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Abstract. In 2013, Joux and then Barbulescu et al. presented new algorithms for
computing discrete logarithms in finite fields of small characteristic. Shortly thereafter,
Adj et al. presented a concrete analysis showing that, when combined with some steps
from classical algorithms, the new algorithms render the finite field F36·509 weak for
pairing-based cryptography. Granger and Zumbrägel then presented a modification of
the new algorithms that extends their effectiveness to a wider range of fields.

In this paper, we study the effectiveness of the new algorithms combined with a
carefully crafted descent strategy for the fields F36·1429 and F24·3041 . The intractability
of the discrete logarithm problem in these fields is necessary for the security of pairings
derived from supersingular curves with embedding degree 6 and 4 defined, respectively,
over F31429 and F23041 ; these curves were believed to enjoy a security level of 192 bits
against attacks by Coppersmith’s algorithm. Our analysis shows that these pairings offer
security levels of at most 96 and 129 bits, respectively, leading us to conclude that they
are dead for pairing-based cryptography.

1. Introduction

Let Fq denote a finite field of order q, and let E be an elliptic curve defined over Fq with
#E(Fq) = cr where r is prime with gcd(r, q) = 1 and c ≪ r. Let k be the embedding degree

of E, i.e., the smallest positive integer satisfying r | qk−1. The Weil and Tate pairings can
be used to reduce the discrete logarithm problem (DLP) in the order-r subgroup of E(Fq)
to the discrete logarithm problem in the order-r subgroup of F∗

qk [10, 18]. Hence, the

security of cryptosystems implemented using elliptic curves with small embedding degrees
is dependent on the intractability of the DLP in (the multiplicative group of) Fqk .

Elliptic curves having small embedding degree k have been used to implement pairing-
based protocols [4, 6]. In this paper, we are interested in the k = 4 supersingular elliptic
curves Y 2 + Y = X3 + X and Y 2 + Y = X3 + X + 1 defined over characteristic-two
finite fields, and the k = 6 supersingular elliptic curves Y 2 = X3 − X ± 1 defined over
characteristic-three finite fields.

The security of these elliptic curves has been severely tarnished due to the recent al-
gorithms of Joux [14], Göloğlu et al. [11], and Barbulescu et al. [3]. More precisely, Joux
developed an LQ[

1
4 + o(1), c] DLP algorithm in FQ, where Q = qn is a power of 2, and q

and n are balanced in the sense that q ≈ m where n = 2m. Here, LQ[α, c] with 0 < α < 1
and c > 0 denotes the expression

exp
(
(c+ o(1))(logQ)α(log logQ)1−α

)
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that is subexponential in logQ. Shortly thereafter, Barbulescu et al. presented a new DLP
algorithm which, for many choices of field sizes, is asymptotically faster than all previous
algorithms. In particular, in the case where q is a power of 2 or 3 with q ≈ n and n ≤ q+2,
the DLP in Fq2n = FQ can be solved in quasi-polynomial time

(logQ)O(log logQ).

While the new quasi-polynomial time algorithm (QPA) of Barbulescu et al. is asymp-
totic in nature (see §2), Adj et al. [1] showed that, when combined with some steps from
classical algorithms, they can have a considerable impact on the security of pairing-based
protocols in practice. Let E denote the supersingular elliptic curve Y 2 = X3 − X + 1
over F3509 . Then #E(F3509) = 7r where r is an 804-bit prime. The finite field F36·509

offers approximately 128 bits of security against attacks on the DLP by Coppersmith’s
algorithm [8] (see [16]). However, the concrete analysis in Adj et al. demonstrates that the
order-r subgroup of the multiplicative group of this field offers at most 82 bits of security
against the new attacks of Joux and Barbulescu et al.

The setup in Joux’s algorithm imposes some restrictions on the algorithm parameters
which limits the range of fields on which the algorithm is effective. Suppose that one wishes
to compute logarithms in Fq2n ,

1 where q is the power of a small prime and n is prime.
Joux’s algorithm represents Fq2n as Fq2 [X]/(IX ), where IX is a degree-n irreducible factor
of h1X

q − h0 in Fq2 [X], and h0, h1 ∈ Fq2 [X] have small degree (say, 2); hence, one must
have n ≤ q + 2. For example, logarithms in F36·509 can be computed by first embedding
the field in the quadratic extension F(36)2·509 ; one can take q = 36 = 729 and n = 509.
However, if one wishes to compute logarithms in F36·1429 , then the smallest extension that
meets the setup criteria is F(39)2·1429 ; this field is too large for the new attacks to be
effective.

At ECC 2013, Granger and Zumbrägel [12] presented a modification of the new al-
gorithms that alleviates the aforementioned restrictions. Their idea is to select IX as a
degree-n irreducible factor of h1(X

q)·X−h0(X
q), where h0, h1 ∈ Fq2 [X] have small degree

(say, 2); the condition on q and n is then relaxed to n ≤ 2q + 1. While this modification
does not affect the asymptotic run time of the new algorithms, it is very successful in
increasing the effectiveness of the new algorithms in practice. For example, the k = 4
elliptic curve E : Y 2 + Y = X3 +X over F21223 has #E(F21223) = 5r where r is a 1221-bit
prime. The finite field F24·1223 offers approximately 128 bits of security against attacks
on the DLP by Coppersmith’s algorithm. However, by embedding F24·1223 in F(210)2·1223 ,
Granger and Zumbrägel reported that the order-r subgroup of the multiplicative group of
F24·1223 offers at most 95 bits of security against the new attacks. As a second example,
one can embed F36·1429 in F(36)2·1429 and then the condition n ≤ 2q + 1 is satisfied with

q = 36 and n = 1429.
The purpose of this paper is to show that the new algorithms of Joux and Barbulescu

et al., as modified by Granger and Zumbrägel, can have a drastic impact on the security of
the k = 4 and k = 6 supersingular elliptic curves at higher security levels. More precisely,
we consider the k = 6 elliptic curve E1 : Y 2 = X3 − X − 1 over F31429 and the k = 4

1In general, one wishes to compute logarithms in Fpℓn where p is a small prime and n is prime. To
accomplish this, one embeds Fpℓn in F(pb)cn where c > 1 and ℓ | bc. In this paper, we will only consider

the case c = 2.
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elliptic curve E2 : Y 2 + Y = X3 + X over F23041 . We have #E1(F31429) = cr where r
is a 2223-bit prime and c is a 43-bit cofactor, and #E(F23041) = r where r is a 3041-bit
prime. The finite fields F36·1429 and F24·3041 offer approximately 192 bits of security against
attacks on the DLP by Coppersmith’s algorithm. In contrast, our concrete analysis shows
that the order-r subgroups of the multiplicative groups of these fields offer, respectively,
at most 96 of security against the new attack with the Granger-Zumbrägel polynomial
representation, and 129 bits of security against the new attack with Joux’s polynomial
representation.

The remainder of the paper is organized as follows. In §2, we elaborate on the “asymp-
totic nature” of the Barbulescu et al. algorithm. In §3 we review the DLP algorithms of
Joux and Barbulescu et al. as modified by Granger and Zumbrägel. Our concrete analyses
for F36·1429 and F24·3041 are then presented in §4 and §5.

2. On the asymptotic nature of the QPA algorithm

Let E denote the supersingular elliptic curve Y 2+Y = X3+X or Y 2+Y = X3+X+1
over F2n where n is prime, and suppose that #E(F2n) = cr where r is prime and c ≪ r.
The Weil and Tate pairings reduce the discrete logarithm problem in the order-r subgroup
of E(F2n) to the discrete logarithm problem in the order-r subgroup of the multiplicative
group of F24n . Coppersmith’s subexponential-time algorithm [8] can be used to solve the
latter problem.

In constrast, the QPA algorithm of Barbulescu et al. [3] tackles the problem by embed-
ding F24n in Fq2n where q = 2ℓ ≈ n. The running time of the QPA algorithm is dominated
by the descent stage. In this stage, one begins with a polynomial of degree (at most) n−1
over Fq2 whose logarithm is sought. One then expresses the logarithm of this polynomial

in terms of the logarithms of roughly q2 polynomials of degree at most n/2. This process
is applied recursively to each polynomial encountered in the “descent tree”; the logarithm
of each such polynomial of degree d is expressed in terms of the logarithms of roughly
q2 polynomials of degree at most d/2. To terminate the recursion, the logarithms of all
degree-1 polynomials are obtained using a relatively fast method.

The number of nodes in the descent tree gives a crude lower bound on the running
time of the QPA algorithm. Since n ≈ q, the descent tree has approximately log2 q levels
and at least q2 log2 q nodes. Table 1 compares this lower bound with the running time
C(q) = exp(1.526(log 24q)1/3(log log 24q)2/3) of Coppersmith’s algorithm for computing
discrete logarithms in F24q .

We see from Table 1 that the QPA algorithm is faster than Coppersmith’s algorithm
only when n ≈ q = 215. However, such n are too large to be of interest in cryptography
based on pairings over E(F2n). To determine the implications of the QPA algorithm to the
security of pairing-based cryptosystems based on E(F2n), it is imperative that the descent
stage of the QPA algorithm be combined with descent steps from classical algorithms.
The asymptotic running time of the resulting hybrid algorithm is difficult to determine.
Instead, the framework and tools introduced in [1] are used to perform a concrete analysis
which provides a reasonably accurate picture of the effectiveness of the hybrid algorithm.
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q q2 log2 q C(q)

29 2162 293

210 2200 2124

211 2242 2165

212 2288 2219

213 2338 2290

214 2392 2382

215 2450 2501

Table 1. Comparison of the running time q2 log2 q of the QPA algorithm
for computing logarithms in Fq2n with q ≈ n, and the running time C(q)
of Coppersmith’s algorithm for computing logarithms in F24n .

3. New DLP algorithm of Joux and Barbulescu et al.

The DLP algorithm we describe is due to Joux [14], with a descent step from the
quasi-polynomial time algorithm of Barbulescu et al. [3], and a polynomial representation
(selection of h0 and h1) due to Granger and Zumbrägel [12]. For lack of a better name,
we will call this algorithm the “new DLP algorithm”. The description of the algorithm
closely follows the description in [1]; the most important changes are the incorporation of
the polynomial selection of Granger and Zumbrägel and the use of lattices in the classical
descent stage.

Let Fq2n be a finite field where n ≤ 2q + 1. The elements of Fq2n are represented as

polynomials of degree at most n − 1 over Fq2 . Let N = q2n − 1. Let g be an element of
order N in F

∗

q2n , and let h ∈ F
∗

q2n . We wish to compute logg h. The algorithm proceeds by

first finding the logarithms of all degree-one (§3.2) and degree-two (§3.3) elements in Fq2n .
Then, in the descent stage, logg h is expressed as a linear combination of logarithms of
degree-one and degree-two Fq2n elements. The descent stage proceeds in several steps, each
expressing the logarithm of a degree-D element as a linear combination of the logarithms
of elements of degree ≤ m for some m < D. Four descent methods are used; these are
described in §3.4–§3.7. The cost of each step is given in Table 2.
Notation. Nq2(m,n) denotes the number of monic m-smooth degree-n polynomials in
Fq2 [X], Aq2(m,n) denotes the average number of distinct monic irreducible factors among
all monicm-smooth degree-n polynomials in Fq2 [X], and Sq2(m,d) denotes the cost of test-
ing m-smoothness of a degree-d polynomial in Fq2 [X]. Formulas for Nq2(m,n), Aq2(m,n)
and Sq2(m,n) are given in [1]. For γ ∈ Fq2 , γ denotes the element γq. For P ∈ Fq2 [X],

P denotes the polynomial obtained by raising each coefficient of P to the power q. The
cost of an integer addition modulo N is denoted by AN , and the cost of a multiplication
in Fq2 is denoted by Mq2 . The projective general linear group of order 2 over Fq is de-
noted PGL2(Fq). Pq is a set of distinct representatives of the left cosets of PGL2(Fq) in
PGL2(Fq2); note that #Pq = q3+ q. A matrix

(
a b
c d

)
∈ Pq is identified with the quadruple

(a, b, c, d).

3.1. Setup. Select polynomials h0, h1 ∈ Fq2 [X] of small degree so that

(1) X · h1(X
q)− h0(X

q)
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Finding logarithms of linear polynomials (§3.2)
Relation generation 6q2 · Sq2(1, 3)
Linear algebra q5 · AN

Finding logarithms of irreducible quadratic polynomials (§3.3)
Relation generation q16/Nq2(1, 6) · Sq2(1, 6)
Linear algebra q7 · AN

Descent (Degree D to degree m)
Continued-fraction (§3.4) {D = n− 1} (qn−1/Nq2(m, (n− 1)/2))2 · Sq2(m, (n− 1)/2)

Classical (§3.5) q2(t1−D+t2)/(Nq2(m, t1 −D)Nq2(m, t2)) ·min(Sq2(m, t1 −D), Sq2(m, t2))

q2(t1+t2−D)/(Nq2(m, t1)Nq2(m, t2 −D)) ·min(Sq2(m, t1), Sq2(m, t2 −D))
QPA (§3.6) q6D+2/Nq2(m, 3D) · Sq2(m, 3D) + q5 · AN

Gröbner bases (§3.7) Gq2 (m,D) + q6m−2D/Nq2(m, 3m−D) · Sq2(m, 3m−D)

Table 2. Estimated costs of the main steps of the new DLP algorithm for
computing discrete logarithms in Fq2n . AN and Mq2 denote the costs of an
addition modulo N and a multiplication in Fq2 . See §3.5 for the definitions
of t1 and t2. The Gröbner basis cost Gq2(m,D) is defined in §3.7.

has an irreducible factor IX of degree n in Fq2 [X]; we will henceforth assume that
max(deg h0,deg h1) = 2. Note that

(2) X ≡
h0(X

q)

h1(Xq)
≡

(
h0(X)

h1(X)

)q

(mod IX)

The field Fq2n is represented as Fq2n = Fq2 [X]/(IX ) and the elements of Fq2n are repre-
sented as polynomials in Fq2 [X] of degree at most n− 1. Let g be a generator of F∗

q2n .

3.2. Finding logarithms of linear polynomials. Let B1 = {X + a | a ∈ Fq2}, and

note that #B1 = q2. To compute the logarithms of B1-elements, we first generate linear
relations of these logarithms. Let (a, b, c, d) ∈ Pq. Substituting Y 7→ (aX + b)/(cX + d)
into the systematic equation

(3) Y q − Y =
∏

α∈Fq

(Y − α)

and then multiplying by (cX + d)q+1 yields

(aX + b)q(cX + d)− (aX + b)(cX + d)q(4)

= (cX + d) ·
∏

α∈Fq

[(a− αc)X + (b− αd)].

Replacing X by (h0/h1)
q in the linear terms aX + b and cX + d occurring in the left side

of (4) and then clearing denominators yields
(
(aX + b)(ch0 + dh1)− (ah0 + b h1)(cX + d)

)q

(5)

≡ h
q
1 · (cX + d) ·

∏

α∈Fq

[(a− αc)X + (b− αd)].
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If the polynomial on the left side of (5) is 1-smooth, then taking logarithms of both sides
of (5) yields a linear relation of the logarithms of B1-elements and the logarithm of h1.
The probability that the left side of (5) is 1-smooth is Nq2(1, 3)/q

6 ≈ 1
6 . Thus, after

approximately 6q2 trials one expects to obtain (slightly more than) q2 relations. The cost
of the relation generation stage is 6q2 · Sq2(1, 3). The logarithms can then be obtained
by using Wiedemann’s algorithm for solving sparse systems of linear equations [19]. The
expected cost of the linear algebra is q5 · AN since each equation has approximately q
nonzero terms.

3.3. Finding logarithms of irreducible quadratic polynomials. Let u ∈ Fq2 , and

let Q(X) = X2 + uX + v ∈ Fq2 [X] be an irreducible quadratic. Define B2,u to be the

set of all irreducible quadratics of the form X2 + uX + w in Fq2 [X]; one expects that

#B2,u ≈ (q2−1)/2. The logarithms of all elements in B2,u are found simultaneously using
one application of QPA descent (see §3.6). More precisely, one first collects relations of
the form (13), where the left side of (13) factors as a product of linear polynomials (whose

logarithms are known). The expected number of relations one can obtain is
N

q2 (1,6)

q12
·(q3+q).

Provided that this number is significantly greater than #B2,u, the matrixH(Q) is expected
to have full (column) rank. One can then solve the resulting system of linear equations to
obtain the logarithms of all irreducible translates Q + w of Q. This step is repeated for
each u ∈ Fq2 . Hence, there are q2 independent linear systems of equations to be solved.

For each u ∈ Fq2 , the cost of relation generation is q14/Nq2(1, 6) · Sq2(1, 6), while the

linear algebra cost is q5 · AN .

3.4. Continued-fraction descent. Recall that we wish to compute logg h, where h ∈
Fq2n = Fq2 [X]/(IX ). We will henceforth assume that deg h = n − 1. The descent stage
begins by multiplying h by a random power of g. The extended Euclidean algorithm is used
to express the resulting field element h′ in the form h′ = w1/w2 where degw1,degw2 ≈ n/2
[5]; for simplicity, we shall assume that n is odd and degw1 = degw2 = (n − 1)/2. This
process is repeated until both w1 and w2 are m-smooth for some chosen m < (n − 1)/2.
This gives logg h

′ as a linear combination of logarithms of polynomials of degree at most
m. The expected cost of this continued-fraction descent step is approximately

(6)

(
qn−1

Nq2(m, (n− 1)/2)

)2

· Sq2(m, (n − 1)/2).

The expected number of distinct irreducible factors of w1 and w2 is 2Aq2(m, (n − 1)/2).
In the analysis, we shall assume that each of these irreducible factors has degree exactly
m. The logarithm of each of these degree-m polynomials is then expressed as a linear
combination of logarithms of smaller degree polynomials using one of the descent methods
described in §3.5, §3.6 and §3.7.

3.5. Classical descent. Let p be the characteristic of Fq, and let q = pℓ. Let s ∈ [0, ℓ],
and let R ∈ Fq2 [X,Y ]. For the sake of simplicity, we will assume in this section that
h1 = 1. Then

[
R(X,h

pℓ−s

0 )
]ps

= R′(Xps , h
pℓ

0 ) = R′(Xps , h0(X
pℓ)) ≡ R′(Xps ,X) (mod IX),
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where R′ is obtained from R by raising all its coefficients to the power ps. Hence

(7)
[
R(X,h

pℓ−s

0 )
]ps

≡ R′(Xps ,X) (mod IX).

Let Q ∈ Fq2 [X] with degQ = D, and let m < D. In the Joux-Lercier descent method
[15], as modified by Göloğlu et al. [11], one selects s ∈ [0, ℓ] and searches for a polynomial

R ∈ Fq2 [X,Y ] such that (i) Q | R1 where R1 = R(X,h
pℓ−s

0 ); (ii) degR1/Q and degR2

are appropriately balanced where R2 = R′(Xps ,X); and (iii) both R1/Q and R2 are m-
smooth. Taking logarithms of both sides of (7) then gives an expression for logg Q in terms
of the logarithms of polynomials of degree at most m.

A family of polynomials R satisfying (i) and (ii) can be constructed by finding a basis
{(u1, u2), (v1, v2)} of the lattice

LQ = {(w1, w2) ∈ Fq2 [X]× Fq2 [X] : Q | (w1(X)− w2(X)h0(X)p
ℓ−s

)}

where deg u1, degu2, deg v1, deg v2 ≈ D/2. The points (w1, w2) in LQ can be sampled to
obtain polynomials R(X,Y ) = w1(X) − w2(X)Y satisfying (i) and (ii) by writing

(w1, w2) = a(u1, u2) + b(v1, v2) = (au1 + bv1, au2 + bv2)

with a ∈ Fq2 [X] monic of degree δ and b ∈ Fq2 [X] of degree δ − 1. The number of

lattice points to consider is therefore (q2)2δ. We have degw1,degw2 ≈ D/2 + δ, so
degR1 = t1 ≈ (D/2 + δ) + 2pℓ−s and degR2 = t2 ≈ (D/2 + δ)ps + 1. In order to ensure
that there are sufficiently many such lattice points to generate a polynomial R for which
both R1/Q and R2 are m-smooth, the parameters s and δ must be selected so that

(8) q4δ ≫
q2(t1−D)

Nq2(m, t1 −D)
·

q2t2

Nq2(m, t2)
.

Ignoring the time to compute a balanced basis of LQ, the expected cost of finding a
polynomial R satisfying (i)–(iii) is

(9)
q2(t1−D)

Nq2(m, t1 −D)
·

q2t2

Nq2(m, t2)
·min(Sq2(m, t1 −D), Sq2(m, t2)).

The expected number of distinct irreducible factors of R1/Q and R2 is Aq2(m, t1 −D) +
Aq2(m, t2). In the analysis, we shall assume that each of these irreducible factors has
degree exactly m.

An alternative to the above method is to select s ∈ [0, ℓ] and search for R ∈ Fq2 [X,Y ]
such that (i) Q | R2; (ii) degR1 and degR2/Q are appropriately balanced; and (iii) both
R1 and R2/Q are m-smooth. A family of polynomials R satisfying (i) and (ii) can be
constructed by finding a basis {(u1, u2), (v1, v2)} of the lattice

LQ = {(w1, w2) ∈ Fq2 [X]× Fq2 [X] : Q | (w1(X) −w2(X)Xps)}

where deg u1, degu2, deg v1, deg v2 ≈ D/2. The points (w1, w2) in LQ can be sampled as
before to obtain polynomials R(X,Y ) = w′′

1(Y )−w′′

2 (Y )X satisfying (i) and (ii) where w′′

is obtained from w by raising all its coefficients to the power p−s. We have degw1,degw2 ≈
D/2+ δ, so degR1 = t1 ≈ 2(D/2 + δ)pℓ−s +1 and degR2 = t2 ≈ (D/2+ δ) + ps. In order
to ensure that there are sufficiently many such lattice points to generate a polynomial R
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for which both R1 and R2/Q are m-smooth, the parameters s and δ must be selected so
that

(10) q4δ ≫
q2t1

Nq2(m, t1)
·

q2(t2−D)

Nq2(m, t2 −D)
.

Ignoring the time to compute a balanced basis of LQ, the expected cost of finding a
polynomial R satisfying (i)–(iii) is

(11)
q2t1

Nq2(m, t1)
·

q2(t2−D)

Nq2(m, t2 −D)
·min(Sq2(m, t1), Sq2(m, t2 −D)).

The expected number of distinct irreducible factors of R1 and R2/Q is Aq2(m, t1) +
Aq2(m, t2 −D).

3.6. QPA descent. Let Q ∈ Fq2 [X] with degQ = D, and let m ∈ [⌈D/2⌉,D − 1]. Let
(a, b, c, d) ∈ Pq. Substituting Y 7→ (aQ+ b)/(cQ+ d) into the systematic equation (3) and
multiplying by (cQ+ d)q+1 yields

(12) (aQ+ b)q(cQ+ d)− (aQ+ b)(cQ+ d)q = (cQ+ d)
∏

α∈Fq

[(a− αc)Q+ (b− αd)].

Noticing that

cQ+ d ≡ cQ

((
h0

h1

)q
)

+ d ≡

(
cQ

(
h0

h1

)
+ d

)q

≡ h
−Dq
1

(
cQ̃+ d h

D
1

)q
(mod IX)

where Q̃ = h
D
1 ·Q(h0/h1), we obtain

(
(aQ+ b)(cQ̃+ d h

D
1 )− (aQ̃+ b h

D
1 )(cQ+ d)

)q

(13)

≡ h
Dq
1 · (cQ+ d) ·

∏

α∈Fq

[(a− αc)Q+ (b− αd)] (mod IX).

Note that the polynomial within the main parentheses on the left side of (13) has degree
≤ 3D. If this polynomial is m-smooth, then (13) yields a linear relation of the logarithms
of some degree-m polynomials and logarithms of translates of Q. After collecting slightly
more than q2 such relations, one searches for a linear combination of these relations that
eliminates all translates of Q except for Q itself. To achieve this, consider row vectors in

(ZN )q
2
with coordinates indexed by elements λ ∈ Fq2 . For each relation, we define a vector

v whose entry vλ is 1 if Q − λ appears in the right side of (13), and 0 otherwise. If the
resulting matrix H(Q) of row vectors has full column rank, then one obtains an expression
for logg Q in terms of the logarithms of polynomials of degree ≤ m. The number of distinct

polynomials of degree ≤ m in this expression is expected to be Aq2(m, 3D) · q2; in the
analysis we shall assume that each of these polynomials has degree exactly m.

Since the probability that a degree-3D polynomial is m-smooth is Nq2(m, 3D)/(q2)3D,
one must have

(14)
Nq2(m, 3D)

q6D
· (q3 + q) ≫ q2
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in order to ensure that H(Q) has ≫ q2 rows, whereby H(Q) can be expected to have full
rank.

The expected cost of the relation generation portion of QPA descent is q6D+2·Sq2(m, 3D)/

Nq2(m, 3D), while the cost of the linear algebra is q5 ·AN .

3.7. Gröbner bases descent. Let Q ∈ Fq2 [X] with degQ = D, and let m = ⌈(D+1)/2⌉.
In Joux’s new descent method [14, §5.3], one finds degree-m polynomials k1, k2 ∈ Fq2 [X]
such that Q | G, where

G = (k1k̃2 − k̃1k2) mod IX

and where k̃1 = h
m
1 k1(h0/h1) and k̃2 = h

m
1 k2(h0/h1). We then have

h
mq
1 · k2 ·

∏

α∈Fq

(k1 − αk2) ≡ G(X)q (mod IX)

as can be seen by making the substitution Y 7→ k1/k2 into the systematic equation (3)

and clearing denominators. Note that deg(k̃1) = deg(k̃2) = 2m. Hence, if 3m < n then

G = k1k̃2 − k̃1k2 and so G(X) = Q(X)R(X) for some R ∈ Fq2 [X] with degR = 3m−D.
If R is m-smooth, we obtain a linear relationship between logg Q and logs of degree-m
polynomials by taking logarithms of both sides of the following:

(15) h
mq
1 · k2 ·

∏

α∈Fq

(k1 − αk2) ≡ (Q(X)R(X))q (mod IX).

To determine (k1, k2, R) that satisfy

(16) k1k̃2 − k̃1k2 = Q(X)R(X),

one can transform (16) into a system of multivariate bilinear equations over Fq. Specif-
ically, each coefficient of k1, k2 and R is written using two variables over Fq, the two
variables representing the real and imaginary parts of that coefficient (which is in Fq2).

The coefficients of k̃1 and k̃2 can then be written in terms of the coefficients of k1 and k2.
Hence, equating coefficients of Xi of both sides of (16) yields 3m+1 quadratic equations.
The real and imaginary parts of each of these equations are equated, yielding 6m + 2
bilinear equations in 10m − 2D + 6 variables over Fq. This system of equations can be
solved by finding a Gröbner basis for the ideal it generates. Finally, solutions (k1, k2, R)
are tested until one is found for which R is m-smooth. This yields an expression for logg Q
in terms of the logarithms of approximately q+1+Aq2(m, 3m−D) polynomials of degree
(at most) m; in the analysis we shall assume that each of the polynomials has degree
exactly m.

Now, the number of candidate pairs (k1, k2) is ((q
2)m+1)2 = q4(m+1). Denote by R(m,D)

the expected number of distinct R obtainable. Then the condition

(17) R(m,D) ≫
q2(3m−D)

Nq2(m, 3m−D)
,

can ensure that there exists a solution (k1, k2, R) for which R is m-smooth. The number
R(m,D) has not been determined and is best estimated experimentally.
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It is difficult to determine the exact cost Gq2(m,D) of the Gröbner basis finding step.

After the Gröbner basis is found, the cost to find an m-smooth R is (q2)3m−D/Nq2(m, 3m−
D) · Sq2(m, 3m−D).

4. Computing discrete logarithms in F36·1429

We present a concrete analysis of the DLP algorithm described in §3 for computing
discrete logarithms in F36·1429 . In fact, this field is embedded in the quadratic extension
field F312·1429 , and it is the latter field where the DLP algorithm of §3 is executed. Thus,
we have q = 36 = 729 and n = 1429.

As mentioned in §1, our main motivation for finding discrete logarithms in F36·1429 is to
attack the elliptic curve discrete logarithm problem in E1(F31429), where E1 is the super-
singular elliptic curve Y 2 = X3 −X − 1 with #E1(F31429) = cr; here c = 7622150170693
is a 43-bit cofactor and r = (31429 − 3715 + 1)/c is a 2223-bit prime. The elliptic curve
discrete logarithm problem in the order-r subgroup of E1(F31429) can be efficiently reduced
to the discrete logarithm problem in the order-r subgroup of F∗

312·1429 . In the latter prob-
lem, we are given two elements α, β of order r in F

∗

312·1429 and we wish to find logα β.
It can be readily seen that logα β = (logg β)/(logg α) mod r, where g is a generator of
F
∗

312·1429 . Thus, we will henceforth assume that h has order r and that we only need to
find logg h mod r. An immediate consequence of this restriction is that all the linear alge-
bra in the new algorithm can be performed modulo the 2223-bit r instead of modulo the
27179-bit N .

The parameters for each step of the algorithm were carefully chosen in order to balance
the running time of the steps. We also took into account the degree to which each step
could be parallelized on conventional computers. A summary of the parameter choices for
the descent is given in Figure 1. The cost of each step is given in Table 3.

4.1. Setup. We chose the representations F36 = F3[U ]/(U6 + 2U4 + U2 + 2U + 2) and
F312 = F36 [V ]/(V 2 + U365). We selected h0 = (U265V + U236)X2 + (U160V + U24)X +
(U628V + U293) ∈ F312 [X] and h1 = 1, and IX ∈ F312 [X] to be the degree-1429 monic

irreducible factor of h1(X
36) ·X − h0(X

36). The other irreducible factors have degrees 5,
5 and 19.

4.2. Finding logarithms of linear polynomials. The factor base B1 has size 3
12 ≈ 219.

The cost of relation generation is approximately 230Mq2 , whereas the cost of the linear

algebra is approximately 248Ar.

4.3. Finding logarithms of irreducible quadratic polynomials. For each u ∈ F312 ,
the expected cost of computing logarithms of all quadratics in B2,u is 239Mq2 for the

computation of H(Q), and 248Ar for the linear algebra.

4.4. Continued-fraction descent. For the continued-fraction descent, we selected m =
79. The expected cost of this descent is 289Mq2 . The expected number of distinct irre-
ducible factors of degree (at most) 79 obtained is 2A312(79, 714) ≈ 34.
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Continued fraction descent
Time: 289 Mq2

714 (2)

Classical descent

25 (1088)
Classical descent
Time: 287 Mq2

Time: 288 Mq2

QPA descent

Gröbner bases descent
Time: 259 · (76.9 seconds)

QPA descent

79 (34)

2

3 (255.5)
Gröbner bases descent
Time: 255.5 · (0.002532 seconds)

4 (269)

Gröbner bases descent

Time: 269 · (0.03135 seconds)

7 (259)

16 (215)

11 (237)

Time: 266 Mq2

Time: 288 Mq2

Figure 1. A typical path of the descent tree for computing an individual
logarithm in F312·1429 (q = 36). The numbers in parentheses next to each
node are the expected number of nodes at that level. ‘Time’ is the expected
time to generate all nodes at a level.
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Finding logarithms of linear polynomials

Relation generation 230Mq2 230Mq2

Linear algebra 248Ar 251Mq2

Finding logarithms of irreducible quadratic polynomials

Relation generation 312 · 239Mq2 258Mq2

Linear algebra 312 · 248Ar 270Mq2

Descent

Continued-fraction (714 to 79) 289Mq2 289Mq2

Classical (79 to 25) 34 · 283Mq2 288Mq2

Classical (25 to 16) 1088 · 277Mq2 287Mq2

QPA (16 to 11) 215 · (246Mq2 + 248Ar) 266Mq2

QPA (11 to 7) 237 · (245Mq2 + 248Ar) 288Mq2

Gröbner bases (7 to 4) 259 · (76.9 seconds) 295.3Mq2

Gröbner bases (4 to 3) 269 · (0.03135 seconds) 294Mq2

Gröbner bases (3 to 2) 255.5 · (0.002532 seconds) 277Mq2

Table 3. Estimated costs of the main steps of the new DLP algorithm
for computing discrete logarithms in F312·1429 (q = 36). Ar and Mq2 denote
the costs of an addition modulo the 2223-bit prime r and a multiplication
in F312 . We use the cost ratio Ar/Mq2 = 23, and also assume that 230

multiplications in F312 can be performed in 1 second (cf. §4.8).

4.5. Classical descent. Two classical descent stages are employed. In the first stage,
which uses the alternative method described in §3.5, we have D = 79 and select m = 25,
s = 5, δ = 2, which yield t1 = 247 and t2 = 284. The expected cost of the descent
for each of the 34 degree-79 polynomials is approximately 258.7 · Sq2(25, 205). The ex-
pected total number of distinct irreducible polynomials of degree (at most) 25 obtained is
approximately 1088.

In the second classical descent stage, which uses the first method described in §3.5, we
have D = 25 and select m = 16, s = 2, δ = 2, which yield t1 = 176 and t2 = 127. The
expected cost of the descent for each of the 1088 degree-25 polynomials is approximately
254.4 ·Sq2(16, 127). The expected total number of distinct irreducible polynomials of degree

(at most) 16 obtained is approximately 215.

4.6. QPA descent. Two QPA descent stages are employed. In the first stage, we have
D = 16 and select m = 11. For each Q, the expected cost of relation generation is
230.9 ·Sq2(11, 48) and the cost of the linear algebra is 248Ar. Also for each Q, the expected
number of distinct polynomials of degree at most 11 obtained is expected to be Aq2(11, 48)·

q2 ≈ 222. Thus, the total number of distinct polynomials of degree at most 11 obtained
after the first QPA descent stage is approximately 237.

In the second stage, we have D = 11 and select m = 7. For each Q, the expected cost
of relation generation is 228.4 · Sq2(7, 33) and the cost of the linear algebra is 248Ar. Also
for each Q, the expected number of distinct polynomials of degree at most 7 obtained is
expected to be Aq2(7, 33) · q

2 ≈ 222. Thus, the total number of distinct polynomials of

degree at most 7 obtained after the second QPA descent stage is approximately 259.
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4.7. Gröbner bases descent. Three Gröbner bases descent stages are employed. The
first stage has D = 7 and m = 4, and is expected to yield approximately 269 polynomials
of degree (at most) 4. The second stage has D = 4 and m = 3, and is expected to yield
approximately 279 polynomials of degree (at most) 3. The third stage has D = 3 and
m = 2 and is applied to all the 255.5 monic irreducible cubics.

For all three stages, we use the experimental results from §4.7 of [1]. The experiments
were run using Magma v2.19-7 [17] on a 2.9 GHz Intel core i7-3520M.

4.8. Overall running time. The second column of Table 3 gives the running time esti-
mates for the main steps of the new DLP algorithm in three units of time: Ar, Mq2 , and
seconds. In order to assess the overall time, we make some assumptions about the ratios
of these units of time.

First, we shall assume that Ar/Mq2 = 23. To justify this, we observe that a 2223-bit
integer can be stored in 35 64-bit words. The X86-64 instruction set has an ADD opera-
tion that adds two 64-bit unsigned integers in one clock cycle. Hence, integer addition can
be completed in 35 clock cycles. Modular reductions comprises one conditional statement
plus one subtraction (required in roughly half of all modular additions). One can use
a lazy reduction technique that amortizes the cost of a modular reduction among many
integer additions. All in all, the cost of Ar can be estimated to be 35 clock cycles. Unlike
for 64-bit integer multiplication, there is no native support for F312 multiplication on an
Intel Core i7 machine. However, we expect that a specially designed multiplier could be
built to achieve a multiplication cost of 4 clock cycles. This gives us an Ar/Mq2 ratio of

approximately 23.
Next, since a multiplication in Mq2 can be done in 4 clock cycles, we will transform

one second on a 2.9 GHz machine (on which the Gröbner bases descent experiments were
performed) into 230Mq2 .

Using these estimates, we see from the third column of Table 3 that the overall running
time of the new algorithm is approximately 295.8Mq2 . We note that the relation generation,
continued-fraction descent, classical descent, and Gröbner bases descent steps, and also the
relation generation portion of QPA descent, are effectively parallelizable in the sense that
one can essentially achieve a factor-C speedup if C processors are available. Moreover, the
linear system of equations for finding logarithms of linear polynomials, the 312 ≈ 219 linear
systems of equations for finding logarithms of irreducible quadratic polynomials, and the
215+237 linear systems of equations in QPA descent are also effectively parallelizable since
each linear system can be solved in less than one day using a small number of GPUs and
CPUs (cf. [13] and [2]).

4.9. Comparisons. The upper bound of 295.8Mq2 on the running time of the new algo-
rithm for computing logarithms in F26·1429 convincingly demonstrates that this field offers
drastically less security than the 2192 resistance to attacks by Coppersmith’s algorithm
[8, 16]. The decrease in security is even more pronounced when one considers that Copper-
smith’s algorithm is non-parallelizable since a dominant step is the solution of an enormous
system of linear equations, whereas the new algorithm is effectively parallelizable.

Also striking is the relatively small difference between the 295.8Mq2 running time with

the estimate of 281.7Mq2 for F36·509 [1] (in both cases, we have q = 36). The security levels
for F36·1429 and F36·509 against Coppersmith’s attack differ by 192−128 = 64 bits. However,
the security levels against the new attack differ by only 14.1 bits.
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5. Computing discrete logarithms in F24·3041

We present a concrete analysis of the DLP algorithm described in §3 of [1] for computing
discrete logarithms in F24·3041 . Note that the algorithm employed in this section uses the
original polynomial representation h1X

q−h0 of Joux [14]. As with the algorithm described
in §3 of this paper, we employ lattices in the classical descent stages, and use Wiedemann’s
algorithm for performing linear algebra.

The field F24·3041 is embedded in the sextic extension F224·3041 , and it is in the latter field
where the DLP algorithm is executed. Thus, we have q = 212 = 2048 and n = 3041.

As mentioned in §1, our main motivation for finding discrete logarithms in F24·3041

is to attack the elliptic curve discrete logarithm problem in E2(F23041), where E2 is the
supersingular elliptic curve Y 2+Y = X3+X with #E2(F23041) = r and r = 23041−21521+1
is a 3041-bit prime. The elliptic curve discrete logarithm problem in the order-r subgroup
of E2(F23041) can be efficiently reduced to the discrete logarithm problem in the order-r
subgroup of F∗

24·3041 . We wish to compute logg h mod r, where g is a generator of F∗

24·3041

and h ∈ F
∗

24·3041 has order r. Hence, all the linear algebra in the new algorithm is performed
modulo the 3041-bit r.

A summary of the parameter choices for the descent is given in Figure 2. The cost of
each step is given in Table 4.

Finding logarithms of linear polynomials

Relation generation 235Mq2 235Mq2

Linear algebra 260Ar 264Mq2

Finding logarithms of irreducible quadratic polynomials

Relation generation 224 · 244Mq2 268Mq2

Linear algebra 224 · 260Ar 288Mq2

Descent

Continued-fraction (1520 to 123) 2128.4Mq2 2128.4Mq2

Classical (123 to 39) 44 · 2121.3Mq2 2126.8Mq2

Classical (39 to 24) 1760 · 2115Mq2 2126Mq2

Classical (24 to 20) 216 · 2111Mq2 2127Mq2

QPA (20 to 12) 221.3 · (254Mq2 + 260Ar) 285.3Mq2

QPA (12 to 7) 254.5 · (252Mq2 + 260Ar) 2118.5Mq2

Gröbner bases (7 to 4) 287.2 · (35.03 seconds) 2120.3Mq2

Gröbner bases (4 to 3) 294 · (0.0277 seconds) 2116.8Mq2

Gröbner bases (3 to 2) 270.4 · (0.005428 seconds) 290.9Mq2

Table 4. Estimated costs of the main steps of the new DLP algorithm for
computing discrete logarithms in F224·3041 (q = 212). Ar and Mq2 denote
the costs of an addition modulo the 3041-bit prime r and a multiplication
in F224 . We use the cost ratio Ar/Mq2 = 24, and also assume that 228

multiplications in F224 can be performed in 1 second (cf. §5.8).

5.1. Setup. We chose the representations F212 = F2[U ]/(U12+U7+U6+U5+U3+U+1)
and F224 = F212 [V ]/(V 2 + U152V + U3307). We selected h0 = (U1515V + U3374)X2 +
(U3690V + U2704)X + (U2440V + U142) ∈ F224 [X] and h1 = X + U2339V + U807, and
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Continued fraction descent
Time: 2128.4 Mq2

1520 (2)

Classical descent

39 (1760)
Classical descent
Time: 2126 Mq2

Time: 2126.8 Mq2

Classical descent

QPA descent

123 (44)

24 (216)

Time: 2127 Mq2

Time: 285.3 Mq2

7 (287.2)
Gröbner bases descent
Time: 287.2 · (35.03 seconds)

2

3 (270.4)
Gröbner bases descent

Time: 272 · (0.005428 seconds)

4 (294)
Gröbner bases descent
Time: 296 · (0.0277 seconds)

20 (221.3)

12 (254.5)
QPA descent
Time: 2118.5 Mq2

Figure 2. A typical path of the descent tree for computing an individual
logarithm in F224·3041 (q = 212). The numbers in parentheses next to each
node are the expected number of nodes at that level. ‘Time’ is the expected
time to generate all nodes at a level.
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IX ∈ F224 [X] to be the degree-3041 monic irreducible factor of h1 ·X
212 − h0. The other

irreducible factors have degrees 5, 7, 69, 110, 293 and 572.

5.2. Finding logarithms of linear polynomials. The factor base B1 has size 224. The
cost of relation generation is approximately 235Mq2 , whereas the cost of the linear algebra

is approximately 260Ar.

5.3. Finding logarithms of irreducible quadratic polynomials. For each u ∈ F224 ,
the expected cost of computing logarithms of all quadratics in B2,u is 244Mq2 for the

computation of H(Q), and 260Ar for the linear algebra.

5.4. Continued-fraction descent. For the continued-fraction descent, we selected m =
123. The expected cost of this descent is 2128.4Mq2 . The expected number of distinct
irreducible factors of degree (at most) 123 obtained is 2A224(123, 1520) ≈ 44.

5.5. Classical descent. Let p = 2 and ℓ = 12. Let s ∈ [0, ℓ], and let R ∈ Fq2 [X,Y ] with
degY R = e. Then

(18) he1 ·
[
R(X,Xpℓ−s

)
]ps

= he1 ·R
′(Xps ,Xpℓ) ≡ he1 ·R

′(Xps , h0/h1) (mod IX),

where R′ is obtained from R by raising all its coefficients to the power ps.
Let Q ∈ Fq2 [X] with degQ = D, and let m < D. One selects s ∈ [0, ℓ] and searches for a

polynomial R ∈ Fq2 [X,Y ] such that (i) Q | R1 where R1 = R(X,Xpℓ−s

); (ii) degR1/Q and

degR2 are appropriately balanced where R2 = he1 · R
′(Xps , h0/h1); and (iii) both R1/Q

and R2 are m-smooth. Taking logarithms of both sides of (18) then gives an expression
for logg Q in terms of the logarithms of polynomials of degree at most m.

A family of polynomials R satisfying (i) and (ii) can be constructed by finding a basis
{(u1, u2), (v1, v2)} of the lattice

LQ = {(w1, w2) ∈ Fq2 [X] × Fq2 [X] : Q | (w1(X) − w2(X)Xpℓ−s

)}

where deg u1, degu2, deg v1, deg v2 ≈ D/2. The points (w1, w2) in LQ can be sampled to
obtain polynomials R(X,Y ) = w1(X) − w2(X)Y satisfying (i) and (ii) by writing

(w1, w2) = a(u1, u2) + b(v1, v2) = (au1 + bv1, au2 + bv2)

with a ∈ Fq2 [X] monic of degree δ and b ∈ Fq2 [X] of degree δ−1. We have degw1,degw2 ≈

D/2 + δ, so degR1 = t1 ≈ (D/2 + δ) + pℓ−s and degR2 = t2 ≈ (D/2 + δ)ps + 2. In order
to ensure that the number of lattice points considered is enough to generate a polynomial
R such that both R1/Q and R2 are m-smooth, the parameters s and δ must be selected
so that

(19) q4δ ≫
q2(t1−D)

Nq2(m, t1 −D)
·

q2t2

Nq2(m, t2)
.

Ignoring the time to compute a balanced basis of LQ, the expected cost of finding a
polynomial R satisfying (i)–(iii) is

(20)
q2(t1−D)

Nq2(m, t1 −D)
·

q2t2

Nq2(m, t2)
·min(Sq2(m, t1 −D), Sq2(m, t2)).
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The expected number of distinct irreducible factors of R1/Q and R2 is Aq2(m, t1 −D) +
Aq2(m, t2). In the analysis, we shall assume that each of these irreducible factors has
degree exactly m.

Three classical descent stages are employed. In the first stage, we have D = 123 and
select m = 39, s = 3, δ = 2, which yield t1 = 575 and t2 = 506. The expected cost of the
descent stage for each of the 44 degree-123 polynomials is approximately 293.7 ·Sq2(39, 452).
The expected total number of distinct irreducible polynomials of degree (at most) 39
obtained is approximately 1760.

In the second classical descent stage we have D = 39 and select m = 24, s = 4, δ = 2,
which yield t1 = 277 and t2 = 338. The expected cost of the descent for each of the 1760
degree-39 polynomials is approximately 290.2 · Sq2(24, 238). The expected total number of

distinct irreducible polynomials of degree (at most) 24 obtained is approximately 216.
In the third classical descent stage we have D = 24 and select m = 20, s = 4, δ = 2,

which yield t1 = 270 and t2 = 226. The expected cost of the descent for each of the 216

degree-24 polynomials is approximately 286.9 · Sq2(24, 226). The expected total number of

distinct irreducible polynomials of degree (at most) 20 obtained is approximately 221.3.

5.6. QPA descent. Two QPA descent stages are employed. In the first stage, we have
D = 20 and select m = 12. For each Q, the expected cost of relation generation is
234.8 ·Sq2(12, 60) and the cost of the linear algebra is 260Ar. Also for each Q, the expected
number of distinct polynomials of degree at most 12 obtained is expected to be Aq2(12, 60)·

q2 ≈ 233.2. Thus, the total number of distinct polynomials of degree at most 12 obtained
after the first QPA descent stage is approximately 254.5.

In the second stage, we have D = 12 and select m = 7. For each Q, the expected cost
of relation generation is 235 · Sq2(7, 36) and the cost of the linear algebra is 260Ar. Also
for each Q, the expected number of distinct polynomials of degree at most 7 obtained is
expected to be Aq2(7, 36) · q

2 ≈ 232.7. Thus, the total number of distinct polynomials of

degree at most 7 obtained after the second QPA descent stage is approximately 287.2.

5.7. Gröbner bases descent. Three Gröbner bases descent stages are employed. The
first stage has D = 7 and m = 4, and is expected to yield approximately 299.2 polynomials
of degree (at most) 4. The second stage has D = 4 and m = 3 and is applied to all the
294 monic irreducible quartics over F224 . The third stage has D = 3 and m = 2 and is
applied to all the 270.4 monic irreducible cubics over F224 . Our experiments were run using
Magma v2.19-7 [17] on a 2.9 GHz Intel core i7-3520M.

In the first stage, for each degree-7 polynomial Q we have to solve a system of 26 qua-
dratic polynomial equations in 32 variables over Fq (cf. (16)). After fixing some variables,
each degree-5 R obtained from the variety of the resulting ideal is tested for 4-smoothness.
If no 4-smooth R is obtained, we randomly fix some other subset of variables and repeat.
We ran 10,000 Gröbner bases descent experiments with randomly-selected degree-7 poly-
nomials Q. On average, we had to find 1.806 Gröbner bases for each Q. The average
number of R’s tested for 4-smoothness for each Q was 1.252. The average time spent on
each Q was 35.03 seconds.

For the second and third stages, we use the experimental results from §A.7 of [1].

5.8. Overall running time. The second column of Table 3 gives the running time esti-
mates for the main steps of the new DLP algorithm in three units of time: Ar, Mq2 , and
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seconds. In order to assess the overall time, we make some assumptions about the ratios
of these units of time.

First, we shall assume that Ar/Mq2 = 24. To justify this, we observe that a 3041-bit
integer can be stored in 48 64-bit words. As in §4.8, the cost of Ar can be estimated
to be 48 clock cycles. Using the carry-less multiplication instruction PCLMULQDQ, a
multiplication in F224 can be performed at a price of 3-4 clock cycles. This gives us an
Ar/Mq2 ratio of approximately 24.

Next, since a multiplication in Mq2 can be done in 15 clock cycles, we will transform
one second on a 2.9 GHz machine (on which the Gröbner bases descent experiments were
performed) into 228Mq2 .

Using these estimates, we see from the third column of Table 4 that the overall running
time of the new algorithm is approximately 2129.3Mq2 . The new algorithm is effectively
parallelizable, since each linear system of equations can be expected to be solvable in less
than 12 days using a small number of GPUs and CPUs (cf. [13, 2]).

5.9. Comparisons. The upper bound of 2129.3Mq2 on the running time of the new algo-
rithm for computing logarithms in F24·3041 convincingly demonstrates that this field offers
drastically less security than the 2192 resistance to attacks by Coppersmith’s algorithm
[8, 16]. As with the case of F36·1429 , this decrease in security is even more pronounced
when one considers that Coppersmith’s algorithm is non-parallelizable whereas the new
algorithm is effectively parallelizable.
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