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SSS-V2: Secure Similarity Search
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Abstract—Encrypting information has been regarded as one of the most substantial approaches to protect users’ sensitive information in radically
changing internet technology era. In prior research, researchers have considered similarity search over encrypted documents infeasible, because
the single-bit difference of a plaintext would result in an enormous bits difference in the corresponding ciphertext. However, we propose a novel
idea of Security Similarity Search (SSS) over encrypted documents by applying character-wise encryption with approximate string matching to
keyword index search systems. In order to do this, we define the security requirements of similarity search over encrypted data, propose two
similarity search schemes, and formally prove the security of the schemes. The first scheme is more efficient, while the second scheme achieves
perfect similarity search privacy. Surprisingly, the second scheme turns out to be faster than other keyword index search schemes with keyword-
wise encryption, while enjoying the same level of security. The schemes of SSS support “like query(‘ab%’)” and a query with misprints in that
the character-wise encryption preserves the degree of similarity between two plaintexts, and renders approximate string matching between the
corresponding ciphertexts possible without decryption.

Index Terms—keyword index search, encrypted data, similarity search, character-wise encryption, approximate string matching, hamming
distance
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1 INTRODUCTION

I N the rapidly developing internet technology era, the amount of
sensitive information radically increases and the information is

required to be stored and managed in networked servers. In order to
protect sensitive information from the inside and outside attackers,
encryption is generally regarded as the last line of database defense.
In prior research, keyword index search has been conducted over
encrypted documents with various scenarios; however, in the field
of the keyword index search over encrypted documents, there
remains four problems in DBMS (DataBase Management System)
as follows: (1) decline of performance, (2) difficulty for arithmetic
and aggregated SQL queries, (3) challenge of similarity search,
(4) difficulty in dynamic group search. This is because encryption
transforms data into indistinguishable random strings, which can
be read only by the holder of the decryption key. Park et al.
[34] tried to solve the decline of performance, which is one of
the most important and serious problems in this research area.
[12],[16],[24],[39],[25] dealt with the difficulty of arithmetic and
aggregated SQL queries and [34],[44] focused on the difficulty of
dynamic group search. Yet, the challenge in similarity search has
not been studied adequately. Regarding the reason for the challenge
in similarity search, a single-bit change in a plaintext would result
in the difference of enormous bits in the ciphertext; therefore,
a similarity search such as a “like query” or queries with some
misprints has been considered infeasible on encrypted documents.
However, we believe that a similarity search is never infeasible on
encrypted documents. As a result, in this paper, we propose two
similarity search schemes over encrypted documents.

1.1 Key Idea and Contribution
The key idea of our schemes is to do with character-wise encryption
with approximate string matching test, which enables similarity
search over encrypted documents. In order to do this, we encrypt
each character of the keyword separately, instead of encrypting a
keyword. The value of this character-wise encryption preserves the
degree of similarity between plaintexts and makes an approximate
string matching test applicable to ciphertexts as well. Here, we
utilize Hamming Distance as the simplest method to measure
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approximate string matching test. However, simple character-wise
encryption is vulnerable to a dictionary attack because the domain
is too small. That is, the total number of input alphabetical char-
acters is only 26 and so is the total number of encryption outputs.
Through trial and error, a malicious attacker can decrypt everything.
To resolve this problem in character-wise encryption, we encrypt
a character together with many secret values and identifiers (the
user’s secret key; the document’s identifier to which the keyword
belongs; the positional number of the character in the keyword; and
the field’s identifier of the cell in which the keyword is going to be
stored). By this method of encryption, all characters are encrypted
into different ciphers on the cells; we call this ‘Index Privacy’.

In this paper, we propose two similarity search schemes (SSS-
I and SSS-II) on encrypted documents, and define the privacy
requirements of the similarity search. Our schemes can guarantee
‘Index Privacy’ – one of the privacy requirements we define.
The second scheme (SSS-II) can satisfy ‘Perfect Similarity Search
Privacy’ – the best security requirement. The implementation of
the prototypes shows that our first scheme SSS-I is more efficient
by accepting a slightly weaker security guarantee. We find that our
second scheme SSS-II is faster than other keyword index search
schemes with keyword-wise encryption (Golle et al.’s). At the same
time, SSS-II can guarantee the same level of security as Golle
et al.’s. Although our schemes cannot achieve good performance,
they are the first attempt to enable similarity search over encrypted
documents. Therefore, one of the most important findings of this
paper is to support ‘like queries’. In the encrypted database systems
that do not support similarity search, to search ‘ab%’, one has to
run 26 queries from ‘aba’ through to ‘abz’. On the other hand, in
our schemes, only one trial is sufficient. Additionally, our schemes
can lower the rate of search failures that arise from misprints.

1.2 Related Works

So far search systems on encrypted data have been an active
research area. At first, we look over the whole previous papers
in this area, and then we look carefully the schemes related to
similarity search over encrypted data.

Song et al. [40] firstly proposed a sequential scanning search
algorithm over entire documents by using stream and block ciphers.
Following this idea, most researches have been focused on the
keyword index search. Boneh et al. [6] developed a keyword
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search with a public key system. Chang and Mitzenmacher [14]
also proposed two index search schemes by the idea of pre-built
dictionaries. Goh [19] formulated a security model of indexes
known as semantic security (or indistinguishability) against an
adaptive chosen keyword attack (IND-CKA) and also proposed an
secure index scheme in the model. Waters et al. [42] published the
building of an encrypted and searchable audit log which enables
searches on the encrypted log with extracted keywords. Some of
the proposed schemes extend the types of queries on encrypted
data. In [12], Boneh et al. proposed a public key system that
supports queries for testing any predicate on encrypted data by
using tokens produced by a secret key. The authors constructed the
systems for comparisons and subset queries, as well as conjunctive
versions of these predicates. Hacigumüs et al. [23] proposed a
method for range queries on encrypted data in the DAS (Database
As a Service) model by using privacy homomorphism which allows
basic arithmetic (+,−,×) on encrypted data. Golle et al. [21]
opened an efficient conjunctive keyword search over encrypted
data in which their scheme constructs a keyword field. Shi et al.
[39] and Katz et al. [25] developed some methods in public key
predicate encryption system, where Shi et al.’s scheme supported
delegation of capabilities and conjunctive queries. Katz et al.’s
scheme supports inner-product queries and it is known as the most
expressive scheme to date. They showed any predicate encryption
scheme, supporting “inner product” predicates, can be used as a
building block to construct more general types of predicates such
as disjunctions, polynomials, CNF or DNF. Hwang et al. [24]
constructed a conjunctive keyword search scheme for group users,
based on a public key. Wang et al. [43] developed threshold privacy
preserving keyword search scheme. However, the schemes of both
[24] and [43] cannot support dynamic groups. Park et al. [33] firstly
proposed search schemes for dynamic groups, which can deal with
membership changes without re-encrypting documents for each
change of membership. Moreover, in [34], they tried to resolve
the inefficient problem caused by encryption and developed very
efficient search scheme for practical use. This scheme can make a
relational database over encrypted data by using a different database
structure and applying an efficient database schema to encrypted
database. Later, in [44], Wang et al. designed conjunctive keyword
searches on encrypted data without keyword fields and extended
the scheme to the setting of dynamic groups. In [11], Byun et al.
raised a serious vulnerability of public key-based keyword search
schemes, which are susceptible to an off-line keyword guessing
attack caused by much smaller space than passwords.

Considering the prior research, most keyword index search
schemes do not support similarity search, while [18] and [26] deal
with approximate matching tests supporting finite or infinite alpha-
bets over secure communication. Yet, these schemes are fundamen-
tally different from an application, and they are not an encrypted-
database-search-system point of view. Namely, they are much
closer to Secure Multi-party (or 2-party) Computation Protocol. As
to approximate matching test, although their approximate pattern
matching test works for a finite or infinite alphabet, their data
are only for DNA sequences, fingerprint images, voice patterns,
and so on, not for documentary records or literatures.This case
is easy because it does not require considering ‘dictionary attack’
in character-wise encryption. Rather, these schemes are similar to
Oblivious Transfer Protocol and related to the Private Information
Retrieval (PIR) Problem [13]. Therefore, communication overheads
are very heavy: O(n2), O(n×N), and so on, where n is the total
number of users’ secret input and N is the total number of database
strings T . Especially, [18] was proved insecure against ciphertext-
only attacks by [26].

Recently, Pang et al’s paper, ‘Privacy-Preserving Similarity-
Based Text Retrieval’ was published [31]. Their text retrieval
scheme is designed for the vector space model and they apply a
clustering algorithm on the document vectors, and then they search
kNN(k nearest neighbors). Although they handle text retrieval,
they do not consider an approximate matching test for finite or
infinite alphabets. Namely, their scheme cannot provide similarity
search such as “like query” or queries with misprints on encrypted
documents. The scheme is more appropriate for biometric informa-
tion such as DNA sequences, or imaging files rather than text or
document retrieval, as other vector space models have bee designed.

Consequently, we propose novel schemes to enable a similarity
search over encrypted documents.

2 PRELIMINARIES

2.1 Database Model
Our database model is based on the Database As a Service (DAS)
model [23], which is an instantiation of the computing model where
a client is trusted and its data are stored in and managed by an
untrustworthy server. The client has restricted computational power
and storage, and relies on the server for mass computational power
and storage.

Our schemes consist of setup and searching processes with
three parties: users; a client; and a server. Initially, the client is
given encryption keys. In the setup process, the client encrypts the
data, generates the indexes of the keyword lists of the data, and
uploads the encrypted data along with the corresponding indexes.
The server can be an inside attacker in our scheme and is not
allowed to read the data. Hence, the encryption key should not be
known to the server (or the database administrator). In the searching
process, a user queries the client with keywords in plaintexts. Upon
receiving the query, the client generates trapdoors by encrypting the
keywords and sends them to the server. The server then performs
keyword search on indexes using the trapdoor and returns the search
results to the client. Finally, the client decrypts the results and
sends them back to the user. The messages on the communication
channel between users and the client might be plaintexts, while the
messages on the channel between the client and the server should
be ciphertexts. Data privacy is assured under the condition that
the client does not share the encryption keys, the metadata, or the
unencrypted data with other parties.

We use the same Keyword Field as in Golle et al.’s scheme
[21], which is made up of m keyword fields(columns) and each
field(column) represents purpose-built attribute. We assume that
each field has an assigned attribute or property. The relationship
between each field and each attribute must be stored into the client
for executing queries on behalf of users. The information of a
document is stored in a single row.

2.2 Notations
In this paper, we will use the notations in TABLE 1.

2.3 Similarity Search Based on Approximate String
Matching
The similarity search is based on approximate string matching in
this paper. We use the ‘Hamming Distance’ as the approximate
string matching method that defines the degree of similarity in our
proposed scheme.

Definition 1. Hamming Distance and Degree of Similarity κ

For two strings s and t, the Hamming Distance H(s, t) is defined
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TABLE 1
Notations

n the number of documents
m the number of fields.
s the number of characters in the keyword
Di the i-th document
Wi the document Di’s keyword list
Wi j the keyword of the j-th field in the i-th document, where

1≤ i≤ n and 1≤ j ≤ m. i.e. Wi = {Wi1, Wi2, ...,Wim}
ws

i j s-th character of the keyword Wi j . i.e. Wi j =w1
i j|w2

i j|...|ws
i j

di the identifier of Di which is randomly selected
j the identifier of a field which is randomly selected.
Ii the index list of Wi
Ii j the index of Wi j i.e. Ii = Ii1, Ii2, ...Ii j
F pseudo random function family

f pseudo random function, f $← F
g random function
K the set of users’ secret keys
u a user

ku a user u’s secret key, ku
$← K

fku the pseudorandom function with user’s secret key ku
T trapdoor, an encrypted keyword which a user wants to

search
Pi j the pattern string of keyword Wi j for string matching test
HS hash function whose range is {0,1}k

| concatenation
g a generator of a group G
idi1 a kind of identifier of Di in SSS-I. It is used for pattern

generation.
idi2 a kind of identifier of Di in SSS-I. It is also used for

pattern generation.
α a random number generated every query time
h hash function whose range is Zq

as the number of places where the two strings differ. Accordingly,
we define the degree of similarity as H(s, t)≤ κ , where κ(≥ 0) is
an integer [38].

2.4 Secure Similarity Search Model

A secure similarity search (SSS) scheme consists of the following
seven algorithms.

• SysParam(1k): Parameter generation algorithm SysParam
takes as input a security parameter k, and produces a system
parameter λ .

• KeyGen(λ ): Given λ , key generation algorithm KeyGen pro-
duces users’ search key set K and document encryption key
set R.

• DocEnc(R,D): Algorithm DocEnc takes as input the data
encryption key R and the document D. Its output is an
encrypted document.

• IndGen(K,W,d,J,s): Index generation algorithm IndGen
takes as input: user’s secret key K; keyword list W ; document’s
identifier d; fields(column)’s identifiers J; and the positional
number of the character s. It outputs the index list I of the
keyword list W .

• Trapdoor(K,W∗ j, j,s): Trapdoor generation algorithm
Trapdoor takes as input: the keyword W∗ j; user’s secret
key K; field’s identifier j; and the positional number of the
character s. It encrypts the keyword W∗ j and returns the
encryption value which is trapdoor TW∗ j for keyword W∗ j.

• PattGen(T,d): Pattern generation algorithm PattGen is ex-
ecuted by a server. It takes as input the trapdoor T and
document’s identifier d. It generates pattern P according to the
given protocol to implement the approximate string matching
test for similarity test.

• SimMatch(P, I): Similarity matching algorithm SimMattch
takes pattern P and index I as input. It returns ‘yes’ if the
similarity matching test satisfies the given similarity κ , or ‘no’
otherwise.

2.5 Security Building Blocks

We now define security building blocks that are used for the
construction of our schemes.

Definition 2. PRF(Pseudo Random Function): We say that
‘F : K f × X −→ Y is (t,q,e) -secure pseudorandom function’ if
every oracle algorithm A making at most q oracle queries and with
running time at most t has advantage AdvA < e. The advantage is
defined as AdvA =| Pr[AFk = 1]−Pr[Ag = 1] | where g represents
a random function selected uniformly from the set of all maps
from X to Y , and where the probabilities are taken over the choice
of k and g [40].

Definition 3. PRG Gr(Pseudo Random Generator): We
say that ‘Gr : KGr −→ S is a (t,e)-secure pseudorandom
generator’ if every algorithm A with running time at most
t has advantage AdvA < e. The advantage is defined as
AdvA =| Pr[A(Gr(UKGr)) = 1]−Pr[A(US) = 1] |. Where UKGr , US
are random variables distributed uniformly on KGr, S [40].

Definition 4. DDH (Decisional Diffie-Hellman): Let G be a group
of prime order q and g a generator of G. The DDH problem is to
distinguish between triplets of the form (ga,gb,gab) and (ga,gb,gc),
where a,b,c are random elements of {1, ...,q−1}.

Consider the following experiment with a polynomial time
adversary A : Flip a coin δ to get 0 or 1, if δ = 1, set c = ab, else
choose c at random. The DDH problem is said to be hard if for
any polynomial time adversary A, |Pr(A(G,ga,gb,gc) = δ )−1/2|
is negligible.

2.6 Security Models

It is the security proof model that guarantees semantic
security(Indistinguishability) against CKA(Chosen Keyword
Attack) and is based on the security model of Goh [19] and Golle
et al. [21].

Definition 5. Security Game ICC (Indistinguishability of Ci-
phertext from Ciphertext)
• Setup. The challenger C creates a set WS of q words ∈
{Di} (1≤ i≤ n) and gives this to the adversary A. A chooses
a polynomial number of subsets from WS. This collection of
subsets is called WS∗ and is returned to C. Upon receiving
WS∗, C runs algorithm SysParam and KeyGen and encrypts
each subset running algorithm IndGen. Finally, C sends all
indexes with their associated subsets to A.

• Queries. A is allowed to query C on a word Wi j and
receives the trapdoor TWi j for Wi j. With TWi j , A can invoke
algorithm PattGen and SimMatch on an index I to determine
if H(PWi j , I) ≤ κ . (PWi j is the pattern of the word ‘Wi j’ for
string matching test.)

• Challenge. After making some Trapdoor queries, A decides
on a challenge by picking two keywords sets W0,W1, a
querying field j (i.e., W0 j ∈W0 and W1 j ∈W1), and two t-th
characters wt

0 j ∈ W0 j, wt
1 j ∈ W1 j. A must not have queried

the trapdoors for the keywords belonged to W0 j and W1 j. Next,

A gives W0 and W1 to C and then C chooses b $← {0,1},
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invokes algorithm IndGen to obtain Ib for Wb, and returns the
encrypted value It

b j for a character wt
b j to A. The challenge

for A is to determine b, i.e. distinguish between W0=It
0 j for

a character wt
0 j and W1=It

1 j for a character wt
1 j. After the

challenge is issued, A is not allowed to query the trapdoors
for the keywords belonged to W0 j and W1 j to C.

• Response. A eventually outputs a bit b′, representing its guess
for b. The advantage of A in winning this game is defined as
AdvA = |Pr[b = b′]−1/2|. Adversary A(t,ε,q) is said to have
an ε − advantage if AdvA > ε after A takes at most t times
and makes q trapdoor queries to the challenger.

For simplicity of our proofs, we define other variants of the
security game ICC. We call them, ICR(Indistinguishability of
Ciphertexts from Random) and ICLR(Indistinguishability of Ci-
phertexts from Limited Random).

Security Game ICR(Indistinguishability of Ciphertexts from
Random).
In the first variant, the adversary chooses one querying keyword
W∗ j of the j-th field from keyword list W∗. W∗ j is set to W0.
The challenger creates a keyword W1 = Rand(W∗ j,wt

∗ j), where
Rand(W∗ j,wt

∗ j) means that W1 from W0 is formed by replacing
the character wt

∗ j ∈W∗ j as random values. The goal of A is to
distinguish between W0 and W1 for a keyword W∗ j. The
detailed process is similar to ICC.

According to [21], the existence of an adversary that wins the
game ICC with non-negligible probability implies the existence
of an adversary that wins the game ICR with non-negligible
probability.

Security Game ICLR(Indistinguishability of Ciphertexts from
Limited Random).
As the final security game, we consider an adversary who is
able to distinguish between W0=Rand(W∗, W∗ j −{wt

∗ j}) and
W1=Rand(W∗, W∗ j), for one keywords set W∗, a querying
keyword W∗ j, and a character wt

∗ j ∈W∗ j. Rand(W∗,W∗ j −{wt
∗ j})

means that W∗ is formed by replacing (W∗ j − {wt
∗ j}) ∈ W∗ j as

random values. Rand(W∗,W∗ j) means that W∗ j is replaced by as
random values. The detailed processes are similar to ICC and ICR.
With the same reason as the game ICR, an adversary in the game
ICC implies the existence of an adversary that wins the game ICLR
with non-negligible probability. 1

Next, we introduce the privacy building blocks.

2.7 Privacy Building Blocks

Definition 6. Trapdoor Privacy
For a querying keyword W∗ j, two words W0 and W1 are

generated according to the security game ICC(ICR), where if the
given protocol except for random value follows trapdoor generation
algorithm, we call W0 and W1 as T0 and T1.

For all polynomial time adversary A, we define that
the search scheme provides ‘Trapdoor Privacy’ if an
adversary A cannot distinguish the trapdoors T0 from T1
with non-negligible advantage. The advantage is defined as
AdvA = |Pr[Expind−cka−trp−1

A = 1]−Pr[Expind−cka−trp−0
A = 1]|.2

Definition 7. Index Privacy

1. In brief, Security Game ICC is an indistinguishability for a character, ICR is
for a keyword, and ICLR is for a keyword list.

2. ‘ind-cka-trp’ means indistinguishability under CKA(chosen keyword attack)
for trapdoor

For a keywords-list W∗, two keywords-lists W0 and W1 are
generated according to the security game ICC(ICLR), where if the
given protocol except for random values follows index generation
algorithm, W0 and W1 are said as I0 and I1.

We define that the search scheme provides ‘index privacy’ if
all polynomial time adversary A cannot distinguish the indexes
I0 from I1 with non-negligible advantage, which is defined as
AdvA = |Pr[Expind−cka−idx−1

A = 1]−Pr[Expind−cka−idx−0
A = 1]|. 3

Definition 8. Perfect Similarity Search Privacy
It is defined that the search scheme provides ‘Perfect Similarity

Search Privacy’ if both trapdoor privacy and index privacy are
achieved.

3 CONSTRUCTION OF SECURE SIMILARITY
SEARCH (SSS)
In this section, we construct our first scheme, Secure Similarity
Search-I (SSS-I). Our scheme SSS-I is constructed by using the
seven algorithms described before and this scheme is also divided
largely into Setup and Searching processes.

3.1 SetUp Process
SetUp Process is divided again into three subprocesses: System
Setting; Encryption; and Uploading.

3.1.1 System Setting
This process constructs the environment for the encrypted
database searching system by using the algorithms SysParam(1k)
and KeyGen(λ ).

1. SysParam(1k) Construction. A client chooses the
security parameter k and generates system parameter λ =
( f (·), HS(·), s, m, n). λ determines the elements which are
required to set the encrypted database system such as the size of
system. f : {0,1}k ×{0,1}∗ → Zq is a pseudo random function,
HS : {0,1}∗→ {0,1}k is an one-way hash function. s is the total
number of characters in the keyword, m is the total number of
keyword fields, and n is the total number of documents.

2. KeyGen(λ ) Construction. Under the system parameter λ , two
search key sets K ∈ {0,1}k and R ∈ {0,1}k are generated by a
client. K ∈ {0,1}k is for index encryption and R ∈ {0,1}k is for
document encryption.

3.1.2 Encryption
In this process, the algorithms DocEnc(R,D) and
IndGen(K,W,d,J,s) are constructed to set up the encrypted
database system.

1. DocEnc(R, D) Construction. If a user wants to store
sensitive documents, he selects representative keywords from each
document and sends documents and their selected keyword lists
{D, W} to a client, where D = {D1, D2, ..}, W = {W1, W2, ..},
Wi={Wi1,Wi2, ...,Wim}. After receiving the data {D, W}, a client
encrypts documents {D} with the document encryption key kr ∈ R.
DocEnc(R,D) is completed.

2. IndGen(K, W, d, J, s) Construction. A client selects a unique
document identifier di at random for each document Di. For each
keyword list Wi={Wi1,Wi2...,Wim}, a client encrypts each keyword

3. ‘ind-cka-idx’ means indistinguishability under CKA for index
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list Wi character by character with the user’s secret key ku ∈R K,
each document identifier di, and fields(columns)’ identifier set
J = { j1, j2, ..., jm} where, 1 ≤ i ≤ n, Wi j=w1

i jw
2
i j..w

s
i j, and s is a

positional number of a character.

The encryption process is divided into two stages. First,
each character is encrypted with the user’s secret key ku, the
character’s positional number in the word, and the field’s identifier.
Second, each character is encrypted with the document’s identifier
as the encryption key. We added the document’s identifier in
the second encryption so that even if two keyword lists, W0
and W1, have a common keyword, the common keyword has
different encryption values for W0 and W1 because of the different
document’s identifier, d0 and d1. In addition, we encrypt the
field’s identifier j with the user’s secret key ku, so that even if two
keywords Wi0 and Wi1 of a keyword list Wi either have a common
character or are the same, the values are different because of
differing field identifiers, viz., 0 and 1. Furthermore, a character’s
positional number s makes it impossible to distinguish wo

i j from
w1

i j even if they are the same character of a keyword within a cell.
Due to this style of encryption method, our scheme can achieve
“Index Privacy”. The detailed encryption processes are as follows.

(1) The first encryption

For a simple illustration, we consider the case of only one
keyword, Wi j = w1

i jw
2
i j...w

s
i j. A client computes the following:

fku(Wi j = w1
i jw

2
i j...w

s
i j)

= fku(1st character|character′s positional number| f ield′s identi f ier)
fku(2nd character|character′s positional number| f ield′s identi f ier)|..
..| fku(sth character|character′s positional number| f ield′s identi f ier)
= fku(w

1
i j|1| j)| fku(w

2
i, j|2| j)|......| fku(w

s
i j|s| j)

For more simple expression, we denote fku(w
s
i, j|s| j) as

f s
i j. Therefore, fku(Wi j) = f 1

i j| f 2
i j|......| f s

i j. Where, ‘|’ denotes
concatenation. In this process, each character is concatenated with
the character’s positional number and the field’s identifier and
then encrypted with user’s key ku.

Example 1. We use the fifth document D5 as an example to
illustrate.

• Keyword list W5 = {god, thank, love, evil, song, heart,
pray},where m = 7

• The identifier d5 of a document D5 = ‘55555’
• A user u’s secret key ku = ‘12345’

Among this keyword list W5, we address only this keyword
‘god’. Therefore,

• W51 = god : the first keyword of D5
• w1

51=g : the first character of W51
• w2

51=o : the second character of W51
• w3

51=d : the third character of W51
where, s is 3.

f12345(god) = f12345(g|1|1)| f12345(o|2|1)| f12345(d|3|1)

For simple expression, we denote fku(w
s
i j|s| j) as fi j(ws

i j).
Therefore, f12345(god) = f51(g)| f51(o)| f51(d).

(2) The second encryption

For the first encryption fku(Wi j) = f 1
i j| f 2

i j|...| f s
i j, a client encrypts

each character with the document’s identifier di and then hashes

that as well, character by character. This value gets to the index
Ii j for Wi j.
HS( fdi( f 1

i j))|HS( fdi( f 2
i j))|..|HS( fdi( f s

i j)) = Ii j

Finally, a client produces an index list Ii for Wi={Wi1,Wi2, ......,Wim}
by collecting each index Ii j for Wi j. An index list Ii is as follows.
Ii = di, Ii1, Ii2, ...Iim

= di, HS( fdi( f 1
i1))|...|HS( fdi( f s

i1)), HS( fdi( f 1
i2))|...|HS( fdi( f s

i2)), ....

......, HS( fdi( f 1
im))|...|HS( fdi( f s

im))

Example 2. For the first encryption f12345(god) = f51(g)| f51(o)|
f51(d),
HS( f55555( f51(g)))|HS( f55555( f51(o)))|HS( f55555( f51(d))) = I51

I5 = d5, I51, I52, ...I57
= 55555, HS( f55555( f51(g)))|HS( f55555( f51(o)))|HS( f55555( f51(d))),
HS( f55555( f52(t)))|HS( f55555( f52(h)))|HS( f55555( f52(a)))|HS( f55555(

f52(n)))|HS( f55555( f52(k))), ........, f55555( f57(p))| f55555( f57(r))|HS(
f55555( f57(a)))|HS( f55555( f57(y)))

Where, I52 denotes the second keyword which is ‘thank’, · · · ,
and I57 denotes the last keyword in the list which is ‘pray’.

3.1.3 Uploading
After producing the encrypted documents and their index lists, a
client sends them to a server. The server stores the index lists
in a database table. The encrypted documents can be stored in a
file storage system or database table if the database condition is
allowed.

3.2 Searching Process
Given the setup of the encrypted search system, from this section
onwards, we explain the Searching Process. The Searching Process
is also again divided into three subprocesses: Trapdoor Generation
and Querying; Verification; and Returning and Decryption.

3.2.1 Trapdoor Generation and Querying
In this process, an algorithm Trapdoor(K,W∗ j, j,s) is constructed
by a client. If a user wants to search a keyword W∗ j =w1

∗ jw
2
∗ j...w

s
∗ j,

he queries a client with it. The client makes a trapdoor. We call an
encrypted keyword query as a trapdoor. The trapdoor generation
method is similar to the first encryption of IndGen(K,W,d,J,s).

Let TW∗ j be the trapdoor for one keyword W∗ j = w1
∗ jw

2
∗ j...w

s
∗ j.

Then, TW∗ j can be described as: T = (T1, T2). Where, T1
indicates j-th field to search and T2 is an encrypted keyword for
W∗ j = w1

∗ jw
2
∗ j...w

s
∗ j. T2 is computed as follows:

T2 = fku(1st character|character′s positional number|T1)|
fku(2nd character|character′s positional number|T1)|....
....| fku(sth character|character′s positional number|T1)

= fku(w
1
∗ j|1| j)| fku(w

2
∗ j|2| j)|...| fku(w

s
∗ j|s| j)

For simple expression, we denote fku(w
s
∗ j|s| j) as ts

j .
Therefore, T2 = t1

j |t2
j |...|ts

j

In more detail,
T1 = j : the f ield identi f ier
T2 = fku(w

1
∗ j|1| j)| fku(w

2
∗ j|2| j)|.....| fku(w

s
∗ j|s| j) = t1

j |t2
j |...|ts

j

A client queries this trapdoor T = (T1, T2) for a keyword
W∗ j = w1

∗ jw
2
∗ j...w

s
∗ j to a server.

Example 3. For a keyword ‘god’,
T = (T1, T2),
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T1 = 1st f ield
T2 = f12345(g|1|1)| f12345(o|2|1)| f12345(d|3|1)

= t1
1 |t2

1 |t3
1

3.2.2 Verification
In this process, a server constructs an algorithms PattGen(T,d)
and SimMatch(P, I) to search what a user wants in an encrypted
database with the queried trapdoor.

1. PattGen(T,d) Construction. For approximate string matching
over encrypted data, we need the encrypted patterns for a keyword
W∗ j = w1

∗ jw
2
∗ j...w

s
∗ j. A server generates each pattern Pi j for each

document Di, where 1 ≤ i ≤ n and n is the total number of
documents.

Pi j = HS( fdi(t
1
j ))|HS( fdi(t

2
j ))|...|HS( fdi(t

s
j)).

That is, after receiving the trapdoor T = (T1, T2), a server
encrypts it with each document’s identifier di, and then hashes it,
character by character. A server produces all patterns, P1 j to Pn j,
for all documents from D1 through to Dn.

2. SimMatch(P, I) Construction. A server implements Hamming
Distance test between each document’s index string Ii j and the
produced pattern string Pi j. The computed Hamming Distance
between a pattern string Pi j and an index string Ii j for a document
Di can be denoted as follows: H(Pi j, Ii j), where 1 ≤ i ≤ n. For
each Ii, if it satisfies the condition H(Pi j, Ii j)≤ κ , Ii is the index
list of the document Di which a user wants.

Example 4. From the above Example 3, we can
produce all pattern strings from P11 to Pn1 as follows:

P11 = HS( fd1(t
1
1 ))|HS( fd1(t

2
1 ))|HS( fd1(t

3
1 ))

= HS( fd1( f12345(g|1|1)))|HS( fd1( f12345(o|2|1)))|HS( fd1( f12345(d|3|1)))

P21 = HS( fd2(t
1
1 ))|HS( fd2(t

2
1 ))|HS( fd2(t

3
1 ))

= HS( fd2( f12345(g|1|1)))|HS( fd2( f12345(o|2|1)))|HS( fd2( f12345(d|3|1)))
..........................................

Pn1 = HS( fdn(t
1
1 ))|HS( fdn(t

2
1 ))|HS( fdn(t

3
1 ))

= HS( fdn( f12345(g|1|1)))|HS( fdn( f12345(o|2|1)))|HS( fdn( f12345(d|3|1)))

Next, we need to compute Hamming Distance from I1 to In for
similarity test. We show only I5 of the document D5.
H(P51, I51) = 0.

We assume κ = 1. Therefore, H(P51, I51) satisfies this condition
H(Pi j, Ii j) ≤ κ and the document D5 is what a user wants to
retrieve.

3.2.3 Returning and Decryption
In the Veri f ication Process, if there are index lists that satisfy
the similarity degree of hamming distance, the server returns the
corresponding documents to the client. The client decrypts them
with the user’s document encryption key kr and then sends the
decrypted documents to a user.

4 SECURITY ANALYSIS FOR SSS-I
The goal of designing SSS-I is focused on more practical
respects in a real world. SSS-I can provide ‘Index Privacy’ but
not ‘Trapdoor Privacy’. In the index formation, the encryption
requirement for Index Privacy should include all values of the
user’s secret key, the identifier of the document, and the identifier
of the field. In addition to these, the character’s positional number

ensures that even the same character in the same cell have
different encryption values. However, because SSS-I does not use
a random factor in the generation of trapdoor, it cannot provide
‘Trapdoor Privacy’. We prove the index privacy of SSS-I by using
the security game model ICLR. First, proof sketch is given and
then a detailed, formal proof is addressed in APPENDIX A.

Theorem 1. SSS-I can guarantee ‘Index Privacy’ according to the
game ICC if f is (t,q,e) -secure pseudorandom function.

Proof Sketch. We prove it by contraposition. We assume that
SSS-I cannot provide ‘Index Privacy’ under the security game
ICC. According to [21], the existence of an adversary that wins the
game ICC with non-negligible probability implies the existence
of an adversary that wins the game ICLR with non-negligible
probability. Let A be an adversary that wins the game ICLR
with advantage ε . We construct an adversary β which can solve
the problem of whether f is pseudorandom function or random
function. β can access an oracle O f for the unknown function
f . In every algorithm, β substitutes the values of f through the
queries to the oracle O f . β uses an algorithm A as a subroutine
and simulates algorithm A by using Security Game ICLR. By
constructing an adversary β , under the assumption of the existence
of an adversary A(t,ε,q), we show that SSS-I can provide ‘Index
Privacy’.

5 CONSTRUCTION OF SECURE SIMILARITY
SEARCH-II (SSS-II)
The first scheme SSS-I can achieve high efficiency but it cannot
guarantee ‘Trapdoor Privacy’. Thus it cannot guarantee ‘Perfect
Similarity Search Privacy’. It motivates us to develop a secure
similarity search scheme that can provide ‘Perfect Similarity Search
Privacy’. To the best of our knowledge, most of the previous
schemes have not been able to guarantee ‘Trapdoor Privacy’ except
for that of Golle et al. [21]. However, in [21], to provide ‘Trapdoor
Privacy’, the authors have to update some index parts of all
documents during each query. Our objective in SSS-II is to design a
scheme that can guarantee ‘Perfect Similarity Search Privacy’, and
at the same time, not require that all the documents be updated
every query time. The details related to this problem are addressed
in Section 8.

In this section, we construct our second scheme SSS-II. We
use the Keyword Field again as we did in SSS-I. SSS-II is also
constructed by using seven algorithms.

5.1 SetUp Process
5.1.1 System Setting
Like SSS-I, this process constructs the algorithms SysParam(1k)
and KeyGen(λ ). The constructions are very similar to SSS-I. The
only difference is λ = (G, g, f (·), Gr, h(·), HS(·), s, m, n). G is
a group of order q which is a large prime and g is a generator of
a group G. f : {0,1}k×{0,1}∗→ Zq is a pseudo random function
and Gr is a pseudo random generator. h : {0,1}∗ → Zq and HS :
{0,1}∗→{0,1}k are one way hash functions. Other processes are
the same as SSS-I.

5.1.2 Encryption
1. DocEnc(R,D) and the f irst encryption o f IndGen(K,W,d,J,s)
Construction. In this process, the construction of algorithms
DocEnc(R,D) and the first encryption of IndGen(K,W,d,J,s)
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are the same as SSS-I but the second encryption of
IndGen(K,W,d,J,s) is different. After constructing DocEnc(R,D)
and the first encryption of IndGen(K,W,d,J,s), a client implements
the second encryption.

2. T he second encryption o f IndGen(K, W, d, J, s) Construction.

For the first encryption fku(Wi j) = fku(w
1
i j|1| j)| fku(w

2
i j|2| j)|......|

fku(w
s
i j|s| j), a client multiplies these values character

by character: di; h(ku); and the first encryption value
fku(w

s
i j|s| j). This multiplied value gets to the power of g:

gdih(ku) fku (w
1
i j |1| j)|gdih(ku) fku (w

2
i j |2| j)|...|gdih(ku) fku (w

s
i j |s| j).

After that, it is also hashed character by character. This value is
the index Ii j for one keyword Wi j.

Ii j = HS(gdih(ku) fku (w
1
i j |1| j))|HS(gdih(ku) fku (w

2
i j |2| j))|.......

.......|HS(gdih(ku) fku (w
s
i j |s| j))

Finally, a client produces an index list Ii for keyword list
Wi={Wi1,Wi2, ...,Wim} by collecting each index Ii j for each
keyword Wi j. An index list Ii is as follow.

Ii = idi1, idi2, Ii1, Ii2, ...Iim

Where, idi1 = gdih(ku), idi2 = g−di . These are a kind of identifiers
of document Di.

Example 5. For a keyword ‘god’,

I51 = HS(gd5h(ku) fku (w
1
51|1|1))|HS(gd5h(ku) fku (w

2
51|2|1))|.......

........|HS(gd5h(ku) fku (w
s
51|s|1))

Where, we assume h(ku) = 35, id51 = g(55555)(35), and
id52 = g−(55555). Therefore,

I51 = HS(g(55555)(35)( f12345(g|1|1)))|HS(g(55555)(35)( f12345(o|2|1)))|
HS(g(55555)(35)( f12345(d|3|1)))

I5 = id51, id52, I51, I52, ...I57
= g(55555)(35), g−(55555), HS(g(55555)(35)( f12345(g|1|1)))|
HS(g(55555)(35)( f12345(o|2|1)))|HS(g(55555)(35)( f12345(d|3|1))), ..

..,HS(g(55555)(35)( f12345(p|1|7)))|HS(g(55555)(35)( f12345(r|2|7)))|
HS(g(55555)(35)( f12345(a|3|7)))|HS(g(55555)(35)( f12345(y|4|7)))

5.1.3 Uploading
This process is the same as SSS-I.

5.2 Searching Process
5.2.1 Trapdoor Generation and Querying
If a user wants to search a keyword W∗ j = w1

∗ jw
2
∗ j...w

s
∗ j, s/he

queries a client with it. In particular, in the construction of
algorithm Trapdoor(K,W∗ j, j,s) of SSS-II, we add a random
number α to the trapdoor in each query to prohibit a server
from deducing some information from cumulative results. The
formation of trapdoor in SSS-II is as follows:
T = (T1,T2,T3)

T1 = j : the f ield identi f ier
T2 = h(ku)α

T3 = ( fku(w
1
∗ j|1| j)+α)|( fku(w

2
∗ j|2| j)+α)|...|( fku(w

s
∗ j|s| j)+α)

We put ( fku(w
s
∗ j|s| j)+α) as ts for simplicity. Therefore,

T3 = t1|t2|...|ts

t1=( fku(w
1
∗ j|1| j)+α)

t2=( fku(w
2
∗ j|2| j)+α)

............
ts=( fku(w

s
∗ j|s| j)+α)

Where, T1 is the field number of the keyword that a user wants
to search. T2 is the multiplication of the random number α by the
hashed value of the user’s secret key ku. T3 is the masked value
with α for the first encryption of each character fku(w

s
∗ j|s| j) to

provide ‘trapdoor privacy’.
α is the random value which is newly generated during each

query by the pseudo random generator, and the trapdoor is
computed by modulus. Hence, a server cannot learn the following
facts : 1) Whether a queried keyword is related to the previously
queried keywords, except for the search results. 2) Whether the
user’s key ku for querying is related to the previous queriers’ keys
except for the search results, even if the same user queries for
the same keyword. Therefore, a server cannot deduce information
from accumulated queries, so that SSS-II can provide ‘Trapdoor
Privacy’.

Example 6. We assume α = 9. For a keyword ‘god’,

T = (T1,T2,T3) = (1, (35)(9), T3)

T3 = ( f12345(g|1|1)+9)|( f12345(o|2|1)+9)|( f12345(d|3|1)+9)

5.2.2 Verification

In this process, a server constructs the algorithms PattGen(T,d)
and SimMatch(P, I) for approximate string matching over encrypted
data.

For a keyword W∗ j = w1
∗ jw

2
∗ j...w

s
∗ j, a server generates each

pattern string Pi j for each document Di, receiving the trapdoor
T = (T1, T2, T3(= t1|t2|...|ts)). Then, the server implements the
Hamming Distance test in j-th field if the T1 is j. Where, 1≤ i≤ n
and n is the total number of documents. Pi j is computed by using
idi1 and idi2 at j-th field in each document Di’s index list as
follows:
Pi j = HS((idi1)

t1 · (idi2)
T2)|...|HS((idi1)

ts · (idi2)
T2)

= HS((gdih(ku))( fku (w
1
∗ j |1| j)+α) · (g−di)(h(ku)α))|...

...|HS((gdih(ku))( fku (w
s
∗ j |s| j)+α) · (g−di)(h(ku)α))

= HS((gdih(ku) fku (w
1
∗ j |1| j)+dih(ku)α−dih(ku)α))|...

...|HS((gdih(ku) fku (w
s
∗ j |s| j)+dih(ku)α−dih(ku)α))

= HS(gdih(ku) fku (w
1
∗ j |1| j))|......|HS(gdih(ku) fku (w

s
∗ j |s| j))

A server produces all pattern strings from P1 j to Pn j at the j-th
field for all documents from D1 through to Dn.

After that, a server implements Hamming Distance test between
each document’s index Ii j and the generated pattern string Pi, j for
all the documents. If the computed Hamming Distance satisfies
the condition H(Pi j, Ii j) ≤ κ , this index list Ii is the index list of
the document Di that a user wants.

Example 7. For the trapdoor T = (1, (35)(9), T3) of the above
Example 6, a server generates from P11 through to Pn1. For
simplicity, we only show P51:

P51 = HS((id51)
t1 · (id52)

(35)(9))|HS((id51)
t2 · (id52)

(35)(9))|
HS((id51)

t3 · (id52)
(35)(9))

= HS((gd5(35))( f12345(g|1|1)+9) · (g−d5)(35)(9))|
HS((gd5(35))( f12345(o|2|1)+9) · (g−d5)(35)(9))|
HS((gd5(35))( f12345(d|3|1)+9) · (g−d5)(35)(9))
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= HS((g(55555)(35))( f12345(g|1|1)+9) · (g−(55555))(35)(9))|
HS((g(55555)(35))( f12345(o|2|1)+9) · (g−(55555))(35)(9))|
HS((g(55555)(35))( f12345(d|3|1)+9) · (g−(55555))(35)(9))

= HS(g(55555)(35) f12345(g|1|1))|HS(g(55555)(35) f12345(o|2|1))|
HS(g(55555)(35) f12345(d|3|1))

Next, the Hamming Distance Test from I1 through to In is
implemented. It is also shown for only I5 of the document D5.
H(P51, I51) = 0. This satisfies the condition H(Pi j, Ii j)≤ κ if κ is
1. Hence, the document D5 is what a user wants to retrieve.

5.2.3 Returning and Decryption
This process is the same as in SSS-I, too.

6 SECURITY ANALYSIS FOR SSS-II
The emphasis of SSS-II is on the privacy protection. It guarantees
‘Perfect Similarity Search Privacy’. As with SSS-I, we prove the
privacy of SSS-II by using the security game model.

Theorem 2. SSS-II can provide ‘Index Privacy’ according to the
game ICC in a random oracle model if the DDH problem is hard.

Proof Sketch. According to [21], this theorem can be proved
using the security game ICLR. We prove it by contraposition. Let
A be an adversary that wins the game ICLR with advantage ε . We
construct an adversary ∆, which uses A as a subroutine and breaks
the DDH with non-negligible advantage. The details are shown in
APPENDIX B.

Theorem 3. SSS-II can provide ‘Trapdoor Privacy’ according to
the game ICC if Gr is (t,e)-secure pseudo random generator.

Proof Sketch. According to [21], this theorem can be also proved
using the security game ICR. We prove it as well by contraposition.
Assume that SSS-II cannot provide ‘Trapdoor Privacy’ according
to the security game ICR. Then, there exists an algorithm A(t,ε,q)
which wins the game ICR. We construct an algorithm β ′ which
can solve the problem of whether Gr is a pseudo random or
random generator with non-negligible probability. β ′ can access
an oracle Oα for the unknown generator Gr. In the algorithm
Trapdoor(K,W∗ j, j,s), β ′ substitutes the value of α through the
queries to the oracle Oα . β ′ uses the algorithm A as a subroutine
and simulates algorithm A by using the Security Game ICR.

Under the existence of an algorithm A(t,ε,q), we can prove
Theorem 3 by constructing an algorithm β ′. Refer to APPENDIX
C for a detailed proof.

Theorem 4. SSS-II can provide ‘Perfect Similarity Search
Privacy’ if it guarantees both ‘Trapdoor Privacy’ and ‘Index
Privacy’.

By Theorem 2 and 3, it is clear that SSS-II can provide ‘Perfect
Similarity Search Privacy’.

7 PROTOTYPE IMPLEMENTATION

In most of the existing schemes, indexes for each document are
stored by a row and each document needs some random factors
for a high level of security. Hence, the searching process requires
at least one computation for each document in every row to verify
whether or not a document contains a querying keyword. There is
no decryption at a server, because the server is regarded as an inside

TABLE 2
Implementation Environment and Paramenters

Processor Intel Core 2 Duo 2.13
GHz

Agent RAM 2 GB
Language C++
Crypto. Eng. OpenSSL 0.9.8e

Database Product Oracle 10g
Interface OCCI (Oracle C++

Call Interface)
Curve WTLS Curve 3

Cryptographic Size 163 bits
Parameter Hash Function SHA-1 (160 bits)

PRF AES (128 bits)
keywords (=m) 10, 20, 30

Data Set # of MAX characters
(=s)

15

# of documents 1,000/5,000/10,000
15,000 / 20,000
/ 25,000

# Hamming distance
H(P, I)≤ κ

κ = 1

attacker. This makes it difficult for database engineers to apply
database schemas into an encrypted database search system. It is
one of the major reasons why efficiency is lowered. Consequently,
it is true that there are hardly efficient schemes for practical
business use in this ‘keyword index search’ area. For example,
in the experiment of [5], the search of 10,000 indexes requires
approximately 720 seconds (720,000 ms). The pairing function
used in the paper is another reason to lower the performance.
However, actually, a very small number of studies such as [34]
do try to solve the problem of inefficiency. The search process of
[34] is similar to a general plaintext search system because it can
directly access data without verification for every row. However, it
cannot guarantee even ‘index privacy’ and cannot provide similarity
search over encrypted documents.

Since SSS is the first result that enables similarity search, a
performance comparison with other schemes is not meaningful.
We hence implement a prototype. In this section, we describe the
experiments with regard to our proposed schemes SSS-I and SSS-
II.

7.1 Setting
Our system processes the transactions on an Intel Core 2 Duo 2.13
GHz processor with 2 GB RAM. We use Oracle 10g as the database
system and OCCI (Oracle C++ Call Interface) as the interface
between Oracle DBMS and the SSS client to reduce the interface
latency. We use OpenSSL cryptography modules for cryptographic
operations such as SHA-1, AES, and Elliptic Curve operation.
Since an exponentiation calculation is very heavy and the size of
a group element is generally long, we use a group over ‘Elliptic
Curve’ to solve that problem. We use ‘Koblitz curve’, where the
underlying field GF(2163) is defined by generating the polynomial
x163 + x7 + x6 + x3 + x + 1. This curve has been used in many
standards and identified in WAP WTLS standard as WTLS Curve 3.
As for the degree of similarity, Hamming Distance H(P, I)≤ κ , we
set κ as 1. The detailed implementation parameters are presented
in TABLE 2.

7.2 Experimental Categories and Results
To evaluate the performance of SSS-I and SSS-II, we construct a
data set, then estimate the time that is required for the uploading
and search processes of our two schemes. First, we build two tables
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TABLE 3
Uploading Time

SSS-I SSS-II
m 10 20 30 10 20 30
Total Uploading Time 35.083 35.143 35.219 59.045 82.077 107.114
Document Encryption 35 35 35 35 35 35
1st encryption 0.035 0.068 0.103 0.035 0.067 0.104
2nd encryption 0.038 0.065 0.106 24 47 72
Other Processing Time 0.01 0.01 0.01 0.01 0.01 0.01

m-the number of keyword fields, time unit- ms
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Fig. 1. Performance of the Search Process

for SSS-I and SSS-II and select random keywords by using the
standard C language random function rand() where s = 15, m=10,
20, 30, and the size of a document is 1MB. Next, SSS generates
the index strings I = {Ii j} that are related to the keywords and then
inserts the document into the database. We repeat this procedure
25,000 times, i.e., 25,000 documents are inserted into the database.
We consider the case that different documents contain common
keywords, so that we set for the occurrence of a common keyword
and similar(κ ≤ 1) keywords in at least every 2,500 documents
in the total of 25,000 documents. Finally, if a user requests a
document with the specific keyword, the SSS client performs the
search process with a server. We repeat the experiment with respect
to the keyword field size and the size of data set.

In addition, we experiment on Golle et al.’s scheme and the
modified version, SSS-IM, KE-I, and KE-II. SSS-IM is the SSS-I
that uses the non-purposebuilt keyword-field different from Golle
et al.’s [21], i.e., keyword-field free database table. KE-I and KE-
II are keyword-wise − not character-wise − encrypted version of
SSS-I and SSS-II. Further details are addressed below.

7.2.1 Uploading Time

First, we evaluate the uploading time for producing an index list
and encrypting the document. The total uploading time consists of
document encryption, the first encryption of index generation, the
second encryption of index generation, and other processing times.
The required time for a document(of size 1MB) is shown in TABLE
3, where m=10, 20, and 30. We find that document encryption takes
up most of the total uploading time. Since SSS-II needs relatively
more time in the second encryption due to exponential calculation,
total uploading time is also longer.
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Fig. 2. Comparison with keyword-wise encryption schemes

7.2.2 Searching Time

Fig.1 shows the searching times of SSS-I and SSS-II. We evaluate
each scheme by the size of data set(the number of documents).
The evaluated time includes the index search time in a server
and the decryption time for some returned documents because
we set common and similar(κ ≤ 1) keywords for ten documents
after every 2,500 documents. In results, for 1,000 documents, the
search time is checked as 108 ms(0.108 seconds) and 665 ms(0.665
seconds) for SSS-I and SSS-II, respectively. For 25,000 documents,
the serch times are 2,482 ms and 16,928 ms, respectively.

7.2.3 Comparison with keyword-wise encryption of scheme

Our schemes, SSS-I and SSS-II, encrypt character by character. We
may guess that these schemes take up more time than keyword-
wise encryption. We again encrypt SSS-I and SSS-II, keyword by
keyword; then, all documents are verified by an equality test, not
a similarity test. We call them KE-I and KE-II, i.e., keyword-wise
encryption for SSS-I and SSS-II.

Originally, the encryption mechanism of SSS-I is character-wise
encryption applied on pseudo random function. In this paper, we
use pseudo random function as ‘AES(128 bits)’, which is known to
have the best performance in a real world. Hence, we just compare
SSS-I with KE-I. SSS-II is the character-wise encryption version
of the improvement of Golle et al.’s scheme. To the best of our
knowledge, Golle et al.’s scheme is the first and one of the very
rare schemes in this area that can achieve ‘Trapdoor Privacy’, so
that we additionally evaluate Golle et al.’s scheme as well. We
compare SSS-II with KE-II and Golle et al.’s scheme.

Fig.2 shows the results. One of the most important aspects is that
our proposed schemes are faster than Golle et al.’s scheme even
if our scheme’s encryption method is character-wise encryption.
It is natural that KE-II is faster than Golle et al.’s scheme because
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Fig. 3. Comparison with non-purposebuilt keyword field
schemes

KE-II is the improved scheme of Golle et al.4 However, even SSS-
II, which uses character-wise encryption, is faster than Golle et
al.’s scheme. For 10,000 documents, SSS-II took 6,756 ms (6.756
seconds), while Golle et al.’s scheme took 8229ms (8.229 seconds).
This is because Golle et al.’s scheme requires too much time for
updating the last fields for all documents in a server every query
time. It is the reason why we improved Golle et al.’s scheme. The
more detail reasons are addressed in Section 8.1.

Since s(the total number of characters of a keyword) is set as
15, our concern was that our proposed schemes with character-wise
encryption would be 15 times as slow as keyword-wise encryption
schemes, KE-I, KE-II, and Golle et al.’s scheme. However, as
shown in Fig.2, KE-I and KE-II are only about twice as fast as
SSS-I and SSS-II, respectively. For 10,000 documents, SSS-I and
SSS-II took 969 ms (0.969 seconds) and 6,756 ms (6.756 seconds),
respectively, while KE-I and KE-II take 557 ms (0.557 seconds) and
3,336 ms (3.336 seconds), respectively. It is because we set κ as 1.
In the verification process for each document’s Hamming Distance
test, we coded that the process moves into the next document,
once the number of different places exceeds one, i.e., κ > 1. This
way of coding can relieve our schemes from the ramification of
the Hamming Distance if the server is not malicious. It will be
discussed in the Section 8.

7.2.4 Comparison with non-purposebuilt keyword field of
scheme
Our schemes’ index table is a purposebuilt keyword field, as in [21].
This keyword field makes it possible for a client, on behalf of a
user, to query a target field and for a server to search the queried
field. We experiment on another version of SSS-I, SSS-IM, whose
keyword field is non-purposebuilt, i.e. keyword-field free.

SSS-IM requires all fields have to be searched for every docu-
ment; hence, we evaluate it by the different numbers of keyword
fields: 10, 20, and 30. As we would expect, the longest search time
arises when the number of keyword fields, m, is 30. However, we
did not experiment on the modified SSS-II with a non-purposebuilt
keyword field because original SSS-II itself takes up much time
due to exponential calculation.

7.2.5 Correctness
To check the correctness of our scheme, we make four test files.
Each of them includes the keywords ‘complement’, ‘compliment’,

4. It is because SSS-II is the character-wise encryption version of the improve-
ment of the Golle et al.’s

‘complement and compliment’, and ‘complemente’, respectively.
These files are inserted into the database that is generated with a
random function. First, we query ‘complement’ and then ‘com-
pliment’. The first result yields all the four test files and the
second result yields the first three files including ‘complement’,
‘compliment’, and ‘complement and compliment’. This shows the
correctness of our scheme.

7.3 Experimental Analysis
SSS-I scheme is more efficient than SSS-II since the exponentiation
calculation of SSS-II requires heavy computational overhead.

Our schemes with character-wise encryption, SSS-I and SSS-II,
take only about twice as much time as the keyword-wise encryption
schemes, KE-I and KE-II(which are modified versions of our
schemes SSS-I and SSS-II). In particular, our schemes are faster
than Golle et al.’s although we use character-wise encryption. In
the experimental setting, if we control s and κ , the performance
may be changed.

In another respect, under the search scheme with keyword-wise
encryption, if we want to search ‘ab%’, we have to query 26
times from ‘aba’ to ‘abz’ on general keyword-wise search system.
Therefore, our scheme will be the preferred choice.

We expect that our SSS-I and SSS-II schemes can be internally
supported in the DBMS through ongoing works so that the perfor-
mance of the search process can be improved for practical business
use.

8 DISCUSSION

8.1 Trapdoor Privacy
In SSS-II, α , which is a randomly generated number in the
trapdoor-generation equation during each query, is removed from
the pattern generation process. It has some significance. These
equations enable SSS-II to avoid having to update all documents
at each query, differently from in the scheme of Golle et al. [21].
In [21], a random number is generated during each query and all
documents in a server have to be updated during each query to pro-
hibit the inference of any information from the accumulated results.
This is because a random number that is generated in a query time
cannot be removed during verification by a server. However, our
proposed scheme SSS-II can eliminate such an inefficient process
of updating because we designed trapdoor and pattern-generation
equations very pertinently, as we mentioned earlier. At the same
time, SSS-II can maintain the same level of security as Golle et
al.’s scheme. Owing to α (newly generated every query time), even
if a user queries the same keyword repeatedly, the trapdoors’ values
are different; hence, no one knows whether this trapdoor has been
queried before or not. In short, SSS-II has only to generate α at
each query and does not need to update all the documents in a
server for providing ‘Trapdoor Privacy’. The performance of our
improvement is already shown in Section 7.2.3.

8.2 The Ramification of Hamming Distance
8.2.1 Index List Table
The server can try to evaluate the Hamming Distance between the
index strings in the database table, in which the server might be
expected to be able to correlate some documents by similarities
through the Hamming Distance. This is because the smaller value of
Hamming Distance on the index list table implies more similarity;
however, it is not true because of ‘Index Privacy’. In our index list,
the same characters have different encryption values even in the
same cell (refer to the Theorem 1 and 2). Hence, the Hamming
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Distance on our Index Lists does not have any meaning. In other
words, the small value of the Hamming Distance on our index lists
cannot guarantee the real similarity. As a result, the server’s efforts
are in vain.

8.2.2 Verification Process
In the verification process for the Hamming Distance test, a server
can try other attacks. A malicious server may not follow the given
matching test code that the process checks only until a similarity
degree κ ≤ 1. The server may try the test for all the characters of
a targeted keyword index even if κ > 1.

This attack requires valid trapdoors, which can be considered
largely in two cases as follows:

At first, we consider the case that an attacker pretends to be
a valid user. An attacker tries to masquerade as a valid user or a
server to make valid trapdoors, since s/he does not know other valid
users’ secret keys. In this case, an attacker can learn the targeted
user’s index information by querying all possible keywords. But,
this problem falls under the user authentication and the limitation
of the DAS model. Authentication is out of our research scope, so
that we do not deal it with any more.

The next case is that there is neither masquerade nor conspiracy.
A server implements the matching test for the queried trapdoors
by valid users, not by the given coding rule(until κ ≤ 1) but for
all the characters. All of the results are stored, and based on them,
the server may try several attacks such as a dictionary attack or a
guessing attack. Although a server does not know which character
would be matched to the value, he can learn ‘matching’ or ‘not’
between an index value and the querying keyword.

For example, we assume that a server receives a trapdoor
T = t1|t2|t3 for the j-th field and implements matching tests for
every row. The maximal fact that the server can learn from the
matching test except for the results is like this;
· the number of matching rows to t1: x
· the number of matching rows to t2: y
· the number of matching rows to t3: z

We anticipate a dictionary attack based on statistical data of
relative frequency of characters in English. Let n be the total
number of stored documents, i.e. the total number of rows, then
we can obtain the frequency of t1, x

n . If this value is 0.12 and
we know the relative frequency of an alphabet ‘e’ is 12% in
English, can we estimate t1 as ‘e’? The answer is ‘no’. The
relative frequency 12% of a certain character in SSS means this;
the probability is 12% in that a certain character will be matched
to t1 and the character is encrypted with these factors: the same
user’s secret key; the targeted field identifier; the same positional
character number, together. The right answer for ‘e’ should be

x
the number o f documents that the user stores = 0.12.

Generally, the Caesar Cipher and Vigenere Cipher are known
as easily attacked based on statistical information of ‘relative
frequency in English’. In these kinds of Ciphers, an attacker can
classify the sentences by identical patterns through analyzing a
whole ciphertext, since same plaintexts or characters have the
same ciphers. For each identical pattern, an attacker obtains the
relative appearance frequency, which is adaptively mapped to the
well known statistical data of the relative appearance frequency in
English as in TABLE 4. The process is repeated until a meaningful
plaintext is encountered.

In our scheme, obtaining available relative appearance frequen-
cies of characters is almost impossible because a character has
all different encryption values over whole indexes and there is
no identical pattern. If a character is to be estimated through a

TABLE 4
The ranking of relative appearance frequency in English

Character relative
fre-
quency(%)

relative
frequency

Character relative
fre-
quency(%)

relative
frequency

E 12.702 over 12% M 2.406
T 9.056 W 2.360
A 8.167 F 2.228 1.5% - 3%
O 7.607 G 2.015
I 6.966 6% - 9% Y 1.974
N 6.749 P 1.929
S 6.327 B 1.492
H 6.094 V 0.978
R 5.987 K 0.772
D 4.253 J 0.153
L 4.025 4% X 0.150 below 1%
C 2.782 Q 0.095
U 2.758 Z 0.074

Beker and Piper(1982) examined the frequency distribution of the letters
in English novels and newspapers.

malicious matching test based on statistical data, the sample space
of one querying field for matching test results is too small and
inappropriate, whereas SSS requires many things to be matched at
the same time such as a user, a character, the position of a character,
a field, and a document identifier. Especially, how many documents
are stored by a user is a very important factor for the more correct
frequency. It is also as hard as to learn the user’s secret key.

In detail, if the matching character to t1 is really ‘e’ in the
user’s documents, the relative frequency of the first character in
j-th field of the user’s documents might be 12%. In order to
estimate more correctly, an adversary should know the frequencies
for all alphabets in the first character’s position, j-th field of the
user’s documents in advance. In reality, the probability is low in
that all characters should be in one position within a certain field
for a certain user’s documents and the all characters contain all of
26 characters, a through z. A probability is much lower in that a
user stores documents that should be as many as approximating
to the correct frequency data for all characters statistically. Valid
trapdoors for matching tests should be accumulated enough to
provide correct statistical frequency data, but this probability
is much lower. For example, we assume that Alice and Bob
query “exam” for the jth-field; TA = t1

a |t2
a |t3

a |t4
a , TB = t1

b |t2
b |t3

b |t4
b . A

malicious server S implements matching tests for all characters in
j-th field and then S obtains the number of matching characters
for the each querying character like this:
t1
a : x, t2

a : y, t3
a : z, t4

a : u
t1
b : x′, t2

b : y′, t3
b : z′, t4

b : u′

We assume that Alice and Bob store l and m documents. If t1
a

and t1
b are “e”, then x

l ≈
x′
m would approximate 0.12.

In English documents, since “e” has a particularly high rate 12%,
we may guess t1

a and t1
b as “e”. However, a server cannot know the

numbers, l and m, of Alice’s and Bob’s documents and S knows
only the matching numbers x and x′. It means that S cannot compute
the relative frequency of the matching character, so that S cannot
know whether the frequency is high or not. If the difference of
frequencies is high like between t1

a for “e” and t2
a for “x”, S only

knows that t1
a is not for z(the lowest frequency) and t2

a is not for
e(the highest frequency), for the characters within one querying
keyword. Especially, the characters with similar frequency such as
a, o, i, s, h, are also not proper for the statistical data based guessing
attack because the sample space is too small and there are too many
factors that have to be considered.
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Furthermore, statistical estimation is also meaningless in SSS,
since S cannot know that TA and TB are the queries for different
keywords by the same user or the queries by different users. In
this case, S at first may assume they are the queries from the same
user Alice. Then S chooses l adaptively to compute ( x

l , x′
l , y

l , y′
l ,

z
l , z′

l , u
l , u′

l ). Based on TABLE 4 and the computed results, S will
try to find out some meaningful messages. In another case, if S
assumes the trapdoors are the queries from different users, S also
does not know who queries each of them and how many documents
the queriers store. With the same method as above, S may choose l
and m adaptively and will try to find out some meaningful messages
again. Even if S gets some meaningful messages, it is hard for S
to be confident that. Especially, this kind of estimation may be
impossible in the case of the characters having similar frequency
such as t,a,o,i,n,s,h,r.

However, we assume that S succeeds in guessing correctly.
Although the guess is right, it cannot make any contribution to
decrypt other indexes such as the Vigenere Cipher or Caesar Cipher.
As we mentioned before, every character is encrypted differently
and the index list has no identical pattern, because we encrypt a
character with all of these factors: a user’s secret key; positional
number of a character; field identifier; document identifier. This
is the same meaning as that all different keys are applied to
each character, which plays a similar role of one-time encryption.
Therefore, it is impossible to decrypt another index by correlating
with correctly guessed characters.

In addition, if the indexes of SSS are to be decrypted, some
secret values should be required. The indexes for one character
of SSS-I and SSS-II are formed like this; HS( fdi( fku(w

s
i, j|s| j)),

HS(gdih(ku) fku (w
s
i j |s| j)). At first, we cannot know the input values of

them, ( fdi( fku(w
s
i, j|s| j)) and (gdih(ku) fku (w

s
i j |s| j)) because of the one-

wayness of the hash function, where we cannot know the user’s
secret key ku and document identifier di because of the security of
pseudo random function and the hardness of the DDH(Decisional
Diffie-Hellman) problem. Consequently, a server S cannot know
secret values to decrypt and this is so irrespective of correctly
guessed results.

By these reasons, we used together all these factors: a user’s
secret key, the position number of a character, a field identifier, and
a document identifier, for the encryption of one character. In our
scheme SSS, a statistical data based attack as well as a dictionary
attack are not likely to be successful.

8.3 Limitation of Similarity and Like Query
Character-wise encryption of our main method may cause some
problems such as a dictionary attack. The solution for these
problems is that every character is differently encrypted together
with its positional number, field identifier, document identifier, and
a user’s secret key. Because of the character’s positional number,
we chose Hamming Distance as approximate string matching test.
However, the Hamming Distance Test cannot provide a high level
of similarity such as Edit Distance because Hamming Distance is
an exact positional string matching method. For example, for a
keyword ‘sunflower’, Hamming Distance cannot search for ‘flow-
ersun’.

However, in another respect, due to character-wise encryption,
our scheme can support ‘like query’ over encrypted documents
as long as we set κ = 0. For the keyword ‘abc%’, our scheme for
similarity search has the following results. If κ = 0, all the possible
results are abca ∼ abcz, i.e., abc%. When κ = 1, the results are
xbc%, axc%, abx%, and κ = 2, the results are xxc%, axx%, xbx%.
Here, if we want like query for ‘abc%’, we should set κ = 0.

If we take away the positional number from our scheme, we
could support every approximate string matching measurement as
well as Edit Distance, while the level of security would be lower.
Therefore, we need to work more on the schemes which can resolve
the problems caused by character-wise encryption and at the same
time support a high level of similarity.

9 CONCLUSION

In this socio-computing era, the storage of sensitive data is one
of the most important issues in database-management [35]. Re-
cently, radical information-communication technologies encoun-
tered a turning point with cloud computing services [36]. Many
people and enterprises have utilized the storage service with the
concept of DaaS (datacenter as a service), where the DAS (database
as a service) model is regarded as an appropriate database model
to protect users’ sensitive information by encryption. However,
encryption methods have some negative effects in DBMS. Although
many researchers have properly treated most of the given problems,
the similarity searches over encrypted documents has remained
infeasible. In this paper, we open another possibility, i.e., simi-
larity search over encrypted documents. In order to do this, we
designed two similarity search schemes for encrypted documents,
implemented the prototype, and analyzed the security and efficiency
of the schemes. SSS-II can meet the ‘Perfect Similarity Search
Privacy’, which we define as the best security. The SSS-I is more
efficient by operating under a slightly weaker security guarantee
than SSS-II.

For future work, we suggest examining how our search algo-
rithms could be incorporated efficiently into database management
systems, and investigating a search algorithm with a higher level
of similarity.
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APPENDIX A
THE PROOF OF THEOREM 1.
• Setup. Algorithm β creates a set WS of q words ∈ {Di}(1≤

i≤ n) and gives this to the adversary A. A chooses a polyno-
mial number of subsets {Wi} from WS. We call this the col-
lection of subsets WS∗ = {Wi}, where Wi = {Wi1,Wi2, ..,Wim},
Wi j = w1

i j|w2
i j|...|ws

i j, and 1≤ j≤m. A sends them to β again.
Upon receiving WS∗, β runs algorithm SysParam and KeyGen
and invokes algorithm IndGen for keywords set Wi ∈WS∗.
Where an index list Ii is produced, an unique identifier di for
each document Di is assigned. After producing all the index
strings, β sends them to A.

• Queries. If A queries the trapdoor for a word Wi j ∈Wi, β

runs algorithm Trapdoor for a word Wi j and produces TWi j

and sends it to A.
• Challenge. After making some queries, A chooses a challenge

keyword set W∗ = {W∗1, W∗2, ...,W∗m}, a querying keyword
W∗ j ∈ W∗, and a character wt

∗ j ∈ W∗ j. A’s challenge is to
distinguish whether it is encrypted with W0 or W1 in the
game ICLR, where the querying keyword’s field is j. Then,
β guesses a value wz

∗ j for the character wt
∗ j is encrypted by

pseudorandom function or random function, by picking wz
∗ j

uniformly independently at random in {W∗1, W∗2, ...,W∗m}. If
wz
∗ j 6= wt

∗, j, β returns the value of random function in reply to
the pseudorandom or random challenge.
With the probability of about 1

l (l is the total number of
all characters in the keyword set W∗), we have wz

∗ j =
wt
∗ j and that case β proceeds as follows. Let It

∗ j =

HS( fd∗( f t
∗ j)). For W∗ j = w1

∗ j|w2
∗ j|...|ws

∗ j, wc
∗ j 6= wt

∗ j, let Ic
∗ j =

gc
∗ j, where g is a random function and c ∈ {1,2, ...,s}.

For W∗y ∈ W∗ = {W∗1, W∗2, ...,W∗m}, y 6= j, let I∗y =
HS( fd∗( f 1

∗y))|...|HS( fd∗( f s
∗y)). This means that the keywords

W∗y except for the querying keyword W∗ j are encrypted
according to the given protocol. β returns to A the fol-
lowing index list; I∗ = d∗, I∗1, I∗2, ..., I∗m, where I∗ j =
g1
∗ j|g2

∗ j|...|HS( fd∗( f t
∗y))|...|gs

∗ j.
A checks that this index list is an encryption of W∗ in every
keyword W∗y, y 6= j. If f is a pseudorandom function, this is
also an encryption of a character wt

∗ j in W∗, otherwise it is
not.
A is again allowed to ask for more index of keyword
sets with the restriction that A must not make queries that
are distinguishing W0 = Rand(W∗, W∗ j − {wt

∗ j}), W1 =
Rand(W∗, W∗ j).

• Response. A finally outputs a bit b′, representing its guess for
b. b′ = 1 means that the function for wt

∗ j is random function
and b′ = 0 is pseudorandom function. If b = b′, β outputs
1 indicating that β guesses f is a pseudorandom function,
otherwise 0. β can know the pseudorandom function challenge
with the same advantage that A has in winning game ICLR.

We show that β can solve the problem about whether f is
pseudo random or random function with non-negligible probability.
Accordingly, the advantage of β in winning this experiment is;

Advβ = Pr[ExpPR
β

= 1] = Pr[b′ = b]

= Pr[b′ = b|b = 1] ·Pr[b = 1]+Pr[b′ = b|b = 0] ·Pr[b = 0]

= Pr[b′ = b|b = 1] · 1
2
+Pr[b′ = b|b = 0] · 1

2

= Pr[b′ = 1|b = 1] · 1
2
+Pr[b′ = 0|b = 0] · 1

2

= Pr[b′ = 1|b = 1] · 1
2
+(1−Pr[b′ = 1|b = 0]) · 1

2
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=
1
2
+

1
2
(Pr[Expind−cka−1

A = 1]−Pr[Expind−cka−0
A = 1])

=
1
2
+

1
2

Advind−cka
A =

1
2
+

1
2

ε

We showed the existence of β which can solve whether f
is pseudorandom or random with the probability more than 1

2 .
Accordingly, by contradiction, it can be said that SSS-I provide
‘Index Privacy’.

APPENDIX B
THE PROOF OF THEOREM 2.
• Setup. Algorithm ∆ creates a set WS of q words ∈ {Di}(1≤

i≤ n) and gives this to the adversary A. A chooses a polyno-
mial number of subsets {Wi} from WS. We call this the col-
lection of subsets WS∗ = {Wi}, where Wi = {Wi1,Wi2, ..,Wim},
Wi j = w1

i j|w2
i j|...|ws

i j, and 1≤ j ≤m. A sends them to ∆ again.
∆ invokes the algorithms SysParam and KeyGen. Let gδ ,gτ ,gγ

be a Diffi-Hellman triplet, the challenge is to determine
whether γ = δτ . ∆ guesses a value wz

i j for the character wt
i j

that A will choose in the game ICLR, by picking wz
i j uniformly

independently at random in {Wi1,Wi2, ...,Wim}.
∆ simulates the algorithm IndGen on Wi as follows: ∆

maps every keyword Wi j = w1
i jw

2
i j...w

s
i j to a random value

Xi j = x1
i jx

2
i j...x

s
i j. For simplicity, ∆ maps gK to g′. For

Wi = {Wi1,Wi2, ...,Wim}, ∆ chooses a random value δi and
outputs:

Ii = (gδiK , g−δi , HS(gδix1
i1K)|..|HS(gδixs

i1K), ...

...,HS(gδix1
i jK)|..|HS((gτ )δixt

i jK)|..|HS(gδixs
i jK), ...

...,HS(gδix1
imK)|..|HS(gδixs

imK)

= ((g′)δi , g−δi , HS((g′)δix1
i1)|..|HS((g′)δixs

i1), ...

...,HS((g′)δix1
i j )|..|HS(((g′)τ )δixt

i j )|..|HS((g′)δix1
i j ), ...

...,HS((g′)δix1
im)|..|HS((g′)δixs

im))

• Queries. If A queries for a keyword W = w1|w2|..|ws, ∆

outputs the trapdoor Tw = (T1, T2, T3 = (t1, t2, .., ts)) in-
cluding random number α . For verification, A generates Pi j;
Pi j = ((g′)δi)t1 · (g−δi)T2 |...|((g′)δi)ts · (g−δi)T2 . Then, A asks
∆ character-wise hash values for Pi j like this; HS(((g′)δi)t1 ·
(g−δi)T2)|...|HS(((g′)δi)ts · (g−δi)T2).
∆ knows if Pi j(of Di) satisfies SimMatch. If it is satisfied,
∆ returns this; Pi j = HS(((g′)δi)t1 · (g−δi)T2)|...|HS(((g′)δi)ts ·
(g−δi)T2). If not, ∆ returns character-wise random values for
Pi j.

• Challenge. Finally, A selects a challenge keyword set W∗ =
{W∗i, ..,W∗m} for document D∗ along with a querying keyword
W∗ j ∈W∗ and a character wt

∗ j ∈W∗ j, where j ∈ {1,2, ..,m} and
t ∈ {1,2, ..,s} are selected randomly.
If wz

i j 6= wt
i j, ∆ returns a random value in reply to the DDH

challenge. With the probability of about 1/l(l is the total
number of all characters in the keyword set W∗), we have
wz

i j = wt
i j and that case ∆ proceeds as follows. Let It

∗ j =

HS((g′)γ·xt
∗ j) = HS(((g′)τ)δixt

∗ j). It is the setting for the DDH
triplet. For W∗ j = w1

∗ j|..|ws
∗ j, wc

∗ j 6= wt
∗ j, let Ic

∗ j = Rc
∗ j(random

value), where c ∈ {1,2, ..,s}. For W∗y ∈W∗ = {W∗i, ..,W∗m},
y 6= j, let I∗y = HS((g′)δ∗x1

∗y)|...|HS((g′)δ∗xs
∗y). This means

that the keywords except for querying keyword W∗ j are
encrypted according to the given protocol. ∆ returns to A
the following index list; I∗ = ((g′)δ∗ ,g−δ∗ , I∗1, .., I∗m). Where,
I∗ j = (R1

∗ j, R2
∗ j, , ..,HS((g′)γ·xt

∗ j), ..,Rs
∗ j).

A checks that this index is an encryption of W∗ in every
keyword W∗y, y 6= j. If γ = δτ , this index is also an encryption
of W∗ for a character wt

∗ j; otherwise it is not.
A is again allowed to ask for index of keyword sets, with the
restriction that A must not make a query that are distinguish-
ing W0 = Rand(W∗,W∗ j−{wt

∗ j}) from W1 = Rand(W∗,W∗ j).
Where W0 means that it is a query with a DDH triplet and
W1 is a query without a DDH triplet.

• Response. Finally, A outputs a bit b′. If b′ = 0, ∆ guesses that
gδ ,gτ ,gγ is a DDH triplet. If b′ = 1, ∆ guesses that gδ ,gτ ,gγ

is not a DDH triplet. Since the encryption will be random for
character wc

i j if and only if the challenge is not a DDH tuple,
∆ solves the DDH challenge with the same advantage that A
has in winning game ICLR.

APPENDIX C
THE PROOF OF THEOREM 3.
• Setup. Algorithm β ′ and adversary A do the same things as

Setup process of Theorem 1.
• Queries. This process is also the same as Theorem 1.
• Challenge. After making some queries, A chooses a chal-

lenge keyword set W∗ = {W∗1,W∗2, ...W∗m} for D∗, a querying
keyword W∗ j(= W0) ∈ W∗, and a character wt

∗ j ∈ W∗ j =

w1
∗ j|w2

∗ j|...|ws
∗ j, where 1 ≤ j ≤ m and 1 ≤ t ≤ s. A’s chal-

lenge is to distinguish whether the trapdoor is generated with
W0 = W∗ j or W1 = Rand(W∗ j,wt

∗ j) in the game ICR. β ′

guesses a value tz
∗ j = f (wz

∗ j) + α for the character wz
∗ j is

produced by α through pseudo random generator or random
generator, by picking wz

∗ j uniformly independently at random
in W∗ j = w1

∗ j|w2
∗ j|...|ws

∗ j.
If z 6= t, β ′ returns tz

∗ j = f (wz
∗ j)+Gr(α), where Gr(α) is the

value α of pseudo random generator in reply to the pseudo
random or random challenge. With the probability of about 1

s ,
we have z = t, and that case β ′ returns tz

∗ j = f (wz
∗ j)+R(α) of

random generator. This means that the trapdoor T∗ j (for the
keyword W∗ j) except for the wt

∗ j is generated according to the
given protocol. β ′ returns to A the trapdoor T∗ j = f (w1

∗ j)+

Gr(α)| f (w2
∗ j)+Gr(α)|..| f (wt

∗ j)+R(α)|..| f (ws
∗ j)+Gr(α).

A checks that this trapdoor is produced by pseudo random
generator for the keyword W∗ j.
A is allowed to ask for more trapdoors with restriction that
A must not make queries that are distinguishing W0 = W∗ j,
W1 = Rand(W∗ j,wt

∗ j).
• Response. A finally outputs a bit b′, representing its guess for

b. b′ = 1 means that the generator for wt
∗ j is random generator

and b′ = 0 is pseudo random generator. If b = b′, β ′ outputs
1. Otherwise, β ′ outputs 0. ‘β ′ outputs 1’ means that Gr is a
pseudo random generator.

β ′ can solve the problem about whether Gr is pseudo random
or random generator with the probability non-negligibly different
from 1

2 . The advantage of β ′ in winning this experiment can be
obtained through the similar process to Theorem 1. By constructing
β ′ like this, we can say that SSS-II can provide ‘Trapdoor Privacy’.


