
On the Security of Wang’s Provably Secure
Identity-based Key Agreement Protocol

Maurizio Adriano Strangio

University of Rome “Roma Tre”, ROME, ITALY
strangio@mat.uniroma3.it

Abstract. In a 2005 IACR report, Wang published an efficient identity-based
key agreement protocol (IDAK) suitable for resource constrained devices.
The author shows that the IDAK key agreement protocol is secure in the Bellare-
Rogaway model with random oracles and also provides separate ad-hoc security
proofs claiming that the IDAK protocol is not vulnerable to Key Compromise
Impersonation attacks and also enjoys Perfect Forward Secrecy (PFS).
In this report, we review the security properties of the protocol and point out that
it is vulnerable to Unknown Key Share attacks. Although such attacks are often
difficult to setup in a real world environment they are nevertheless interesting
from a theoretical point of view so we provide a version of the protocol that fixes
the problem in a standard way. We also provide a security proof of the IDAK
protocol based on the Gap Bilinear Diffie Hellman and random oracle assump-
tions in the stronger extended Canetti-Krawczyk security model of distributed
computing.

1 Introduction

In a 2005 IACR report ([9] and also [10]), Wang proposed a novel identity-based key
agreement protocol (IDAK) using the Weil/Tate pairing and also provided a security
proof in the Bellare-Rogaway model [1].

The model does not capture Key Compromise Impersonation (KCI) attacks or Per-
fect Forward Secrecy (PFS); for the later security features the author provides separate
ad-hoc proofs. However, the protocol is vulnerable to Unknown Key Share (UKS) at-
tacks. Although such attacks are often difficult to setup in a real world environment they
are nevertheless interesting from a theoretical point of view so we provide a version of
the protocol that fixes the problem in a standard way.

We also show that the IDAK protocol is provably secure in the extended Canetti-
Krawczyck (eCK) model [7] under the Gap Bilinear Diffie Hellman and random oracle
assumptions.

2 Notation and mathematical background

To make the paper self-contained, we briefly recall the underlying mathematical con-
cepts and notation. Let us consider two multiplicative cyclic groups G and G1 of order
q with g a generator of G. The bilinear map ê : G × G → G1 has the following three
properties:



1. bilinearity, for all g1, g2 ∈ G and x, y ∈ Z : ê(gx1 , g
y
2 ) = ê(g1, g2)

xy = ê(gy1 , g
x
2 );

2. non-degeneracy, for all g ∈ G, ê(g, g) ̸= 1 is a generator in G1;
3. computability, for g1, g2 ∈ G : ê(g1, g2) ∈ G1 is computable in polynomial time.

The modified Weil and Tate pairings associated with supersingular elliptic curves are
examples of admissible pairings [5], [3].

If X is a finite set then x
R← X or x ∈R X denote the sampling of an element

uniformly at random from X . If α is neither an algorithm nor a set x← α represents a
simple assignment statement.

The (computational) Bilinear Diffie-Hellman assumption (BDH) holds in the group
G if for random elements x, y, z ∈ Z∗

q it is computationally hard to compute ê(g, g)xyz .

Assumption 1 (BDH) The group G satisfies the Bilinear Diffie-Hellman assumption if
for all PPT algorithms we have:

x
R← Z∗

q ; y
R← Z∗

q ; z
R← Z∗

q ;X ← gx;Y ← gy;Z ← gz :
Pr [A(X,Y, Z)=ê(g, g)xyz] < ϵ

where the probability is taken over the coin tosses of A (and random choices of x, y, z)
and ϵ is a negligible function.

The Decisional Bilinear Diffie-Hellman assumption (DBDH) holds in the group G
if for random elements x, y, z, r ∈ Z∗

q it is computationally hard to distinguish the
distributions ⟨gx, gy, gz, gr⟩ and ⟨gx, gy, gz, ê(g, g)xyz⟩.

Assumption 2 (DBDH) The group G satisfies the Decisional Bilinear Diffie-Hellman
Assumption if for all PPT algorithms we have:

x
R← Z∗

q ; y
R← Z∗

q ; z
R← Z∗

q ; r
R← G;X ← gx;Y ← gy;Z ← gz :

Pr[A(X,Y, Z, r)=1]-Pr[A(X,Y, Z, ê(g, g)xyz)=1] < ϵ

where the probability is taken over the coin tosses ofA (and random choices of x, y, z, r)
and ϵ is a negligible function.

The Gap Bilinear Diffie-Hellman assumption (GBDH) holds in the group G if for
random elements x, y, z ∈ Z∗

q it is computationally hard to solve the BDH problem
even with access to a DBDH oracle.

Assumption 3 (GBDH) The group G satisfies the Gap Bilinear Diffie-Hellman As-
sumption if for all PPT algorithms we have:

x
R← Z∗

q ; y
R← Z∗

q ; z
R← Z∗

q ;X ← gx;Y ← gy;Z ← gz :

DBDH(g, ga, gb, gc, h)← 1 iif h = e(g, g)abc; a
R← Z∗

q ; b
R← Z∗

q ; c
R← Z∗

q ;
Pr [A(X,Y, Z)=ê(g, g)xyz] < ϵ

where the probability is taken over the coin tosses of A (and random choices of x, y, z)
and ϵ is a negligible function.

2



3 Review of the IDAK protocol

In this section we review the IDAK identity-based key agreement protocol. The protocol
is completely specified by three algorithms Setup, Extract, Exchange [9]:

– Setup, for input the security parameter k:
1. Generate a bilinear group Gρ = {G,G1, ê}with the groups G and G1 of prime

order q. Define h as the co-factor of the group order q for G;
2. Choose a generator g ∈ G;
3. Choose a random master secret key α ∈R Z∗

q ;
4. Choose the cryptographic hash functions H : {0, 1}∗ → G and π : G ×

G→ Z∗
q . In the security analysis of protocol IDAK, H and π are simulated as

random oracles.
The system parameters are (hq, h, g,G,G1, ê, H, π) and the master secret key is α.

– Extract, For a given identification string ID ∈ {0, 1}∗, the algorithm computes
gID = H(ID) ∈ G and returns the private key dID = gαID;

– Exchange, For two peers A and B with identities IDA and IDB respectively, the
algorithm proceeds as follows:
1. A selects x ∈R Z∗

q , computes RA = gxIDA
and sends RA to B;

2. B selects y ∈R Z∗
q , computes RB = gyIDB

and sends RB to A;
3. On receipt of RB , A computes sA = π(RA, RB), sB = π(RB , RA) and the

shared secret skAB as
ê(gIDA

, gIDB
)(x+sA)(y+sB)hα = ê(gsBIDB

·RB , g
(x+sA)hα
IDA

);
4. On receipt of RA, B computes sA = π(RA, RB), sB = π(RB , RA) and the

shared secret skBA as
ê(gIDA , gIDB )

(x+sA)(y+sB)hα = ê(gsAIDA
·RA, g

(x+sB)hα
IDB

);

The main result of [9] is Theorem 5.2 which proves that IDAK is a secure key
agreement protocol in the Bellare-Rogaway model under the DBDH and random ora-
cle assumptions. The author also presents ad ad-hoc security proofs claiming that the
protocol enjoys PFS (Theorem 6.1) and is not vulnerable to KCI attacks (Theorem 7.1).

4 The security features of the IDAK protocol

In this section we review the security properties of the IDAK protocol.

4.1 Entity Impersonation

When an honest party A is corrupted then a malicious adversary can easily impersonate
him in a protocol execution with another party B since the adversary has total control
of any session initiated with identity A. The adversary can also register a new identity
(say C) with the KGC and successfully conduct an impersonation attack against B.

3



4.2 Forward Secrecy

A key agreement protocol has perfect forward secrecy (PFS), if after a communication
session between two peers is completed, the adversary cannot learn the session key even
if it corrupts both parties involved in that session. In other words, learning the long term
private keying material of parties should not compromise the security of past completed
sessions.

A weaker notion of forward secrecy (weak perfect forward secrecy − wPFS) con-
siders only completed sessions in which the adversary was passive (i.e. did not modify
the messages transcripts exchanged by the parties).

For identity protocols ”‘master key PFS”’ (mkPFS) refers to the consequences of
KGC corruption. The IDAK protocol does not possess mkPFS since knowledge of the
secret master key α would allow even a passive adversary to trivially break the protocol
since the session key of two peers A,B is calculated as ê(gsBIDB

·RB , RA · gsAIDA
)α. To

make the IDAK protocol mPFS Wang proposes the exchange of a an additional Diffie-
Hellmann ephemeral key that should be included in the computation of the session key
(see Section 6 in [9]).

4.3 Key Compromise Impersonation

In a KCI attack, the opponent has learned the long-term private key of an honest party
(say A) and attempts to establish a valid session key with A by masquerading as an-
other legitimate principal (say B). This attack represents a subtle threat that is often
underestimated and difficult to counter [8].

Suppose a malicious adversary A has learned the long term private key dIDA
of

principal A; she is now able to set up a man-in-the-middle attack during a run of the
protocol between A and B. The attack should work as follows. A lets message RA

reach its intended destination (B) but replaces B’s response RB to A with a transcript
X . On receipt of X , A calculates its session key as follows:

skAB = ê(gsBIDB
·X, d

(x+sA)
IDA

)

= ê(gsBIDB
·X, (gxIDA

· gsAIDA
)hα)

= ê(dsBIDB
·Xα, RA · gsAIDA

)

To succeed in the attack A must choose a suitable message X possibly exploiting
the algebraic properties of the underlying groups in order to have A accept a known
session key. To eliminate the dependency from α the only possible choice is to set
X = gIDB

so that Xα = dIDB
, however, the adversary would have to corrupt B also

to succeed.
A more powerful adversary, with the possibility of corrupting B’s session state in

order to obtain the value of y, may succeed in breaking the protocol. The scenario
wherein the adversary has additional information is not technically a KCI attack; such
capabilities are considered in the security models of Canetti and Krawczyk [4] and
Lamacchia et al. [7].

4



4.4 Unknown Key Share

The first Unknown Key Share (UKS) attack against a key agreement protocol was de-
scribed by Diffie et al. [6] who showed how a dishonest entity E can setup an attack
whereby an honest entity A finishes a protocol execution believing she shares a key
with B, but B mistakenly believes the key is shared with E (while the later does not
necessarily know the session key held by B).

It is possible to mount a UKS attack against the IDAK protocol:

1. Adversary A register identity E with the KGC and obtains the private key dIDE ;
2. After A negotiating a communication session with B, she sends message RA to B;
3. A intercepts message RA, and initiates a new communication session with B as

the legitimate peer E by sending RE = gtIDE
for t ∈R Z∗

q , thus replacing message
RA;

4. On receipt of RE , B cannot detect the difference between RE and RA because they
are indistinguishable and repsonds with message RB;

5. A relays RB to A. As the result, A accepts believing that she is communicating
with B (and indeed they calculate the same session key) while the latter peer also
accepts but is convinced she is connected to E. In this case the adversary cannor
compute the key shared by A,B but nevertheless tha attack is successful.

In most cases countermeasures are easily implemented to avoid this type of attacks,
so it is not often a major concern in practice. In particular, a common solution is to add
the peer identities in the calculation of the key as illustrated in Figure 1.

A : x
R← Z∗

q

RA ← gxIDA

A→ B : RA

B : y
R← Z∗

q

RB ← gyIDB

B → A : RB

A : sA ← π(A,B,RA, RB), sB ← π(B,A,RB , RA)

σ ← ê(gsBIDB
·RB , d

(x+sA)
IDA

)

skAB ← H1(A,B,RA, RB , σ)
B : sA ← π(A,B,RA, RB), sB ← π(B,A,RB , RA)

σ ← ê(gsAIDA
·RA, d

(y+sB)
IDB

)

skBA ← H1(A,B,RA, RB , σ)

Fig. 1. Protocol IDAK

5 A formal security proof of the IDAK protocol in the Extended
Canetti-Krawczyk model

In this section we review the extended Canetti-Krawczyk (eCK) model of distributed
computing of Lamacchia et al. [7] and then prove that the IDAK protocol is eCK-secure.

5



5.1 The eCK model

Parties and the adversary are modeled as probabilistic Turing machines. The network
is totally under the control of the adversary who can delete, modify or inject messages
that are exchanged by any two honest parties running the protocol.
Sessions. Instances of a protocol run by two any parties A and B are called sessions. A
Session Identifier (SID) consists of the identities of the two participants and the mes-
sages transcripts they exchanged during the communication. For any two parties A and
B, we denote by sid the SID of the session owned by A and by sid∗ the SID of the
session owned by its intended peer B.
Adversary. To capture all types of attacks resulting from ephemeral and long-term data
compromise the adversary is allowed to ask the following queries

a) EphemeralKeyReveal(sid) to obtain all short-term secret information used by
a party in session sid;

b) PrivateKeyReveal(ID) which returns long-term private keys of the principal
with identity ID;

c) SessionKeyReveal(sid) for exposing the session key of session sid;
d) Extract(ID) allows the adversary to register a new identity ID and receive the

private keying material relative to this identity.

In the eCK security experiment the adversary can ask two additional queries

a) Test(sid) when the adversary asks this query (only once) a random bit b is used
to decide whether to return the real session key of sid or a random key;

c) Guess(b′) when the adversary terminates it outputs bit b′ as its guess of b, the
query returns 1 if the guess is correct 0 otherwise.

Test sessions are classified as either “passive” or “active”. In a passive session the ad-
versary is limited only to observing the communication transcripts exchanged by two
honest participants while in active sessions the adversary can also tamper with them
(e.g. cancel or modify communication messages). As the result, in passive sessions two
parties may complete matching sessions (i.e. the conversation of the initiator matches
the conversation of the responder and both have accepted [2]); on the other hand, active
sessions are those where matching sessions are not necessarily established. The adver-
sary succeeds in the eCK experiment if the selected test session is fresh and Guess
returns 1. Set out below is the definition of a fresh session.

Definition 1 (fresh session) Let sid denote the SID of a completed session run by party
A with a peer B. Let sid∗ denote the SID of the matching session of sid owned by B, if
it exists. Session sid is fresh if none of the following conditions hold:

1. the adversary issues a SessionKeyReveal(sid) query or
a SessionKeyReveal(sid∗) query (if sid∗ exists);

2. sid∗ exists and the adversary makes either of the following queries:
(a) PrivateKeyReveal(A) and EphemeralKeyReveal(sid) or
(b) PrivateKeyReveal(B) and EphemeralKeyReveal(sid∗);

6



3. sid∗ does not exist and the adversary makes either of the following queries:
(a) PrivateKeyReveal(A) and EphemeralKeyReveal(sid) or
(b) PrivateKeyReveal(B).

In the eCK experiment the adversary is allowed to continue interacting with the
parties even after issuing the test query with the restriction that the test session must
remain fresh.

Theorem 1 (eCK-security) A key agreement protocol is eCK-secure if the following
conditions hold:

1. If two honest parties complete matching sessions then, except with negligible prob-
ability, they both compute the same session key;

2. No polynomially bounded adversary can distinguish the session key of a fresh ses-
sion from a randomly chosen session key, with probability greater than 1/2 plus a
negligible function (in the security parameter).

5.2 Proof of eCK security of protocol IDAK

The following theorem proves that the two-pass IDAK key agreement protocol is secure
in the eCK model under the Gap Bilinear Diffie Hellman and random oracle assump-
tions.

Theorem 2 (IDAK eCK-security) IfH,H1, π are random oracles, and the GBDH as-
sumption holds in the group G (from hereon G will stand for G1), then IDAK is an
eCK-secure key agreement protocol. Concretely, there exists a GBDH solver SD and a
DLOG solver SL in G such that

AdveCK
IDAK(E) ≤ c1 · AdvDLOG(SL) + c2 · AdvGBDH(SD) + ϵ

where ℓ is the security parameter, s(ℓ) the number of activated sessions, N(ℓ) the num-
ber of principals, c1 = c1(ℓ) = s(ℓ)2, c2 = c2(ℓ) = s(ℓ)N(ℓ) and ϵ = ϵ(ℓ) =
O(s(ℓ)2/2ℓ).

Proof. Let E denote a polynomially bounded adversary in the security parameter ℓ.
The adversary E defeats protocol IDAK with non-negligible probability if it succeeds
in the experiment described in Section 5.1 with probability 1/2 + ϵ(ℓ), where ϵ(ℓ) is
non-negligible. Guessing the answer of the Test query succeeds with probability 1/2.
SinceH1 is a random oracle, E can only distinguish a session key from a random string
with probability significantly greater than 1/2 if the adversary E succeeds in one of the
following attacks:

A1: (Replicate) E forces a session to accept the same key of the test session even though
the two sessions are distinct and non-matching and obtains the secret key from the
target session (by asking a SessionKeyReveal query);

A2: (Forge) for two parties (say A,B) E computes σ= skAB= skBA and queries H1

with (A,B,RA, RB , σ) .

7



For A1 to occur the adversary E must query the random oracle H1 with the same
5-tuple used to compute the key of the test session. The attack succeeds if the random
oracle produces collisions, since distinct sessions have distinct 5-tuples such collisions
occur with negligible probability O(s(ℓ)2/2ℓ). Therefore, to succeed in the eCK exper-
iment the adversary E must perform a forging attack (A2). To this end, we show that
if an adversary E is able to win the eCK experiment then we may construct a GBDH
solver in the underlying group G which uses E as a subroutine. Algorithm S simulates
the eCK experiment in such a way that E’s view is indistinguishable from the real one.
We consider the two cases described below.

Case 1) (matching sessions) The adversary E is substantially passive (limiting
itself only to eavesdropping the messages exchanged by any two parties) and chooses
a test session with a matching session. Let match denote the event that the adversary
chooses either one of the matching sessions sid or sid∗ owned respectively by A,B
as its test session (this event is conditioned on A2). The description of algorithm S
follows:

1. S receives in input a GBDH challenge (g,X = gx, Y = gy, Z = gz) where
x, y, z ∈R Z∗

q ;
2. S establishes the identities IDi and the long-term keys (dIDi

, gIDi
) of N(ℓ) prin-

cipals by calling algorithm Extract;
3. S runs E as a subroutine answering its queries as follows: a) send queries are

simulated as usual, except for sessions sid and sid∗ defined above; in this case
assuming that IDi ≡ A and IDj ≡ B (for some i, j) S selects the ephemeral keys
x, y ∈R Z∗

q for A,B (respectively) and sets the messages RA = X,RB = Y . The
session keys skAB , skAB are set equal to a random value G so E’s view of the
protocol execution is the same as the real one because skAB , skAB , X, Y ∈ G and
H1 is a random oracle; b) all other queries are answered according to the protocol
specification;

4. When E terminates, algorithm S also terminates and outputs the same bit b′ as E
(as the input to the Guess query).

We claim that if E succeeds in the eCK experiment then S can solve the GBDH
challenge. Indeed, if event match occurs, to succeed in the eCK experiment E must
query the random oracle H1 with the tuple (A,B,RA, RB , σ). To correctly compute
σ, E must obtain x, y and to do so she can use any combination of queries that will
maintain the test session fresh (recall that E cannot reveal both x, dIDA or y, dIDB ).
Therefore, E must ask PrivateKeyReveal queries of both A and B (to obtain
dIDA and dIDB ) and then the only way she can obtain x (or y) is by computing
DLOGG(RA) (or DLOGG(RB)). As a result, the probability that S succeeds is at least
Pr[match|A2]/s(ℓ)2 since the simulation is perfect until event match occurs. This
implies that S can solve the discrete logarithm in G (i.e. algorithm SL).

Case 2) The adversary E chooses a test session owned by A that does not have
a matching session; we denote this event by nomatch. S receives in input a GBDH
challenge (g,X = gx, Y = gy, Z = gz)where x, y, z ∈R Z∗

q . To setup the simulation,
S establishes the identities IDi and the long-term keys (dIDi , gIDi) of N(ℓ)− 1 honest
principals except for a randomly chosen party A for which she sets dA = X . Now S
can correctly simulate all sessions (involving honest parties) invoked by E during the

8



eCK experiment except for those owned by A. When E activates A, S simulates E’s
queries as follows:

1. Send queries, E activates a session sid owned by A and a peer B who owns
session sid∗. Regardless of A’s role in the communication (i.e. as either initiator or
responder), S selects x̂ ∈R Z∗

q , runs Send(B,RA = gx̂IDA
) and sets the session

key of A to skAB ∈R G. The value of x̂ and skAB are indistinguishable from
the real values (in particular because H1 is a random oracle). Note also that S is
perfectly aware that B may be a fake party because she can handle any queries of
the type Extract(B) (for B ̸=A).

2. EphemeralKeyReveal(sid) queries, for the sid of a session owned by A the
answer is x̂ (generated for A by S, see above);

3. PrivateKeyReveal(A) queries, S aborts;
4. SessionKeyReveal(sid) queries, S returns the key skAB generated for sid

(see above);
5. queries of the random oracles and Test queries are simulated in the standard way.

The simulator S described above may fail either during the simulation of Send
queries (or if E asks the query PrivateKeyReveal(A) as seen above). Indeed,
assuming A is the initiator (without loss of generality) and event nomatch has oc-
curred, E can distinguish between the real and simulated worlds if she computes the
session key skBA by querying H1 with the tuple (A,B,RA, RB = gŷIDB

, σ) where

σ = ê(gsAIDA
·RA, d

(ŷ+sB)
IDB

) and ŷ ∈R Z∗
q ; by choosing sid as the test session and ask-

ing the query SessionKeyReveal(sid) E is able to determine that skAB ̸= skBA

(this implies that session sid is not fresh and thus E cannot choose it as the test ses-
sion). However, since event A2 has occurred, S can intercept E’s queries of the random
oracle H1 having as arguments the tuple (A,B,RA, RB , σ) and respond with skAB if
DBDH((X, gx̂+sA

IDB
, gŷ+sB

IDB
, σ)=1. Therefore, the only way E can detect that it is run-

ning in a simulated experiment is by asking PrivateKeyReveal queries of both
A and B (to obtain x̂ and ŷ) and DLOGG(X); this event occurs with probability at
least Pr[nomatch|A2]/s(ℓ)N(ℓ) thus allowing S to solve the GBDH problem in G
(i.e. algorithm SD).

We note that in case A is the responder then E can choose sid as the test session but
cannot ask a PrivateKeyReveal(A) query. Therefore again to detect the simulation
E must ask a query of the type DLOGG(X)).

6 Conclusions

The IDAK protocol exhibits an excellent design, interesting security features and high
computational efficiency, which make it a good candidate for resource constrained de-
vices.

In this report we have proven that the IDAK protocol is secure in the extended
Canetti-Krawczyk model, the later is stronger than the Bellare-Rogaway model since it
intrinsically accounts for KCI attacks and other types of possible threats.

As the result, the protocol can be used to secure communications betweens peers
in insecure networks (e.g. the Internet) that are totally under control of powerful active
adversaries.

9



References

1. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Proceedings of
CRYPTO 1993, LNCS 773:232–249, 1993.

2. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In 1st Conference on Computer and Communications Security, pages 62–73, 1993.

3. D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. Proceedings of
Crypto01, Springer-Verlag, New York, LNCS 2139:213–229, 2001.

4. R. Canetti and H. Krawczyk. Analysis of key exchange protocols and their use for building
secure channels. Advances in Cryptology-EUROCRYPT 2001, LNCS 2045:453–474, 2001.

5. L. Chen and C. Kudla. Identity based authenticated key agreement protocols from pairings.
Cryptology ePrint Archive, Report 2002/184, http://eprint.iacr.org/2002/184.pdf, 2002.

6. W. Diffie, P. van Oorschot, and M. Wiener. Authentication and Authenticated Key Exchange.
Designs, Codes and Cryptography, 2:107–125, 1992.

7. B. L. et al. Stronger Security of Authenticated Key Exchange. LNCS, 4784:1–16, 2007.
8. M. A. Strangio. On the Resilience of Key Agreement Protocols to Key Compromise Imper-

sonation. Cryptology ePrint Archive, Report 2006/252, http://eprint.iacr.org/2006/252.pdf,
2006.

9. Y. Wang. Efficient Identity-Based and Authenticated Key Agreement Protocol. Cryptology
ePrint Archive, Report 2005/108, http://eprint.iacr.org/2005/108.pdf, 2005.

10. Y. Wang. Efficient Identity-Based and Authenticated Key Agreement Protocol. CoRR,
abs/1207.5438, 2012.

10


