
On the Resilience and Uniqueness of CPA for
Secure Broadcast ?

Chris Litsas, Aris Pagourtzis, Giorgos Panagiotakos and Dimitris Sakavalas

School of Electrical and Computer Engineering
National Technical University of Athens, 15780 Athens, Greece,

chlitsas@central.ntua.gr, pagour@cs.ntua.gr,

gpanagiotakos@corelab.ntua.gr, sakaval@corelab.ntua.gr

Abstract. We consider the Secure Broadcast problem in incomplete
networks. We study the resilience of the Certified Propagation Algorithm
(CPA), which is particularly suitable for ad hoc networks. We address
the issue of determining the maximum number of corrupted players tCPA

max

that CPA can tolerate under the t-locally bounded adversary model,
in which the adversary may corrupt at most t players in each player’s
neighborhood. For any graph G and dealer-node D we provide upper
and lower bounds on tCPA

max that can be efficiently computed in terms
of a graph theoretic parameter that we introduce in this work. Along
the way we obtain an efficient 2-approximation algorithm for tCPA

max . We
further introduce two more graph parameters, one of which matches tCPA

max

exactly. Our approach allows to provide an affirmative answer to the open
problem of CPA Uniqueness[10].

Keywords: Distributed Protocols; Ad Hoc Networks; Secure Broad-
cast; Byzantine Faults; t-Locally Bounded Adversary Model.

1 Introduction

A fundamental problem in distributed networks is Secure Broadcast, in which
the goal is to distribute a message correctly despite the presence of Byzantine
faults. That is, an adversary may control several nodes and be able to make them
deviate from the protocol arbitrarily by blocking, rerouting, or even altering a
message that they should normally relay intact to specific nodes. In general,
agreement problems have been primarily studied under the threshold adversary
model, where a fixed upper bound t is set for the number of corrupted players and

? An earlier version of this paper has appeared as ‘A Graph Parameter that Matches
the Resilience of the Certified Propagation Algorithm’, by Chris Litsas, Aris
Pagourtzis, Dimitris Sakavalas, in Proceedings of ADHOC-NOW 2013, 12th Inter-
national Conference, LNCS 7960, pp. 269-280, Springer.
Work supported by ALGONOW project of the Research Funding Program THALIS,
co-financed by the European Union (European Social Fund – ESF) and Greek na-
tional funds through the Operational Program “Education and Lifelong Learning”
of the National Strategic Reference Framework (NSRF).



2

broadcast can be achieved if and only if t < n/3, where n is the total number
of players. The Broadcast problem has been extensively studied in complete
networks under the threshold adversary model mainly in the period from 1982,
when it was introduced by Lamport, Shostak and Pease [9], to 1998, when Garay
and Moses [4] presented the first fully polynomial Broadcast protocol optimal in
resilience and round complexity.

The case of a threshold adversary in incomplete networks has been stud-
ied to a much lesser extent [1–3, 8], mostly through protocols for Secure Message
Transmission which, combined with a Broadcast protocol for complete networks,
yield Broadcast protocols for incomplete networks. Naturally, connectivity con-
straints are required to hold in addition to the n/3 bound. Namely, at most
t < c/2 corruptions can be tolerated, where c is network connectivity, and this
bound is tight[1].

In the case of an honest dealer, particularly useful in wireless networks, the
impossibility threshold of n/3 does not hold; for example, in complete networks
the problem becomes trivial. However, in incomplete networks the situation is
different. A small number of traitors (corrupted players) may manage to block
the entire protocol if they control a critical part of the network, e.g. if they form
a separator of the graph. It therefore makes sense to define criteria depending on
the structure on the graph (graph parameters), in order to bound the number
or restrict the distribution of traitors that can be tolerated.

An approach in this direction is to consider topological restrictions on the ad-
versary’s corruption capacity. The importance of local restrictions comes, among
others, from the fact that they may be used to derive local criteria which the
players can employ in order to achieve Broadcast in ad hoc networks. Such an
example is the t-locally bounded adversary model, introduced in [6], in which at
most t-corruptions are allowed in the neighborhood of every node.

Koo [6] proposed a simple, yet powerful protocol for the t-locally bounded
model, the Certified Propagation Algorithm (CPA) (a name coined by Pelc and
Peleg in [10]), and applied it to networks of specific topology. In 2005 Pelc
and Peleg [10] considered the t-locally bounded model in generic graphs and
gave a sufficient topological condition for CPA to achieve Broadcast in such
graphs. They also provided an upper bound on the number of corrupted players
t that can be locally tolerated in order to achieve Broadcast by any protocol,
in terms of an appropriate graph parameter; they left the deduction of tighter
bounds as an open problem. To this end, Ichimura and Shigeno [5] proposed an
efficiently computable graph parameter which implies a tighter, but not exact,
characterization of the class of graphs on which CPA achieves Broadcast. It has
remained open since 2005 to derive a tight parameter revealing the exact number
of traitors that can be locally tolerated by CPA in a graph G with dealer D. Very
recently Tseng et al.[11] independently gave a necessary and sufficient condition
for CPA Broadcast. Here we provide a necessary and sufficient condition in terms
of a new graph parameter as explained below. Our approach allows to provide
an affirmative answer to the open problem of CPA Uniqueness[10].
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1.1 Our results

In this paper we study the behavior of CPA in generic (incomplete) networks,
with an honest dealer. As we will see in Section 7, this case essentially captures
the difficulty of the general problem, where even the dealer may be corrupted.
Our first contribution is the exact determination of the maximum number of
corrupted players tCPA

max (G,D) that can be locally tolerated by CPA, for any
graph G and dealer D. We do this by developing three graph parameters:

– K(G,D) is determined via an appropriate level-ordering of the nodes of the
graph. We show that t < K(G,D)/2 is a sufficient condition for CPA to be
t-locally resilient and that t < K(G,D) is a necessary condition, implying
that dK(G,D)/2e − 1 ≤ tCPA

max < K(G,D). We prove that our parameter

coincides with the parameter X̃ (G,D) of [5]. We further propose an efficient
algorithm for computing K(G,D) which is faster than the algorithm for

computing X̃ (G,D) proposed in [5]. Note that this immediately gives an
asymptotic 2-approximation for tCPA

max ; we provide an example that shows
that the ratio of this algorithm is tight.

– M(G,D, t), depending also on a value t, is a parameter that immediately
reveals whether CPA is t-locally resilient for graph G and dealer D, by sim-
ply checking whether M(G,D, t) ≥ t+ 1. Therefore, via this parameter, we
provide a necessary and sufficient condition for CPA to be t-locally resilient.
Such a condition was not known until very recently, when a necessary and
sufficient condition was independently given in [11]. However, the way in
which the condition of [11] is defined implies a superexponential time algo-
rithm to check it (actually no algorithm is given in [11]). On the other hand,
we will see that even a näıve algorithm to compute M(G,D, t) would need
single exponential time.

– T (G,D) = max{t ∈ N
∣∣M(G,D, t) ≥ t + 1}, gives the maximum number

of corrupted players that CPA can tolerate in every node’s neighborhood,
hence exactly determining tCPA

max (G,D).

In addition, using the M(G,D, t) parameter we prove that CPA is unique
among the t-locally safe ad hoc broadcast algorithms. That is, if a t-locally safe
ad hoc broadcast algorithm is t-resilient for a graph G with dealer D, then CPA
is also t-resilient for G,D. Thus we provide and affirmative answer to the open
problem of CPA Uniqueness posed in [10].

1.2 Problem and Model Definition

We will now formally define the adversary model and the CPA algorithm; both
notions were developed in [6]; the term t-locally bounded is due to [10]. We will
also define basic notions and terminology that we will use throughout the paper.
We refer to the participants of the protocol by using the notions node and player
interchangeably.
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Secure Broadcast with Honest Dealer. We assume the existence of a des-
ignated honest player, called the dealer, who wants to broadcast a certain value
xD to all players. We say that a distributed protocol achieves Secure Broadcast
if by the end of the protocol every honest player has decided on xD, i.e. has been
able to deduce that xD is the value originally sent by the dealer and output it
as its own decision.

The above problem is trivial in complete networks and we will consider the
case of incomplete networks here. In the sequel we will refer to the problem as
the Broadcast problem.

t-locally bounded adversary model. We consider a network where nodes
may be corrupted, but at most t-corruptions are allowed in the neighborhood of
every node. A corruption set with the above property is called t-local set. Given
a graph G and dealer D, an algorithm which achieves Broadcast for any t-local
corruption set is called t-locally resilient.

An algorithm which achieves Broadcast in the t-locally bounded adversary
model is called t-locally resilient.

The previously mentioned Certified Propagation algorithm uses only local
information and thus is particularly suitable for ad hoc networks. CPA is prob-
ably the only Broadcast algorithm known up to now for the t-locally bounded
model, not requiring knowledge of the network topology.

Certified Propagation Algorithm

1. The dealer D sends its initial value xD to all of its neighbors, decides on xD
and terminates.

2. If a node is a neighbor of the dealer, then upon receiving xD from the dealer,
decides on xD, sends it to all of its neighbors and terminates.

3. If a node is not a neighbor of the dealer, then upon receiving t+ 1 copies of
a value x from t+ 1 distinct neighbors, it decides on x, sends it to all of its
neighbors and terminates.

Definition 1 (Max CPA Resilience). For a graph G and dealer-node D,
tCPA
max (G,D) is the maximum t such that CPA is t-locally resilient.

Whenever G and D are implied by the context, we will simply write tCPA
max .

Bounds vs Conditions. Let us now make a simple but useful observation: for
a graph-theoretic parameter X, showing that t < X is a sufficient topological
condition for CPA to be t-locally resilient provides a lower bound of dXe− 1 on
tCPA
max . Respectively, necessary conditions of similar form imply upper bounds on
tCPA
max . We will often use this relation between bounds and conditions throughout

the paper.
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2 Lower Bounds on Max CPA Resilience

Pelc and Peleg [10] were the first to present a graph-theoretic parameter X (G,D)
that associates the maximum tolerable number of local corruptions with the
topology of the graph. This parameter represents the maximum number b such
that every node v has at least b neighbors with distance to D smaller than that of
v. They give a sufficient condition for CPA resilience, namely X (G,D) ≥ 2t+ 1,
which implies that the nodes of graph G can be arranged in levels w.r.t. their
distance from D, the first level being the neighborhood of D, and every node in
level k having at least 2t+ 1 neighbors in level k − 1. This, in turn implies that
every node in distance k from D (level k) decides in the k-th round, because it
will certainly receive at least t+1 correct values from honest nodes in level k−1.
However, as shown in the same paper, this condition is not necessary, because a
node in level k may collect correct values from neighbors in level k or k+ 1 also,
thus completing the necessary number of t+ 1 identical values. In other words,
dX/2e − 1 is a lower bound for Max CPA Resilience but not a tight one.

2.1 A new parameter for bounding Max CPA Resilience

In order to derive tighter bounds on tCPA
max we introduce the notion of minimum

k-level ordering of a graph which generalizes the level ordering that was implicit
in [10]. Intuitively, a minimum k-level ordering is an arrangement of nodes into
disjoint levels, such that every node has at least k neighbors in previous levels
and belongs to the minimum level for which this property is satisfied for this
node. Formally:

Definition 2. A Minimum k-Level Ordering Lk(G,D) of a graph G = (V,E)
for a given dealer-node D is a partition V \ {D} =

⋃m
i=1 Li, m ∈ N s.t.

L1 = N (D), Li = {v ∈ V \
i−1⋃

j=1

Lj : |N (v) ∩
i−1⋃

j=1

Lj | ≥ k}, 2 ≤ i ≤ m

We next define the relaxed k-level ordering notion which will be useful for
our proofs, by dropping the level minimality requirement for nodes.

Definition 3. A Relaxed k-Level Ordering of a graph G = (V,E) for a given
dealer-node D is a partition V \ {D} =

⋃m
i=1 Li, m ∈ N s.t.

L1 = N (D), ∀v ∈ Li : |N (v) ∩
i−1⋃

j=1

Lj | ≥ k

Properties of k-level orderings. Note that while there may exist several
relaxed k-level orderings of a graph, the minimum k-level ordering is unique, as
can be shown by an easy induction. Let us also observe that a relaxed k-level
ordering may be easily transformed to the unique minimum k-level ordering; to
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show this we will use a new notion: Given a relaxed k-level ordering L: V =⋃m
i=1 Li, m ∈ N we will refer to a player u ∈ Lh ∈ L as delayed node in L if

∃ d with 1 < d < h ≤ m s.t. |N (u) ∩⋃d−1
j=1 Lj | ≥ k. The following is immediate

from the previous definitions,
Fact. A relaxed k-level ordering with no delayed nodes is a minimum k-level
ordering.

Now, given any relaxed k-level ordering L we can construct a minimum k-
level ordering Lk simply by repeatedly moving every delayed node to the lowest
level such that the partition remains a relaxed k-level ordering. It is not hard to
see that a relaxed k-level ordering with no delayed nodes is actually a minimum
k-level ordering. Therefore, the following holds,

Proposition 1. Given a graph G and dealer D, for every k ∈ N, if there exists
a Relaxed k-Level Ordering for G,D then there exists a unique Minimum k-Level
Ordering for G,D.

Proof. We prove that if we change the partitions set in a certain manner the par-
tition remains a relaxed k-level ordering and in the end we obtain the Minimum
k-Level Ordering Lk(G,D). We will use the following Claim,

We first easily observe that if there exists a relaxed k-level ordering L: V =⋃m
i=1 Li, m ∈ N with 1 < d < h ≤ m, then for arbitrary u ∈ Lh (delayed node)

with |N (u) ∩⋃d−1
j=1 Lj | ≥ k the partition L′ :

V = L1 ∪ L2 ∪ . . . ∪ {Ld ∪ {u}} ∪ · · · ∪ {Lh \ {u}} ∪ · · · ∪ Lm =

m⋃

i=1

L′i

is also a relaxed k-level ordering.
Based on the above observation, given any relaxed k-level ordering L we can

construct a minimum k-level ordering Lk simply, by moving all the delayed nodes
in the lowest level for which the partition remains a relaxed k-level ordering.
Namely,

Given relaxed k-level ordering L : V =
⋃m

i=1 Li, for every delayed node v,
move v to the set Li s.t.

i = min



d ∈ {1, . . . ,m}

∣∣∣∣∣∣
|N (v) ∩

d−1⋃

j=1

Lj | ≥ k





Furthermore, whenever we move a delayed node we should check all other nodes
that possibly became delayed due to this move. The process terminates after at
most polynomial number of moves without delayed nodes left.

According to the fact that a relaxed k-level ordering with no delayed nodes
is a minimum k-level ordering, the resulting partition is a minimum k-level or-
dering.

Regarding the uniqueness of the minimum k-level ordering Lk we can assume
that for graphG and dealerD there exist two different minimum k-level orderings
L = {L1, · · · , Lm},L′ = {L′1, · · · , L′h}. From the definition of minimum k-level
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ordering L1 = L′1 holds. Let i be the lowest integer for which Li 6= L′i and assume
wlog that ∃v, s.t. v ∈ Li and v /∈ L′i. It is clear that v is a delayed node in L′i,
thus L′i is not a minimum k-level ordering.

ut

Definition 4 (Parameter K). For a graph G and dealer D,

K(G,D)
def.
= max{k ∈ N | ∃ a Minimum k-Level Ordering Lk(G,D)}

Theorem 1 (Sufficient Condition). For every graph G, dealer D and t ∈ N,
if t < K(G,D)/2 then CPA is t-locally resilient.

Proof. Observe that 2t < K(G,D) implies the existence of a minimum (2t+ 1)-
level ordering L2t+1(G,D). Let L2t+1(G,D) be the partition {L1, . . . , Lm} of V ,
i.e. V =

⋃m
i=1 Li. It suffices to show that for 1 ≤ i ≤ m, every honest player

v ∈ Li decides on the dealer’s value xD. By strong induction on i:
Every honest player v ∈ L1 = N (D) decides on the dealer’s value xD due to

the CPA steps 1 and 2. If all honest players u ∈ Li, 1 ≤ i ≤ h, decide on xD at
some round, then every honest player v ∈ Lh+1 receives |⋃h

j=1 Lj∩N (v)| ≥ 2t+1
messages from its decided neighbors in previous levels and at least t+ 1 of them
are honest. Thus v decides on xD. ut

Corollary 1 (Lower Bound). For any graph G and dealer D it holds that
tCPA
max ≥ dK(G,D)/2e − 1

2.2 Non-tightness of the lower bound

In Theorem 1 we proved that t < K(G,D)/2 is sufficient for CPA to be t-locally
resilient; we next prove that it is not a necessary condition. Intuitively, the reason
is that the topology of the graph may prevent the adversary from corrupting t
players in each player’s neighborhood, hence some players will correctly decide
by executing CPA even if they have only t+ 1 neighbors in previous levels.

Proposition 2. There exists a family of instances (G,D), such that CPA is
(K(G,D)− 1)-locally resilient for (G,D).

Proof. Figure 1 provides such an instance for each value of t. In this instance the
neighborhood of D consists of 2t2 + 2t nodes, nodes v1, . . . , v2t form a clique of
size 2t and are connected with N (D) as shown in the figure. We can easily check
that t = K(G,D) − 1. If we run CPA on G then any player vi ∈ {v1, . . . , v2t}
receives M correct messages, with

M = MA +MB (1)

where, MA = number of messages received from N (D) and
MB = number of messages received from B = {v1, . . . , v2t} \ {vi}.
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· · · · · · · · ·· · ·
t+ 1 players

} 2t subsets

· · ·

D

v1 v2 v2t
K2t}

Fig. 1. Graph with K(G,D) = t + 1, for which CPA is t-locally resilient.

Let Ti = T ∩N (D)∩N (vi) be the set of traitors that are common neighbors
of D and vi. Then

MA = |N (D) ∩N (vi) \ Ti| = t+ 1− |Ti| (2)

In order to compute the number of correct messages that vi receives from players
in B, we define the sets:

CB1
= {v ∈ B

∣∣ v receives at most t messages from N (D) }
CB2

= {v ∈ B
∣∣ v is corrupted }

CB = CB1 ∪ CB2

We observe that CB1 becomes maximum in cardinality if the adversary corrupts
exactly one player in every setN (vj)∩N (D),∀vj ∈ B. Therefore max

T :t-local set
|CB1

| =
max

T :t-local set
|T ∩ (N (D) \ N (vi))| = t − |Ti|. Also |CB2

| ≤ t − |Ti| because B and

N (vi)∩N (D) form the neighborhood of vi where the corruptions can be at most
t. Next we compute an upper bound on CB .

|CB | = |CB1
∪ CB2

| ≤ |CB1
|+ |CB2

| ≤ (t− |Ti|) + (t− |Ti|) = 2t− 2|Ti|

and thus,

MB = 2t− 1− |CB | = 2t− 1− 2t+ 2|Ti| = 2|Ti| − 1 (3)

Finally we can compute the total number of messages M ,

(1), (2), (3)⇒M = MA +MB ≥ t+ 1− |Ti|+ 2|Ti| − 1 =

= t+ |Ti|

For any vi, if |Ti| > 0 then M ≥ t + 1. Otherwise |Ti| = 0 and vi receives
t + 1 correct messages from N (D). Thus CPA successfully achieves Broadcast
on (G,D).

ut
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3 An Upper Bound on Max CPA Resilience

In the previous section we have shown that tCPA
max ≥ dK(G,D)/2e − 1; we have

also demonstrated cases in which K(G,D) − 1 traitors are locally tolerated by
CPA. In this section we will show that the latter is the best possible: K(G,D)−1
is an upper bound on the number of local traitors for any G and D. We do this
by proving a necessary condition for CPA to be t-locally resilient.

Theorem 2 (Necessary Condition). For any graph G, dealer D and t ≥
K(G,D), CPA is not t-locally resilient.

Proof. Assume that CPA is t-locally resilient, with t ≥ K(G,D). Since, by as-
sumption, CPA is t-locally resilient there must be a positive integer, let s, so
that the algorithm terminates after s steps in G. Consider now the operation of
CPA on graph G in terms of sets. Let Li denote the set of nodes that decide in
the i-th round. Since every node in Li decides at the i-th round we get that it
has at least t+ 1 neighbors in sets L1, . . . , Li−1. That is,

∀v ∈ Li ⇒ |N (v) ∩
i−1⋃

j=1

Lj | ≥ t+ 1.

Observe that the above sequence is a relaxed (t+1)-level ordering for G, D. From
the above observation and according to the Proposition 1 we get that there must
be a minimum (t + 1)-level ordering for G, D. But this is a contradiction since
we assumed that t ≥ K(G,D). ut

Corollary 2 (Upper bound on tCPA
max ). For any graph G and dealer D it holds

that tCPA
max < K(G,D)

3.1 Comparison with the Ichimura-Shigeno parameter

In [5], Ichimura and Shigeno introduce a graph theoretic parameter X̃ (G,D)
which can be used to obtain a sufficient condition for CPA resilience. For a graph
G = (V,E) and dealer D, they consider a total ordering σ = (v1, v2, . . .) of the
set V \ (N (D) ∪D), and use δ(Wi, v) to denote the number of neighbors that v
has in the set N (D)∪{v1, . . . , vi−1}. The total ordering σ has the property that
∀i, j, with 1 ≤ i < j ≤ |V \ (N (D)∪D)| it holds that δ(Wi−1, vi) ≥ δ(Wi−1, vj).
This ordering is also referred to as max-back ordering. They define parameter
X̃ (G,D) = min{δ(Wi−1, vi) | i = 1, 2, . . .}. and prove that it is unique, i.e., is
the same for all max-back orderings. They essentially prove that,1

dX̃ (G,D)/2e − 1 ≤ tCPA
max < X̃ (G,D). (1)

1 Note that the condition t ≤ X̃ (G,D) was given as necessary in [5]; however their

proof can be easily modified to show the tighter bound t < X̃ (G,D), implying the
right part of (1).
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Hence, their parameter gives similar bounds as ours. We next show that there
is a good reason for this coincidence: despite the different way of defining the
parameters K(G,D) and X̃ (G,D), they prove to be equal.

Proposition 3. K(G,D) = X̃ (G,D)

Proof. Consider the max-back ordering σ = (v1, v2, . . .). Then the sequence

{L1 = N (D), L2 = {v1}, L3 = {v2}, . . .} is trivially a relaxed X̃ (G,D)-level or-
dering, because the minimum connectivity between a level and its predecessors is
X̃ (G,D). Thus, due to Proposition 1, there exists a minimum X̃ (G,D)-level or-

dering, therefore K(G,D) ≥ X̃ (G,D). Thus, combining the last inequality with
inequality (1) we get the following:

tCPA
max < X̃ (G,D) ≤ K(G,D)

Since Proposition 2 implies that there is a graph for which CPA is (K(G,D)−1)-

locally resilient the above relation yields the equality of K(G,D) and X̃ (G,D),

since X̃ (G,D) < K(G,D) would lead to tCPA
max < K(G,D)−1, a contradiction. ut

Although the two parameters K(G,D) and X̃ (G,D) are equal, the fact that
K(G,D) is defined in a completely different way leads to an improved complexity
of computing it, as we will see in the next section.

4 Approximation of Max CPA Resilience

Let us now consider the approximability of computing the Max CPA Resilience;
we will give an efficient 2-approximation algorithm. We first show how to check
if there exists a minimum m-level ordering, for a graph G and dealer D, using
a slight variation of the standard BFS algorithm. Subsequently, we obtain the
approximation by simply computing K(G,D), using the above check. The ratio
follows immediately, by combining Corollaries 1 and 2.

Existence check of a minimum m-level ordering for (G,D)
On input (G,D,m) do the following:

1. Assign a zero counter to each node.
2. Enqueue the dealer and every one of its neighbors.
3. Dequeue a node and increase the counters of all its neighbors. Enqueue a

neighbor only if its counter is at least m.
4. Repeat Step 3 until the queue is empty.
5. If all nodes have been enqueued then output ‘True’ (a minimum m-level

ordering exists); otherwise, output ‘False’.

Note that the above algorithm can be modified to compute the minimum m-level
ordering Lm(G,D).
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2-Approximation of tCPA
max

1. Compute K(G,D): since K(G,D) < min
v∈V \(N (D)∪D)

deg(v) = δ, the exact

value of K(G,D) is computed by log δ repetitions of the existence check, by
simple binary search.

2. Return dK(G,D)/2e − 1

Since t ≥ K(G,D)⇒ CPA is not t-locally resilient, it holds that tCPA
max < K(G,D),

consequently, the returned value is at least dtCPA
max /2e − 1.

A tight example for the approximation ratio of the algorithm is in fact given
by the instance in Figure 1 in which we present a graph for which K(G,D) = t+1
and CPA is t-locally resilient.

The complexity of the above approximation algorithm is obviously given by
the complexity of the computation of K(G,D). As explained above the algo-
rithm requires at most log δ executions of the existence check. The latter re-
quires O(|E|) time (same complexity as BFS). Altogether, we get that the time
complexity of the algorithm is O(|E| log δ), which significantly improves upon

the complexity bound for the equivalent parameter X̃ (G,D) given in [5]; the
complexity stated there is O(|V |(|V |+ |E|)).

5 Determining tCPA
max Exactly

In this section we present a procedure to compute the exact value of tCPA
max . To

this end, we introduce two new graph parameters.
For a corruption set (t-local set) T and graph G = (V,E) we will denote with

GT̄ = (V \ T,E′) the node induced subgraph of G on the node set V \ T .

Definition 5. For any graph G, dealer D and positive integer t, the t-safety
threshold is the quantity M(G,D, t) = min

T : t-local set
K(GT̄ , D).

Theorem 3 (Necessary and Sufficient Condition). For a graph G = (V,E)
and dealer D, CPA is t-locally resilient iff M(G,D, t) ≥ t+ 1.

Proof. (⇐) Assume M(G,D, t) ≥ t + 1 and let T ⊆ V \ D be any t-local
corruption set. It must hold that K(GT̄ , D) ≥ t+ 1. Hence, there exists a mini-
mum (t+1)-level ordering Lt+1(GT̄ , D) = {L1, . . . , Lm}. Therefore every honest
player v has at least t + 1 honest neighbors in previous levels of Lt+1(GT̄ , D);
by a simple induction we can show that v will decide on the dealer’s value xD.

(⇒) If CPA is t-locally resilient then for any t-local corruption set, T , we
have that every honest player in GT̄ decides on xD and let the total number of
rounds for the termination of the protocol is m ∈ N. Define the sequence of sets
Li = {v ∈ V \ T

∣∣ v decides in round i of CPA }, i ∈ {1, . . . ,m}. Then we will
show by induction that the sequence (Li)

m
i=1 is the (unique) minimum (t + 1)-

level ordering on graph GT̄ with dealer D. Note first that L1 = N (D)\T because
the players that decide in round 1 are exactly the neighborhood of the dealer.
For the induction basis, we observe that L2 = {v ∈ V \ T

∣∣ N (v) ∩ L1 ≥ t+ 1}
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because the players that decide in round 2 are exactly those who will receive
t + 1 identical messages from decided players in round 1. Assuming now that
Lk = {v ∈ V \ {T ∪ ⋃k−1

j=1 Lj} : |N (v) ∩ ⋃k−1
j=1 Lj | ≥ t + 1} it turns out that

Lk+1 = {v ∈ V \ {T ∪ ⋃k
j=1 Lj} : |N (v) ∩ ⋃k

j=1 Lj | ≥ t + 1} due to the fact
that the players that decide in round k + 1 are exactly the players who receive
at least t+ 1 messages from previously decided players. Since the above hold for
any T , the claim follows. ut

For exactly determining the maximum CPA resilience tCPA
max we need the pa-

rameter,

T (G,D) = max{t ∈ N
∣∣M(G,D, t) ≥ t+ 1}

It should be clear by the above discussion that T (G,D) is exactly the maximum
CPA resilience:

Corollary 3. tCPA
max (G,D) = T (G,D)

A simple algorithm to compute the t-safety threshold requires exponential
time (consider all the t-local corruption sets and compute K(GT̄ , D) as in Sec-
tion 4). Note that a different necessary and sufficient condition for CPA to be
t-locally resilient was independently given in [11]. However, a superexponential
time to check that condition is implicit (no algorithm is given in [11]).

Moreover, for computing tCPA
max = T (G,D) it suffices to perform at most

log δ M(G,D, t) computations, where δ is the minimum degree of any node in
V \ (N (D) ∪D).

6 CPA Uniqueness in Ad Hoc Networks

Based on the necessary and sufficient condition for CPA to be t-locally resilient
in a graph G with dealer D we can now prove the CPA uniqueness conjecture
for ad hoc networks, which was posed as an open problem in [10]. The conjecture
states that no algorithm can locally tolerate more traitors than CPA in networks
of unknown topology.

We consider only the class of t-locally safe Broadcast algorithms which never
cause a node to decide on an incorrect message under any t-local corruption set,
cf.[10]

We assume the ad hoc network model, e.g. [10]. In particular we assume that
nodes know only their own labels, the labels of their neighbors and the label of
the dealer. We call a distributed Broadcast algorithm that operates under these
assumptions an ad hoc algorithm.

Theorem 4. Let A be a t-locally safe ad hoc Broadcast algorithm. If A is t-
locally resilient for a graph G with dealer D then CPA is t-locally resilient for
G,D.
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... w

At most t
neighbors in A

· · ·
T

H

Fig. 2. Partition of G in the subgraphs A,B, T

Proof. From Theorem 3 we have that, if CPA is not t-locally resilient in (G,D)
then, M(G,D, t) = min

T : t-local set
K(GT̄ , D) ≤ t which implies that there exists a

t-local corruption set T s.t. in the remaining graph GT̄ a minimum (t+ 1)-level
ordering does not exist. From the definition of the (t+ 1)-level ordering we have
that given the sequence of subsets of the nodes VT̄ = V \ (T ∪ {D}),

L1 = NGT̄
(D), Li = {v ∈ VT̄ \

i−1⋃

j=1

Lj : |NGT̄
(v) ∩

i−1⋃

j=1

Lj | ≥ t+ 1}, 2 ≤ i ≤ m

there exists h ∈ N s.t. ∀j ≥ h, Lj = ∅ and
⋃h

i=1 Li ( VT̄ . We denote with hmin

the minimum h ∈ N with the above property. We can assume wlog that hmin ≥ 2,
because h = 1 implies that in the graph GT̄ the dealer D is disconnected from the
rest of the graph which in turn, trivially implies that no algorithm will achieve
Broadcast under the corruption of set T .

Let A =

hmin⋃

i=1

Li and B = VT̄ \ A. It is now obvious from the definition of

the minimum (t + 1)-level ordering that ∀w ∈ B, |NGT̄
(w) ∩ A| ≤ t. Moreover⋃hmin

i=1 Li ( VT̄ implies that B 6= ∅. Finally let H =
⋃

w∈B
(NGT̄

(w) ∩A) and ob-

serve that H constitutes a node-cut in graph GT̄ separating the dealer D from
the subgraph B. The partition of graph G in the three subgraphs A,B, T is
depicted in Figure 2.

Let G′ be a graph that results from G if we remove edges (u, v) from the set
E′ = {(u, v)|u, v ∈ A∪T} s.t. the set H becomes t-local in G′ (e.g. we can remove
all edges that connect nodes in the set A∪T ). The existence of a set of edges that
guarantees such a property is implied by the fact that ∀w ∈ B, |NGT̄

(w)∩H| ≤ t.
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The proof is by contradiction. Suppose that there exists a t-locally safe Broad-
cast algorithm A which is t-locally resilient in graph G with dealer D. We con-
sider the following executions σ and σ′ of A,

– Execution σ is on the graph G with dealer D, for the dealer’s value we have
that xD = 0, the corruption set is the set T and in each round, all the
players in this set perform the actions that are instructed to perform in the
respective round of execution σ′ where T is a set of honest players.

– Execution σ′ is on the graph G′ with dealer D, for the dealer’s value we
have that xD = 1, the corruption set is the set H and in each round, all the
players in this set perform the actions that are instructed to perform in the
respective round of execution σ where H is a set of honest players.

Note that the corruption sets T,H are admissible corruption sets in G,G′

respectively due to their t-locality. It is easy to see that the set H ∪ T is a
node-cut which separates D from B in both G and G′ and actions of all nodes
of this cut are identical in both executions σ, σ′. Consequently the actions of
any honest node w ∈ B must be identical in both executions. Since by our
assumption algorithm A is t-locally resilient on G with dealer D, w must decide
on the dealer’s message 0 in execution σ on G with dealer D. It must perform
the same action in execution σ′ on G′ with dealer D. However, in this execution
the dealer’s message is 1. This contradicts the assumption that A is t-locally
safe.

We can observe that if the requirement for t-local safety is omitted, then the
theorem does not hold. Intuitively we can use a protocol that assumes certain
topological properties for the network such that this protocol is t-locally resilient
in a family of graphs that have the same topological properties as the ones
assumed.

More formally, in [10], Pelc and Peleg introduced another algorithm, the
Relaxed Propagation Algorithm(RPA) which uses knowledge of the topology of
the network and they proved that there exists a graph G with dealer D for which
RPA is 1-locally resilient and CPA is not. So if we use RPA in an ad hoc setting
assuming that the network is G then this algorithm will be t-locally resilient in G
with dealer D while CPA won’t. Non-t-local safety of RPA can easily be shown.
This simple observation shows that the theorem does not hold if we consider
algorithms which are not t-locally safe.

7 Conclusions

In this paper we developed three new graph parameters, depending on graph G
and dealer-node D, for bounding the maximum resilience tCPA

max of CPA, i.e., the
maximum number of corrupted players in each node’s neighborhood that CPA
can tolerate. The first parameter, K(G,D), can be efficiently computed and can
be used for approximating tCPA

max within a factor of 2. The t-safety threshold,
M(G,D, t), may be used as a test to check whether CPA is t-locally resilient for
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a certain graph G with dealer D and integer t. The third parameter, T (G,D),
coincides with tCPA

max and thus provides an exact characterization of the resilience
of CPA as a function of the graph G and dealer D.

Finally, using the M(G,D, t) parameter we also prove that CPA is unique
among the t-locally safe ad hoc broadcast algorithms, in a sense that for a graph
G and dealer D if there exists a t-locally resilient, t-locally safe ad hoc broadcast
algorithm, then CPA is also t-resilient in G,D thus answering the open problem
of CPA Uniqueness posed in [10] in the affirmative.

Since the existence of a t-locally resilient Broadcast algorithm in a graph G
with dealerD obviously depends on the topology ofG, for a given local number of
corruptions t we may define and compare the classes of graphs (with a designated
dealer-node) determined by the properties and topological conditions that have
appeared in the literature so far, including the ones defined in this paper. An
overview of the corresponding classes and their relation is depicted in Figure 3.

The General Case (Corrupted Dealer). It is well known that CPA works under
the assumption that the dealer is honest. In order to address the case in which
the dealer is corrupted one may observe that if the total number of traitors
is strictly less than n/3, n = |V |, and the number of traitors in each node’s
neighborhood is bounded by min

D∈V
T (G,D) then we can achieve Secure Broadcast

by simulating any protocol for complete graphs as follows: each one-to-many (or
even one-to-one) transmission is simulated by an execution of CPA. We observe
that min

D∈V
T (G,D) may not be tight in this case. We can obtain a better bound

if we define M(G,D, t) by considering only corruption sets of size strictly less
than n/3. Subsequently, we derive an upper bound for Broadcast with corrupted

dealer, namely t ≤ min

(
dn/3e − 1, min

D∈V
T (G,D)

)
. The deduction of a tight

bound on the number of corrupted players as well as the study of more efficient
algorithms for this problem are interesting open questions. Some remaining open
problems are discussed below.

Known topology networks. Under this assumption, the class of graphs for which
there exists a t-locally resilient Broadcast algorithm is a strict superset of the
class of graphs that admit a t-locally resilient Broadcast algorithm in the ad hoc
model. In [10] they defined the local pair connectivity2 (LPC(G)) parameter and
proved that LPC(G) > t is a necessary condition for the existence of such an
algorithm. It remains to show whether this condition is also sufficient or not.

Efficiency of computing tCPA
max . A trivial approach to compute tCPA

max via the pa-
rameter T (G,D) requires exponential time. It is therefore interesting to find an
efficient algorithm or alternatively a hardness proof for this problem. Another di-
rection is to define another efficiently computable parameter yielding more tight

2 LPC(G) in [10] is defined for an arbitrary dealer-node, however the definition can be
trivially modified in order to define LPC(G,D) which concerns a specific dealer-node
of the graph.
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G t < LPC(G,D)

∃ a t-locally resilient algorithm

∃ a t-locally resilient
safe Ad-Hoc algorithm⇔

CPA is t-locally resilient (t ≤ T (G,D))

t < K(G,D)/2⇔ t < ˜X (G,D)/2

t < X (G,D)/2

Fig. 3. Overview of conditions related to the existence of t-locally resilient algorithms.
Parameters LPC(G,D) and X (G,D) are defined in [10] and X̃ (G,D) is from [5].
Continuous lines show strict inclusions.

bounds than K(G,D) in order to obtain an efficient approximation algorithm
for tCPA

max of ratio smaller than 2.

Wireless Networks. CPA is particularly suited for ad hoc networks, however
it does not deal with radio network collisions. Only few articles have addressed
the problem of secure broadcast in radio networks so far and only for restricted
graph topologies (e.g. [6], which deals with Byzantine failures, and [7], which
studies the problem in the fault-tolerant model). It would therefore make sense
to develop locally resilient protocols for the radio network model. To this end, one
would have to consider models where the adversary cannot produce unlimited
number of collisions otherwise it may block some messages permanently.
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