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Abstract

We present a Stamp&Extend time-stamping scheme based on linking via mod-
ified creation of Schnorr signatures. The scheme is based on lazy construction of
a tree of signatures.

Stamp&Extend returns a timestamp immediately after the request, unlike the
schemes based on the concept of timestamping rounds. Despite the fact that all
timestamps are linearly linked, verification of a timestamp requires a logarithmic
number of steps with respect to the chain length. An extra feature of the scheme
is that any attempt to forge a timestamp by the Time Stamping Authority (TSA)
results in revealing its secret key, providing an undeniable cryptographic evidence
of misbehavior of TSA.

Breaking Stamp&Extend requires not only breaking Schnorr signatures, but to
some extend also breaking Pedersen commitments.
Keywords: timestamping, undeniability, forgery evidence, Schnorr signature

1 Introduction

1.1 Legal Background
Timestamping is one of the very basic services that are necessary for electronic docu-
ment flow. According to a recent legal definition [Eur12]:

‘electronic time stamp’ means data in electronic form which binds other
electronic data to a particular time establishing evidence that these data
existed at that time.

Time stamps are perhaps as important as digital signatures for future applications:
while a digital signature provides guarantees for document origin and its approval by
the signatory, it does not prove when the signature was created. However, signing time
is crucial for the legal consequences of a signed document. This concerns not only
such trivial cases as documentation for online financial operations (e.g. on a stock ex-
change), but also administrative procedures, where a party participating in a procedure
has a limited period of time to perform a legally valid action. Importance of timestamp-
ing was recognized in this legal environment – it was mentioned already by European
Directive concerning electronic signature a decade ago [Eur00].
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Recently, European Commission proposed a new regulation concerning electronic
identification and trust services [Eur12]. Time-stamping is one of the main elements
of the proposed framework. The proposal states that electronic time-stamp shall not
be denied legal effect and admissibility as evidence in legal proceedings solely on the
grounds that it is in electronic form. In case of qualified time-stamps (i.e. the time-
stamps issued by qualified service providers), electronic time stamp shall enjoy a legal
presumption of ensuring the time it indicates and the integrity of the data to which
the time is bound. Thereby, electronic time-stamps will become an important legal
institution.

New laws concerning timestamping means facilitating use of electronic documents
in legal proceedings. On the other hand, without a flawless technical framework elec-
tronic time-stamps may become a powerful tool for electronic frauds. This has not
been so important so far, since it was not compulsory to accept electronic time-stamps
in legal proceedings. Designing time-stamping systems must also take into account
possibility of malicious activities of all participants of the process, including in par-
ticular qualified service providers, and the threat of breaking cryptographic schemes.
Introducing a new technology into a legal framework should be coupled with effec-
tive e-forensics techniques. Possible legal conflicts concerning timestamps should be
solvable on technical grounds. Otherwise, this technology can be used to create time
machines in the legal framework. Namely, a party having backdoors to the timestamp-
ing services would have an opportunity to perfectly backdate electronic documents.

1.2 Certification and Secure Timestamping Devices
An idea which is dominant in existing implementations is to rely on special purpose
secure timestamping devices - just like in the case of electronic signatures and secure
signature creation devices holding private signing keys. As in case of signature creation
devices, technical security and resistance to manipulations should be checked during
certification process, where details are disclosed to trusted certification bodies. While
certification process is a very important element of efforts for providing security, one
has to keep in mind that it does not necessarily guarantee elimination of backdoors.
Certification process reduces significantly the amount of design mistakes enforcing a
rigorous design and implementation, as well as formulation of design goals and product
features. However, this is only a process of checking of some properties against a
certain list that may simply ignore or overlook some important issues.

Providing guarantees for security of timestamping devices is significantly harder
than in case of signature creation devices. Indeed, in the last case the owner of the
device has very strong reasons to protect it against attacks. Namely, compromising
the signing key open doors to creation of perfect signatures on behalf of the attacked
person. The situation might be very different for a TSA – it may attempt to retrieve the
keys stored in the device in order to be able to backdate certain documents. We have
to be aware of the fact that organized crime might be interested in controlling TSA in
order to make perfect frauds efficiently.

The lessons learned from early e-voting implementations show that we should be
very careful when entrusting blindly black box devices. Today, after disasters with
e-voting machines in USA and Netherlands (which were due to blind trust to manu-
facturers and their products), it is much harder to convince the users to such solutions.
There should be a strong argument behind the construction of timestamps that is not
based solely on the assumption that the timestamping service provider and the manu-
facturer are honest and competent. Even if they are, there might be third parties that
have better cryptographic and technical knowledge as well as better resources enabling
them to exploit some unknown weaknesses of the devices.
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1.3 Undeniable Timestamping – Related Work
1.3.1 Round Schemes.

The very first constructions of undeniable timestamps have been presented in [BdM91],
[HS91]. The basic idea is simple: there is a service provider, TSA, that issues times-
tamps on demand. TSA builds a database secured with cryptographic means so that it
allows append operation but does not allow insert operations and modifications of past
records.

The basic structure here is a linear chain of hashes: the next element in the chain
contains a signature of TSA not only on the digital data to be stamped, but also on
the hash of the previous element in the chain. Therefore, it is impossible to change
an element of the chain: any manipulation would change its hash value and therefore
disconnect it from its successor. However, hash chains have a serious disadvantage.
Since the hash chain is anchored at its initial element (confirmed by a third party or
published), while checking a timestamp it is necessary to perform a number of oper-
ations that is linear in the number of timestamps. Obviously such a solution in not
scalable and can be used only in small systems.

The idea to overcome this problem is to split time into rounds and link only data
between the rounds. Within a round, TSA is executing a procedure that finally delivers
a single value to be incorporated in a linear chain connecting the rounds. For making
a round, different techniques has been proposed. One solution is to use one-way ac-
cumulators [BdM93]: all requests gathered during one round are accumulated into a
single hash value, and at the end of the round each requester receives a compact proof
(i.e., a timestamp) that her/his request is included in the hash value. The underlying
hash function is build upon exponentiation modulo a product of two strong primes that
have the same length. The scheme [BdM93] is a distributed one, with key generation
procedure distributed as well (the latter is pretty complicated, see e.g., [DM10]), or
alternatively, with centralized generation of the modulus (but then the central server
must be trusted).

An alternative solution is to generate a single aggregated signature for all data sub-
mitted during a single round (see e.g., scheme [LBG08b] build upon bilinear maps).

However, majority of proposals use a kind of Merkle tree generated for the times-
tamped values located at leaves of the tree. This provides both undeniability as well as
proofs of presence in the tree with a given root having logarithmic lengths. The idea is
very simple, nevertheless there are some fine issues concerning the scheme:

• While it is obvious that a cryptographic hash function should be used to generate
labels of the tree nodes, it is not completely clear which properties are really nec-
essary. However, after formulating the requirements, the schemes can be exam-
ined via reduction proofs: finding a relationship between breaking a timestamp-
ing scheme and breaking some standard security assumption. For considerations
of this kind see e.g. papers [BS04], [BLSW05],[BL06],[BN08],[BN10].

• It is not only hash function that matters – it turns out that carefully tailored con-
struction of hash trees may improve efficiency of the scheme – see e.g. a design
based on skewed trees [Lip02]. Moreover, trees are not necessarily the best data
structure. Essentially, the same chain of trust can be built in a directed acyclic
simple graph with a single sink – see e.g. a solution based on skip lists [BG06].

1.3.2 Instant Timestamping.

The main drawback of the round approach is improving scalability at the price of re-
sponse time: instead of one-stop-shop there is an interaction between the requester and
TSA extended until the end of the round. That is, to obtain a timestamp the requester
must wait for the end of the round.

A notable exception among round-based schemes is the protocol from [LBG08a]:
hashes of the requests are generated in advance, using chameleon hash function. Then
a Merkle tree is built from the leaves being these hash-values produced in advance, and
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the root of the tree becomes the public commitment that can be used to authenticate
the future timestamps. To avoid frauds the scheme from [LBG08a] distributes the
trapdoor for the chameleon hash function among a few servers. Consequently, clients’
requests are answered immediately, but operational costs of the service are increased
by using a distributed protocol to generate preimages for the chameleon hashes, which
is necessary to answer the requests.

1.4 Our Contribution
We change the approach presented in [LBG08a]. Instead from making commitments to
the hashes of the future requests, the protocol presented below makes commitments to
the randomness that will be used to generate signatures under answers to the requests.
The crucial point is that if the same randomness is used to sign two different requests,
then the private signature key leaks from TSA. Consequently, instead of designing a
distributed system ([BdM93], [LBG08a]) we propose a cheaper centralized one, which
is deterred from misbehavior by the threat of the signature key leak. The idea of deter-
rence by key leak was utilized in a stand-alone signature protocol [BKK10]. However,
the scheme presented in [BKK10] is highly inefficient – a single signature must be
composed of more than eighty Rabin-Williams sub-signatures.

Moreover, the commitments to the randomness are made gradually during the pro-
tocol execution, when the currently submitted requests are served. Since the random-
ness used for signature generation is independent from the hash values resulting from
future requests, a separate setup phase for building a Merkle tree is no longer needed.
For each timestamp generated, two commitments are prepared for a future use (i.e.,
a timestamp makes links to future nodes, and these links are independent from hash
values resulting from the requests the links will be used for). In this way some binary
tree is gradually created (cf. Fig. 2 on page 9), what shall be utilized by the times-
tamp verification procedure. The size of the tree is limited only by users’ expectations
to timestamp verification time, thus the size is not predetermined like in the scheme
[LBG08a]. If size of the tree becomes too big, the private key material of TSA may be
destroyed (see Subsect. 3.3) and a new tree could be initialized.

To sum up, we propose a Stamp&Extend time stamping scheme that has the fol-
lowing properties:

• the Time Stamping Authority is centralized, i.e., it can be run on a single server,

• interaction between the requester and the centralized TSA is limited to the re-
quest and its immediate response; there is no need to wait for the end of a round,

• every two timestamps issued by the same TSA are comparable with respect to
the order they were requested (as in the simple linear linking scheme),

• communication complexity from TSA to the requester is logarithmic in the num-
ber of timestamps issued so far, and at the same time computational complexity
for issuing a timestamp is constant,

• issuing a backdated document exposes the signing key of TSA,

• the main security features are based on hardness of discrete logarithm problem
and on non-repudiation of Schnorr signatures.

1.5 Security Requirements
To correctly describe the idea of deterrence mentioned in Subsect. 1.4 we shall first
explain what forgery means in case of the Stamp&Extend scheme.

The scheme is build upon the classical protocol, i.e., upon the linear chain of
hashes: the verification procedure (see Algorithm 4) checks if the timestamp verified
has the link to its predecessor in the chain. If the link is absent the timestamp is rejected
and TSA is caught cheating (TSA signs each timestamp generated). Ill-formedness of
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a timestamp is not penalized in our scheme by TSA’s private key leak, however any
later efforts of TSA to replace the ill-formed timestamp are penalized.

As mentioned in Subsect. 1.4, we focus on TSA signatures: the linear chain struc-
ture is augmented with a system of commitments that are commitments to randomness
used in the signatures. Each commitment corresponds to a single position in the lin-
ear chain of timestamps, and the system of commitments has the form of a binary tree
(such a form accelerates verification of a single commitment). The two structures (the
linear chain and the binary tree) are fused together – see Fig. 2 on page 9, and each
commitment in fact determines the in-chain position of a timestamp, for whose sig-
nature the committed randomness is used for. Therefore, even if some positions are
left empty by the TSA, i.e., even if the malicious authority makes a gap for a future
use and starts a new chain on some forward position, the new and the old chain are
glued together by the binary structure of commitments. Hence the term alleged chain
is justified and may be used in the following definition:

Definition 1.1 By a forgery we mean issuing two timestamps for the same position of
the alleged chain.

The Stamp & Extend scheme must ensure that:

1. The system of commitments does not weaken the signature scheme used by TSA.

2. The deterrence mechanism is efficient, i.e. in case of a forgery the private signa-
ture key of TSA leaks with a non-negligible probability.

Condition 1 is addressed by considering external adversaries – cf. Definition 3.3
and Theorem 3.4 in Subsect. 3.1. Condition 2 is addressed by Theorem 3.5 from
Subsect. 3.2.

2 Stamp & Extend Protocol

2.1 Protocol’s Building Blocks
2.1.1 Schnorr Signatures.

Our construction is based on Schnorr signatures [Sch91b], [BSI12, Subsect.4.2.3]. Let
us recall the scheme briefly. Let G be a group of a prime order q for which Discrete
Logarithm Problem (DLP) is hard. Let g be a fixed generator of this group.

Private key of a user u is a number x ∈ [1, q − 1] chosen at random. The corre-
sponding public key is an element of group G computed as y := gx.

For signature creation we use a cryptographic hash function H . A signature of a
message M is created as follows:

1. the signer chooses an integer k ∈ [1, q − 1] uniformly at random,

2. r := gk,

3. e := H(M ||r) (|| stands for concatenation),

4. s := (k − xe) mod q,

5. output signature (e, s).

Verification of this signature is performed as follows:

1. r′ := gs · ye,

2. e′ := H(M ||r′),

3. if e = e′ then return true, otherwise return false.
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The Schnorr signature scheme is very elegant and simple. The main disadvantage
of Schnorr signatures was a US patent [Sch91a], which encouraged manufacturers to
implement other patent-free algorithms based on DLP. This situation has changed, as
the patent [Sch91a] expired in 2008. For smart cards there is another disadvantage:
the computation of r has to be done on the card before the message M is hashed. As
hashing is executed typically outside the card, this increases the number of messages
exchanged with the card. In our case this is not a problem, as we aim to create Schnorr
signatures on a server.

2.1.2 Pedersen Commitments [Ped91].

Let G be group of prime order q for which DLP is hard. Let g, h be generators of G
such that logg h is not known to anybody. Commitment c to k is obtained by choosing
` ∈ {0, 1, . . . , q − 1} uniformly at random and assigning:

c := gk · h`.

The commitment can be later opened by the commiter by revealing k and `. Commit-
ment c reveals no information about k. Moreover, opening the commitment c to a k′

such that k′ 6= k reveals the discrete logarithm logg h. Therefore it is infeasible to
replace k by k′.

2.2 The Protocol
2.2.1 Initialization.

When starting a TSA the first step to do is to generate its public and private parameters.
Before we do it, we have to choose a group G of a prime order, say q, where DLP is
hard. We shall also use a secure hash function H . Setup of keys for TSA is depicted
by Algorithm 1 .

Actors : TSA
Input : group G of prime order q, generators g, h of G such that logg h is not

known to anybody
Output
:

public key y, private key x, pair of starting parameters (k1, `1), a

Pedersen commitment c1
1 for (k1, `1) begin
2 choose x ∈ {1, 2, . . . , q − 1} uniformly at random
3 y := gx

4 return x as the private signing key
5 return and export y as the public signing key
6 choose k1, `1 ∈ {0, 1, . . . , q − 1} uniformly at random
7 c1 := gk1h`1

8 return (k1, `1) as the first pair of private timestamping parameters
9 return and export c1 as the public commitment for the first timestamp

Algorithm 1: Setup of keys for TSA.

After the keys are generated, it is necessary to confirm public parameters by issuing
certificate(s) Cert (see Algorithm 2). A standard form of publishing Cert has to be
chosen (e.g. publishing in a newspaper) so that the keys cannot be changed afterwards.

2.2.2 Creating timestamps.

TSA stores the following data during protocol execution:

• the index of the last timestamp issued i− 1,

• a private list P of pairs of exponents [(ki, `i), . . . , (k2i−1, `2i−1)]
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• a public file C with the list of Pedersen commitments [c1, . . . , c2i−1],

• a public file HS that includes an initial value HS0 (which is the certificate of
TSA) and elements HSj = (Tj ,Hj) for j = 1, . . . , i − 1, where Tj is the jth
timestamp and Hj is the corresponding timestamped value (i.e. a hash value
together with identifier of the hash function used [Kal02]).

Actors : TSA, Certification Authority (CA)
Input : public signing key y, initial commitment c1
Output
:

a certificate Cert for y and c1

1 begin
2 CA generates a digital certificate Cert for y and c1 in a standard way
3 CA publishes Cert
4 TSA initializes HS as the list [HS0], where HS0 = Cert

Algorithm 2: Generating certificates for TSA.

Creation of the ith timestamp (see Algorithm 3) requires using ci as well as is-
suing two additional commitments c2i, c2i+1 and storing them in C. The list C =
[c1, c2, c3, c4, . . . , c7, . . . , c2i, c2i+1] may be perceived as a list of consecutive layers of
a binary tree (the currently bottom layer may not be completed):

C = [{c1}, {c2, c3}, {c4, . . . , c7}, . . . , {c2·2blog2 ic , . . . , c2i, c2i+1}]

By making a signature of record (1), which contains the values c2i, c2i+1, TSA creates
an authentication link from ci to the nodes c2i, c2i+1 (note that ci is a commitment
to the randomness used in the signature of (1)). The sequence of records (2) is in
fact a kind of authentication path from the node ci to the root c1. The procedure is
additionally illustrated by Fig. 1 on page 7 .

random:

Figure 1: Creation of the i-th timestamp.

2.2.3 Checking timestamps.

Timestamp verification can be executed according to Algorithm 4 given on page 9 .
Note that immediate access to C and real-time execution of line 8 of Algorithm 4

is not necessary. If the requester of a timestamp receives a sequence of records (2) for
j = bi/2αc, where α = 0, 1, . . . , blog2 ic, and all signatures Sj are correct, then these
signatures contain a kind of declaration to corresponding commitments cj available to
the public. The declarations are c′j = gejysjh`j – note that `j as well as indexes j are
included in the signed data of the corresponding records (1). Accordingly, if TSA is
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Actors : TSA, a requester
Input :

• index i− 1 of the last timestamp issued

• list C = [c1, . . . , c2i−1] of Pedersen commitments

• list P = [(ki, `i), . . . , (k2i−1, `2i−1)] of pairs of unused private exponents

• list HS including HS0 and elements HSj = (Tj ,Hj) for j = 1, . . . , i− 1

• value Hi to be timestamped delivered by the requester

Output
:

updated: index i and lists C, P , HS

1 begin
2 choose k2i, `2i, k2i+1, `2i+1 ∈ {0, 1, . . . , q − 1} uniformly at random
3 c2i := gk2ih`2i , c2i+1 := gk2i+1h`2i+1

4 append c2i, c2i+1 to C
5 k := ki
6 remove (ki, `i) from P , append (k2i, `2i), (k2i+1, `2i+1) to P
7 create Schnorr signature Si using random parameter k from line 5 for the

following “message”:

(H(HSi−1),Hi, c2i, c2i+1, `i, i), (1)

where H() is cryptographically secure hash function used by TSA
8 define the ith timestamp as Ti := (Si, `i, i) /* note that one of

the exponents for commitment ci is revealed in the
timestamp */

9 append (Ti,Hi) to list HS as the last element HSi /* note that HS
and C allow to reconstruct completely the message
(1) */

10 return index i to the requester
11 alternatively: return the following sequence of records to the requester

(Sj , H(HSj−1),Hj , c2j , c2j+1, `j , j) (2)

for j = bi/2αc, where α = 0, 1, . . . , blog2 ic.

Algorithm 3: Creating a timestamp by TSA.
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c1

c2

c4

c8

c16 c17

c9

c18 c19

c5

c10 c11

c3

c6

c12 c13

c7

c14 c15

Figure 2: The fuse of two structures (a chain and a binary tree) generated by consecu-
tive calls of Algorithm 3 . The binary tree reflects dependencies between timestamps
and commitments. The filled circles denote timestamps (and also the commitments
already used), the empty circles are unused commitments. The dotted arrows denote
hash links between consecutive timestamps in the chain.

Actors : the requester or a third party
Input : index i and access to the public lists C and HS

or the sequence of records (2) and certificate Cert.
Output
:

correct or incorrect with a proof of inconsistency

1 begin
2 check certificate Cert and retrieve public key y from it
3 for α = 0, . . . , blog2 ic do
4 j := bi/2αc
5 verify the signature Sj = (ej , sj) under the corresponding “message”

reconstructed from record (2) that includes Sj
6 check if the second element of the record (2) is indeed a hash of HSj−1
7 reconstruct cj by computing cj := gejysjh`j

8 compare cj with the jth element of C
9 for j > 1 check if cj appears in the record (2) corresponding to α+ 1:

10 case if j is odd, then this should be the second element
11 if j is even, then this should be the first element

12 for j = 1 check if c1 is confirmed by Cert

Algorithm 4: Verification of a timestamp.
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cheating and records (2) contain at least one false declaration to value cj , then it would
be provably evident due to corresponding signature Sj : Note that if the sequence of
declarations

c′i, c
′
bi/2c, . . . , c

′
bi/2blog2 ic−2c, c

′
bi/2blog2 ic−1c, c1

is different from the publicly available sequence of commitments

ci, cbi/2c, . . . , cbi/2blog2 ic−2c, cbi/2blog2 ic−1c, c1

then there is some index for which the sequences differ. By β let us denote the first
such index from the right. That is, cβ 6= c′β , but cbβ/2c = c′bβ/2c (at worst bβ/2c = 1).
This means that the corresponding “messages” (1) for i = bβ/2c are different, because
cβ 6= c′β , but the randomness used to make the signatures under the “messages” is the
same, because cbβ/2c = c′bβ/2c. Assuming that Schnorr signatures are hard to repudiate
this leads to leakage of signature keys.

See that due to hash value H(HSi−1) present in “message” (1) the Stamp & Ex-
tend scheme may indeed be considered as a simple linear chain augmented with a
mechanism providing logarithmic shortcuts to the root of the chain. The verification
from Algorithm 4 (including line 8 of the Algorithm) executed for a given timestamp
does not prove integrity of the whole data. It only shows that the timestamp checked
must stand on the claimed position in the chain of timestamps, because the timestamp
is anchored by a particular path (i.e., by a particular shortcut) to the certificate Cert.
Of course, it witnesses that some parts of file HS are correct. Moreover, anybody can
access the information from C and HS and check integrity of timestamps starting at
any possible location1. Even possibility of such an external audit (e.g., executed by
competitors of TSA), should strongly discourage any misbehavior by TSA.

3 Security Analysis

3.1 External Adversaries A
To facilitate security analysis let us first consider a restricted model of an external
adversary (the restricted model shall be extended in Def. 3.3): Assume an adversary
that attempts to create a timestamp matching one of the published commitments.

Definition 3.1 A1 is given access to:

• list C of commitments (initially C = [c1]),

• remaining data from HS (initially HS = [Cert]).

A1 can request TSA to issue some number of timestamps for hashes of A1’s choice.
According to the number of requests (which is bounded by a polynomial in the security
parameter κ = log2 q) both the list C and the file HS will grow.

We assume that A1 wins, if he manages to issue a valid triple (S′j , `
′
j , j), where S′j

is any2 Schnorr signature being verified with TSA’s public key y, corresponding to one
of the unused commitments cj .

Theorem 3.2 In the standard model, the advantage of A1 is negligible, provided that
solving DLP in 〈g〉 succeeds with a negligible probability.

1For example, each requester receiving a timestamp (i.e., each client application) may always verify a
constant number nver of timestamps: the one received and nver−1 consecutive predecessors of a randomly
chosen timestamp in the chain (the random choice is made by the requester). Moreover, we may assume that
a local copy of all timestamps received is maintained by the requester, and a locally stored timestamp is
compared with the newly received one if both are on the same position in the hash chain. Note that in
case of misbehavior TSA may try to reduce probability of its detection by issuing an enormous number of
timestamps for itself. However, this looks suspicious and may be the reason for thorough inspection of TSA.

2That is, we do not require that the message “signed” with S′j has the form of a timestamp. Consequently,
task of the adversaryA1 does not become harder.
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Proof Let us assume that F1 is an algorithm run byA1 that for n unused commitments
enables him to deliver a valid triple (S′j , `

′
j , j). Let δ(n)1 denote success probability of

F1. Based on this we construct an algorithm (see Algorithm 5) that attempts to solve
discrete logarithm problem for b, that is, to find a such that b = ga.

Input : a finite group generated by element g
an element b ∈ 〈g〉 for which discrete logarithm a is sought

Output
:

discrete logarithm a of b or ⊥ in case of failure

1 begin
2 assign h := b
3 generate uniformly at random a “secret” key x ∈ {1, 2, . . . , q − 1} of TSA

and public key y = gx

4 choose k1, `1 ∈ {0, 1, . . . , q − 1} uniformly at random
5 generate c1 = gk1h`1

6 run F1

7 F1 chooses some n bounded by a polynomial in κ: n ≤ Poly(κ)
8 generate timestamps for Hi requested by F1, i = 1, . . . , n, (accordingly, file

HS and list C = [c1, . . . , c2n+1] is made, where ci = gkih`i for uniformly
chosen ki, `i ∈ {0, 1, . . . , q − 1}, i = 2, . . . , 2n+ 1)

9 with probability δ(n)1 algorithm F1 returns some valid triple (S′j , `
′
j , j) where

j ∈ {n+ 1, . . . , 2n+ 1}, where S′j = (e′j , s
′
j) is any Schnorr signature

being verified with TSA’s public key y, signature made for message m′j
adaptively chosen by F1

10 generate timestamps for i = n+ 1, . . . , 2n+ 1 for Hi being hashes of
random messages, as a result in the jth timestamp a triple (Sj , `j , j) is
generated, where Sj = (ej , sj)

11 if `j 6= `′j mod q then
12 a := (sj − s′j + x(ej − e′j)) · (`′j − `j)−1 mod q

13 return a
14

15 return ⊥

Algorithm 5: Breaking DLP with F1.

Note that the assignment from line 12 for computing a follows from the equality
cj = gsjyejh`j = gs

′
jye
′
jh`
′
j . As `j is chosen at random, the condition from line 11 is

false with probability 1
q , thus Algorithm 5 returns a with probability δ(n)1 · (1 − 1

q ). If

breaking DLP has negligible success probability, then δ(n)1 · (1− 1
q ) must be negligible,

too. As 1− 1
q is very close to 1, the value δ(n)1 must be negligible, too.

Let us now extend the first model of external adversary: A2 is given access to the
same data as A1, but is not restricted to utilize unused commitments only:

Definition 3.3 A2 is given access to:

• list C of commitments (initially C = [c1]),

• remaining data from HS (initially HS = [Cert]).

A2 can request TSA to issue some number of timestamps for hashes of A2’s choice.
We assume that A2 wins, if he manages to issue a valid triple (S′j , `

′
j , j), where S′j

is any Schnorr signature being verified with TSA’s public key y, corresponding to any
commitment cj .

Theorem 3.4 In the random oracle model, the advantage ofA2 is negligible, provided
that any adaptive chosen message attack aimed at private key of Schnorr signatures
succeeds with a negligible probability.
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Sketch Let us assume that F2 is an algorithm run by A2 that for 2n+ 1 commitments
enables him to deliver a valid triple (S′j , `

′
j , j). By

δ
(n)
eq,usd, δ

(n)
neq,usd, δ

(n)
eq,unsd, δ

(n)
neq,unsd

we denote the probabilities that F2 succeeds respectively under the following condi-
tions:

(`′j = `j) ∧ (1 ≤ j ≤ n),
(`′j 6= `j) ∧ (1 ≤ j ≤ n),
(`′j = `j) ∧ (n+ 1 ≤ j ≤ 2n+ 1),

(`′j 6= `j) ∧ (n+ 1 ≤ j ≤ 2n+ 1).

Let δ(n)2 = δ
(n)
eq,usd + δ

(n)
neq,usd + δ

(n)
eq,unsd + δ

(n)
neq,unsd.

On top of algorithm F2 we build two algorithms, both incorporated into a single
procedure (in fact the procedure defines the Challenger). On the very beginning of the
resulting procedure a symmetric coin is tossed and according to toss result one of the
two algorithms is executed. From F2’s point of view both algorithms are indistinguish-
able, that is, F2 does not “know”, what have called it. The coin toss shall introduce
factor 1

2 to reduction tightness.
We assume that F2 can query qH times random oracle OH(·) for hash function

H , and can query qsig times random oracle Osig,y , where y ∈ 〈g〉 is a public key
for verification of signatures made by Osig,y . Each of qH , qsig is bounded by some
polynomial in a security parameter κ. Let lenH denote bit length of H .

We assume that all calls of the oracles made by F2 shall be intercepted by the
procedure mentioned above. The procedure shall compare arguments of the call with
records of table TH that were inserted by the second of the two algorithms, and if
necessary a result from the appropriate table is returned to F2.

The first of the two algorithms chosen by the coin toss works analogously to Algo-
rithm 5: each occurrence of F1 in Algorithm 5 should be replaced by F2 and in line 9
of the algorithm δ

(n)
1 should be replaced by δ(n)2 and “j ∈ {n + 1, . . . , 2n + 1}” by

“j ∈ {1, . . . , 2n+1}”. Of course the modification is aimed at the event `′j 6= `j which

occurs with probability δ(n)neq,usd + δ
(n)
neq,unsd. Hence counting the coin toss, that is the

probability that the algorithm resulting from the modification will fit the event, we get
that the instance of DLP is solved with probability equal to 1

2 (δ
(n)
neq,usd + δ

(n)
neq,unsd).

Therefore we get
δ
(n)
neq,usd + δ

(n)
neq,unsd ≤ 2ε(2n+1), (3)

where ε(k) is the upper bound for probability that DLP in group 〈g〉 may be broken
with effort proportional to k.

The second algorithm is the Algorithm 6 . We shall argue that in the random or-
acle model its advantage differs negligibly from the advantage of an adaptive chosen
message attack on private key of Schnorr signature scheme.

At the beginning of Algorithm 6 the target public key y is masked and randomized:
ỹ := y · gx̃. Thus, from F2’s point of view, the resulting public key ỹ of the time
stamping service is uniformly distributed in 〈g〉. However, it is easy to convert the
signatures obtained from the oracle Osig,y(·) for public key y to signatures for public
key ỹ. It requires only “shifting” the second component of the signature (see the line
8).

Algorithm 6 makes commitments ci in a different way than during the actual ex-
ecution of Stamp&Extend. Namely, they are derived from signatures obtained from
oracle Osig,y(·) for random messages. The random messages are chosen from domain
corresponding to records (1) – set MS defined in line 5 of Algorithm 6 describes
the first five coordinates of this message space, the last coordinate is message’s index
corresponding to the index of commitment currently made. The purpose of submitting
random messages to the oracle is separation of the main operations during creation of
Schnorr signatures by TSA. Namely, the value r is calculated before the message to
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Input : a finite group generated by element g
public key y ∈ 〈g〉 of Schnorr signatures
access to hashing oracle OH(·) and to signing oracle Osig,y(·)

Output
:

discrete logarithm x of y or ⊥ in case of failure

1 begin
2 choose x̃ ∈ {0, 1, . . . , q − 1} uniformly at random
3 set public key of the timestamping service as ỹ = y · gx̃ /* masking y

*/
4 choose h ∈ 〈g〉 at random
5 set

MS := {0, . . . , 2lenH −1}×{0, . . . , 2lenH −1}×〈g〉×〈g〉×{0, . . . , q−1}
/* message space for the first 5 components of (1)

*/
6 choose

m1 ∈ {OH(HS0)}×{0, . . . , 2lenH − 1}× 〈g〉× 〈g〉× {0, . . . , q− 1}×{1}
with uniform probability distribution

7 call oracle Osig,y(·) for m1, let (e1, s1) be the signature returned for
Osig,y(m1)

8 set (ẽ1, s̃1) := (e1, s1 − x̃e1)
9 assign r1 := gs1ye1(= gs̃1 ỹẽ1) and choose `1 ∈ {0, 1, . . . , q − 1} uniformly

at random
10 put entry (1,m1||r1,NULL, ẽ1) to TH and entry (1, ẽ1, s̃1, `1) to Tsig
11 publish c1 = r1 · h`1 as the first commitment on list C
12 run F2

13 F2 chooses some n bounded by a polynomial in κ: n ≤ Poly(κ)
14 for each timestamp request Hi, i = 1, . . . , n, from F2 do
15 choose m2i ∈MS × {2i}, m2i+1 ∈MS × {2i+ 1} with uniform

probability distribution
16 let (e2i, s2i) be result of Osig,y(m2i), (e2i+1, s2i+1) be result of

Osig,y(m2i+1)
17 set (ẽ2i, s̃2i) := (e2i, s2i − x̃e2i),

(ẽ2i+1, s̃2i+1) := (e2i+1, s2i+1 − x̃e2i+1)

18 set r2i := gs̃2i ỹẽ2i and choose `2i ∈ {0, 1, . . . , q − 1} uniformly at
random

19 put entry (2i,m2i||r2i,NULL, ẽ2i) to TH and entry (2i, ẽ2i, s̃2i, `2i) to
Tsig

20 set r2i+1 := gs̃2i+1 ỹẽ2i+1 and choose `2i+1 ∈ {0, 1, . . . , q − 1}
uniformly at random

21 put entry (2i+ 1,m2i+1||r2i+1,NULL, ẽ2i+1) to TH and entry
(2i+ 1, ẽ2i+1, s̃2i+1, `2i+1) to Tsig

22 attach c2i = r2i · h`2i and c2i+1 = r2i+1 · h`2i+1 to the public list C
23 set m̃i := (OH(HSi−1),Hi, c2i, c2i+1, `i, i)
24 if OH(m̃i||ri) has been called by F2 earlier and OH(m̃i||ri) 6= ẽi then
25 return ⊥
26 replace (i,mi||ri,NULL, ẽi) in TH with (i,mi||ri, m̃i||ri, ẽi)

/* hash replacement */
27 return to F2: the record m̃i and the signature (ẽi, s̃i) read from Tsig

28 with probability δ(n)2 algorithm F2 returns some valid triple (S′j , `
′
j , j),

where j ∈ {1, . . . , 2n+ 1} and S′j = (e′j , s
′
j) is any Schnorr signature being

verified with TSA’s public key ỹ; the Schnorr signature is made for message
m′j adaptively chosen by F2

29 if `j = `′j mod q and ẽj 6= e′j mod q then
30 x := (s′j − s̃j) · (ẽj − e′j)−1 − x̃ mod q /* based on

kj = s′j +(x+ x̃)e′j = s̃j +(x+ x̃)ẽj mod q */

31

32 return x
33

34 return ⊥

Algorithm 6: Breaking private key of Schnorr signatures with F2.
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be signed is presented by F2. We have to keep in mind that the oracle Osig,y(·) is a
black box, and its operations are inseparable. So we cannot otherwise get the parameter
r = gk which indirectly appears in the commitment c = gkhl.

At this point we take advantage of the random oracle model for the hash function
H and of that the whole communication between F2 and the oracles is intercepted by
the main procedure defining the Challenger. Accordingly, the Challenger may cheat
algorithm F2 and return some values of its choice instead of the values that would be
calculated by the oracles. In our case this happens with values returned for arguments
m̃i in line 23 of Algorithm 6 . That is, commitments are made on basis of signatures
made for the random messages mi, and then Algorithm 6 cheats algorithm F2 that the
signature that was created for mi is in fact a fresh signature for m̃i, the signature that
utilizes randomness ri committed in ci. To make the cheating successful the Challenger
must intercept all future calls of OH(·) for argument m̃i||ri and return the answer ẽi,
as it would be the answer of oracle OH(·) called by the signature algorithm. Therefore
Algorithm 6 makes at most n artificial collisions on H (“at most” because some of the
collisions could also appear if the oracle OH(·) would be used for the arguments).

The cheating would not be successful if at least one of the arguments m̃i||ri, i =
1, . . . , n, was submitted by F2 to the oracle OH(·) before the argument was assembled
by Algorithm 6 , and the result returned by OH(·) was different than the result needed
by Algorithm 6 (cf. condition in line 24). The cheating should be successful ifF2 would
not detect any of the artificial collisions. Probability of finding some of the artificial
collisions could be upper-bounded by probability of finding any collision on H . Note
that F2 knows at most qH + qsig +2n results of H(·) (indeed, qsig hash values are due
to signatures returned by the oracle Osig,y(·) on F2’s requests, n results are returned
by the Challenger asOH(HSi−1), and n results are ẽi = ei which are also delivered by
the Challenger). Being pretty conservative in estimating the upper bound for collision
detection by F2 for the purpose of this estimation we shall treat oracleOH(·) just like a
function (denoted as H(·)). Let us count the values of H(·) that could be not used now
because of the artificial collisions: in the worst case m̃i||ri could have been the only
argument yielding H(m̃i||ri), in such a case replacing H(m̃i||ri) with H(mi||ri), i =
1, . . . , n, would limit results’ space by at most n elements. Therefore the upper bound
for collision detection by F2 is (qH+qsig+2n) · (qH+qsig+2n−1)/(2(2lenH −n)).

Since ej , e′j are both returned by the random oracle (value e′j is always returned by
OH(·) when S′j is being verified, and we have assumed that signature S′j is valid),
the event “ẽj = e′j mod q” occurs with probability at most 2(qH + qsig + 2n −
1)/min(q, 2lenH ) (the coefficient “2” in the numerator results from the upper bound
for maximum unbalance of distribution of results modulo q reduction, 2n − 1 is the
number of hash values obtained apart from ẽj from the Challenger).

Finally, the attack is successful if Challenger’s cheating is not detected and the
condition in line 29 is satisfied. The probability of a successful attack is then at least:

(δ
(n)
eq,usd + δ

(n)
eq,unsd) ·

(
1− (qH+qsig+2n)·(qH+qsig+2n−1)

2(2lenH−n)

)
·
(
1− 2(qH+qsig+2n−1)

min(q,2lenH )

)
.

Counting the coin toss at the beginning of the main procedure the above expression
should be multiplied with 1

2 .
Let ε(n)Sch be an upper bound for adversary’s advantage in a chosen message attack

on private key of Schnorr signature scheme, assuming the same adversary’s effort is
like in the algorithm above. Then:

δ
(n)
eq,usd+δ

(n)
eq,unsd ≤ 2ε

(n)
Sch·

(
1− (qH+qsig+2n)·(qH+qsig+2n−1)

2(2lenH−n)

)−1
·
(
1− 2(qH+qsig+2n−1)

min(q,2lenH )

)−1
.

Since the attack on signature’s private key is not harder than the attack on DLP defined
in the same group of prime order (we have proved by the first of the two algorithms
that the case “`j 6= `′j mod q” is negligibly close to DLP, cf. (3)) the theorem is prover.
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3.2 Malicious TSA
3.2.1 Reusing commitments.

Subsect. 3.1 covers the case of an external attacker. Suppose now that TSA is going to
issue two timestamps for different Hj , H

′
j for the same commitment cj . So what are

the chances of malicious TSA to do it unnoticeably? The following theorem presents
the key property of the scheme:

Theorem 3.5 Assuming the standard model, a TSA re-using a commitment cj for an-
other timestamp would either find logg h or would leak its own private key x or would
break non-repudiation of Schnorr signature scheme.

Sketch Suppose we have two different timestamps for the same commitment cj , made
for different messages Hj ,H′j (cf. records (1)). Thereby we have two triples (ej , sj , `j),
(e′j , s

′
j , `
′
j). If `j 6= `′j mod q, then logg h is found by the TSA (compare lines 11-13

of Algorithm 5). Assume that `j = `′j mod q. If ej 6= e′j mod q, then the private
key x leaks in the two timestamps (compare lines 29 and 32 of Algorithm 6 , in present
scenario x̃ = 0). On the other hand, if ej = e′j mod q, then non-repudiation of Schnorr
signatures is broken for the hash function inputs:

(H(HSj−1),Hj , c2j , c2j+1, `j , j)||rj and (H(HSj−1),H
′
j , c2j , c2j+1, `j , j)||rj

(note that Hj 6= H′j , and due to re-usage of the commitment cj and due to the assump-
tion `j = `′j mod q we get that rj must be the same in both inputs, which is essential
in breaking non-repudiation of Schnorr signatures).

Consequently, if logg h is known to nobody and DLP in 〈g〉 is hard, and if Schnorr
signatures are hard to repudiate, then making two timestamps for the same commitment
would imply leak of the private exponent x of TSA.

3.2.2 Misbehavior scenarios.

In general, a malicious TSA may try the following tricks:

1. change a timestamp after issuing,

2. fork a chain of timestamps.

3. insert an additional timestamp in the past,

4. remove a timestamp.

Let us discuss each of these cases:

ad 1) this trick is covered by Theorem 3.5 . Under the assumptions above the private
key x must leak. Presenting the key x by a third party can be regarded in this
case as a proof of breaking the scheme either by cryptanalysis or misbehavior of
TSA – in both cases business of TSA should terminate.

ad 2) forking a chain at some place also requires creating two timestamps based on
the same commitment, so the same remarks as above apply.

ad 3) inserting a timestamp is impossible since all places in the chain should be taken.
Indeed, it is impossible to leave an empty space in the chain, since each times-
tamp is connected with the previous one and therefore such gaps must already
have some fixed contents (even empty). Trying to reuse these places means de-
livering a new timestamp at a given point (seeH(HSi−1) in the record (1)). This
leads to the same consequences as in the first case.

ad 4) removing a timestamp is impossible since, among others, the successor of a
given timestamp is linked to it via a timestamp signature.
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3.2.3 Rebuilding the chain.

Note that any third party that derives x can split the timestamp chain in the following
way: assume that the timestamps are given for t = 1, . . . , 2m + 1. Then there are
commitments for t = 2m + 2, . . . , 4m + 3 as well, but the party does not attempt to
open them. Note that the third party learns all exponents ki for i = 1, . . . , 2m+1 from
the equalities si = ki−xei mod q. Therefore it can redo all steps from m+1 through
2m + 1, thereby issuing own commitments for all kt for t = 2m + 2, . . . , 4m + 3.
Afterwards the third party can arbitrarily extend the chain.

Even if the security breach is evident (since given two chains arising from the same
commitment anybody can derive secret key x, and may show the key as an evidence
in court of justice), it is not clear which of the chains was the original one. Of course,
the above attack requires redoing a large number of timestamps - so a large number of
users would witnesses against a new chain. Additionally, this problem can be solved
by the following countermeasure:

• from time to time TSA publishes a current timestamp in alternative way (in a
newspaper),

• publishing a timestamp is compulsory when the index of the current timestamp
is 2m+ 1 and the last published timestamp has index m.

It is easy to see that in this case a forged chain always halts before the next “anchor
point” which is the published timestamp.

3.3 Long Term Security
Breaking signature scheme and/or leaking the signing key x of TSA brings some prob-
lems. However, as already observed above it means rather making mess than collapsing
the current chain of signatures. Nevertheless, it seems to be reasonable to use the pri-
vate key only for a limited period of time, and then, in order to prevent a future leakage,
to destroy the key together with parameters (k, `) used for Pedersen commitments. One
can also demand that each timestamp must be confirmed with a digital signature by the
requester immediately after receiving the timestamp. In this way one can speed up
future disputes.

Note that if in the future the signature key is leaked or derived by some novel crypt-
analytic method, this does not mean that an adversary will be able to misuse a Stamp &
Extend service. Indeed, the second line of defense are the Pedersen commitments. The
adversary will have either to get access to the parameters (k, `) stored for future times-
tamps by TSA or to break DLP in order to provide arguments (k′, `′) corresponding to
the commitments.

4 Implementation Issues
Let us discuss key issues for scheme usability in practical scenario.

4.0.1 Instant response.

The main advantage of the scheme is that despite of efficient verification, the times-
tamp is returned immediately. This makes room for application of Stamp&Extend for
instance by financial institutions, where the transactions have to be processed without
delay.

4.0.2 Verification and communication complexity.

The size of messages from requesters to TSA is constant, on the other hand the size of
data necessary for complete verification of a timestamp with a serial number i is pro-
portional to blog ic, so in practice it is small enough. Moreover, TSA’s computational
effort for making the next timestamp is always constant.
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4.0.3 Memory usage.

The scheme requires to hold the lists of timestamps and other auxiliary data. The
lengths of these lists is bounded by 2i+1, where i is the number of timestamps issued
so far.

If timestamping is intended to be a business service (and not for instance as a sys-
tem log for a high speed system), then the number of timestamps and therefore the
memory usage is a minor issue concerning contemporary technology and in no way is
a bottleneck.

4.0.4 Necessity of audits.

In the classical scenario described by legal systems in many countries, time stamping
requires a certified time-stamping devices, fulfilling some security profile. This process
(apart from questionable value of such inspection for public) is costly not only due to
the direct cost of examination, but also due to business risks concerning issuing certifi-
cates. If a security flaw is overlooked (which is quite likely in complicated cases), then
the certification body can be sued and the height of compensation might be extreme.

A nice feature of Stamp&Extend system is that honesty of TSA can be forced with-
out an external control. The only involvement of a third party is issuing the certificate
Cert. However, this is a single certificate and the risk can be reduced by compulsory
publishing the certificate in a non-electronic way (newspaper).

The audit of the chain of timestamps is done by the requesters. Of course, each
requester makes only a small part of the job, but this makes it reasonable from business
point of view: the requester does what is vital for his own interests.

4.0.5 Low-end time stamping.

TSA might implement the service just on a PC and a reasonable (but cheap) device
for issuing signatures and for exponentiations needed for commitments. The risk and
responsibility for such a service can be defined accordingly. The upside of this solution
is that security of the system has black-white nature: in case of a problem the system
collapses in an undeniable way.

With many (academic) reservations against such solutions, one has to keep in mind
that most systems successful in practice are not overshooting security requirements and
work with quite modest security level.

4.0.6 Evidence in case of frauds.

In case of a forgery made by TSA the evidence of fraud is undeniable in cryptographic
sense. So there is no threat that a judge will deliver a judgment favorable for TSA even
in a case when TSA is evidently guilty. This reduces to minimum the risk regarding
lawsuits against malicious TSA.

5 Conclusions
We have presented a new timestamping scheme. Similarly like in [LBG08a] timestamp
requests are served instantly. However, different security assumptions lead us to a
centralized service with a setup phase reduced to generating a single commitment only.
Moreover, security reductions for the protocol presented above are provided.
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