
R. Wicik, T. Rachwalik, Modified Alternating Step Generators  1 

Modified Alternating Step Generators 

Robert Wicik, Tomasz Rachwalik 
 

Military Communication Institute 
Warszawska 22A, 05-130 Zegrze, Poland 

{r.wicik, t.rachwalik}@wil.waw.pl 
 

Abstract. Irregular clocking of feedback shift registers is a popular 
technique to improve parameters of keystream generators in stream 
ciphers. Another technique is to implement nonlinear functions. We join 
these techniques and propose Modified Alternating Step Generators built 
with linear and nonlinear feedback shift registers. Adequate nonlinear 
Boolean functions are used as feedbacks or as filtering functions of shift 
registers in order to increase complexity of sequences produced by 
individual registers and the whole generator. We investigate basic 
parameters of proposed keystream generators, such as period, linear 
complexity and randomness. 
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1 Introduction 
The basic component of stream ciphers is a pseudorandom generator of a keystream. A sender combines the 

keystream with a plaintext during ciphering. Subsequently, a receiver combines the same keystream with a 
cryptogram to retrieve the plaintext. Parameters of keystreams are very important due to various methods of 
cryptanalysis. A generator of keystream in a stream cipher should produce pseudorandom sequences of large 
period, high linear complexity and very good statistical properties. It should be resistant to reconstruct the internal 
state and member functions (registers) from the output sequence. 

One class of pseudorandom generators bases on feedback shift registers (FSR) with linear or nonlinear 
functions as their feedbacks. Such generators contain one or frequently more than one feedback shift registers 
regularly or irregularly clocked. Irregular clocking of one FSR controlled by the output of another FSR is a 
principle of stop-and-go generator [2]. Such generator (under suitable conditions) gives pseudorandom sequence 
of high linear complexity. 

In the alternating step generator (ASG), the de Bruijn sequence controls the irregular clocking of two linear 
feedback shift registers [3]. In the alternating step(r,s) generator (ASG(r,s)), two integers r and s determine how 
many times one register or the other is clocked by one bit of the de Bruijn sequence [7]. These generators produce 
binary sequences with maximum period, high linear complexity and good statistical properties, but they are 
vulnerable to cryptanalytic attacks [6], [12], [25], [26]. 

Modified alternating generators (MAG) base on the ASG or ASG(r,s), but there are some modifications in 
controlling of clocking or in producing of an output [8] [9] [11]. The most interesting one is the third class of 
modified alternating k-generators – MAGk

3, where the function of binary states of all three registers of the 
generator gives an output. We use this construction as the base of our proposals of modified alternating step 
generators – MASG – designed to enhance the resistance of the ASG to known attacks. 

The basic technique for protection of the interior of the keystream generator is to introduce nonlinearity of its 
output. We described in [20] the concept of utilizing wide nonlinear transformation as an output of the ASG. In 
this paper, in the MASG and MASG0 we use nonlinear Boolean functions as feedbacks of shift registers [22] [27]. 
In the MASG1 and MASG2 we use nonlinear Boolean functions [19] as filters and combiners of states of registers 
to produce output binary sequences of the generators. We evaluate periods and linear complexities of output 
keystreams of MASGs and asses their randomness. 

2 The Alternating Step Generator 
The alternating step generator (ASG) is a pseudorandom generator of binary sequences, where the concept of 

the stop-and-go generator was developed [3]. The ASG consists of two linear feedback shift registers (LFSR) 
alternately clocked by the de Bruijn sequence [4]. The de Bruijn sequence of period K=2k can be easily obtained 
by adding zero-bit after k-1 zeros in the sequence with period 2k-1 from the LFSR (from modified de Bruijn 
sequence). The exclusive-or sum (XOR) of bits from irregular clocked LFSRs produce output bits from the 
generator. 
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Figure 1.  The Alternating Step Generator 

The output sequence from the ASG has large period T and high linear complexity L: 

 T= M1M22k     (1) 

(m1 + m2) 2k-1 < L  (m1 + m2) 2k    (2) 

where: 
 the period of de Bruijn sequence is K=2k, 
 different and irreducible polynomials defining feedbacks of LFSRs of degrees m1 and m2 have periods: 

M1,M2> 1; gcd(M1, M2) = 1 (in a binary case it is enough to feedback polynomials be relatively prime). 

We can observe growth of the linear complexity of the output sequence from the ASG (2) in comparison to the 
sequence obtained from a simple LFSR (where the linear complexity is equal to its length – m1 or m2 in this case). 

The ASG is vulnerable to various attacks. There are many variants of correlation and algebraic attacks and the 
best two are described in [6] and [25]. Asymptotic time complexity of these attacks is O(m222m/3) and data 
complexity O(22m/3), where m is the length of the shortest register in the ASG. Time complexity of the algebraic 
attack described in [13] is much higher, however this attack can be applied if polynomials of irregular clocked 
registers are unknown, while requiring less output bits. These attacks exploit dependencies between output 
sequence (for known plaintext) and internal states of irregularly controlled registers. 

2.1 The Alternating Step(r,s) Generator 
The alternating step(r,s) generator, ASG(r,s), was proposed in [7]. Two positive integers: r and s are 

parameters of this generator, where r determines how many times one register (LFSR1) is clocked and s – the 
other one (LFSR2). The original construction of ASG is a special case of ASG(r,s) for r=s=1, where LFSRs are 
alternately clocked only ones at a given time. 

The controlling sequence in ASG(r,s) is the de Bruijn sequence, where there are 2k-1 ‘zeros’ and ‘ones’, thus 
after full period K=2k, the LFSR1 is clocked r2k-1 times and the LFSR2 is clocked s2k-1 times. The output sequence 
of ASG(r,s) has the same period T (1) and linear complexity L (2) as the original ASG under extra conditions: 

gcd(r, M1) = 1,   gcd(s, M2) = 1. 

The aim of the introduction of two integers r and s to the ASG was to increase its resistance to correlation 
attacks. But in [12] authors showed, that the ASG(r,s) is as secure as the original ASG. Afterwards, Kanso 
proposed in [8] and [9] MGCCASG and MCCASG constructions based on the ASG(r,s), where integers r and s 
are variable – dependent on the key or on the function of the state of the controlling register. 

Another method of improving the ASG, proposed in [10], was to exchange some LFSRs for feedback with 
carry shift registers (FCSR) and XOR sum for addition with carry (ADD) as an output function. This modification 
of the ASG does not improve its security substantially. 

3 Modified Alternating k-Generators 
Modified alternating k-generators (MAGk) were proposed in [11]. In the first approach, the main change 

introduced to the ASG was in the output function – sequence is produced by the XOR sum of binary sequences 
from all three registers of the MAGk, as it is presented in Fig. 2. Feedback shift registers in the MAGk can be 
linear on nonlinear. 

 
Figure 2.  The Modified Alternating k-Generator 
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There are more modifications of the MAGk proposed in [11]: 
1. MAGk

1 – the function of state bits of the controlling register determines how many times controlled registers 
are clocked; 

2. MAGk
2 – the binary output of the function (inner control function) of state bits of the controlling register 

determines alternating clocking of controlled registers; 
3. MAGk

3 – the output from the generator is produced by the function (output generating function) of binary 
states of all three registers: one controlling and two controlled ones. 

The first class of MAGk is similar to the MCCASG [9]. The second class was analyzed in [13], where authors 
showed that its security is not better than the security of the original alternating step generator. The third class is 
similar to our concept described in [20], where the output transformation combines bit sequences from all registers 
of the ASG. The MAGk

3 produces one bit at a given time and the generator from [20] produces the wide vector of 
bits.  

We concentrated on the third class of modified alternating k-generators, the MAGk
3, because we suppose that 

properly selected nonlinear output function can avoid attacks on the generator. But, first we replaced two 
controlled linear feedback shift registers with nonlinear feedback shift registers (NLFSR). 

4 NonLinear Feedback Shift Registers 
Linear feedback shift registers (LFSR) are popular building blocks in stream ciphers, but LFSRs have a 

drawback, as their linear complexity is equal to their length. In recent years, nonlinear feedback shift registers 
(NLFSR) have received much attention in designing numerous cryptographic algorithms. In most cases, NLFSRs 
have much bigger linear complexity than LFSRs of the same length. 

 
Figure 3.  A Feedback Shift Register 

The scheme of a (Fibonacci, binary) feedback shift register (FSR) is presented in Fig. 3. A shift register is 
composed of n cells indicated by: 

x0, x1, …, xn-1, where xi  {0,1} for i= 0, 1, ..., n–1. 

If a Boolean feedback function fn : {0,1}n –> {0,1} is linear, we call such register the LFSR, if nonlinear – the 
NLFSR. There are well known methods of constructing linear feedback functions for LFSRs such that generated 
sequences are maximal with period 2n-1. Methods for constructing nonlinear functions for feedback shift registers 
generating maximal period sequences are developed. 

We used the implementation of NLFSRs in Field Programmable Gate Arrays [22] to perform a search of 
NLFSRs with the order up to n=31 and the maximum period equal to 2n−1. Another implementation and parallel 
computing gave similar results [27]. Maximal linear complexity of sequences taken from such NLFSRs is 2n−2. 
They worked out many nonlinear functions f as feedbacks of shift registers, for instance: (3) and (4). These 
NLFSRs have the maximum period and the linear complexity close to the period. 

The algebraic normal form of the function f27:        (3) 
x0 + x4 + x8 + x9 + x11 + x12 + x15 + x16 + x23 +  
x12x22 + x13x23 + x13x25 + x22x23 +  
x7x8x24 +  
x12x14x26 + x6x11x19x22 

The algebraic normal form of the function f29:        (4) 
 x0 + x2 + x3 + x4 + x7 + x12 + x20 + x21 +  

x2x25 + x15x21 + x17x21 +  
x5x17x22 + x5x23x26 + x11x14x15 +  
x11x24x26 + x14x21x25 +  
x7x10x20x24 + x11x13x17x21 

Addition and multiplication are performed in (3) and (4) modulo 2. 

5 Nonlinear filtering, combining functions 
Nonlinear Boolean functions are often used in stream ciphers together with linear feedback shift registers in 

order to increase security of keystream generators. There are two kinds of such functions: filtering and combining 
ones. The combining function is an output function, which is fed by several LFSRs. The filtering function is an 
output function, which is fed by the state of one LFSR. Various properties of such functions are critical for 
ensuring the security of keystream generators. Such functions should: 
 be balanced, 
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 have high nonlinearity in the meaning of the Hamming distance to affine functions and to functions with 
linear structure [24], 

 have high algebraic degree (nonlinear order) and many nonlinear components in its algebraic normal form, 
 have correlation immunity of high order (note, that high algebraic degree restrict the maximum possible 

correlation immunity). 

Perfect nonlinear functions (e.g. bent functions), have maximum nonlinearity, but are not balanced. 
Fortunately, it is easy to balance such functions not much reducing nonlinearity. Correlation immunity for high 
nonlinearity is low. However, we can increase correlation immunity by adding memory to the function. 

Functions proposed in [19] for S-boxes, based on the Rothaus’ construction, can be utilized as nonlinear filters 
and combiners of feedback shift registers in keystream generators. After balancing, a nonlinear Boolean bent 
function has high nonlinearity and many nonlinear components in its algebraic normal form. 

For even q, a Boolean bent function g : {0,1}q –> {0,1} has: 
 nonlinearity (Hamming distance do the nearest affine function): 2q-1-2 q/2-1, 
 nonlinear order < q/2. 

Boolean balanced function gb : {0,1}q –> {0,1}, derived from a bent function g, has: 
 nonlinearity > 2q-1-2 q/2, 
 nonlinear order: q-1. 

There are in [19] described methods of generating and constructing bent functions for q= 4, 6, 8, and for q>8. 
In order to balance bent function for even q we should negate 2 q/2-1 bits in its truth table – ‘zeros’ if its Hamming 
weight is 2q-1-2 q/2-1 or ‘ones’ if its Hamming weight is 2q-1+2 q/2-1. We can observe that these balanced functions 
have higher nonlinear order than bent functions. 

We generate three functions gb0, gb1 and gb2 for q=8. Below we present the truth tables of these functions – 
sets of output bits written in hexadecimal of eight bits for 256 consecutive inputs from 00 to FF. 

gb0 = {7F,1C,0B,76,9E,88,8D,28,ED,FB,85,2C,A0,CA,8E,31, 
   B2,C2,7A,55,26,22,88,1F,DE,58,0B,B4,C7,9F,7C,D9} 

gb1 = {64,F2,43,FD,37,11,E9,26,18,3F,BD,2B,C6,92,9A,3F, 
   35,40,D4,D2,85,88,8D,62,B6,73,D5,7B,9B,F4,01,85} 

gb2 = {3A,9E,22,FB,F3,B9,AC,64,60,6B,66,45,0C,6A,4D,BC, 
   BB,87,5B,7C,02,41,AF,0A,16,8D,E0,B5,52,2D,BB,2D} 

Nonlinearity of gb0, gb1 and gb2 is 114, nonlinear order is 7. The Table 1 contains numbers of nonlinear 
components in algebraic normal forms of these functions. 

Table 1.  Numbers of nonlinear components in gb for q=8 
degree 2 3 4 5 6 7 
gb0 16 36 49 40 15 5 
gb1 17 27 32 27 17 3 
gb2 17 27 22 15 14 5 

 

We generate three functions gb10, gb11 and gb12 for q=18, too. The Table 2 contains numbers of nonlinear 
components in algebraic normal forms of these functions. 

Table 2.  Numbers of nonlinear components in gb for q=18 
degree 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
gb10 80 356 1185 2863 5454 9091 14173 19261 20460 16064 9245 4363 1505 382 77 9 
gb11 82 370 1176 2692 4229 5444 7568 13542 18343 15588 9292 4224 1539 405 75 9 
gb12 83 363 1187 2583 4563 6722 9973 15171 18500 15679 9361 4314 1488 398 86 10 

 
There are too many nonlinear components to implement a function gb for q=18 in a reasonable hardware, but a 

truth table of such function needs only 32kByte of memory. 

6 Modified Alternating Step Generators 
In the section 4, we proposed binary nonlinear feedback shift registers with maximum period and high linear 

complexity. In the section 5, we introduced nonlinear, balanced filtering/combining Boolean functions with high 
nonlinearity. In this section, we propose modifications of the alternating step generator. These modifications use 
overall concepts of the alternating step generator and modified alternating k-generators (ASG/MAGk). 
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6.1 MASG and MASG0 
Our first approach to the modification of the ASG is to replace controlled registers LFSR1 and LFSR2 by 

NLFSRs with feedback functions (3) and (4) in order to introduce nonlinearity to the ASG. Upon (1) and (2), for 
m1=29, m2=27 and M1=229-1, M2=227-1, and L1=229-2, L2=227-2, the output sequence of the modified alternating 
step generator has the period T’ and should have the linear complexity no less than L’: 

 T’ = M1M22k     (5) 

 L’ > (L1+L2)2k-1     (6) 
where: 
 the period of de Bruijn sequence is K=2k (suggested length of the controlling register is k ≥ 127); 
 gcd(M1,M2)=1. 

Note, that L1=229-2 and L2=227-2 are maximal for these NLFSRs, but we know how to check these values for 
NLFSRs of order up to 25 in this moment. The linear complexity of the NLFSR shows as how it is secure against 
the Berlekamp-Massey synthesis algorithm – it is the length of the shortest LFSR generating the same sequence, 
hence we replaced m1 and m2 from (2) with L1 and L2 in (6). 

The modified alternating step generator produces binary sequences with better linear complexity and seems 
more secure than the ASG because of nonlinear registers, but we should find nonlinear functions for longer 
NLFSRs than 31. These functions should have high nonlinear order, many nonlinear components and give 
maximal sequence.  

We will call the Modified Alternating Step Generator (MASG) the alternating step generator, where the output 
is produced by the XOR sum of binary sequences from two NLFSRs alternately clocked by the de Bruijn 
sequence. De Bruijn sequence is obtained from LFSR by adding zero-bit after k-1 zeros. 

 
Figure 4.  The Modified Alternating Step Generators: MASG and MASG0 

We will call the MASG0 the alternating step generator, where the output is produced by the XOR sum of 
binary sequences from all three registers. In other words, MASG0 is the MAGk with LFSR as the controlling 
register and NLFSRs as controlled ones. The dotted line in Fig. 4 represents the difference between the MASG 
and the MASG0. 

6.2 MASG1 
MASG1 – is the MAGk, where all linear feedback shift registers are equipped with filtering functions of the 

class gb, described in the section 5 for q=8. Controlling register LFSR0 has parameters (length, period): (k, K); 
controlled registers LFSR1 and LFSR2: (m1, M1) and (m2, M2), respectively. 

The output of the MASG1 is the XOR sum of outputs of three functions: gb0, gb1 and gb2 (as we showed in 
Fig. 5). Inputs to these functions are taken from shift registers. For each register and associated function, distances 
between cells in registers (indicated by x in Fig. 3) taken to the functions are fixed and equal to δ0, δ1 and δ2, 
respectively for controlling and controlled registers. 

 
Figure 5.  The Modified Alternating Step Generator MASG1 
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If registers in the MASG1 are linear with feedbacks defined by primitive polynomials with periods relatively 
prime to distances δ0, δ1 and δ2: 

      gcd(K, δ0),  gcd(M1, δ1)  and  gcd(M2, δ2)    (7) 

and functions gb have nonlinear orders: 

       q0-1< k,     q1-1< m1     and     q2-1< m2 

so independently treated outputs sequences of regularly clocked registers LFSR0,1,2 with filters gb0,1,2 have (see 
[23]) linear complexities no less than: 

      )1(
1 2,1,0

2,1,0
2,1,0 










 N
q

k
L     (8) 

respectively, where N0,1,2 denote numbers of components of maximal nonlinear order in gb0,1,2 functions (see 
column for degree 7 in the Table 1).  

Thus, the period and the linear complexity of the output sequence of the MASG1 can be derived from (5) and 
(6). Recall that we assumed q0, q1, q2 = 8; suggested LFSRs lengths ~128 (for example: k=127, m1=131 and 
m2=137). Characteristic polynomials should define many connections (>10) to feedbacks of shift registers. 

6.3 MASG2 
MASG2 – is the MAGk

3 with the output function of the class gb – in other words – it is the MASG1 with one 
large nonlinear function for q=18. Overall scheme of the MASG2 is presented in Fig. 5. Selected states bits from 
each three linear feedback shift registers feed this function. For each register, distances between cells in the 
registers (denoted by x in Fig. 3) taken to the output function are fixed and equal to δ0’ for controlling and to δ1’ 
and δ2’ for controlled registers. These distances fulfill requirements from (7), too. 

 
Figure 6.  The Modified Alternating Step Generator MASG2 

The period and the linear complexity of the output sequence can be derived from (5), (6) and (8) and will 
depend on the algebraic normal form of gb and numbers of state’s bits feeding parts of this function. For q = 18 
nonlinear order of the output function of class gb is 17, but parts dedicated to each register are lower. Therefore 
we should plan connections between functions and registers so that nonlinear order of each part is not smaller than 
6 in this case. 

7 Randomness properties 
We checked experimentally randomness properties of binary sequences produced by the MASGs described in 

the previous section and produced by the original ASG and modified ASG i.e. MAGk. We tested the randomness 
using seven basic statistical tests [17], [21]: 

1. frequency 
2. serial 
3. two bit 
4. 8-bit poker 
5. 16-bit poker 
6. runs (for max 22 consecutive zeros or ones) 
7. autocorrelation (for shifted sequences by 1, 2, …, 8 bits) 

The tests use as reference distributions the chi-square distributions and the standard normal distribution. 
Observed frequencies of events are compared with their expected frequencies. We split calculated statistics into 8 
classes according to the range of significance level. The class A identifies a group of the best statistics and the 
class H identifies the worst case in terms of randomness, but all cases are possible with suitable probabilities as it 
is shown in the Table 3. For popular level of significance =0.05, sequences passed tests if their statistics are a 
class A, B or C. 
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Table 3.  Expected percentages of appearances of classes 
Classes Exp. %  

A + B + C 95 (1-)<0.95 
A 80 (1-)<0.80 
B 10 0.8(1-)<0.9 
C 5 0.9(1-)<0.95 
D 2.5 0.95(1-)<0.975 
E 1.5 0.975(1-)<0.99 
F 0.5 0.99(1-)<0.995 
G 0.4 0.995(1-)<0.999 
H 0.1 0.999(1-) 

 

We tested 1GByte sequences produced by the ASG, MAGk and MASGs starting from randomly selected 
initial states. Obtained results of experiments for overall sequences are given in the Table 4. The Table 5 contains 
percentages of classes of statistics for 1MB subsequences of examined sequences. 

Table 4.  Classes of statistics for 1GB sequences 
Test 1 2 3 4 5 6 7 
ASG A A A A A B B A A A A A A A 
MAGk A A A A B A A A A A B B B A 
MASG A A A A A A A A B A A A A A 
MASG0 A A A B A A A A C A B A A A 
MASG1 A A A A A A A A A A A A A A 
MASG2 A H H H H F H H H G A A C A 

 

Table 5.  Percentages of classes for 1MB subsequences 
Class ABC A B C D E F G H 
ASG 95.03 79.24 10.76 5.04 2.66 1.37 0.43 0.42 0.08 
MAGk 95.31 80.13 10.63 4.55 2.32 1.53 0.49 0.17 0.18 
MASG 94.91 79.73 10.32 4.85 2.47 1.55 0.59 0.39 0.10 
MASG0 94.98 79.14 10.73 5.11 2.72 1.62 0.36 0.25 0.07 
MASG1 94.46 79.16 10.25 5.05 2.61 1.72 0.60 0.54 0.07 
MASG2 93.40 75.91 11.44 6.05 3.39 2.01 0.57 0.49 0.14 

 

Results for the ASG, MAGk, MASG, MASG0 and MASG1 are as we expected for random sequences. (Some 
differences may result from the low precision calculations of statistics and percentiles of chi-square distributions). 
For MASG2 we observed worse statistics.  

Having regard to the results given above, we prefer MASG1 as easier to implement and to choose proper 
nonlinear functions and also its connections with registers. MASG and MASG0 give sequences with good 
statistics, but need longer NLFSRs. Sequences produced by MASG2 (or MAGk

3 proposed in [11]) with 
inappropriate output function may be distinguishable from random sequences. 

8 Summary 
We proposed in this paper four modified alternating step generators MASG, MASG0, MASG1 and MASG2. 

All generators base on the alternating step generator introduced by C. G. Günther and its further modifications – 
especially on the modified alternating k-generators proposed by Białota and Kawa, where a function of output bits 
from all three registers (linear and nonlinear) generates the output bit stream. 

In the MASG and MASG0 we replaced controlled registers by nonlinear feedback shift registers. We applied 
nonlinear functions proposed in [22] and [27] as feedbacks in order to obtain output sequences with maximal 
period and the linear complexity close to the period. It might be a good design, if applying longer, maximal 
NLFSRs. 

In the MASG1 we added nonlinear filtering functions to all linear feedback shift registers. In the MASG2 
nonlinear filtering/combining function replaced the XOR sum in the output of the generator. We proposed 
methods for constructing such functions in order to achieve balanced Boolean functions with high nonlinearity 
and many nonlinear components in algebraic normal form. Correlation immunity needs to add bits of memory to 
these functions or to the output function of the generator. 

The main aim of proposed modifications was to increase security of a stream cipher, where the ASG plays the 
role of the keystream generator. We have checked basic parameters of sequences produced by the MASGs: the 
period, the linear complexity and randomness. Properly selected registers and nonlinear functions in MASG, 
MASG0 and MASG1 give binary sequences with the maximum period, high linear complexity and good 
randomness properties and should enhance the resistance of the alternating step generator to the cryptanalysis. 
(Note that, nonlinear feedback shift registers in MASG and MASG0 should be longer, than proposed). For MASG2 
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with one big nonlinear function in the output we obtained bad results of randomness tests. MASG2 is the example 
realization of the third class of the modified alternating k-generator [11]. 

We conclude that among the MASGs the MASG1 is the easiest to implement and to choose proper nonlinear 
functions. Nonlinear filtering functions should significantly difficult reconstruction of linear feedback shift 
registers from the output sequence. Additionally, it would be desirable to replace XOR function with a nonlinear 
combining function or finite state machine in the output of the MASG1. 

Further research will focus on the security parameters of the modified alternating step generators – how much 
nonlinear functions, suggested in this paper, increase the resistance of the alternating step generator to known 
attacks. 
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