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Abstract In this paper, we propose a new signature scheme conneuatingrivate
keys and two public keys based on general non-commutatiWgiath semiring. The
key idea of our technique engrosses three core steps. Inrshstép, we assemble
polynomials on additive structure of non-commutative sl semiring and take
them as underlying work infrastructure. In the second stepgenerate first set of
private and public key pair using polynomial symmetricata®position problem.
In the third step, we generate second set of private and lbli pair using dis-
crete logarithm. We use factorization theorem to genetegtivate key in discrete
logarithm problem. By doing so, we can execute a new sigaaaheme on mul-
tiplicative structure of the semiring using multiple ptiggkeys. The security of the
proposed signature scheme is based on the intractabilityedPolynomial Symmet-
rical Decomposition Problem and discrete logarithm problever the given non-
commutative division semiring. Hence , this signature sahés so much strong in
security point of view.
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1 Introduction

Digital signatures are probably the most important and lyidesed cryptographic
primitive enabled by public key technology, and they arddg blocks of many

modern distributed computer applications, like, eledt@ontract signing, certified
email, and secure web browsing etc. But many existing sigaatschemes lie in the
intractability of problems closely related to the numbexdty than group theory.

1.1 Background of Public Key Infrastructure and proposals baseal on
Commutative Rings

There is no doubt that the Internet is affecting every aspécur lives; the most
significant changes are occurring in private and publicasemtganizations that are
transforming their conventional operating models to Imé¢hased service models,
known as eBusiness, eCommerce, and eGovernment. Publinftagtructure (PKI)
is probably one of the most important items in the arsenakofisty measures that
can be brought to bear against the aforementioned growskg and threats. The de-
sign of reliable Public Key Infrastructure presents a conddgm challenging prob-
lems that have fascinated researchers in computer scielectrjcal engineering and
mathematics alike for the past few decades and are sure tmgerto do so. In
their seminal paperNewdirectionsinCryptography” [1] Diffie and Hellman invited
public key Cryptography and, in particular, digital siguma schemes. The trapdoor
one-way functions play the key role in idea of PKC and digiighature schemes.
Today most successful signature schemes based on theltifi€gertain problems
in particular large finite commutative rings. For exampies difficulty of solving In-
teger Factorization Problem (IFP) defined o¥ggi(where n is the product of primes)
forms the ground of the basic RSA signature scheme [2], nriaf RSA and elliptic
curve version of RSA like KMOV [3]. Another good case is thia¢ tEIGamal sig-
nature scheme[4] is based on the difficulty of solving themite logarithm problem
(DLP) defined over a finite field, (where P is a large prime), of course a commu-
tative ring. The theoretical foundations for the above atgre schemes lie in the
intractability of problems closely related to the numbexdty than group theory [5].
As addressed in [9], in order to enrich Cryptography, theneetbeen many attempts
to develop alternative PKC based on different kinds of peptd. Historically, some
attempts were made for a Cryptographic Primitives consbaising more complex
algebraic systems instead of traditional finite cyclic gm®or finite fields during the
last decade. The originator in this trend was [10], whereap@sition to use non-
commutative groups and semigroups in session key agregaraotol is presented.
Some realization of key agreement protocol using [10] mehagy with application
of the semigroup action level could be found in [11]. Somectete construction
of commutative sub-semigroup is proposed there. Accortingur knowledge, the
first signature scheme designed in an infinite noncommetatioups was appeared
in [12]. This invention is based on an essential gap exidbietyveen the Conjugacy
Decision Problem (CDP) and Conjugator Search Problem (€8#®n-commutative
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group [13]. In, [14], Cao et.al. Proposed a new DH-like kegheange protocol and
ElGamal-like cryptosystems using the polynomials over-noommutative rings.

1.2 Outline of the paper:

The rest of the paper is organized as follows. In Section 2pmsent the neces-
sary Cryptographic assumptions over non-commutativepgdm Section 3, first we
define polynomial over an arbitrary non-commutative rind present necessary as-
sumptions over non-commutative division semirings . Inti®ac4, we propose new
digital signature scheme based on underlying structur@asgimptions. In section 5,
we study the confirmation theorem and security conceptseoptbposed signature
scheme.

2 CRYPTOGRAPHIC ASSUMPTIONS ON NON-COMMUTATIVE
GROUPS:

2.1 Two Well-known Cryptographic Assumptions

In a non-commutative group G, two elements X, y are conjygatgen xy, if y =

z ! x z for some £ G. Here z oz ! is called a conjugator. Over a non commutative
group G, we can define the following two cryptographic praidevhich are related
to conjugacy.

- Conjugator Search Problem (CSP):Given (x,y G x G, find ze G such thaty =
z1lxz

-Decomposition Problem (DP):Given (x,y G x G and &G, find z;, €S such
that y =z1x z, At present, we believe that for generalnon-commutativeigi@, both

of the above problems CSP and DP are intractable.

2.2 Symmetrical Decomposition and Computational Diffie-Hellman
Assumptions over Non-commutative Groups

Enlightened by the above problems, we would like to definefdiewing Crypto-
graphic problems over a non-commutative group G.

- Symmetrical Decomposition Problem (SDP)Given (x,y G x G and m, gZ,
the set of integers, findzG such that y =z"xz"

- Generalized symmetrical Decomposition Problems (GSDP)Given (X,yEG X
G, SC G and m, ne Z, find ze S such thaty 2"x2".

Computational Diffie-Hellman (CDH) problem over Non-Commutative Group
G: Computex®2(or)x?24 for given x,x?and ¥2,where xeG,z;, ze S,for SCG.
At present, we have no clue to solve this kind of CDH problenthaut extract-
ing z1 or zfrom x andx?(orx?).Then, the CDH assumption over G says that CDH
problem over G is intractable.
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3 BUILDING BLOCKS FOR PROPOSED DIGITAL SIGNATURE SCHEME
3.1 Integral Co-efficient Ring Polynomials:

Suppose that R is a ring with (R, +, 0) and ®,1) as its additive abelian group
and multiple non-abelian semigroup, respectively. Let iee@ed to define positive
integral co-efficient ring Polynomials. Suppose that f(08¢=+ a1X+ + anXn€Z0[X]

is given positive integral coefficient polynomial. We carsigs this polynomial by

using an element r in R and finally obtain

()= 5 (@)r'=(a0)+(@)r+..-+(an)r"

which is an element in R. (Details see section 3.4 )

Further, if we regard r as a variable in R, then f(r) can be éab&s polynomial about
r. The set of all this kind of polynomials, taking over all ¥6Z-¢[x], can be looked
the extension & with r, denoted b¥-o[r] . We call it the set of 1- ary positive
integral coefficient R - Polynomials.

3.2 Semiring

A Semiring R is a non-empty set, on which the operations oitestdand multiplica-
tion have been defined such that the following conditionsatisfied. (i). (R, +) isa
commutative monoid with identity element "0” (ii). (R) is a monoid with identity
element 1. (iii).Multiplication distributes over additidrom either side (iv). ® r =r
eOforallrin R

3.3 Division semiring

An element r of a semiring R, is aifiit” if and only if there exists an element of

R satisfying re r1 = 1 =r'er The element? is called the inverse of rin R. If such an
inverser? exists for a unit r, it must be unique. We will normally dentie inverse
of rby r-1. It is straightforward to see that , if r and units of R,

then » (1)1 =(r')ter—1 and in particular(r)~* = r. we will denote the set of all
units of R, by U(R). This set is non-empty, since it contaii$dnd is not all of R,
since it does not contalil®. we have just noted that U(R) is a submonoid of ¢ R,
which is infact a group. If U(R) = R0}, Then R, is alivision semiring.

3.4 Polynomials on Division semiring

Let (R, +,¢) be a non-commutative division semiring. Let us considesitpe inte-
gral co-efficient polynomials with semiring assignmentaofvs. At first, the notion
of scale multiplication over R is already on hand. FeZky and = R.

Then (K)yr=r+r+r+..+r+r(ktimes). For k =0, it is natural to define (k)r=0

Property 1. ()™ e (b)r" = (ab)r ™" =(b)e(a)™, ¥ a,b,m,neZ,vre R.
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Remark: Note that in general (adr(b)s #(b)se(a)r when ¢£ s, since the multiplica-
tion in R is non-commutative. Now, Let us proceed to defindtjmesintegral coeffi-
cient semiring polynomials.

Suppose thaf (x) = ag + a;x+ apX® + ...... +ax" € Z.g[X is given positive in-
tegral coefficient polynomial. We can assign this polyndrbia using an element
rin R and finally , we obtaif(r) = ap + ayr +ar? +...... +apr" € R Similarly
h(r) = bo + bar +bor? +...... +bnr™ € Rfor some > m. Then we have the fol-
lowing.

Theorem1:f(r).h(r) = h(r).f(r) for f(r), h(r) € R.

Remark: If r and s are two different variables in R,then #fn)s)£h(s)f(r) in gen-
eral.

3.5 Further cryptographic assumptions on Non- commutative divsion
semirings

Let (R, +# ) be a non-commutative division semiring. For amRa we define the set

P.CR by Paé{ f(a)/f(x) € Z-o[X]} Then, let us consider the new versions of GSD and
CDH problems over (R) with respect to its subs€;, and name them as polynomial
symmetrical decomposition (PSD) problem and polynomidi®i Hellman (PDH)
problem - respectively:

- Polynomial Symmetrical Decomposition(PSD) problem oveNon- commuta-
tive division semiring R: Given (a, x, yE R® and m, ngZ, find ze P, such that y =
Z"xz"

-Polynomial Diffie - Hellman (PDH) problem over Non-commutaive division
semiring R: Compute®? (or x2%) for a given xx® andx®, where x€ R andz, z

€ P, . Accordingly, the PSD (PDH) Cryptographic assumption sags PSD (PDH)
problem over (Rs ) is intractable, i.e. there does not exist probabilistitypomial
time algorithm which can solve PSD (PDH) problem over ¢)R,

4 PROPOSED SIGNATURE SCHEME

Signature Scheme from Non-commutative Division SemiringsThis Digital Sig-
nature scheme contains the following main steps.

Initial setup: suppose that (S, ) is the non commutative division semiring and is
the underlying work fundamental infrastructure in whichCP&d conjugacy prob-
lem are intractable on the non-commutative groups()SChoose two small integers

m, neZ. Let H: S— S be a cryptographic hash function which maps S to the message
space S. Choose mAQcZ , Then the public parameters of the system would be the
tuple< Smn,SH >

Remark: In this case, we must choose message space is also S.

Key Generation: Alice wants to sign and send a message M to Bob for verification
First Alice selects two random elements ps§ and a polynomial (& Z-o[x] ran-
domly such that f(p}£0)e S and then she takes f(p) as her private key, computes
g = f(p)Mgf(p)" and publishes this as her public key. Let k be the product of tw
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large secure primes a, b. Its security is based on the diffiofifactoring k, such that
l<e< ®Kk)=(a—1).(b—1) and gcd(e@(Kk) ) =1. Since (a-1)(b-1) is even then
‘e’ is always odd.

So we can compute second private key 'd’ with<le < @ (k)=(a-1)(b-1) and de
= 1(mod®(k)). Then we calculate second public key by discrete logarigtemg® .
So that the private and public key pairs are ( f(p), d ) and ( g,)y

Signature Generation : Alice performs the following simultaneously by taking a
message M from message space. 1. Alice selects randomlyeaupatlynomial h(x§
Z-o[X] such that h(p¥ S Then ,She defines h(p) as salt and

computes u = h(p)"g h(p) " and

r=f(p)™.H(M+ du).f(p)",

a=f(p)h(p),

s =f(p) "{(H(M+du))~*.q} f(p)",

v=amu.a" Then (v, r, s) is the signature of Alice on the message M andssin
to the bob for acceptance and it needs verification.

Verification: On receiving the signature (v, r, s ) from Alice Bob will do tfodiow-
ing. For this, he computesz=rsandw%y

Bob accepts Alice’s signature iffgv = wz~! Otherwise, he rejects the signature.

5 CONFIRMATION THEOREM
5.1 Completeness

Let(p, q,d, Y, e) be the public parameters for p, q,9,3; Given a signature (v, r,
s), if Alice follows signature verification algorithm, th&@wob always accepts (v, r, )
as a valid signature.

Proof : In verification , the parameters are v, r, s, z and w.
glv=wzlovz=gw

now LHS =v.z = v.r.s a™.u.a"}.r.s on simplification ,

we obtain vz ={ f(p)™af (p)"} .{ f(p)™qf (p)"}

= {f(p)™af (p)"}.{f(p)"af (p)"}*

=g. (¢f)¢ = gw, which is RHS. as the reason=d( mod ®(k) )

5.2 Security Analysis:

Assume that the active eavesdroppgvé’ can obtain , remove , forge and retransmit
any message, Alice sends to Bob. Any forgered data d, we eértmtds . We study

the security of the signature scheme for three main attda&s forgering on valid
signature and signature repudiation on valid data, exisidorgering.

(a). Data forgering: Suppose Eve replaces the original message M, with forgered
oneM;. Then Bob receives the signature (ugsp,v;) . Using forgered datil; or
H(Mgs), verifying the equation u.vi =s Lwisimpossible, becausé; orH (Mg¢) is
completely involved in the signature generation, but nahaverification algorithm.
Hence ul.v; = s L., is true only for the original message. Data forgery without
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extracting signature is not possible. Another attempt igytdo find My , for valid
H(M). But this is impossible, because we assumed that hasttiéun H is crypto-
graphically secure. So the invalid data can’t be signed withlid signature.

(b). Signature Repudiation: Assume Alice intends to refuse recognition of his sig-
nature on some valid data. Then it follows that valid sigratuu, s,a,f3,v1) can
be forged by Eve and she can sign the message M , with the é&argegnature
(us,ss, ds, Bs,vit) instead. The verification procedure as follows

Vo=a; .y 1B

=[h(p)™r f(p)"¢[f(p)~"a . f(p) ™|[f(p)™H(M).h(p)"]s

Since[f(p)"s.[f(P)"] #1,[f(p)"™.[f(P)™¢ # I, where | is the identity element in
the multiplicative structure of the division semiring.

Consequenthju=t.vi]¢ # [s71.vp]¢. So this signature scheme ensures that the non-
repudiation property.

(c). Existential Forgery: Suppose Eve is trying to sign a forgered messilge
Then she must forge the private key by replacing with so¢fie)]: . Immediately,
she faces a difficult with the public key, as we believe thaDR$Sintractable on
non-commutative division semiring. Also note that all th@istures in this signature
scheme are constructed on non-commutative division segnand based on PSD.
Exact identification these structures are almost intrdetab long as PSD is so hard
on this underlying work structure. Consequently constomchew valid signatures,
without proper knowledge of private key are impossible. 8e i not able to calcu-
late forgered signatures.

5.3 Soundness

The key idea is that choosing a polynomial f(x) randomlyhvsiemiring assignment
and for any pc S, such that f(p)#£ 0)e (S,+s# ). A cheating prover Phas no way
to identify the polynomial f(x¥Z-o[x] such that f(p4:0)<(S, +,e), even if he has
infinite computational power. Let n be the number of elemehs, P best strategy
is to guess the value of p, and there are n choices for p. Heenen, with infinite
computing power, the cheating provet Rith a negligible probability to trace the
exact private key f(p) S, so as to provide a valid responsafficnvalid signature.
Hence this signature scheme is sound.

6 CONCLUSIONS

In this paper, we presented a new signature scheme basedenagson-commutative
division semiring. The key idea behind our scheme lies thattake polynomials
over the given non-commutative algebraic system as therlyitg work structure
for constructing signature scheme. The security of the gge@ scheme is based on
the intractability of Polynomial Symmetrical DecompoaitiProblem over the given
non-commutative division semirings.
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