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Abstract In this paper, we propose a new signature scheme connecting two private
keys and two public keys based on general non-commutative division semiring. The
key idea of our technique engrosses three core steps. In the first step, we assemble
polynomials on additive structure of non-commutative division semiring and take
them as underlying work infrastructure. In the second step,we generate first set of
private and public key pair using polynomial symmetrical decomposition problem.
In the third step, we generate second set of private and public key pair using dis-
crete logarithm. We use factorization theorem to generate the private key in discrete
logarithm problem. By doing so, we can execute a new signature scheme on mul-
tiplicative structure of the semiring using multiple private keys. The security of the
proposed signature scheme is based on the intractability ofthe Polynomial Symmet-
rical Decomposition Problem and discrete logarithm problem over the given non-
commutative division semiring. Hence , this signature scheme is so much strong in
security point of view.
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1 Introduction

Digital signatures are probably the most important and widely used cryptographic
primitive enabled by public key technology, and they are building blocks of many
modern distributed computer applications, like, electronic contract signing, certified
email, and secure web browsing etc. But many existing signatures schemes lie in the
intractability of problems closely related to the number theory than group theory.

1.1 Background of Public Key Infrastructure and proposals based on
Commutative Rings

There is no doubt that the Internet is affecting every aspectof our lives; the most
significant changes are occurring in private and public sector organizations that are
transforming their conventional operating models to Internet based service models,
known as eBusiness, eCommerce, and eGovernment. Public KeyInfrastructure (PKI)
is probably one of the most important items in the arsenal of security measures that
can be brought to bear against the aforementioned growing risks and threats. The de-
sign of reliable Public Key Infrastructure presents a compendium challenging prob-
lems that have fascinated researchers in computer science,electrical engineering and
mathematics alike for the past few decades and are sure to continue to do so. In
their seminal paper ”NewdirectionsinCryptography” [1] Diffie and Hellman invited
public key Cryptography and, in particular, digital signature schemes. The trapdoor
one-way functions play the key role in idea of PKC and digitalsignature schemes.
Today most successful signature schemes based on the difficulty of certain problems
in particular large finite commutative rings. For example, the difficulty of solving In-
teger Factorization Problem (IFP) defined overZn (where n is the product of primes)
forms the ground of the basic RSA signature scheme [2], variants of RSA and elliptic
curve version of RSA like KMOV [3]. Another good case is that the ElGamal sig-
nature scheme[4] is based on the difficulty of solving the discrete logarithm problem
(DLP) defined over a finite fieldZp (where P is a large prime), of course a commu-
tative ring. The theoretical foundations for the above signature schemes lie in the
intractability of problems closely related to the number theory than group theory [5].
As addressed in [9], in order to enrich Cryptography, there have been many attempts
to develop alternative PKC based on different kinds of problems. Historically, some
attempts were made for a Cryptographic Primitives construction using more complex
algebraic systems instead of traditional finite cyclic groups or finite fields during the
last decade. The originator in this trend was [10], where a proposition to use non-
commutative groups and semigroups in session key agreementprotocol is presented.
Some realization of key agreement protocol using [10] methodology with application
of the semigroup action level could be found in [11]. Some concrete construction
of commutative sub-semigroup is proposed there. Accordingto our knowledge, the
first signature scheme designed in an infinite noncommutative groups was appeared
in [12]. This invention is based on an essential gap existingbetween the Conjugacy
Decision Problem (CDP) and Conjugator Search Problem (CSP)in non-commutative
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group [13]. In, [14], Cao et.al. Proposed a new DH-like key exchange protocol and
ElGamal-like cryptosystems using the polynomials over non-commutative rings.

1.2 Outline of the paper:

The rest of the paper is organized as follows. In Section 2, wepresent the neces-
sary Cryptographic assumptions over non-commutative groups. In Section 3, first we
define polynomial over an arbitrary non-commutative ring and present necessary as-
sumptions over non-commutative division semirings . In Section 4, we propose new
digital signature scheme based on underlying structure andassumptions. In section 5,
we study the confirmation theorem and security concepts of the proposed signature
scheme.

2 CRYPTOGRAPHIC ASSUMPTIONS ON NON-COMMUTATIVE
GROUPS:

2.1 Two Well-known Cryptographic Assumptions

In a non-commutative group G, two elements x, y are conjugate, written x∼y, if y =
z−1 x z for some z∈ G. Here z orz−1 is called a conjugator. Over a non commutative
group G, we can define the following two cryptographic problems which are related
to conjugacy.
- Conjugator Search Problem (CSP):Given (x,y)∈ G x G, find z∈ G such that y =
z−1 x z
-Decomposition Problem (DP):Given (x,y)∈G x G and S⊆G, find z1, z2∈S such
that y =z1x z2 At present, we believe that for generalnon-commutative group G, both
of the above problems CSP and DP are intractable.

2.2 Symmetrical Decomposition and Computational Diffie-Hellman
Assumptions over Non-commutative Groups

Enlightened by the above problems, we would like to define thefollowing Crypto-
graphic problems over a non-commutative group G.
- Symmetrical Decomposition Problem (SDP):Given (x,y)∈ G x G and m, n∈Z,
the set of integers, find z∈ G such that y =zmxzn

- Generalized symmetrical Decomposition Problems (GSDP):Given (x,y)∈G x
G, S⊆ G and m, n∈ Z, find z∈ S such that y =zmxzn.
Computational Diffie-Hellman (CDH) problem over Non-Commutative Group
G: Computexz1z2(or)xz2z1 for given x,x z1and xz2,where x∈G,z1, z2∈ S,for S⊆G.
At present, we have no clue to solve this kind of CDH problem without extract-
ing z1 or z2from x andxz1(orxz2).Then, the CDH assumption over G says that CDH
problem over G is intractable.
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3 BUILDING BLOCKS FOR PROPOSED DIGITAL SIGNATURE SCHEME

3.1 Integral Co-efficient Ring Polynomials:

Suppose that R is a ring with (R, +, 0 ) and (R,•, 1) as its additive abelian group
and multiple non-abelian semigroup, respectively. Let us proceed to define positive
integral co-efficient ring Polynomials. Suppose that f(x) =a0 +a1x+ +anxn∈Z>0[x]
is given positive integral coefficient polynomial. We can assign this polynomial by
using an element r in R and finally obtain

f (r)=
n
∑

i=0
(ai)ri=(a0)+(a1)r+...+(an)rn

which is an element in R. (Details see section 3.4 )
Further, if we regard r as a variable in R, then f(r) can be looked as polynomial about
r. The set of all this kind of polynomials, taking over all f(x)∈Z>0[x], can be looked
the extension ofZ>0 with r, denoted byZ>0[r] . We call it the set of 1- ary positive
integral coefficient R - Polynomials.

3.2 Semiring

A Semiring R is a non-empty set, on which the operations of addition and multiplica-
tion have been defined such that the following conditions aresatisfied. (i). ( R, +) is a
commutative monoid with identity element ”0” (ii). (R,•) is a monoid with identity
element 1. (iii).Multiplication distributes over addition from either side (iv). 0• r = r
• 0 for all r in R

3.3 Division semiring

An element r of a semiring R, is a ”unit” if and only if there exists an elementr1 of
R satisfying r• r1 = 1 = r1•r The elementr1 is called the inverse of r in R. If such an
inverser1 exists for a unit r, it must be unique. We will normally denotethe inverse
of r by r−1. It is straightforward to see that , if r andr1 units of R,
then r• (r1)−1 =(r1)−1•r−1 and in particular(r−1)−1 = r. we will denote the set of all
units of R, by U(R). This set is non-empty, since it contains ”1” and is not all of R,
since it does not contain′0′. we have just noted that U(R) is a submonoid of ( R,• ),
which is infact a group. If U(R) = R/{0}, Then R, is adivision semiring.

3.4 Polynomials on Division semiring

Let ( R, +,•) be a non-commutative division semiring. Let us consider positive inte-
gral co-efficient polynomials with semiring assignment as follows. At first, the notion
of scale multiplication over R is already on hand. For k∈Z>0 and r∈ R.
Then (k)r =r + r + r +. . . + r + r (k times ). For k = 0, it is natural to define (k)r = 0
Property 1. (a)rm • (b)rn = (ab)•r m+n =(b)rn•(a)rm , ∀ a,b,m,n∈Z,∀r∈ R.
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Remark: Note that in general (a)r• (b)s 6=(b)s•(a)r when r6= s, since the multiplica-
tion in R is non-commutative. Now, Let us proceed to define positive integral coeffi-
cient semiring polynomials.
Suppose thatf (x) = a0 + a1x + a2x2 + ...... + anxn ∈ Z>0[x] is given positive in-
tegral coefficient polynomial. We can assign this polynomial by using an element
r in R and finally , we obtainf (r) = a0 + a1r + a2r2 + ...... + anrn ∈ R Similarly
h(r) = b0 + b1r + b2r2 + ......+ bmrm ∈ R for some n≥ m. Then we have the fol-
lowing.
Theorem1: f(r).h(r) = h(r).f(r) for f(r), h(r)∈ R.
Remark: If r and s are two different variables in R,then f(r)•h(s)6=h(s)•f(r) in gen-
eral.

3.5 Further cryptographic assumptions on Non- commutative division
semirings

Let (R, +,• ) be a non-commutative division semiring. For any a∈R, we define the set

Pa⊆R byP
∆
a { f (a)/ f (x)∈ Z>0[x]} Then, let us consider the new versions of GSD and

CDH problems over (R,•) with respect to its subsetPa, and name them as polynomial
symmetrical decomposition (PSD) problem and polynomial Diffie - Hellman (PDH)
problem - respectively:
- Polynomial Symmetrical Decomposition(PSD) problem overNon- commuta-
tive division semiring R: Given (a, x, y)∈ R3 and m, n,∈Z, find z∈ Pa such that y =
zmxzn

-Polynomial Diffie - Hellman (PDH) problem over Non-commutative division
semiring R: Computexz1z2(or xz2z1) for a given x,xz1 andxz2, where x∈ R andz1, z2

∈ Pa . Accordingly, the PSD (PDH) Cryptographic assumption saysthat PSD (PDH)
problem over (R,• ) is intractable, i.e. there does not exist probabilistic polynomial
time algorithm which can solve PSD (PDH) problem over ( R,•).

4 PROPOSED SIGNATURE SCHEME

Signature Scheme from Non-commutative Division Semirings: This Digital Sig-
nature scheme contains the following main steps.
Initial setup: suppose that (S, +,•) is the non commutative division semiring and is
the underlying work fundamental infrastructure in which PSD and conjugacy prob-
lem are intractable on the non-commutative group ( S,• ). Choose two small integers
m, n∈Z. Let H: S→ S be a cryptographic hash function which maps S to the message
space S. Choose m, n6=0∈Z , Then the public parameters of the system would be the
tuple< S,m,n,S,H >
Remark: In this case, we must choose message space is also S.
Key Generation: Alice wants to sign and send a message M to Bob for verification.
First Alice selects two random elements p, q∈S and a polynomial f(x)∈ Z>0[x] ran-
domly such that f(p)(6=0)∈ S and then she takes f(p) as her private key, computes
g = f (p)mq f (p)n and publishes this as her public key. Let k be the product of two
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large secure primes a, b. Its security is based on the difficulty of factoring k, such that
1 < e < Φ(k) = (a−1).(b−1) and gcd(e,Φ(k) ) =1. Since (a-1)(b-1) is even then
’e’ is always odd.
So we can compute second private key ’d’ with 1< e < Φ(k)=(a-1)(b-1) and de
≡ 1(modΦ(k)). Then we calculate second public key by discrete logarithmy = gd .
So that the private and public key pairs are ( f(p), d ) and ( g, y, e ).
Signature Generation : Alice performs the following simultaneously by taking a
message M from message space. 1. Alice selects randomly another polynomial h(x)∈
Z>0[x] such that h(p)∈ S Then ,She defines h(p) as salt and
computes u = h(p)−mq h(p)−n and
r = f(p)m.H(M+ du).f(p)n ,
α= f(p)h(p),
s = f(p)−n

{

(H(M +du))−1.q
}

.f(p)n,
v = αm.u.αn Then ( v, r, s ) is the signature of Alice on the message M and sends it
to the bob for acceptance and it needs verification.
Verification: On receiving the signature ( v, r, s ) from Alice Bob will do thefollow-
ing. For this, he computes z = r.s and w = ye.
Bob accepts Alice’s signature iff g−1v = wz−1 Otherwise, he rejects the signature.

5 CONFIRMATION THEOREM

5.1 Completeness

Let ( p, q, g, y, e ) be the public parameters for p, q, g, y∈ S. Given a signature (v, r,
s), if Alice follows signature verification algorithm, thenBob always accepts (v, r, s)
as a valid signature.
Proof : In verification , the parameters are v, r, s, z and w.
g−1v = w z−1 →v.z = g.w
now LHS = v.z = v.r.s ={αm.u.αn}.r.s on simplification ,
we obtain vz ={ f (p)mq f (p)n} .{ f (p)mq f (p)n}
= { f (p)mq f (p)n}.{ f (p)mq f (p)n}ed

= g. (gd)e = gw, which is RHS. as the reason de≡ 1( modΦ(k) )

5.2 Security Analysis:

Assume that the active eavesdropper ”Eve” can obtain , remove , forge and retransmit
any message, Alice sends to Bob. Any forgered data d, we denote it byd f . We study
the security of the signature scheme for three main attacks.Data forgering on valid
signature and signature repudiation on valid data, existential forgering.
(a). Data forgering: Suppose Eve replaces the original message M, with forgered
oneM f . Then Bob receives the signature ( u, s,α,β ,v1) . Using forgered dataM f or
H(M f ), verifying the equation u−1.v1 = s−1.v2 is impossible, becauseM f or H(M f ) is
completely involved in the signature generation, but not inthe verification algorithm.
Hence u−1.v1 = s−1.v2 is true only for the original message. Data forgery without
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extracting signature is not possible. Another attempt is totry to find M f , for valid
H(M). But this is impossible, because we assumed that hash function H is crypto-
graphically secure. So the invalid data can’t be signed witha valid signature.
(b). Signature Repudiation:Assume Alice intends to refuse recognition of his sig-
nature on some valid data. Then it follows that valid signature ( u, s,α,β ,v1) can
be forged by Eve and she can sign the message M , with the forgered signature
(u f ,s f ,α f ,β f ,v1 f ) instead. The verification procedure as follows
V2 = α f .y−1β f

=[h(p)m.r f (p)n] f [ f (p)−n.q−1. f (p)−m][ f (p)mH(M).h(p)n] f

Since[ f (p)n] f .[ f (p)n] 6= I, [ f (p)−m].[ f (p)m] f 6= I, where I is the identity element in
the multiplicative structure of the division semiring.
Consequently[u−1.v1] f 6= [s−1.v2] f . So this signature scheme ensures that the non-
repudiation property.
(c). Existential Forgery: Suppose Eve is trying to sign a forgered messageM f .
Then she must forge the private key by replacing with some[ f (p)] f . Immediately,
she faces a difficult with the public key, as we believe that PSD is intractable on
non-commutative division semiring. Also note that all the structures in this signature
scheme are constructed on non-commutative division semiring and based on PSD.
Exact identification these structures are almost intractable as long as PSD is so hard
on this underlying work structure. Consequently construction new valid signatures,
without proper knowledge of private key are impossible. So Eve is not able to calcu-
late forgered signatures.

5.3 Soundness

The key idea is that choosing a polynomial f(x) randomly, with semiring assignment
and for any p∈ S, such that f(p) (6= 0)∈ (S,+,• ). A cheating prover P∗ has no way
to identify the polynomial f(x)∈Z>0[x] such that f(p)(6=0)∈(S, +,•), even if he has
infinite computational power. Let n be the number of elementsof S, P∗ best strategy
is to guess the value of p, and there are n choices for p. Hence ,even with infinite
computing power, the cheating prover P∗ with a negligible probability to trace the
exact private key f(p) S, so as to provide a valid response foran invalid signature.
Hence this signature scheme is sound.

6 CONCLUSIONS

In this paper, we presented a new signature scheme based on general non-commutative
division semiring. The key idea behind our scheme lies that we take polynomials
over the given non-commutative algebraic system as the underlying work structure
for constructing signature scheme. The security of the proposed scheme is based on
the intractability of Polynomial Symmetrical Decomposition Problem over the given
non-commutative division semirings.
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