, however, that an analogous
security guarantee cannot be achieved in the multi-input setting. Indeed, an adversary who
knows both the encryption keys can create its own ciphertexts w.r.t. each encryption key. Then,
by using the secret key corresponding to function f , it can learn additional values {f(x1, ·)} and
{f(·, x2)}. Thus, we must allow for the ideal world adversary, aka simulator, to learn the same
information.

In the secret-key case, however, since all of the encryption keys are secret, the SIM-security
definition for single-input FE indeed extends in a natural manner to the multi-input setting. We
stress, however, that when there are multiple challenge messages, we must take into account the
fact that adversary can learn function evaluations over all possible “combinations” of challenge
messages. Our definition presented below formalizes this intuition.

SIM-secure MI-FE. Similar to the IND-security case, our definition is parameterized by
variables t and q as defined earlier. We now formally define (t, q)-SIM-secure multi-input func-
tional encryption.

Definition 4 (Simulation-based Security). We say that a functional encryption scheme FE for
n-ary functions F is (t, q)-SIM-secure if for every PPT adversary A = (A0,A1,A2), there exists
a PPT simulator S = (S0,S1,S2) such that the outputs of the following two experiments are
computationally indistinguishable:

Experiment REALFEA (1k):
(I, st0)← A0(1k) where |I| = t

( ~EK,MSK)← FE.Setup(1k)

(M, st1)← A1(st0, ~EKI)
~X ←M where ~X = {x1,j , . . . , xn,j}qj=1

CTi,j ← FE.Enc(EKi, xi,j) ∀i ∈ [n], j ∈ [q]

α← AFE.Keygen(MSK,·)
2 ( ~CT, st1)

Output: (I,M, ~X, {f}, α)

Experiment IDEALFES (1k):
(I, st0)← S0(1k)
(M, st1)← S1(st0)

α← STP(M,·,·)
2 (st1)

Output: (I,M, ~X, {g}, α)

where the oracle TP(M, ·, ·) denotes the ideal world trusted party, {f} denotes the set of queries
of A2 to FE.Keygen and {g} denotes the set of functions appearing in the queries of S2 to

TP. Given the message distribution M, TP first samples a message vector ~X ←M , where
~X = {x1,j , . . . , xn,j}qj=1. It then accepts queries of the form

(
g, (j1, . . . , jn−p) ,

(
x′i′1
, . . . , x′i′p

))
where p ≤ t, {i′1, . . . , i′p} ⊆ I ∪ ∅ and x′i′1

, . . . , x′i′p ∈ Xk. On receiving such a query, TP outputs:

g
(〈
xi1,j1 , . . . , xin−p,jn−p , x

′
i′1
, . . . , x′i′p

〉)
,

where 〈yi1 , . . . , yin〉 denotes a permutation of the values yi1 , . . . , yin such that the value yij is
mapped to the `’th location if yij is the `’th input (out of n inputs) to g.

Remark 5 (On Queries to the Trusted Party). Note that when t = 0, then given the challenge ci-

phertexts ~CT, intuitively, the real adversary can only compute values FE.Dec (SKf ,CT1,j1 , . . . ,CTn,jn)
for every ji ∈ [q], i ∈ [n]. To formalize the intuition that this adversary does not learn anything
more than function values {f (x1,j1 , . . . , xn,jn)}, we restrict the ideal adversary aka simulator to
learn exactly this information.
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However, when t > 0, then the real adversary can compute values:

FE.Dec
(
SKf ,

〈
CTi1,j1 , . . . ,CTin−t,jn−t

,CT′i′1 , . . . ,CT
′
i′t

〉)
for ciphertexts CT′i′` of its choice since it knows the encryption keys ~EKI. In other words, such

an adversary can learn function values of the form f
(〈
xi1,j1 , . . . , xin−t,jn−t

, ·, . . . , ·
〉)

. Thus, we
must provide the same ability to the simulator as well. Our definition presented above precisely
captures this.

Selective Security. We also consider selective simulation-based security for multi-input
functional encryption. Formally, (t, q)-sel-SIM-security is defined in the same manner as Defini-
tion 4, except that in the real world experiment, adversary A1 chooses the message distribution
M before the evaluation keys ~EK and the master secret key MSK are chosen by the challenger.
We omit the formal definition to avoid repetition.

Remark 6 (SIM-security: Secret-key setting). When t = 0, none of the encryption keys are
known to the adversary. In this “secret-key” setting, there is no difference between (0, q)-sel-SIM-
security and (0, q)-SIM-security.

3 Preliminaries

Here we present definitions of various cryptographic primitives that are used in our construction
of multi-input functional encryption. We assume familiarity with standard semantically-secure
public-key encryption and omit its formal definition from this text. Below, we recall the notions
of indistinguishability obfuscation, non-interactive witness indistinguishable proof systems and
perfectly binding commitment schemes.

3.1 Indistinguishability Obfuscation

Here we recall the notion of indistinguishability obfuscation that was defined by Barak et al.
[BGI+01]. Intuitively speaking, we require that for any two circuits C1 and C2 that are “func-
tionally equivalent” (i.e., for all inputs x in the domain, C1(x) = C2(x)), the obfuscation of C1

must be computationally indistinguishable from the obfuscation of C2. Below we present the
formal definition following the syntax of [GGH+13a].

Definition 7 (Indistinguishability Obfuscation). A uniform PPT machine iO is called an in-
distinguishability obfuscator for a circuit class {Ck} if the following holds:

• Correctness: For every k ∈ N, for every C ∈ Ck, for every input x in the domain of C,
we have that

Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1.

• Indistinguishability: For every k ∈ N, for all pairs of circuits C0, C1 ∈ Ck, if C0(x) =
C1(x) for all inputs x, then for all PPT adversaries A, we have:

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(k).

Very recently, Garg et al. [GGH+13a] gave the first candidate construction for an indistin-
guishability obfuscator iO for the circuit class P/poly. ADD.
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Differing-Inputs Obfuscation. We also consider a stronger notion of indistinguishability
obfuscation, namely, differing-inputs obfuscation that was proposed by Barak et al [BGI+01].
Intuitively speaking, we require that for any two circuits C1 and C2 that “appear” to be func-
tionally equivalent to every PPT algorithm (i.e., no PPT algorithm can find an input x s.t.
C1(x) 6= C2(x)), the obfuscation of C1 must be computationally indistinguishable from the
obfuscation of C2. Alternatively, if a PPT algorithm can distinguish obfuscation of C1 from
obfuscation of C2, then we can efficiently find an input x s.t. C1(x) 6= C2(x).

Below, we present the formal definition. We follow the formalism of [ABG+13].
We start by defining the notion of differing-inputs circuit family. Intuitively. a circuit family

is said to be a differing-inputs circuits family if there does not exist any PPT adversary that
given two circuits, that are sampled from a distribution defined on this circuit family, can find
an input x such that both the circuits yield different outputs on x.

Definition 8 (Differing-Inputs Circuit Family). A circuit family C associated with a sampler
Sampler is said to be a differing-inputs circuit family if for every PPT adversary A, there exists
a negligible function negl(·) such that:

Pr
[
C0(x) 6= C1(x) | (C0, C1, z)← Sampler(1k); x← A

(
1k, C0, C1, z

)]
≤ negl(k)

Definition 9 (Differing-Inputs Obfuscator). A PPT machine diO is called a differing-inputs
obfuscator for a differing-inputs circuits family C = {Ck} if the following conditions are satisfied:

• Correctness: For all security parameters k ∈ N, for all C ∈ C, for all inputs x, we have
that:

Pr[C ′(x) = C(x) | C ′ ← diO(1k, C)] = 1

• Differing-inputs: For any PPT adversary A, there exists a negligible function negl(·)
such that the following holds: For all security parameters k ∈ N, for (C0, C1, z) ←
Sampler(1k), we have that:

|Pr [A (diO (C1)) = 1]− Pr [A (diO (C2)) = 1]| ≤ negl(k).

3.2 Non-Interactive Proof Systems

In this section, we recall various security notions for non-interactive proof systems. We start
by giving the syntax and formal definition of a non-interactive proof system. Next, we give
the definition of non-interactive witness-indistinguishable proofs (NIWI). Finally, we give the
definition of non-interactive zero-knowledge (NIZK), with simulation-soundness property.

Syntax. Let R be an efficiently computable relation that consists of pairs (x,w), where x is
called the statement and w is the witness. Let L denote the language consisting of statements
in R. A non-interactive proof system for a language L consists of a setup algorithm CRSGen, a
prover algorithm Prove and a verifier algorithm Verify, defined as follows:

• Setup CRSGen(1k) is a PPT algorithm that takes as input the security parameter k and
outputs a common reference string crs.

• Prover Prove(crs, x, w) is a PPT algorithm that takes as input the common reference
string CRS, a statement x along with a witness w. (x,w) ∈ R; if so, it produces a proof
string π, else it outputs fail.

• Verifier Verify(crs, x, π) is a PPT algorithm that takes as input the common reference
string crs and a statement x with a corresponding proof π. It outputs 1 if the proof is
valid, and 0 otherwise.
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Definition 10 (Non-interactive Proof System). A non-interactive proof system for a language
L with a PPT relation R is a tuple of algorithms (CRSGen,Prove,Verify) such that the following
properties hold:

• Perfect Completeness: For every (x,w) ∈ R, it holds that

Pr[Verify(crs, x,Prove(crs, x, w)) = 1] = 1

where crs← CRSGen(1k), and the probability is taken over the coins of CRSGen, Prove and
Verify.

• Statistical Soundness: For every adversary A, it holds that

Pr[Verify(crs, x, π) = 1 ∧ x /∈ L | crs← CRSGen(1k); (x, π)← A(crs)] = negl(k)

If the soundness property only holds against PPT adversaries, then we call it an argument
system.

Definition 11 (NIWI). We say that a non-interactive proof system (CRSGen,Prove,Verify) for
a language L with a PPT relation R is witness-indistinguishable if for any triplet (x,w0, w1) such
that (x,w0) ∈ R and (x,w1) ∈ R, the distributions {crs,Prove(crs, x, w0)} and {crs,Prove(crs, x, w1)}
are computationally indistinguishable, where crs← CRSGen(1k).

Definition 12 (NIZK). A non-interactive proof system (CRSGen,Prove,Verify) for a language
L with a PPT relation R is said to be zero knowledge if there exists a simulator Sim =
(Sim.CRSGen,Sim.Prove) such that for all PPT adversaries A,∣∣∣∣ Pr

[
AProve(crs,·,·) (crs) = 1 | crs← CRSGen

(
1k
)]

−Pr
[
AS(crs,τ,·,·) (crs) = 1 | (crs, τ)← Sim.CRSGen

(
1k
)] ∣∣∣∣ = negl(k)

where S(crs, τ, x, w) = Sim.Prove(crs, τ, x) if (x,w) ∈ R and outputs fail otherwise.

Definition 13 (Simulation soundness). A NIZK proof system (CRSGen,Prove,Verify) for a lan-
guage L with a PPT relation R is said to be simulation sound if for all PPT adversaries,

Pr

[
(x∗, π∗)← ASim.Prove(crs,τ,·) (crs) ∧ x∗ /∈ L

∧ 1← Verify (crs, x∗, π∗) | (crs, τ)← Sim.CRSGen
(
1k
) ] = negl(k)

where x∗ is not in the list of queries made by A to Sim.Prove.

3.3 Commitment Schemes

A commitment scheme Com is a PPT algorithm that takes as input a string x and randomness r
and outputs c← Com(x; r). A perfectly binding commitment scheme must satisfy the following
properties:

• Perfectly Binding: This property states that two different strings cannot have the same
commitment. More formally, ∀x1 6= x2 and r1, r2, Com(x1; r1) 6= Com(x2; r2).

• Computational Hiding: For all strings x0 and x1 (of the same length), for all PPT
adversaries A, we have that:

|Pr[A1(Com(x0)) = 1]− Pr[A1(Com(x1)) = 1)]| ≤ negl(k).

We note that it is in fact sufficient to use a standard 2-round statistically binding scheme
in our construction in Section 4. Note that such a commitment scheme can be based on one
way functions. For simplicitly of exposition, however, we will present our construction using a
non-interactive perfectly binding scheme.
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4 A Construction from Indistinguishability Obfuscation

Let F denote the family of all efficiently computable (deterministic) n-ary functions. We now
present a functional encryption scheme FE I for F . Assuming the existence of one-way functions
and indistinguishability obfuscation for all efficiently computable circuits, we prove the following
security guarantees for FE I:

1. For t = 0, and any q = q(k) such that
(
qn
n

)
= poly(k), FE I is (0, q)-SIM-secure.2 In this

case, the size of the secret keys in FE I grows linearly with
(
qn
n

)
.

2. For any t ≤ n and q = poly(k), FE I is (t, q)-sel-IND-secure. In this case, the size of the
secret keys is independent of q.

Further, the size of each encryption key and ciphertext in FE I grows linearly with q. In
Section 5, we give an efficient construction with “compact” encryption keys and ciphertexts,
whose security is proven in the standard model.

Notation. Let (CRSGen,Prove,Verify) be a NIWI proof system. Let Com denote a perfectly
binding commitment scheme. Let iO denote an indistinguishability obfuscator. Finally, let
PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a semantically secure public-key encryption scheme.
(See Section 3 for definitions of these notions.) We denote the length of ciphertexts in PKE by
c-len = c-len(k). Let len = 2 · c-len.

We now proceed to describe our scheme FE I = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec).

Setup FE.Setup(1k): The setup algorithm first computes a CRS crs ← CRSGen(1k) for
the NIWI proof system. Next, it computes two key pairs – (pk1, sk1) ← PKE.Setup(1k) and
(pk2, sk2) ← PKE.Setup(1k) – of the public-key encryption scheme PKE. Finally, it computes
the following commitments: (a) Zi,j1 ← Com(0len) for every i ∈ [n], j ∈ [q]. (b) Zi2 ← Com(0)
for every i ∈ [n].

For every i ∈ [n], the i’th encryption key EKi =
(
crs, pk1, pk2,

{
Zi,j1

}
, Zi2, r

i
2

)
where ri2

is the randomness used to compute the commitment Zi2. The master secret key is set to be

MSK =
(
crs, pk1, pk2, sk1,

{
Zi,j1

}
,
{
Zi2
})

. The setup algorithm outputs (EK1, . . . ,EKn,MSK).

Encryption FE.Enc(EKi, x): To encrypt a message x with the i’th encryption key EKi, the
encryption algorithm first computes c1 ← PKE.Enc(pk1, x) and c2 ← PKE.Enc(pk2, x). Next, it

computes a NIWI proof π ← Prove(crs, y, w) for the statement y =
(
c1, c2, pk1, pk2,

{
Zi,j1

}
, Zi2

)
:

• Either c1 and c2 are encryptions of the same message and Zi2 is a commitment to 0, or

• ∃ j ∈ [q] s.t. Zi,j1 is a commitment to c1‖c2.

A witness wreal = (m, s1, s2, r
i
2) for the first part of the statement, referred to as the real

witness, includes the message m and the randomness s1 and s2 used to compute the ciphertexts
c1 and c2, respectively, and the randomness ri2 used to compute Zi2. A witness wtrap = (j, ri,j1 )
for the second part of the statement, referred to as the trapdoor witness, includes an index j
and the randomness ri,j1 used to compute Zi,j1 .

The honest encryption algorithm uses the real witness wreal to compute π. The output of
the algorithm is the ciphertext CT = (c1, c2, π).

2Recall that when t = 0, there is no difference between selective security and standard security as defined in
Section 2.2.2. See Remark 6.
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Key Generation FE.Keygen(MSK, f): The key generation algorithm on input f computes
SKf ← iO(Gf ) where the function Gf is defined in Figure 1. Note that Gf has the master secret
key MSK hardwired in its description.

Gf (CT1, . . . ,CTn)

1. For every i ∈ [n]:

(a) Parse CTi = (ci,1, ci,2, πi).

(b) Let yi =
(
ci,1, ci,2, pk1, pk2,

{
Zi,j1

}
, Zi2

)
be the statement corresponding to the proof string

πi. If Verify(crs, yi, πi) = 0, then stop and output ⊥. Otherwise, continue to the next step.

(c) Compute xi ← PKE.Dec(sk1, ci,1).

2. Output f(x1, . . . , xn).

Figure 1: Functionality Gf

The algorithm outputs SKf as the secret key for f .

Size of Function Gf . In order to prove that FE I is (0, q)-SIM-secure (see Section 4.2), we require
the function Gf to be padded with zeros such that |Gf | = |Sim.Gf |, where the “simulated”
functionality Sim.Gf is described later in Figure 2. In this case, the size of SKf grows linearly
with

(
qn
n

)
.

Note, however, that such a padding is not necessary to prove (t, q)-sel-IND-security for FE I
(see Section 4.1). Indeed, in this case, the secret keys SKf are independent of the number of
message queries q made by the adversary.

Decryption FE.Dec(SKf ,CT1, . . . ,CTn): The decryption algorithm on input (CT1, . . . ,CTn)
computes and outputs SKf (CT1, . . . ,CTn).

This completes the description of the proposed functional encryption scheme FE I. The
correctness property of the scheme follows from inspection. We prove sel-IND security for FE I
in Section 4.1, and then prove SIM security in Section 4.2.

4.1 Proving sel-IND Security

We now prove that the proposed scheme FE I is (t, q)-sel-IND-secure for any t ≤ n.

Theorem 14. Let q = q(k) be a fixed poly(k). Then, assuming indistinguishability obfuscation
for all polynomial-time computable circuits and one-way functions, the proposed scheme FE I is
(t, q)-sel-IND-secure for any t ≤ n.

We prove the above theorem via a hybrid argument. We start by describing a sequence of
hybrid experiments H0, . . . ,H10, where experiment H0 (resp., H10) corresponds to the real world
experiment with challenge bit b = 0 (resp., b = 1). We will prove that for every i, the outputs
of experiments Hi and Hi+1 are computationally indistinguishable.

Hybrid H0: This is the real experiment with challenge bit b = 0.

Hybrid H1: This experiment is the same as H0 except that the setup algorithm computes the
commitments {Zi,j1 } in the following manner: let the challenge ciphertext ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j).

Then, Zi,j1 ← Com(ĉi,j1 ‖ĉ
i,j
2 ).
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Hybrid H2: This experiment is the same as H1 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the proof string π̂i,j is computed using the trapdoor witness.

Hybrid H3: This experiment is the same as H2 except that for every i ∈ N \ I (where I
denotes the set of indices i s.t. EKi is known to the adversary) the setup algorithm computes
Zi2 as a commitment to 1 (instead of 0). That is, for every i ∈ [n], Zi2 ← Com(1).

Hybrid H4: This experiment is the same as H3 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the second ciphertext ĉi,j2 is computed as an encryption of the challenge

message x1i,j (as opposed to x0i,j), i.e., ĉi,j2 ← FE.Enc(EKi, x
1
i,j).

Hybrid H5: This experiment is the same as H4 except that for every key query f , the
corresponding secret key SKf is computed as SKf ← iO(G′f ) where G′f is the same as the
function Gf except that:

1. It has secret key sk2 hardwired instead of sk1.

2. It decrypts the second component of each input ciphertext using sk2. More concretely, in
step 1(c), plaintext x′i is computed as x′i ← PKE.Dec(sk2, ci,2).

Hybrid H6: This experiment is the same as H5 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the first ciphertext ĉi,j1 is an encryption of challenge message x1i,j (as

opposed to x0i,j), i.e., ĉi,j1 ← FE.Enc(EKi, x
1
i,j).

Hybrid H7: This experiment is the same as H6 except that for every key query f , the
corresponding secret key SKf is computed as SKf ← iO(Gf ).

Hybrid H8: This experiment is the same as H7 except that the setup algorithm computes
every Zi2 as a commitment to 0, i.e., Zi2 ← Com(0).

Hybrid H9: This experiment is the same as H8 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the proof string π̂i,j is computed using the real witness.

Hybrid H10: This experiment is the same as H9 except that the setup algorithm computes
every Zi,j1 as a commitment to the all zeros string, i.e., Zi,j1 ← Com(0len). Note that this is the
real experiment with challenge bit b = 1.

This completes the description of the hybrids. We argue their indistinguishability in Ap-
pendix A.

4.2 Proving SIM Security

Here we prove that the proposed scheme FE I is (0, q)-SIM-secure.

Theorem 15. Let q = q(k) be such that
(
qn
n

)
= poly(k). Then, assuming indistinguishability

obfuscation for all polynomial-time computable circuits and one-way functions, the proposed
scheme FE I is (0, q)-SIM-secure.

In order to prove the above theorem, we first construct an ideal world adversary aka simulator
S. Then, in Appendix B, we prove indistinguishability of the outputs of the real and ideal world
experiments via a hybrid argument.
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Simulator S. We describe a simulator S = (S0,S1,S2) that only makes black-box use of a
real-world adversary A = (A0,A1,A2).

Algorithm S0. Let z be the auxiliary input given to S. Algorithm S0 simply runs A0 with
auxiliary input z and outputs (I, st0)← A0(1k, z). Since we are only considering the case where
t = 0, we have that I = ∅.

Algorithm S1. Algorithm S1 simply runs A1 on input st0 and outputs (M, st1)← A0(st0).

Algorithm S2. This algorithm runs the adversary algorithm A2 on simulated ciphertexts and
provides simulated answers to the key queries made by A2. More concretely, S2 runs in the
following sequence of steps:

1. Simulate Setup. S2 first performs a simulated setup procedure. Namely, it first computes
a CRS crs ← CRSGen(1k) for the NIWI proof system. Next, it computes two key pairs –
(pk1, sk1)← PKE.Setup(1k) and (pk2, sk2)← PKE.Setup(1k) – of the public-key encryption
scheme PKE. Finally, it computes the commitments {Zi,j1 } and {Zi2} in the following
manner:

• For every i ∈ [n], j ∈ [q]: (a) Compute ĉi,j1 and ĉi,j2 as encryptions of zeros, i.e., ĉi,j1 ←
PKE.Enc(pk1, 0) and ĉi,j2 ← PKE.Enc(pk2, 0). (b) Compute Zi,j1 ← Com(ĉi,j1 ‖ĉ

i,j
2 ). Let

ri,j1 be the randomness used to compute Zi,j1 ..

• For every i ∈ [n], compute Zi2 as a commitment to 1, i.e., Zi2 ← Com(1).

Let MSK =
(
crs, pk1, pk2, sk1,

{
Zi,j1

}
,
{
Zi2
})

.

2. Simulate Challenge Ciphertexts. S2 now computes simulated challenge ciphertexts ~CT =
{ĈT1,j , . . . , ĈTn,j}qj=1 in the following manner. For every i ∈ [n], j ∈ [q]:

• Let yi,j = (ĉi,j1 , ĉi,j2 , pk1, pk2, {Z
i,j
1 }, Zi2). Compute the proof π̂i ← Prove(crs, yi,j , wi,j)

where the witness wi,j corresponds to the trapdoor witness (j, ri,j1 ). That is, wi,j
establishes that Zi,j1 is a commitment to ĉi,j1 ‖ĉ

i,j
2 .

• The simulated ciphertext ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j).

3. Simulate Key Queries. Finally, S2 runs the adversary algorithm A2 on input ( ~CT, st1).
Recall from Definition 4 that A2 also makes queries to the key generation oracle. S2
simulates responses to A2’s key queries in the following manner. Let TP denote the ideal
world trusted party that given the message distribution M (output by S2) first samples
~X ←M , where ~X = {x1,j , . . . , xn,j}qj=1. When A2 makes a key query f , S2 performs the
following sequence of steps:

• Query the trusted party TP on function (f, j1, . . . , jn) for every choice of j1, . . . , jn ∈
[q]. The trusted party computes and returns the function outputs out[j1, . . . , jn] =
f(x1,j1 , . . . , xn,jn} to S2. Let ~out denote the vector of all the

(
q
n

)
number of outputs.

• Compute the secret key SKf for function f as SKf ← iO(Sim.Gf ). The functionality

Sim.Gf has the master secret key MSK, the challenge ciphertext pairs {ĉi,j1 , ĉi,j2 } and
the outputs ~out hardwired in it. It is described in Figure 2.

• Return SKf to A2.

Finally, at some point A2 outputs its view α. S2 outputs α and stops.
In Appendix B, we prove indistinguishability of the outputs of the real and ideal experiments.

5 A Construction from Differing-Inputs Obfuscation

Let F denote the family of all efficiently computable (deterministic) n-ary functions. We now
present a new functional encryption scheme FE II for F based on differing-inputs obfuscation.
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Sim.Gf (CT1, . . . ,CTn)

1. For every i ∈ [n]:

• Parse CTi = (ci,1, ci,2, πi).

• Let yi =
(
ci,1, ci,2, pk1, pk2,

{
Zi,j1

}
, Zi2

)
be the statement corresponding to the proof string

πi. If Verify(crs, yi, πi) = 0, then stop and output ⊥. Otherwise, continue to the next step.

2. If ∃ (j1, . . . , jn) s.t. for every i ∈ [n],

• ĉi,ji1 = ci,1, and

• ĉi,ji2 = ci,2,

then stop and output out[j1, . . . , jn].

3. Otherwise, for every i ∈ [n],

• Compute xi ← PKE.Dec(sk1, ci,1).

4. Output f(x1, . . . , xn).

Figure 2: Functionality Sim.Gf

The main advantage of this scheme over the one presented in Section 4 is that the encryption
keys and the ciphertexts are “compact”, i.e., independent of the number of message queries q
made by the adversary.

The proposed scheme provides the following security guarantees:

• For any choice of t ≤ n, FE II is (t, poly(k))-IND-secure. In this case, the number of message
queries q can be an arbitrary unbounded polynomial q = poly(k).

• For t = 0 and q = q(k) such that
(
qn
n

)
= poly(k), our construction naturally extends to

(0, q)-SIM-security. In this case, the size of the secret keys grows linearly with
(
qn
n

)
.

Notation. Let (CRSGen,Prove,Verify) be a simulation-sound NIZK argument system. Let
Com denote a perfectly binding commitment scheme. Let diO denote a differing-inputs obfus-
cator. Finally, let PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a semantically secure public-key
encryption scheme.

We now proceed to describe the scheme FE II = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec).

Setup FE.Setup(1k): The setup algorithm first computes a CRS crs ← CRSGen(1k) for
the simulation-sound NIZK proof system. Next, it computes two key pairs – (pk1, sk1) ←
PKE.Setup(1k) and (pk2, sk2) ← PKE.Setup(1k) – of the public-key encryption scheme PKE.
Finally, for every i ∈ [n], it computes a commitment Zi ← Com(0).

For every i ∈ [n], the i’th encryption key EKi = (crs, pk1, pk2, Zi, ri) where ri is the random-
ness used to compute Zi. The master secret key MSK = (crs, pk1, pk2, sk1, {Zi}). The setup
algorithm outputs (EK1, . . . ,EKn,MSK).

Encryption FE.Enc(EKi, x): To encrypt a message x with the i’th encryption key EKi,
the encryption algorithm first computes c1 ← PKE.Enc(pk1, x) and c2 ← PKE.Enc(pk2, x).
Next, it computes a simulation-sound NIZK proof π ← Prove(crs, y, w) for the statement y =
(c1, c2, pk1, pk2, Z):
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• c1 and c2 are encryptions of the same message and Zi is a commitment to 0.

Here, a witness w = (s1, s2, ri) for y consists of the randomness s1 and s2 used to compute c1
and c2, respectively, and the randomness ri used to compute Zi.

The output of the algorithm is the ciphertext CT = (c1, c2, π).

Key Generation FE.Keygen(MSK, f): The key generation algorithm on input f computes
SKf ← diO(Hf ) where the function Hf is defined in Figure 3. Note that Hf has the master
secret key MSK hardwired in its description.

Hf (CT1, . . . ,CTn)

1. For every i ∈ [n]:

(a) Parse CTi = (ci,1, ci,2, πi).

(b) Let yi = (ci,1, ci,2, pk1, pk2, {Zi}) be the statement corresponding to the proof string πi. If
Verify(crs, yi, πi) = 0, then stop and output ⊥. Otherwise, continue to the next step.

(c) Compute xi ← PKE.Dec(sk1, ci,1).

2. Output f(x1, . . . , xn).

Figure 3: Functionality Hf

The algorithm outputs SKf as the secret key for f .

Size of Function Hf . Similar to the construction in Section 4, in order to prove that FE II is
(0, q)-SIM-secure, we require the function Hf to be padded with zeros such that the size of Hf
is equal to the size of its “simulated version” which has (among other things)

(
qn
n

)
output values

hardwired in it. Thus, in this case, the size of SKf grows linearly with
(
qn
n

)
.

Note, however, that such a padding is not necessary to prove (t, q)-sel-IND-security for FE II.
Indeed, in this case, the secret keys SKf are independent of the number of message queries q
made by the adversary.

Decryption FE.Dec(SKf ,CT1, . . . ,CTn): The decryption algorithm on input (CT1, . . . ,CTn)
computes and outputs SKf (CT1, . . . ,CTn).

This completes the description of FE II. The correctness property of the scheme follows from
inspection.

Theorem 16. Assuming differing-inputs obfuscation for all polynomial-time computable circuits
and one-way functions, the proposed scheme FE II is (t, poly(k))-IND-secure for any t ≤ n.

We prove the above theorem in Appendix C. Further, we note that for t = 0 and q = q(k)
such that

(
qn
n

)
= poly(k), our IND-security proof can be naturally extended to argue (0, q)-SIM-

security for FE II by using a similar simulation strategy as for our first construction (see Section
4). We formally state the claim below, but omit the proof details from this manuscript.

Theorem 17. Let q = q(k) be such that
(
qn
n

)
= poly(k). Then, assuming differing-inputs

obfuscation for all polynomial-time computable circuits and one-way functions, the proposed
scheme FE II is (0, q)-SIM-secure.
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6 Multi-Input Functional Encryption Implies Obfuscation

In this section, we prove that various flavors of multi-input FE imply well established notions
of program obfuscation.

Indistinguishability Obfuscation from MI-FE. Our first result shows that the indis-
tinguishability notion of multi-input FE unconditionally implies indistinguishability obfuscation
(note that such an implication is not known to hold for single input FE). This, in particular,
means that the use of indistinguishability obfuscation is unavoidable for multi-input FE, and,
any future improvements in the complexity assumptions on which multi-input FE is based will
only come with a corresponding improvement in the indistinguishability obfuscation construc-
tions. We state the theorem below for the “weakest” case of secret-key multi-input functional
encryption (this only strengthens our result).

Theorem 18. (0, 2)-IND-secure MI-FE for general (k+1)-ary functions unconditionally implies
indistinguishability obfuscation for all circuits with k-bit inputs.

Proof. We describe how to construct indistinguishability obfuscation for a circuit class C where
for every C ∈ C, C : {0, 1}k → {0, 1}k′ and |C| = `. Let FE be a (0, 2)-IND-secure MI-FE
scheme for general (k + 1)-ary functions. The PPT obfuscator iO works as follows.

• Consider a function g s.t. g(x1, . . . , xk, C) = C(x1|| . . . ||xk) where for all i, xi ∈ {0, 1},
and, C ∈ {0, 1}`. Observe that the function g acts as a universal circuit and treats its
(k + 1)-th input as a circuit.

• The obfuscator iO first runs the setup algorithm for FE to compute a master secret key
MSK and encryption keys as EK1, . . . ,EKk+1. It then runs the key generation algorithm of
FE to generate a secret key for the function g using MSK. Denote the resulting decryption
key as SKg.

• For all i ∈ [k], b ∈ {0, 1}, let CTbi ← FE.Enc(EKi, b). All the encryptions are performed
using independent random coins. Furthermore, let CTk+1 ← FE.Enc(EKk+1, C).

• The obfuscated circuit iO(C) = ({CTbi}b,i,CTk+1,SKg).

To evaluate the obfuscated circuit on an input x = (x1, . . . , xk), simply evaluate the de-
cryption algorithm FE.Dec(SKg, {CTxi

i }i,CTk+1). This results in g(x1, . . . , xk, C) = C(x). This
completes the description of the obfuscation scheme.

We now show that the above construction is indeed a secure indistinguishability obfuscation.
This follows from the (0, 2)-IND-security of the underlying multi-input FE scheme. Consider any
two functionally equivalent circuit C0 and C1 from C. That is, for all x ∈ {0, 1}k, C0(x) = C1(x).
Now, suppose for contradiction that there exists a PPT adversary A that distinguishes between
iO(C0) and iO(C1) with non-negligible advantage. We will construct an adversary B that breaks
(0, 2)-IND-security of FE . The adversary B runs A and receives circuits C0 and C1. It works as
follows:

1. It defines challenge message vectors ~X0 and ~X1 , where ~Xb = {xb1,j , . . . , xbk+1,j}j∈[2]. For

every i ∈ [k], set xbi,1 = 0 and xbi,2 = 1. (Note here that x0i,j = x1i,j .) Further, set

xbk+1,1 = xbk+1,2 = Cb. B sends over ~X0, ~X1 to the challenger in the IND security game.
Let {CT1,j , . . . ,CTk+1,j}j∈[2] denote the challenge ciphertexts received by B

2. Next, B requests a secret key for the function g. Let SKg be the secret key received by B.

3. Now, B sends over
(
{CT1,j , . . . ,CTk,j}j∈[2] ,CTk+1,1

)
as the challenge obfuscation to A.

B simply outputs the guess b′ returned by A.
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This completes the description of B. We first argue that the challenge message vectors and the
secret key query g are I-compatible as per IND security definition 3. (Here I = ∅.) To see this,
note that for any x = (x1, . . . , xk), we have that:

g(x1, . . . , xk, C0) = g(x1, . . . , xk, C1).

since C0 and C1 are functionally equivalent. Now, note that if the challenge bit b chosen by
IND-security game challenge is equal to 0, then the resulting obfuscation is sent by B to A is of
circuit C0; otherwise it is an obfuscation of C1. Thus, if A can distinguish between these two
cases with non-negligible advantage, then B also wins the IND game with the same advantage.
This completes the proof.

Remark 19. We remark that in the above proof, the “order” of the key query g is irrelevant.
That is, g could be queried before or after the ciphertext queries.

Virtual Black-Box Obfuscation from MI-FE. We now give two results for construct-
ing virtual black-box obfuscation from various flavors of MI-FE. We first note that the same
construction as above (Theorem 18), in fact, implies virtual black-box obfuscation, when FE is
(0, 2)-SIM-secure.

Theorem 20. (0, 2)-SIM-secure FE for general (k + 1)-ary functions unconditionally implies
virtual black-box obfuscation for all circuits with k-bit inputs.

Next, we show that SIM-secure multi-input FE, where at least one of the encryption keys
may be made public, implies virtual black-box obfuscation.

Theorem 21. (1, 1)-SIM-secure MI-FE for general 2-ary functions unconditionally implies vir-
tual black-box obfuscation for all circuits.

Sketch. The proof of this theorem is quite similar to that of the previous one and we only
provide a sketch here. The basic idea, as before, is to give out keys for a universal circuit g. The
first input to g will be the function f which we wish to obfuscate. The encryption key EK1 will
be kept a secret, and, the ciphertext FE.Enc(EK1, f) will be included as part of the obfuscated
circuit. The second input x will be the input on which the user wishes to evaluate f . Hence,
the user is given access to the second encryption key EK2 (as part of the obfuscated circuit) to
enable it to encrypt any x. More details follow:

• Consider a function g s.t. g(C, x) = C(x). Let FE be a (1, 1)-SIM-secure MI-FE for
general 2-ary functions. The obfuscator VBB runs the setup algorithm for FE to compute
MSK and encryption keys (EK1,EK2). It then runs the key generation algorithm of FE to
generate a secret key SKg for the above function g using MSK.

• Let CT← FE.Enc(EK1, C). The obfuscated circuit VBB(C) = (CT,EK2,SKg).

To evaluate the obfuscated circuit on an input x, compute CT′ ← FE.Enc(EK2, x), and, run
FE.Dec(SKg,CT,CT

′). This results in g(C, x) = C(x).
The virtual black-box obfuscation property follows from the fact that the view of the user

can be simulated given access to a trusted party holding the first input f , and, evaluating g(f, ·)
on any second input x of user’s choice.

6.1 Impossibility Results for SIM secure MI-FE

Here, we discuss some impossibility results for simulation secure MI-FE that complement our
positive results given in Sections 4 and 5.

Recall that [BSW11, BO13] already establish the impossibility of (0, poly(k))-SIM-secure
functional encryption for 1-ary functions. We show that for n-ary functions, where n ≥ 2, the
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situation is much worse. In particular, recall that Barak et al. [BGI+01] proved an (uncon-
ditional) impossibility result for VBB obfuscation for general circuits. Then, combining their
result with Theorem 21, we get the following result:

Theorem 22. (1, 1)-SIM-secure multi-input functional encryption for general 2-ary functions
is impossible.

We remark that our positive results for SIM-secure MI-FE in Sections 4 and 5 are consistent
with the above negative result and that of [BSW11, BO13].

Simulation secure MI-FE against Non-Adaptive Key Queries. So far in this
paper, we have only considered simulation security for MI-FE in the setting where an adversary
makes key queries after choosing the challenge messages. Following the terminology from the
literature on single-input functional encryption, such queries are referred to as adaptive key
queries. One can consider the “opposite” scenario, where the adversary is allowed to make key
queries before choosing the challenge messages. This setting has been well studied in the case
of single-input functional encryption, where such queries are referred to as non-adaptive key
queries.

We now discuss the feasibility of simulation-based security for non-adaptive key queries
(referred to as NA-SIM security) in our setting of multi-input FE. NA-SIM security for multi-
input FE is defined similarly to definition 4, except that now the adversary is required to make
key queries before (as opposed to after) choosing the challenge messages. More concretely, we
can define (t, p, q)-NA-SIM-secure functional encryption where (as earlier) t denotes the number
of encryption keys known to the adversary and q denotes the number of challenge messages per
encryption key. The new parameter p denotes the total number of non-adaptive key queries by
the adversary. For completeness, we provide a formal definition in Appendix D.

Now, observe that the proofs of Theorem 21 and Theorem 20 are insensitive to the “order”
of the key query; i.e., they go through even if the key query is non-adaptive. Then, combining
these results with the impossibility result of Barak et al [BGI+01], we obtain the following two
(incomparable) results:

Theorem 23. (1, 1, 1)-NA-SIM-secure multi-input functional encryption for general 2-ary func-
tions is impossible.

Theorem 24. (0, 1, 2)-NA-SIM-secure multi-input functional encryption for general (k+ 1)-ary
functions is impossible.

We remark that we have stated Theorem 24 for the secret-key setting (as opposed to for
general t) since it is the “weakest” case, and therefore only strengthens our result.

While the above impossibility results rule out achieving NA-SIM-security for general functions
– in particular, they rule out NA-SIM-security for the arguably unnatural function that cannot be
VBB obfuscated [BGI+01]) – we also provide another impossibility result for the weak pseudo-
random function.

Let {F} be a weak pseudo-random function family with key space K and message space X.
The 2-ary wPRF(·, ·) functionality on input key k ∈ K and message x ∈ X outputs FK(x). We
shall call k as the first input and x to be the second input to wPRF. We claim the following:

Theorem 25. (0, 1, poly(k))-NA-SIM-secure functional encryption for the weak PRF function-
ality wPRF(·, ·) is impossible.

Proof. (Sketch). Here, we sketch a proof for black-box simulation. The proof follows along
the same lines as in [AGVW13]. Suppose for contradiction that there exists a (0, 1, poly(k))-
NA-SIM-secure functional encryption FE for the weak PRF functionality. Let ` − 1 denote an
upper bound on the ciphertext size in FE . We construct an adversary A that makes a single
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key query and `2 number of message queries (per encryption key) such that every (black-box)
simulator “fails” to simulate the view of A.

The adversary A first makes a single (non-adaptive) key query for the 2-ary function wPRF.
Let L = `2. Then, A asks ciphertexts for L first inputs k1, . . . , kL and L second inputs x1, . . . , xL,
where each ki is chosen uniformly at random from the key space K and each xi is chosen
uniformly at random from the message space X. Now the simulator first needs to produce a
key SKwPRF and then it is given the functionality’s outputs {wPRF (ki, xj)}L,Li=1,j=1. Now, the

simulator has to produce 2L ciphertexts
{
CT1

i

}L
i=1

,
{
CT2

j

}L
j=1

such that for every i ∈ [L], j ∈ [L],

wPRF(ki, xj) = FE.Dec(SKf ,CT
1
i ,CT

2
j ).

Thus, on the one hand, the simulator needs to “encode” all of the functionality’s outputs
into 2L ciphertexts. On the other hand, the functionality’s outputs are L2 = `4 pseudo-random
bits, while the total length of the 2L ciphertexts is 2L(`−1) < 2`3 bits. Since a pseudo-random
string cannot be efficiently compressed, we get a contradiction.

Discussion. Recall that the lower bounds of [AGVW13, CIJ+13] already establish that it
is impossible to achieve (0, poly(k), 1)-NA-SIM-secure functional encryption for 1-ary functions
(specifically, the weak PRF functionality). That is, it is impossible to achieve NA-SIM security
against an unbounded number of non-adaptive key queries even in the secret-key setting. Our
impossibility results in Theorem 24 and Theorem 25 establish that it is also impossible to achieve
NA-SIM security against an unbounded number of ciphertext queries. Thus, NA-SIM secure MI-
FE is only possible for a bounded number of key queries and a bounded number of ciphertext
queries. This is strictly worse that what can be achieved in the case of SIM security (where
unbounded number of key queries can be achieved, in the secret-key setting, as exemplified by
our positive results).

7 Extension to Randomized Functionalities

Our positive results for multi-input functional encryption presented in Sections 4 and 5 only
concern with deterministic n-ary functions. Here, we discuss how to extend our results to handle
randomized functionalities.

Modeling Security. In the single-input setting, the case of randomized functionalities was
recently considered by Goyal et al. [GJKS13]. Very briefly, Goyal et al. observed that in the
setting of randomized functionalities, the central challenge is to ensure that the random coins
used for computing a function output are unbiased and remain hidden from the participants (i.e.,
the encryptor/sender and the decryptor/receiver). As such, in addition to requiring security
against dishonest receivers, one must explicitly require security against dishonest senders to
ensure that it is not possible to force “bad” outputs on an honest receiver.

We follow the same approach in our multi-input setting. Specifically, following [GJKS13],
below we formalize a definition for security against dishonest senders. Overall, we will say that a
multi-input functional encryption scheme for a randomized function family is secure if it achieves
security against both dishonest senders and dishonest receivers.

Definition 26 (Security against Dishonest Senders). We say that a functional encryption
scheme FE for n-ary (randomized) functions F is t-secure against dishonest senders if for
every PPT adversary A = (A0,A1,A2), there exists a PPT simulator S = (S0,S1,S2) such that
the outputs of the following two experiments are computationally indistinguishable:
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Experiment REALFEA (1k):
(I, st0)← A0(1k) where |I| = t

( ~EK,MSK)← FE.Setup(1k)

({f},M, st1)← A1(st0, ~EKI)
SKf ← FE.Keygen(MSK, f) ∀ f ∈ {f}
CTi ← FE.Enc(EKi, xi) where xi ←M ∀ i ∈ N \ I

α← AO({SKf}, ~CT,·)
2 ( ~CT, st1)

Output: (I, {f},M, ~x, {out}, α)

Experiment IDEALFES (1k):
(I, st0)← S0(1k)
({f},M, st1)← S1(st0)
xi ←M ∀ i ∈ N \ I

α← STP({f},~x,·)2 (st1)
Output: (I, {f},M, ~x, {out′}, α)

where,

• In the real world, oracle O
(
{SKf} , ~CT, ·

)
accepts queries of the form (CT∗1, . . . ,CT

∗
t ) such

that for every i ∈ [t], j ∈ N\I, CT∗i 6= CTj. It outputs FE.Dec (SKf , 〈CT1, . . . ,CTn−t,CT
∗
1, . . . ,CT

∗
t 〉)

for every SKf ∈ {SKf}. Here, 〈zi1 , . . . , zin〉 denotes a permutation of the ciphertexts
zi1 , . . . , zin such that zij is mapped to the `’th location if zij is the encrypted via the
encryption key EK`. Further, {out} denotes the set of outputs of O to A2’s decryption
queries.

• In the ideal world, the trusted party TP ({f} , ~x, ·) accepts queries of the form (x∗1, . . . , x
∗
t )

and outputs fj
(〈
xi1 , . . . , xin−t

, x∗1, . . . , x
∗
t

〉
; rj
)

for every fj ∈ {f}. Here rj is chosen
uniformly at random and 〈zi1 , . . . , zin〉 denotes a permutation of the values zi1 , . . . , zin
such that the value zij is mapped to the `’th location if zij is the `’th input (out of n
inputs) to f . Further, {out′} denotes the set of outputs of TP to the queries of S2.

We now define SIM security for multi-input functional encryption for randomized functions.
We note that IND security can be defined analogously; we skip the details.

Definition 27. We say that a functional encryption scheme FE for n-ary (randomized) func-
tions F is (t1, t2, q)-SIM-secure if:

1. FE is t1-secure against dishonest senders.

2. FE is (t2, q)-SIM-secure against dishonest receivers.

Positive Results for Randomized Functionalities. Building on the techniques of
[GJKS13], both of our constructions for multi-input functional encryption presented in Sections
4 and 5 can be extended to handle randomized functionalities. Below, we outline the necessary
modifications to our second scheme FE II to define a new scheme FE . (We note that FE I can be
modified in a similar manner to handle randomized functionalities.)
FE is defined similarly to FE II, with the following necessary changes:

1. To encrypt a message x, we follow the same steps as in FE II to compute (c1, c2, π). Next,
we sample a key pair (sk, vk) for a strongly unforgeable one-time signature scheme. The
final ciphertext CT consists of (c1, c2, π, vk, σ), where σ is a signature over c1‖c2‖π using
sk.

2. To compute a secret key SKf for a (randomized) function f , we first sample a key K for a
puncturable pseudo-random function (PRF) [SW13, BW13, BGI13, KPTZ13]. Then, key
SKf is computed as diO(H′f ) where H′f is defined similarly to the functionality Hf except
that:

• We additionally check whether the signature σi in each input ciphertext CTi is valid.

• Further, after decrypting each input ciphertext CTi to compute xi, we first compute
randomness r as the output of the PRF on input CT1‖ . . . ‖CTn using key K. The
final output is then computed as f(x1, . . . , xn; r).
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Very briefly, security against dishonest senders follows from the same ideas as in [NY90,
DDN91, Sah99]. Specifically, incorporating the one-time signatures in the ciphertexts ensures
that each ciphertext is unique (and therefore, an adversary cannot modify an honest sender’s
ciphertext to create a decryption query). Further, it is possible to extract the input from an
adversarially created ciphertext using one of the secret keys (while using the semantic security
for the other key). Security against dishonest receivers follows largely in the same manner as for
FE II. The main difference now is that (as in [GJKS13]), we use the punctured PRF to remove

all the secret information in the PRF key for the point ĈT1‖ . . . ‖ĈTn, where ĈT1, . . . , ĈTn
denotes a challenge ciphertext tuple. From the security of the obfuscation, it follows that this
randomness remains hidden from a honest receiver. We refer the reader to [GJKS13] for more
details on the proof.
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A Completing sel-IND Security Proof for FE I
Lemma 28 (H0

c≡ H1). Assuming that Com is a (computationally) hiding commitment scheme,
the outputs of experiments H0 and H1 are computationally indistinguishable.

Proof. Recall that the only difference between H0 and H1 is the manner in which the commit-
ments {Zi,j1 } are computed: in H0, every Zi,j1 is a commitment to the all zeros string 0len, while

in H1, Zi,j1 is a commitment to ĉi,j1 ‖ĉ
i,j
2 . Further, note that the randomness used to compute

Zi,j1 is not used elsewhere in the experiment. Then, by a standard hybrid argument, the indis-
tinguishability of H0 and H1 follows from the computational hiding property of Com. We omit
the details.

Lemma 29 (H1
c≡ H2). Assuming that (CRSGen,Prove,Verify) is witness indistinguishable, the

outputs of experiments H1 and H2 are computationally indistinguishable.

Proof. Recall that the only difference between H1 and H2 is the manner in which the proof strings
π̂i,j in challenge ciphertexts ĈTi,j are computed: in H1, every π̂i,j is computed using the real
witness, while in H2, π̂i,j is computed using the trapdoor witness. Then, by a standard hybrid
argument, the indistinguishability of H1 and H2 follows from the witness indistinguishability
property of the NIWI proof system.

Lemma 30 (H2
c≡ H3). Assuming that Com is a (computationally) hiding commitment scheme,

the outputs of experiments H2 and H3 are computationally indistinguishable.

Proof. Recall that the only difference between H2 and H3 is the manner in which the commit-
ments {Zi2} are computed: in H2, every Zi2, where i ∈ I, is a commitment to 0, while in H3,
Zi2 is a commitment to 1. Further, note that the randomness used to compute Zi2 is not used
anywhere else in the experiment. Then, by a standard hybrid argument, the indistinguishability
of H2 and H3 follows from the computational hiding property of Com.
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Lemma 31 (H3
c≡ H4). Assuming that PKE = (PKE.Setup,PKE.Enc,PKE.Dec) is a semantically-

secure public-key encryption scheme, the outputs of experiments H3 and H4 are computationally
indistinguishable.

Proof. Recall that the only difference between H3 and H4 is the manner in which the second
ciphertexts ĉi,j2 in the challenge ciphertexts ĈTi,j are computed: in H3, ĉi,j2 is an encryption of

the challenge message xi,j , while in H4, ĉi,j2 is an encryption of 0. Further, note that neither

the randomness si,j2 used to compute ĉi,j2 , nor the secret key sk2 is used anywhere else in the
experiment. Then, by a standard hybrid argument, the indistinguishability of H3 and H4 follows
from the semantic security of PKE.

Lemma 32 (H4
c≡ H5). Assuming that iO is an indistinguishability obfuscator, Com is perfectly

binding and (CRSGen,Prove,Verify) is a proof system, the outputs of the experiments H4 and H5

are computationally indistinguishable.

Proof. We prove the lemma for the simplified case where the adversary makes a single key query
f . We remark that by a standard hybrid argument, the proof can be easily extended to the
more general case where the adversary makes poly(k) number of key queries.

Now, note that the only difference between H4 and H5 is the manner in which the secret key
SKf for the key query f is computed: in experiment H4, SKf is an indistinguishability obfusca-
tion of Gf , while in H5, SKf is an indistinguishability obfuscation of Sim.G′f . Now, if Gf and G′f
have the same output behavior on all input points, then the computational indistinguishability
of H4 and H5 follows immediately from the indistinguishability of iO(Gf ) and iO(G′f ). Thus,
all that remains to prove is that for all inputs z, Gf (z) = G′f (z).

Towards that end, we first assume without loss of generality that the encryption scheme
PKE = (PKE.Setup,PKE.Enc,PKE.Dec) does not have any decryption error. We make the
following claim:

Claim 33. For any input z, Gf (z) = ⊥ iff G′f (z) = ⊥.

Proof. Let z = (CT1, . . . ,CTn) be any input to Gf and G′f . For every i ∈ [n], let CTi =

(ci,1, ci,2, πi). Note that both Sim.Gf and Sim.G′f output ⊥ on input z iff there exists i ∈
[n] such that Verify(crs, yi, πi) = 0, where yi = (ci,1, ci,2, pk1, pk2, {Z

i,j
1 }, Zi2) is the statement

corresponding to the NIWI proof πi. The claim follows.

Following the above claim, we shall call an input z to Gf and G′f to be a valid input if
Gf (z) 6= ⊥ (and G′f (z) 6= ⊥). We now demonstrate that the outputs of Gf and G′f differ on
a valid input z only if z satisfies some specific properties. Later, we will rely on the binding
property of Com and the statistical soundness of the NIWI proof system to show that such an
input z does not exist, thus completing the proof.

Claim 34. Let {ĈT1,j , . . . , ĈTn,j}qj=1 denote the challenge ciphertexts given to the adversary,

where every ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j). Then, for every valid input z = (CT1, . . . ,CTn) to Gf and
G′f such that Gf (z) 6= G′f (z), there exists i ∈ [n], CTi = (ci,1, ci,2, πi) in z such that one of the
following two cases holds:

Case 1: If i ∈ I, then ci,1 and ci,2 are encryptions of different messages, and for every j ∈ [q],

either ĉi,1 6= ĉi,j1 or ci,2 6= ĉi,j2 .

Case 2: If i ∈ N \ I, then for every j ∈ [q], either ci,1 6= ĉi,j1 or ci,2 6= ĉi,j2 .

Proof. Suppose that the claim is false. That is, there exists a valid input z∗ = (CT∗1, . . . ,CT
∗
n)

such that Gf (z∗) 6= G′f (z∗), yet z satisfies the following conditions:

Condition A: For every i ∈ I, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i ) is such that:
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1. Either there exists ji ∈ [q] such that c∗i,1 = ĉi,ji1 and c∗i,2 = ĉi,ji2 , or

2. c∗i,1 and c∗i,2 are encryptions of the same message. Let x′i denote this message.

Condition B: For every i ∈ N\I, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i ), there exists ji ∈ [q] such that c∗i,1 = ĉi,ji1

and c∗i,2 = ĉi,ji2 .

Let us inspect the outputs of Gf and G′f on the input z∗. We have that:

Gf (z∗) = f

(〈{
PKE.Dec

(
sk1, ĉ

i,ji
1

)}
i∈N\I

,
{
PKE.Dec

(
sk1, c

∗
i,1

)}
i∈I

〉)
,

G′f (z∗) = f

(〈{
PKE.Dec

(
sk2, ĉ

i,ji
2

)}
i∈N\I

,
{
PKE.Dec

(
sk2, c

∗
i,2

)}
i∈I

〉)
,

where for ` ∈ [2],

〈{
PKE.Dec

(
sk`, ĉ

i,ji
`

)}
i∈N\I

,
{
PKE.Dec

(
sk`, c

∗
i,`

)}
i∈I

〉
denotes the “ar-

rangement” of the values
{
PKE.Dec

(
sk`, ĉ

i,ji
`

)}
i∈N\I

,
{
PKE.Dec

(
sk`, c

∗
i,`

)}
i∈I

according to

their input positions in f . Now, let I′ ⊆ I be such that for every i ∈ I′, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i )

satisfies the condition A(2). Thus, for every i ∈ I\ I′, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i ) satisfies the condition

A(1). Then, we have:

Gf (z∗) = f
(〈{

x0i,ji
}
i∈N\I′ , {x

′
i}i∈I′

〉)
; G′f (z∗) = f

(〈{
x1i,ji

}
i∈N\I′ , {x

′
i}i∈I′

〉)
,

where ~X0 = {x01,j , . . . , x0n,j}
q
j=1 and ~X1 = {x11,j , . . . , x1n,j}

q
j=1 are the challenge messages.

Now, it follows from the I-Compatibility property in the IND-security definition (see Defini-
tion 3) that Gf (z∗) = G′f (z∗), which is a contradiction.

Completing the proof of Lemma 32. We now prove that for every valid input z, Gf (z) 6= G′f (z).
For the sake of contradiction, suppose not. That is, let z∗ be a valid input such that Gf (z∗) =
G′f (z∗). Following Claim 34, fix i ∈ [n], CT∗i = (c∗i,1, c

∗
i,2, π

∗
i ) in z∗ to be such that either Case 1

or Case 2 holds.
First observe that since z∗ is a valid input, we have that Verify(crs, y∗i , π

∗
i ) = 1, where

y∗i = (c∗i,1, c
∗
i,2, pk1, pk2, {Z

i,j
1 }, Zi1) is the statement corresponding to the proof string π∗i . Then,

since (CRSGen,Prove,Verify) is a statistically sound proof system, it follows that the statement
y∗i must be true, i.e., either there exists a real witness or a trapdoor witness for y∗i (see Section
4 for the definitions of real and trapdoor witnesses). We now consider the two cases:

Case 1. i ∈ I: Since c∗i,1 and c∗i,2 are encryptions of different messages, there does not exist

a real witness for y∗i . Then, suppose that there exists a trapdoor witness wtrap = (j, ri,j1 ) for

y∗i . That is, suppose that ∃j ∈ [q] and randomness ri,j1 such that Zi,j1 = Com(c∗i,1, c
∗
i,2; ri,j1 ).

However, note that in experiments H4 and H5, Zi,j1 is computed as a commitment to ĉi,j1 ‖ĉ
i,j
2 .

Since Com is perfectly binding and either c∗i,1 6= ĉi,j1 or c∗i,2 6= ĉi,j2 , we obtain a contradiction.

Case 2. i ∈ N\ I: First observe that since Zi2 is computed as a commitment to 1 in experiments
H4 and H5, it follows from the perfect binding property of Com that there does not exist a real
witness for y∗i . Then, suppose that there exists a trapdoor witness wtrap = (j, ri,j1 ) for y∗i . That

is, suppose that ∃j ∈ [q] and randomness ri,j1 such that Zi,j1 = Com(c∗i,1, c
∗
i,2; ri,j1 ). However,

note that in experiments H4 and H5, Zi,j1 is computed as a commitment to ĉi,j1 ‖ĉ
i,j
2 . Since Com

is perfectly binding and either c∗i,1 6= ĉi,j1 or c∗i,2 6= ĉi,j2 , we obtain a contradiction.

Lemma 35 (H5
c≡ H6). Assuming that PKE = (PKE.Setup,PKE.Enc,PKE.Dec) is a semantically-

secure public-key encryption scheme, the outputs of experiments H5 and H6 are computationally
indistinguishable.
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Proof. The proof follows in the same manner as Lemma 31.

Lemma 36 (H6
c≡ H7). Assuming that iO is an indistinguishability obfuscator, (CRSGen,Prove,Verify)

is a proof system, and Com is perfectly binding, the outputs of experiments H6 and H7 are com-
putationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 32.

Lemma 37 (H7
c≡ H8). Assuming that Com is a (computationally) hiding commitment scheme,

the outputs of experiments H7 and H8 are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 30.

Lemma 38 (H8
c≡ H9). Assuming that (CRSGen,Prove,Verify) is witness indistinguishable, the

outputs of experiments H8 and H9 are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 29.

Lemma 39 (H9
c≡ H10). Assuming that Com is a (computationally) hiding commitment scheme,

the outputs of experiments H9 and H10 are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 28.

B Completing SIM Security Proof for FE I
We now describe a series of hybrid experiments H0, . . . ,H8, where H0 corresponds to the real
world and H8 corresponds to the ideal world experiment. For every i, we will prove that the
output of Hi is computationally indistinguishable from the output of Hi+1.

Hybrid H0: This is the real experiment.

Hybrid H1: This experiment is the same as H0 except in the manner in which the key queries
of the adversary are answered. Let {x1,j , . . . , xn,j}qj=1 ← M be the challenge messages. Then,
whenever the adversary makes a key query f , we perform the following steps:

• Query the trusted party TP on function f . For every j1, . . . , jn ∈ [q], the trusted party
computes and returns the function output out[j1, . . . , jn] = f(x1,j1 , . . . , xn,jn).

• Compute the secret key SKf for function f as SKf ← iO(Sim.Gf ), where Sim.Gf is as
described in Figure 2.

For every i ∈ [n], j ∈ [q], let ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j) denote the challenge ciphertext computed
by the experiment. Then, note that Sim.Gf has the master secret key MSK, the ciphertext pairs

{ĉi,j1 , ĉi,j2 } and the outputs {out[j1, . . . , jn]} hardwired in it.

Hybrid H2: This experiment is the same as H1 except that the setup algorithm computes the
commitments {Zi,j1 } in the following manner: let the challenge ciphertext ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j).

Then, Zi,j1 ← Com(ĉi,j1 ‖ĉ
i,j
2 ).

Hybrid H3: This experiment is the same as H2 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the proof string π̂i,j is computed using the trapdoor witness.

Hybrid H4: This experiment is the same as H3 except that the setup algorithm computes
every Zi2 as a commitment to 1 (instead of 0). That is, for every i ∈ [n], Zi2 ← Com(1).
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Hybrid H5: This experiment is the same as H4 except that in every challenge cipher-
text ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the second ciphertext ĉi,j2 is an encryption of zeros, i.e., ĉi,j2 ←
FE.Enc(EKi, 0

k).

Hybrid H6: This experiment is the same as H5 except that for every key query f , the
corresponding secret key SKf is computed as SKf ← iO(Sim.G′f ) where Sim.G′f is the same as
the function Sim.Gf except that:

1. It has secret key sk2 hardwired instead of sk1.

2. It decrypts the second component of each input ciphertext using sk2. More concretely, in
step 1(c), plaintext x′i is computed as x′i ← PKE.Dec(sk2, ci,2).

Hybrid H7: This experiment is the same as H6 except that in every challenge cipher-
text ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the first ciphertext ĉi,j1 is an encryption of zeros, i.e., ĉi,j1 ←
FE.Enc(EKi, 0

k).

Hybrid H8: This experiment is the same as H7 except that for every key query f , the
corresponding secret key SKf is computed as SKf ← iO(Sim.Gf ). Note that this is the ideal
world experiment.

This completes the description of the hybrid experiments. We note that the proof of in-
distinguishability of the hybrid experiments described above bear much similarity to the proof
of IND security (Section 4.1). Therefore, to avoid repetition, below we only focus on the key
hybrids that differ from the IND security case. Specifically, below, we prove indistinguishability
of hybrid experiments H0 and H1, and then H5 and H6. For details on the rest of the proof, see
Appendix A.

Lemma 40 (H0
c≡ H1). Assuming that iO is an indistinguishability obfuscator, the outputs of

experiments H0 and H1 are computationally indistinguishable.

Proof. We prove the lemma for the simplified case where the adversary makes a single key query
f . By a standard hybrid argument, the proof can be easily extended to the more general case
where the adversary makes poly(k) number of key queries.

Now, note that the only difference between H0 and H1 is the manner in which the secret
key SKf for the key query f is computed: in experiment H0, SKf is an indistinguishability
obfuscation of Gf , while in H1, SKf is an indistinguishability obfuscation of Sim.Gf . Now, if
Gf and Sim.Gf have the same output behavior on all input points, then the computational
indistinguishability of H0 and H1 follows immediately from the indistinguishability of iO(Gf )
and iO(Sim.Gf ). Thus, all that remains to prove is that for all inputs z, Gf (z) = Sim.Gf (z).

Towards that end, let {ĈT1,j , . . . , ĈTn,j}qj=1 denote the challenge ciphertexts computed

in experiments H1 and H2, where every ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j). We say that an input z =
(CT1, . . . ,CTn) to Gf and Sim.Gf is special if for every CTi = (ci,1, ci,2, πi):

• The proof πi is accepting, and

• There exists ji ∈ [q] s.t. ci,1 = ĉi,ji1 and ci,2 = ĉi,ji2 .

Further, we call (j1, . . . , jn) to be the “index set” of z.
Now note that the only difference between the functions Gf and Sim.Gf is that on a special

input z with index set (j1, . . . , jn), Sim.Gf skips the usual decryption step and directly outputs
the value out[j1, . . . , jn] hardwired in its description. Recall that (by definition) out[j1, . . . , jn] =
f(x1,j1 , . . . , xn,jn) where {x1,j , . . . , xn,j}qj=1 denote the challenge messages. However, on such
an input z, by performing the decryption step, Gf obtains the messages (x1,j1 , . . . , xn,jn) and
therefore its output is f(x1,j1 , . . . , xn,jn) as well.
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Lemma 41 (H5
c≡ H6). Assuming that iO is an indistinguishability obfuscator, Com is perfectly

binding, and (CRSGen,Prove,Verify) is a proof system, the outputs of experiments H5 and H6

are computationally indistinguishable.

Proof. We prove the lemma for the simplified case where the adversary makes a single key query
f . By a standard hybrid argument, our proof can be easily extended to the more general case
where the adversary makes poly(k) number of key queries.

Now, note that the only difference between H5 and H6 is the manner in which the secret
key SKf for the key query f is computed: in experiment H5, SKf is an indistinguishability
obfuscation of Sim.Gf , while in H6, SKf is an indistinguishability obfuscation of Sim.G′f . Now, if

Sim.Gf and Sim.G′f have the same output behavior on all input points, then the computational
indistinguishability of H5 and H6 follows immediately from the indistinguishability of iO(Sim.Gf )
and iO(Sim.G′f ). Thus, all that remains to prove is that for all inputs z, Sim.Gf (z) = Sim.G′f (z).

Towards that end, we first assume without loss of generality that the encryption scheme
PKE = (PKE.Setup,PKE.Enc,PKE.Dec) does not have any decryption error. We make the
following claim:

Claim 42. For any input z, Sim.Gf (z) = ⊥ iff Sim.G′f (z) = ⊥.

Proof. Let z = (CT1, . . . ,CTn) be any input to Sim.Gf and Sim.G′f . For every i ∈ [n], let

CTi = (ci,1, ci,2, πi). Note that both Sim.Gf and Sim.G′f output ⊥ on input z iff there exists

i ∈ [n] such that Verify(crs, yi, πi) = 0, where yi = (ci,1, ci,2, pk1, pk2, {Z
i,j
1 }, Zi2) is the statement

corresponding to the NIWI proof πi. The claim immediately follows.

Following the above claim, we shall call an input z to Sim.Gf and Sim.G′f to be a valid input

if Sim.Gf (z) 6= ⊥ (and Sim.G′f (z) 6= ⊥). We make the following claim regarding valid inputs:

Claim 43. Let {ĈT1,j , . . . , ĈTn,j}qj=1 denote the challenge ciphertexts given to the adversary,

where every ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j). Let z = (CT1, . . . ,CTn) denote a valid input to Sim.Gf and

Sim.G′f . Then, for every CTi = (ci,1, ci,2, πi), there exists ji ∈ [q] s.t. ci,1 = ĉi,ji1 and ci,2 = ĉi,ji2 .

Proof. Suppose that the claim is false. That is, for a valid input z = (CT1, . . . ,CTn), ∃ CTi =
(ci,1, ci,2, πi) s.t. ∀ j ∈ [q], either ci,1 6= ĉi,j1 or ci,2 6= ĉi,j2 . Now, since z is a valid input,

we have that Verify(crs, yi, πi) = 1, where yi = (ci,1, ci,2, pk1, pk2, {Z
i,j
1 }, Zi2) is the statement

corresponding to the NIWI proof πi. Then, since (CRSGen,Prove,Verify) is a statistically sound
proof system, it follows that the statement yi must be true. We consider the following two cases:

Case 1: The ciphertexts ci,1 and ci,2 are encryptions of the same message and there exists
randomness ri2 s.t. Z2 ← Com(0; ri2). However, note that in experiments H5 and H6, Zi2 is
computed as a commitment to 1. Since Com is a perfectly binding commitment scheme,
we obtain a contradiction.

Case 2: ∃j ∈ [q] and randomness ri,j1 such that Zi,j1 = Com(ci,1‖ci,2; ri,j1 ). However, note that

in experiments H5 and H6, Zi,j1 is computed as a commitment to ĉi,j1 ‖ĉ
i,j
2 . Since Com is

a perfectly binding commitment scheme and either ci,1 6= ĉi,j1 or ci,2 6= ĉi,j2 , we obtain a
contradiction.

This completes the proof of the above claim.

Completing the proof of Lemma 41. Following Claim 42, we only need to prove that for every
valid input z, Sim.Gf (z) = Sim.G′f (z). Now, let z = (CT1, . . . ,CTn) be any valid input to

Sim.Gf and Sim.G′f . From Claim 49, we have that for every i ∈ [n], there exists ji ∈ [q] such

that CTi = ĉi,ji1 , ĉi,ji2 , πi. Then, note that on such an input z = (CT1, . . . ,CTn), both Sim.Gf
and Sim.G′f output the same (programmed) value, i.e., out[j1, . . . , jn].
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This completes the proof of Lemma 41.

C Proving IND Security for FE II
We now prove that the proposed scheme FE II is (t, poly(k))-IND-secure for any t ≤ n and
arbitrary poly(k) number of message queries. We will prove security via a series of hybrid
experiments H0, . . . ,H8, where H0 (resp., H8) corresponds to the real world experiment with
challenge bit b = 0 (resp., b = 1).

Hybrid H0: This is the real experiment with challenge bit b = 0.

Hybrid H1: This experiment is the same as H0 except that the setup algorithm computes
a “simulated” CRS for the simulation-sound NIZK proof system, i.e., the CRS is computed as
(crs, τ)← Sim.CRSGen(1k).

Hybrid H2: This experiment is the same as H1 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), π̂i,j is computed as a simulated proof, i.e., π̂i,j ← Sim.Prove(crs, τ, yi,j)

where the statement yi,j = (ĉi,j1 , ĉi,j2 , pk1, pk2, Zi).

Hybrid H3: This experiment is the same as H2 except that for every i ∈ N \ I, the setup
algorithm computes every Zi as a commitment to 1 (instead of 0), i.e., Zi ← Com(1).

Hybrid H4: This experiment is the same as H3 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the second ciphertext ĉi,j2 is an encryption of the challenge message x1i,j
(as opposed to x0i,j), i.e., ĉi,j2 ← FE.Enc(EKi, x

1
i,j).

Hybrid H5: This experiment is the same as H4 except that for every key query f , the
corresponding secret key SKf is computed as SKf ← diO(H′f ) where H′f is the same as the
function Hf except that:

1. It has secret key sk2 hardwired instead of sk1.

2. It decrypts the second component of each input ciphertext using sk2. More concretely, in
step 1(c), plaintext x′i is computed as x′i ← PKE.Dec(sk2, ci,2).

Hybrid H6: This experiment is the same as H5 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the first ciphertext ĉi,j1 is an encryption of the challenge message x1i,j (as

opposed to x0i,j), i.e., ĉi,j1 ← FE.Enc(EKi, x
1
i,j).

Hybrid H7: This experiment is the same as H6 except that for every key query f , the
corresponding secret key SKf is computed as SKf ← diO(Hf ).

Hybrid H8: This experiment is the same as H7 except that the setup algorithm computes
every Zi as a commitment to 0.

Hybrid H9: This experiment is the same as H8 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the proof string π̂i,j is computed using the honest prover algorithm.
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Hybrid H10: This experiment is the same as H9 except that the setup algorithm computes
an “honest” CRS for the NIZK proof system, i.e., the CRS is computed as crs ← CRSGen(1k).
Note that this is the real experiment with challenge bit b = 1.

This completes the description of the hybrids. We now prove their computational indistin-
guishability via a series of lemmas.

Lemma 44 (H0
c≡ H1). Assuming that (CRSGen,Prove,Verify) is a zero-knowledge argument

system, the outputs of experiments H0 and H1 are computationally indistinguishable.

Proof. This follows immediately from the fact that the distributions {CRSGen(1k)} and {Sim.CRSGen(1k)}
are computationally indistinguishable.

Lemma 45 (H1
c≡ H2). Assuming that (CRSGen,Prove,Verify) is a zero-knowledge argument

system, the outputs of experiments H1 and H2 are computationally indistinguishable.

Proof. Recall that the only difference between H1 and H2 is the manner in which the proof
strings π̂i,j in challenge ciphertexts ĈTi,j are computed: in H1, every π̂i,j is computed honestly
using the witness, while in H2, π̂i,j is a simulated proof computed using the simulator for the
NIZK argument system. Then, by a standard hybrid argument, the indistinguishability of H2

and H3 follows from the zero-knowledge property of the NIZK argument system.

Lemma 46 (H2
c≡ H3). Assuming that Com is a computationally hiding commitment scheme,

the outputs of experiments H2 and H3 are computationally indistinguishable.

Proof. Recall that the only difference between H2 and H3 is the manner in which the commitment
{Zi}i∈N\I are computed: in H2, every Zi is a commitment to 0, while in H3, Zi is a commitment
to 1. Further, note that the randomness used to compute Z is not used anywhere else in
the experiment. Then, the indistinguishability of H2 and H3 follows immediately from the
computational hiding property of Com.

Lemma 47 (H3
c≡ H4). Assuming that PKE = (PKE.Setup,PKE.Enc,PKE.Dec) is a semantically-

secure public-key encryption scheme, the outputs of experiments H3 and H4 are computationally
indistinguishable.

Proof. Recall that the only difference between H3 and H4 is the manner in which the second
ciphertexts ĉi,j2 in the challenge ciphertexts ĈTi,j are computed: in H3, ĉi,j2 is an encryption of

the challenge message x0i,j , while in H4, ĉi,j2 is an encryption of x1i,j . Further, note that nether

the randomness si,j2 used to compute ĉi,j2 nor the secret key sk2 is used anywhere else in the
experiment. Then, by a standard hybrid argument, the indistinguishability of H3 and H4 follows
from the semantic security of PKE.

Lemma 48 (H4
c≡ H5). Assuming that diO is a differing-inputs obfuscator, Com is perfectly

binding and (CRSGen,Prove,Verify) is simulation-sound, the outputs of experiments H4 and H5

are computationally indistinguishable.

Proof. We prove the lemma for the simplified case where the adversary makes a single key query
f . This query could either be made by adversary A1 or A2. In the former case, we refer to f
as a non-adaptive key query, while in the latter case, we refer to it as an adaptive key query.
We remark that by a standard hybrid argument, the proof can be easily extended to the more
general case where the adversary makes poly(k) number of (non-adaptive and adaptive) key
queries.

Now, note that the only difference between H4 and H5 is the manner in which the secret key
SKf for the key query f is computed: in experiment H4, SKf is a differing-inputs obfuscation of
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Hf , while in H5, SKf is a differing-inputs obfuscation of H′f . It follows that if there exists a PPT
adversary A that distinguishes between the outputs of H4 and H5 with non-negligible probability,
then we can construct a PPT adversary A′ that distinguishes between diO(Hf ) and diO(H′f )
with non-negligible probability. Then, it follows from Definition 9 that for such an adversary
A′, there exists a PPT extractor algorithm E that on input (Hf ,H′f ) outputs an input value z∗

such that Hf (z∗) 6= H′f (z∗). We will use E to contradict the simulation-soundness property of
the NIZK argument system (CRSGen,Prove,Verify).

Towards that end, let z∗ = (CT∗1, . . . ,CT
∗
n), where for every i ∈ [n], CT∗i = (c∗i,1, c

∗
i,2, π

∗
i ).

Without loss of generality, we assume that every proof string π∗i is accepting. This is because
otherwise from the definition of Hf and H′f , we have that Hf (z∗) 6= H′f (z∗). We make the
following claim about the input z∗.

Claim 49. Let {ĈT1,j , . . . , ĈTn,j}qj=1 denote the challenge ciphertexts in experiments H3 and

H4, where every ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j). Then, there exists i ∈ [n], CT∗i = (c∗i,1, c
∗
i,2, π

∗
i ) in z∗

such that one of the following two cases holds:

Case 1: If i ∈ I, then c∗i,1 and c∗i,2 are encryptions of different messages, and for every j ∈ [q],

either c∗i,1 6= ĉi,j1 or c∗i,2 6= ĉi,j2 .

Case 2: If i ∈ N \ I, then for every j ∈ [q], either c∗i,1 6= ĉi,j1 or c∗i,2 6= ĉi,j2 .

Proof. Suppose that the claim is false. That is, the input z∗ = (CT∗1, . . . ,CT
∗
n) output by E is

such that:

Condition A: For every i ∈ I, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i ) is such that:

1. Either there exists ji ∈ [q] such that c∗i,1 = ĉi,ji1 and c∗i,2 = ĉi,ji2 , or

2. c∗i,1 and c∗i,2 are encryptions of the same message. Let x′i denote this message.

Condition B: For every i ∈ N\I, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i ), there exists ji ∈ [q] such that c∗i,1 = ĉi,ji1

and c∗i,2 = ĉi,ji2 .

Let us now inspect the outputs of Hf and H′f on the input z∗. We have that:

Hf (z∗) = f

(〈{
PKE.Dec

(
sk1, ĉ

i,ji
1

)}
i∈N\I

,
{
PKE.Dec

(
sk1, c

∗
i,1

)}
i∈I

〉)
,

H′f (z∗) = f

(〈{
PKE.Dec

(
sk2, ĉ

i,ji
2

)}
i∈N\I

,
{
PKE.Dec

(
sk2, c

∗
i,2

)}
i∈I

〉)
,

where for ` ∈ [2],

〈{
PKE.Dec

(
sk`, ĉ

i,ji
`

)}
i∈N\I

,
{
PKE.Dec

(
sk`, c

∗
i,`

)}
i∈I

〉
denotes the “ar-

rangement” of the values
{
PKE.Dec

(
sk`, ĉ

i,ji
`

)}
i∈N\I

,
{
PKE.Dec

(
sk`, c

∗
i,`

)}
i∈I

according to

their input positions in f . Now, let I′ ⊆ I be such that for every i ∈ I′, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i )

satisfies the condition A(2). Thus, for every i ∈ I\ I′, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i ) satisfies the condition

A(1). Then, we have:

Hf (z∗) = f
(〈{

x0i,ji
}
i∈N\I′ , {x

′
i}i∈I′

〉)
; H′f (z∗) = f

(〈{
x1i,ji

}
i∈N\I′ , {x

′
i}i∈I′

〉)
,

where ~X0 = {x01,j , . . . , x0n,j}
q
j=1 and ~X1 = {x11,j , . . . , x1n,j}

q
j=1 are the challenge messages.

Now, regardless of whether f is a non-adaptive or adaptive key query, it follows from the
I-Compatibility property in the IND-security definition (see Definition 3) that Hf (z∗) = H′f (z∗),
which is a contradiction.
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Completing the proof of Lemma 48. Following the above claim, fix CT∗i = (c∗i,1, c
∗
i,2, π

∗
i ) in z∗ to

be such that either Case 1 or Case 2 holds. Let y∗i = (c∗i,1, c
∗
i,2, pk1, pk2, Zi) be the statement

corresponding to the proof string π∗i . Further, let ŷi,j be the statement corresponding to the

proof string π̂i,j in challenge ciphertext CTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j).
We consider Case 1 and Case 2 separately.

Case 1. Since c∗i,1 and c∗i,2 are encryptions of different messages, we have that the statement

y∗i is false. Further, since for all j ∈ [q], either c∗i,1 6= ĉi,j1 or c∗i,2 6= ĉi,j2 , we have that y∗i 6= ŷi,j .
Then, we have that the output z∗ of the extractor algorithm E includes an accepting proof
for a new, false statement y∗i . This contradicts the simulation-soundness property of the NIZK
argument system (CRSGen,Prove,Verify).

Case 2. Since Zi is computed as a commitment to 1 in experiments H3 and H4, it follows from
the perfect binding property of Com that the statement y∗i is false. Further, since for all j ∈ [q],

either c∗i,1 6= ĉi,j1 or c∗i,2 6= ĉi,j2 , we have that y∗i 6= ŷi,j . Then, we have that the output z∗ of the
extractor algorithm E includes an accepting proof for a new, false statement y∗i . This contradicts
the simulation-soundness property of the NIZK argument system (CRSGen,Prove,Verify).

Lemma 50 (H5
c≡ H6). Assuming that PKE = (PKE.Setup,PKE.Enc,PKE.Dec) is a semantically-

secure public-key encryption scheme, the outputs of experiments H5 and H6 are computationally
indistinguishable.

Proof. The proof follows in the same manner as Lemma 47.

Lemma 51 (H6
c≡ H7). Assuming that diO is a differing-inputs obfuscator, Com is perfectly

binding and (CRSGen,Prove,Verify) is simulation-sound, the outputs of experiments H6 and H7

are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 48.

Lemma 52 (H7
c≡ H8). Assuming that Com is a computationally hiding commitment scheme,

the outputs of experiments H7 and H8 are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 46.

Lemma 53 (H8
c≡ H9). Assuming that (CRSGen,Prove,Verify) is a NIZK argument system, the

outputs of experiments H8 and H9 are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 45.

Lemma 54 (H9
c≡ H10). Assuming that (CRSGen,Prove,Verify) is a NIZK argument system,

the outputs of experiments H9 and H10 are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 44.

D NA-SIM-secure MI-FE

NA-SIM security for multi-input FE is defined similarly to definition 4, except that now the
adversary is required to make key queries before (as opposed to after) choosing the challenge
messages. More concretely, we define (t, p, q)-NA-SIM-secure functional encryption where (as
earlier) t denotes the number of encryption keys known to the adversary and q denotes the
number of challenge messages per encryption key. The new parameter p denotes the total
number of non-adaptive key queries by the adversary. Below, we present the formal definition.
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Definition 55 (NA-SIM Security). We say that a functional encryption scheme FE for n-ary
functions F is (t, p, q)-NA-SIM-secure if for every PPT adversary A = (A0,A1,A2), there exists
a PPT simulator S = (S0,S1,S2) such that the outputs of the following two experiments are
computationally indistinguishable:

Experiment REALFEA (1k):
(I, st0)← A0(1k) where |I| = t

( ~EK,MSK)← FE.Setup(1k)

(M, st1)← AFE.Keygen(MSK,·)
1 (st0, ~EKI)

~X ←M where ~X = {x1,j , . . . , xn,j}qj=1

CTi,j ← FE.Enc(EKi, xi,j) ∀i ∈ [n], j ∈ [q]

α← A2( ~CT, st1)

Output: (I,M, ~X, {f`}, α)

Experiment IDEALFES (1k):
(I, st0)← S0(1k)
(M, st1)← S1(st0)

α← STP(M,·,·)
2 (st1)

Output: (I,M, ~X, {g`}, α)

where {f`} denote the queries of A1 to FE.Keygen and {g`} denote the functions appearing
in the queries of S2 to TP such that |{f`}| = |{g`}| = p. The oracle TP(M, ·, ·) denotes the ideal
world trusted party that given the message distribution M, TP first samples a message vector
~X ←M , where ~X = {x1,j , . . . , xn,j}qj=1. It accepts input queries of the form (g, (j1, . . . , jn))

and outputs g(x1,j1 , . . . , xn,jn).
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