Asynchronous MPC with a Strict Honest Majority
Using Non-equivocation

Michael Backes' Fabian Bendun'! Ashish Choudhury? Aniket Kate?

!Center for IT-Security, Privacy and Accountability (CISPA), Saarland University, Germany
2 International Institute of Information Technology—Bangalore, India
3MMCI, Saarland University, Germany
{backes, bendun}@cs.uni-saarland.de, partho31l@gmail.com,

aniket@mmci.uni-saarland.de

Abstract

Multiparty computation (MPC) among n parties can tolerate up to ¢ < m/2 active corruptions in a
synchronous communication setting; however, in an asynchronous communication setting, the resiliency
bound decreases to only ¢ < n/3 active corruptions. We improve the resiliency bound for asynchronous
MPC (AMPC) to match synchronous MPC using non-equivocation.

Non-equivocation is a message authentication mechanism to restrict a corrupted sender from mak-
ing conflicting statements to different (honest) parties. It can be implemented using an increment-only
counter and a digital signature oracle, realizable with trusted hardware modules readily available in com-
modity computers and smartphone devices. A non-equivocation mechanism can also be transferable and
allow a receiver to verifiably transfer the authenticated statement to other parties. In this work, using
transferable non-equivocation, we present an AMPC protocol tolerating ¢ < n/2 faults. From a practical
point of view, our AMPC protocol requires fewer setup assumptions than the previous AMPC protocol
with ¢ < n/2 by Beerliova-Trubiniové, Hirt and Nielsen [PODC 2010]: unlike their AMPC protocol,
it does not require any synchronous broadcast round at the beginning of the protocol and avoids the
threshold homomorphic encryption setup assumption. Moreover, our AMPC protocol is also efficient
and provides a gain of ©(n) in the communication complexity per multiplication gate, over the AMPC
protocol of Beerliova-Trubiniov4 et al. In the process, using non-equivocation, we also define the first
asynchronous verifiable secret sharing (AVSS) scheme with ¢ < n/2, which is of independent interest to
threshold cryptography.

1 Introduction

Multi-party computation (MPC) is an important primitives in distributed systems. Informally, in a system
of n mutually distrusting parties, an MPC protocol allows the parties to “securely” evaluate any agreed-on
function f of their private inputs, in the presence of a centralized active adversary .4, controlling at most
any t out of the n parties. In the synchronous communication model, where the message transfer delays
are bounded by a known constant, the MPC problem has been studied extensively (e.g., [Yao82,[GMW&7,
BOGWSS,|CCD88, RBO89,|CDNO1,BTHO06, BTHO8, BSFO12]). In practice, there is growing interest in
generalizing MPC to an asynchronous communication model [BOCG93|,|Can96, | CKAS02] that does not
place any bound on the communication delays. The weaker restrictions on the adversary in the asynchronous
model not only worsen the required resiliency conditions and communication complexities, but also make
designing protocols a more challenging task; intuitively this is because in a completely asynchronous setting,
it is not possible to distinguish between a slow (but honest) sender and a crashed sender. Due to this, at any



“stage” of an asynchronous protocol, no party can afford to wait to hear from all the parties and so the
communication from ¢ (potentially honest) parties may be ignored [Can96]. Due to their complexity, only
a few asynchronous MPC (AMPC) protocols are available [BOCG93, BOKR94,SRO0, HNPOS5, [HNPOS|,
BTHO07,PCR09,CHP13]].

In this work, we focus on an asynchronous model with a computationally bounded adversary A, where
the parties are connected by pairwise authenticated links. In this setting, AMPC protocols are possible if
and only if ¢ < n/3 [HNPO5, HNPO8]. This is in contrast to the synchronous world, where we can tolerate
upto ¢t < n/2 corruptions [HNO6]. Interested in bridging this gap between the resilience of synchronous and
asynchronous MPC protocols, Beerliova-Trubiniova, Hirt and Nielsen [BTHN10] observed that it is possi-
ble to design an AMPC protocol tolerating ¢ < m/2 corruptions in a “partial” synchronous network. More
specifically, assuming one synchronous broadcast round at the beginning of the protocol, where each party
can synchronously broadcast to every other party, they designed an AMPC protocol tolerating t < n/2
corruptions. Due to the availability of the synchronous broadcast round, their protocol could also ensure
“input provision”, i.e. the inputs of all the (honest) parties are considered for the computation, which other-
wise is impossible to achieve in an asynchronous protocol [[Can96]]. Nevertheless, their requirement of one
synchronous broadcast round per MPC instance may not always be realizable: deterministic broadcast pro-
tocols [DS83]] require ©(¢) rounds of communication over the pairwise channels or randomized broadcast
protocols [Tou84, FM85|| require O(1) (with a large constant) expected rounds of communication. It was
left as an open problem in [BTHN10] to see whether one can design an AMPC protocol with ¢ < n/2 under
other simplified assumptions.

In distributed computing research, a similar problem with asynchronous protocols has recently been ad-
dressed by introducing a small trusted hardware assumption [[CMSKO7,LDLMO9,CVL10,/[CJKR12,JMS12,
KBC™12|]. In particular, it was shown that, the resilience of asynchronous distributed computing tasks such
as reliable broadcast, Byzantine agreement, and state machine replication (SMR) can be improved using a
small trusted hardware module at each party. The hardware module utilized is just a trusted, increment-only
local counter and a signature oracle, which can be realized with pervasively available trusted hardware-
enabled devices. Using such trusted hardware with each party, one can design asynchronous reliable broad-
cast tolerating up to ¢ < n active faults [CJKR12,|CVL10], and asynchronous Byzantine agreement (ABA)
and SMR protocols tolerating up to ¢ < n/2 [CMSK07, LDLMO09, KBC™12] active faults, all of which
otherwise require ¢t < n/3 [Tou84].

At a conceptual level, such a trusted module makes it impossible for a corrupted party to perform equiv-
ocation, which essentially means making conflicting statements to different (honest) parties. The use of
signatures (or transferable authentication) complements non-equivocation (i.e., making equivocation impos-
sible) by making it transferable as required in the asynchronous environment with unknown delays. Clement
et al. [CJKR12] generalized the results [CMSKO7,/LDLMO09/CVL10] and proved that non-equivocation with
signatures (i.e., transferable non-equivocation) allows treating active (or Byzantine) faults as crash failure
for many distributed computing primitives. In particular, they present a generic transformation that enables
any crash-fault tolerant distributed protocol to tolerate the same number of Byzantine faults using trans-
ferable non-equivocation. Nevertheless, their generic transformation considers only the basic distributed
computing requirements of safety and liveness. It does not apply to cryptographic tasks such as AMPC
where confidentiality (or privacy) of inputs is also required. This presents an interesting challenge to assess
the utility of transferable non-equivocation for the secure distributed computing task of AMPC.

1.1 Contribution and Comparison

We study the power of transferable non-equivocation in the context of AMPC and demonstrate how to
improve the resilience of AMPC fromt < n/3tot < n/2, without any synchrony assumption. In particular,
we present a general MPC protocol in a completely asynchronous communication model with n > 2¢ 4 1.



Our protocol, called NeqAMPC , improves upon the previous AMPC protocol [BTHN10|] with n > 2¢ 4 1
in the following ways:

(a) Simplified assumptions. The NeqAMPC protocol needs a transferable non-equivocation mechanism,
but unlike [BTHN10] neither makes a synchronous broadcast round assumption nor requires a threshold
homomorphic encryption setup. Given the feasibility of realizing transferable non-equivocation over preve-
lent computing devices, we argue that transferable non-equivocation is a more practical assumption than the
synchronous broadcast round assumption.

(b) Efficiency. For a security parameter x, our AMPC protocol requires an amortized communication
complexity of O(n?k) bits per multiplication gate, which improves upon the AMPC protocol of [BTHN10]
by a factor of O(n).

To reduce the setup assumptions for the NeqAMPC protocol, we avoid the traditional threshold additive
homomorphic encryption based circuit evaluation approach as used in [HNPO5,HNPOS,BTHN10]. Instead,
we employ a secret-sharing based circuit evaluation approach [BOGW 88, CCD88,RBO8Y], where privacy
of the computation is maintained via secret sharing. Nevertheless, as detailed in our protocol overview
(Section , secret-sharing based AMPC with n = 2t + 1 and O(n®x) communication complexity (per
multiplication) presents several interesting challenges. As a result the NeqAMPC protocol is significantly
different than those in the literature [HNPOS,(HNPOS, BTHO7,BTHN10].

In the process, we also present the first computationally secure asynchronous verifiable secret sharing
(AVSS) [Can96,CKAS02,BKP11,BDK13|| scheme for n > 2t+ 1 with O(H2K,) communication complexity
(using transferable non-equivocation), which otherwise requires ¢ < n/3 [Can96|]. Our AVSS scheme has
an additional useful feature—it is the first publicly verifiable [Sta96] AVSS scheme, as it allows any third
party to publicly verify the “consistency” of the shares. With its efficiency and public verifiability, our AVSS
scheme may be of independent interest to other cryptographic protocols.

Comparison with Existing Work. The best known computationally secure AMPC protocols are reported
in [HNPO8, BTHN10]. The protocol in [HNPOS] considers a fully asynchronous setting with ¢ < n/3,
whereas [BTHN10] assumes one synchronous broadcast round and can tolerate up to ¢ < n/2 corruptions.
Both the protocols require a threshold additive homomorphic encryption instantiation, and incur an (amor-
tized) communication complexity of O(n?k) and O(n*k) bits per multiplication gate respectivelyﬂ

We do not employ a threshold encryption setup, but rather prefer a more standard public key encryption
setup with the addition of transferable non-equivocation. Our NeqAMPC protocol with ¢ < n/2 performs
circuit evaluation by secret-sharing the inputs and incurs a communication complexity of O(n3k) bits per
multiplication gate. Nevertheless, by modifying our protocol and employing a threshold encryption setup
(coupled with transferable non-equivocation), we can tolerate ¢ < n/2 faults with communication complex-
ity O(n?k) bits per multiplication gate. However, we prefer the secret-sharing based AMPC, as we aim to
reduce the assumptions relied upon.

We note that unlike [BTHN10], our AMPC protocol could not enforce input provision: the input from
t potentially honest parties may be ignored for computation. As discussed earlier, this is inherent to asyn-
chronous systems and presents a trade-off between our protocol and that of [BTHN10] based on what is more
important: input provision or avoiding the synchrony assumption. Finally, we note that using a transferable
non-equivocation mechanism, one can realize asynchronous reliable broadcast (see Section witht <n
and consequently get rid of the synchronous broadcast round required in [BTHN10|]. Nevertheless, the re-
sultant protocol will still require the threshold homomorphic encryption setup and O(n*x) communication
complexity per multiplication, and it will no longer support input provision.

'Beerliova-Trubiniov4 et al. [BTHN10] focused on designing a protocol with ¢ < n/2, and the communication complexity of
O(n*k) of their protocol (measured by us in[Appendix E)) can possibly be improved.



2 Overview of Our NeqAMPC Protocol

Without loss of generality, we assume n = 2t + 1; thus, ¢ = ©(n). We assume that the function f to be
computed is expressed as an arithmetic circuit over the field Z,,, where p > n is a x bit prime and & is the
security parameter. The circuit consists of two-input addition (linear) and multiplication (non-linear) gates,
apart from random gates. The AMPC protocol consists of two phases: an input phase and a computation
phase. During the input phase, the parties share their inputs, while during the computation phase, the parties
jointly evaluate f on the shared inputs and publicly reconstruct the output. Linear gates can be evaluated
locally if the underlying secret-sharing scheme is linear; thus, we use the polynomial-based (Shamir) secret-
sharing scheme with threshold ¢ [[Sha79]]. We denote a sharing of a value s by [s]. It follows that locally
adding the shares of [x] and [y] provides the shares for [z + y].

Multiplication gates cannot be evaluated locally since multiplying the individual shares results in the
underlying sharing polynomial having degree 2t instead of t. Therefore we evaluate multiplication gates
using the standard Beaver’s circuit-randomization technique [Bea91]. This technique requires three “pre-
processed” secret-shared values, say ([u], [v], [w]), unknown to the adversary A, such that w = u - v.
Given such a shared multiplication triple, and shared inputs of a multiplication gate, say [x] and [y], the
multiplication gate is securely evaluated using the equation [z - y] = (x — ) - (y —v) + [v] - (x —u) +
[u] - (y — v) + [w - v]. In particular, the parties compute the sharings of (x — ) and (y — v), and publicly
reconstruct the same. Once (z —u) and (y — v) are public, the parties can compute their shares of z - y, using
the above equation and employing linearity of the secret sharing. As » and v are random and unknown to
A, the public knowledge of (x — u) and (y — v) does not violate the privacy of z and y.

2.1 Pre-processing Phase

Although our above AMPC protocol idea is the same as the existing information-theoretically secure MPC
and AMPC protocols [DNO7, BTHO7,BTHOS, CHP13|], our major challenge lies in generating the required
shared multiplication triples with n = 2¢ + 1 parties; the existing protocols [DNO7,[BTHO7,BTHO8,CHP13]
employ at least n > 3t parties for this purposeﬂ These triplets are independent of the circuit and the inputs
of the parties, and generated in an additional pre-processing phase. Generating these triplets efficiently is
the important problem we solve in our protocol. In the rest of the section, we give an overview of how
(car + cr) shared random triples are generated, where ¢y and cg are the number of multiplication gates
and random gates in the circuit. As a first step, we describe how a single triple is generated (see Figure|[I]for
a pictorial representation of the protocols involved) and then extend this to cj; + cg triples.

Supervised Triple Generation (Section[6). The idea for generating a random shared multiplication triple
[u], [v], [w] is to compute a random sharing [v] and then combining “several” [u()]s and [u() - v]s to get
[u] and [w]. The triple generation protocol uses two sub-protocols: Sup-Sh and Sup-PreMul-Sh. Protocol
Sup-Sh allows a dealer D to “verifiably” generate the sharing [u] of his value u, while Sup-PreMul-Sh
allows a dealer D to “verifiably” generate a sharing [u] and [u - v], given u and [v]. To generate ([u], [v], [w]),
we use Sup-Sh and Sup-PreMul-Sh in the following way: first, we ask each party P; to act as a dealer
D and invoke an instance of Sup-Sh to share a uniformly random value, say v, The parties then agree
on a common subset (say 7,) of ¢ + 1 dealers whose Sup-Sh instances will be eventually terminated by all
the parties. We set v = ) PeT, v(®). The shared value v will be random and unknown to A, as 7, has
at least one honest party. Next, each party P; is asked to act as a D and invoke a Sup-PreMul-Sh instance
to share a uniformly random value u@ as well as u() - v. The parties then agree on a common subset of

2Shared multiplication triples with n = 2t + 1 have been generated in the synchronous setting [BTHO6, BSFO12]; however,
their adaptability to the asynchronous setting is unclear.
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Figure 1: Multiplication Triple Generation under Supervision of a P g

t + 1 dealers, say T,, whose Sup-PreMul-Sh instances will be eventually terminated by all the parties. For
U= pcT. u® and w = Y PeT, u(® - v, the triple (u, v, w) is a random multiplication triple.

There is, however, an important subtlety: As a precondition, the Sup-PreMul-Sh protocol expects its
dealer D to also have encryptions of all n shares of [v], encrypted under the individual keys of the respec-
tive share-holders; here, the encryption scheme is additively homomorphic (and not threshold additively
homomorphic). For any sharing, we call a party having such n encrypted shares to be privileged. Due to
asynchronicity, the Sup-Sh protocol cannot guarantee that all the n — ¢ honest parties are privileged with
respect to every [v()] sharing of P; € 7,. We solve the problem by ensuring in Sup-Sh that there exists
a designated (possibly corrupted) supervisor Py, (called king), who is a privileged party with respect to
each [v)]. An honest Piing then computes all the n encrypted shares of [v] using the homomorphic prop-
erties of encryption, and reliably broadcasts those encrypted shares. Using non-equivocation, the required
asynchronous reliable broadcast is possible for n > t (Section @) Once Fyjng (correctly) broadcasts the n
encrypted shares of v, then each P; can invoke its Sup-PreMul-Sh instance.

The resultant wrapper protocols are called Sup-Second and Sup-FirAndThd, where Sup-Second gen-
erates [v] under the supervision of Piing and Sup-FirAndThd generates [u] and [w = u - v] under the
supervision of Fyjng. A combination of Sup-Second and Sup-FirAndThd leads to the protocol SupTripGen
under the supervision of a designated Piing, Which outputs a uniformly random and private multiplication

triple ([u], [v], [w]).

Preprocessing Phase Protocol. Protocol SupTripGen may not terminate for a corrupted Piing. Therefore,
we ask each party P; to act as a king and generate shared random multiplication triples under its supervision
by invoking an instance of SupTripGen. As the instances of honest kings will eventually terminate, we
distribute the load of generating cjs + cr shared random multiplication triples among n parties. Each party
P; is asked to act as a king and generate % shared multiplication triples in its Sup TripGen instance. The
parties then agree on a common subset Tying of ¢ + 1 kings whose SupTripGen instances will be eventually
completed by everyone and the |7ying| - CMITCR — ¢y 4 cp shared triples obtained in these instances are

t+1
considered as the final output.

2.2 Important Sub-protocols for the Preprocessing Phase

We now discuss the realization of the main sub-protocols Sup-Sh and Sup-PreMul-Sh for the preprocessing
phase.



Protocol Sup-Sh (Section[5.1). Our Sup-Sh protocol is almost equivalent to the AVSS primitive [CKAS02]
Can96, BKP11]: it allows a dealer D to “verifiably” share a secret s, thus generating [s], and ensures that
at least one honest party is privileged to obtain all the n shares encrypted for the respective share holders.
The existing computational AVSS protocols (e.g., [CKAS02, BKP11])) are designed with n = 3¢ + 1 and
are based on sharing a secret using a bivariate polynomial of degree ¢ in each variable and (homomorphic)
commitments. In this paradigm, it is ensured that D has distributed “consistent” shares ton — ¢t = 2t + 1
parties such that (at least) ¢t + 1 honest parties among them can “enable” the remaining parties to get their
shares. Unfortunately, this approach cannot be used with n = 2¢ 4 1, as here we can only ensure that D has
distributed consistent shares to n — ¢t = ¢ + 1 parties. In the worst case, there will be only one honest party
in this set, who does not have sufficient information to help the other honest parties to complete a sharing.

We solve this problem by introducing encryptions of the share and by employing univariate polyno-
mials instead of bivariate polynomials. Here, D provides a vector of n encrypted shares as well as homo-
morphic commitments of those shares to each party. The non-equivocation mechanism is used to ensure that
a corrupted D does not distribute different sets of encrypted and committed shares to the different parties.
Once n —t =t + 1 parties confirm that they have received “consistent” n encrypted and committed shares,
there must exist at least one honest privileged party with all n encrypted shares, who can transfer the indi-
vidual encrypted shares to the individual parties. Transferability of non-equivocation ensures that corrupted
privileged parties do not transfer incorrect encryptions.

Protocol Sup-PreMul-Sh (Section . The protocol takes as input an existing sharing [v] of a value v
unknown to everybody including A, such that all the parties are privileged, i.e., all the parties hold encryp-
tions of all shares. The protocol then allows a dealer D to verifiably share its value u as well as u - v (i.e. [u]
and [u - v]). The protocol ensures that u - v remains secure in general and u is secure for an honest D. The
idea behind the protocol is that knowing the encrypted and committed shares of v and employing the homo-
morphic properties of encryptions and commitments, D can compute the encrypted and committed shares
corresponding to w - v for his choice of u, even without knowing v. The dealer can then (non-equivocally)
distribute the encrypted and committed shares to the parties. Once it is confirmed that ¢ 4+ 1 parties have
received all the n encrypted and committed shares of w - v, it is ensured that there exists a honest privileged
party, who can relay the individual encrypted shares of w - v to the respective parties.

We take a more bottom-up approach in the rest of the paper. We describe our model, and define non-
equivocation and other primitives in Section We present our AVSS protocol in Section We start
our AMPC construction with subprotocols Sup-Sh and Sup-PreMul-Sh in Section [5| We then present our
supervised multiplication triple generation in Section [f|and finally describe the complete AMPC protocol in
Section[7}

3 Preliminaries

In this section, we discuss our adversary and communication model, define the AMPC protocol and the
non-equivocation mechanism, and describe the required primitives.

3.1 Model

We consider a set P = {Py,..., P,} of n parties connected by pairwise authenticated channels, where
n = 2t + 1. These communication channels are asynchronous with arbitrary but finite delay (i.e. the

3We argue that the problem is inherently not solvable for n = 2t + 1 with only commitments usually employed in computation-
ally secure VSS protocols [CKASO2,BKP11]], and that we have to employ encryptions which allow a single honest party to procure
encrypted shares of all the parties. Interestingly, the problem persists even when we assume the adversary A is only passive (but
crashable), not Byzantine.



messages reach their destinations eventually). A centralized static adversary A can actively corrupt any ¢
out of the n parties and force them to deviate in any arbitrary manner. A party not under the control of
A is called honest. The adversary A is modeled as a probabilistic polynomial time (PPT) algorithm, with
respect to a security parameter . During a protocol execution, the message delivery order is decided by
a scheduler controlled by A. Nevertheless, the scheduler cannot modify the messages exchanged between
honest parties. A protocol execution is considered as a sequence of atomic steps, where a single party
is active in each such step. A party is activated upon receiving a message, after which it performs some
computation and possibly outputs messages on its outgoing links. The scheduler controls the order of these
atomic steps. At the beginning of the execution, each party will be in a special start state. A party is said
to terminate/complete the execution if it reaches a halt state. A protocol execution is said to be complete
when all honest parties complete it. We assume that every message sent by a party during an execution has a
publicly known unique identifier (key) associated with it. By [y, z] we denote the set {y,y +1,...,z} C N.

3.2 Definitions

Computationally Secure AVSS. Informally an AVSS scheme consists of two phases, a sharing phase,
where a special party called dealer shares a secret and a reconstruction phase, where the parties reveal their
shares to reconstruct the secret.

More formally, let (Sh, Rec) be a pair of protocols for parties in P, where a dealer D € P has a pri-
vate input s € Z, for Sh. Then (Sh, Rec) is an computationally secure AVSS scheme, if the following
requirements hold for every possible adversary A, except with a negligible probability in &:

- TERMINATION: (a) If D is honest and all the honest parties participate in the protocol Sh, then each
honest party eventually terminates the protocol Sh; (b) If some honest party terminates Sh, then every honest
party eventually terminates Sh; (¢) If all the honest parties invoked Rec, then each honest party eventually
terminates Rec.

- CORRECTNESS: If some honest party terminates Sh, then there exists a fixed value s € Z,, such that
the following requirements hold except with a negligible probability in x: (a) If D is honest, then's = s, and
all the honest parties output s upon terminating Rec; (b) Even if D is corrupted, all the honest parties output
S upon terminating Rec.

- PRIVACY: If D is honest during the protocol Sh and no honest party has started to execute the protocol
Rec, then the adversary .4 has no information about the secret s.

Computationally Secure AMPC. We briefly review computationally secure AMPC here, and refer the
readers to [HNPOS, HNPO3] for a formal definition. Informally, in an AMPC protocol lIy1pc, every party
first provides its input in Zj, to the computation (in a secure fashion). Due to the asynchronous nature of
communication, the parties cannot wait to consider the inputs of all n parties, and instead they agree on
inputs from a set CORE of n — t parties. The parties then compute an “approximation” of f on the inputs
from the CORE set and assuming a default value (say 0) as the remaining ¢ inputs. For every possible
A and for all possible inputs and random coins of the (honest) parties, we expect the following properties
for a Iypc instance, except with a negligible probability (in x):

o Termination: all the honest parties eventually terminate 1y pc;
e Correctness: the honest parties obtain the correct output of the function f;

e Privacy: the adversary A obtains no additional information about the inputs of the honest parties other
than what may be inferred from the inputs and outputs of the corrupted parties.



The Neq mechanism
Neq is parameterized by a polynomial p(-), and an implicit security parameter .
SETUP: Upon receiving a (Setup) message from party P; € P, do:
1. If a list L; exists, return L.
2. Otherwise, create an empty list L; of key-message-signature triplets of type {0, 1}* x {0,1}* x {0,1}P(),
Send a message (Registered, P;) to all parties in P.
SIGNING: Upon receiving an (Neg-Sign, P;, ¢, m) message from party P;, do:
1. If the list L; does not exist or (¢, _, ) € L;, return L.
2. Otherwise, choose an arbitrary (signature) tag Uf’m € {0,1}7(®) update L; < L; U (£, m, o

L,m

&™) and return
J’L .
VERIFICATION: Upon receiving an (Neq-Verify, P;, ¢, m, o) message from party P; € P, do:

1. If the list L; does not exist or (¢, m, o) ¢ L;, then return 0, else return 1.

Figure 2: A simplified transferable non-equivocation mechanism Neq

The above properties are formalized to the standard simulation-based definition following the real-world/ideal-
world paradigm [[Can96, BOCG93,[HNPOS,HNPOS].

(Transferable) Non-equivocation. Non-equivocation restricts a corrupted party from making conflicting
statements to different parties, and it has been used in several asynchronous distributed systems [CMSKO07,
LDLMO09, CVL10, CJKR12,[KBC"12] to improve their resiliency. In particular, these systems employ
transferable non-equivocation, which (similar to digital signatures) allows a party to verifiably transfer a
non-equivocation tag (or signature) provided by a sender to other parties. Clement et al. [CJKR12] justify
the necessity of transferability of non-equivocation by proving that non-equivocation or signature alone are
powerless in asynchronous distributed systems. Nevertheless, (transferable) non-equivocation has not been
formalized so far, and we present a simplified, idealized definition for transferable non-equivocation.

In we define a simplified mechanism (Neq) which is intended to model the event for a transfer-
able non-equivocation instantiation: (1) during the setup phase, every party P; gets associated with a unique
non-equivocation list L; characterized by its index ¢, and all parties are informed about this association.
(2) The list owner party can create a non-equivocation signature for any key-message pair except that she
cannot equivocate and obtain a signature for the same key twice. (3) Given a key-message-signature triplet
associated with a sender, any party successfully verifies only correctly generated signatures except with a
negligible probability.

We survey existing transferable non-equivocation instantiations and analyze their relations to Neq in
Appendix [A] In most instantiations, the transferable non-equivocation is implemented using an increment-
only counter for keys and signatures with public key infrastructure (PKI) [CMSKO07,[LDLMO09, CVLI10,
CJKR12] or message authentication codes (MACs) generated with a replicated secret key [KBCT12]. In
Neq, we generalize these using the list L; of key-message-signature triplets associated with party P; indexed
by party-defined ordered keys £. Similar to signatures, only P; can use Neq-Sign to add triplets (one per each
key) to L;. Similar to PKI, anybody can Neq-Verify if a triplet (¢, m, o) belongs to L; of P;, and verifiably
transfer authentication to others. Note that the increment-only counter provides a space-efficient way to
implement a list L; as only the counter value has to be maintained and not the whole list.

For ease of exposition, we use a phrase P; sends m,, to P; and P; receives m, from P; to suggest that

P; sends a triplet (¢, m, af’m>

for a key ¢ to P; and P; delivers it only after applying Neq-Verify to check
if af’m is obtained by P; using Neq-Sign on ¢ and m. Similarly, we use a phrase P; forwards m, to P}, to
suggest that P; received (in the above sense) message m,, (of P;) from some party, and then forwards it to
P, who should also (non-equivocally) receive it. Note that we avoid the keys £ in the above phrases as they

can be pre-assigned to protocol instance-step combinations in an unambiguous manner.



3.3 Employed Primitives

We now discuss the existing primitives used in our protocols.

Homomorphic Encryptions and Commitments. We assume an IND-CPA secure linear homomorphic
encryption scheme (Enc, Dec). Every party P, has its own key-pair (pk;, sk;), for which the public key
pk; is known to all parties. Given two ciphertexts c,,, = Encpy, (m1,-) and ¢, = Encpy (ma, ), we
require that there exist operations B and [ on ciphertexts such that ¢;,, 8 ¢;, = Encpy, (m1 + ma, -) and
aBlcy, = Encpy, (a-m;, -) holds. We also assume an unconditional hiding and computational binding linear
homomorphic commitment scheme (Commit, Open) with the analogous homomorphic operations; these are
denoted by & and ®. For the sake of readability, we sometimes leave the randomness of encryptions and
commitments implicit.

For instantiating encryptions and commitments over messages in Zj,, we use the encoding-free additive
El-Gamal encryption scheme [CMPP06] and Pedersen commitment scheme [Ped91]] respectively. In partic-
ular, we only require that the scheme is CPA secure (Theorem 3 in [CMPPO06]) and it is not necessary that
applying homomorphism twice to the same encrypted values leads to different ciphertexts.

Zero-knowledge (ZK) Proofs. We assume the presence of the following two-party ZK protocols.

1) Zero knowledge proof of equality of encrypted and committed values (PoE). There exists a prover
P € P who computes and publishes a commitment Com,, = Commit(m,r), and ciphertexts c,, =
Encpk, (m, -) and ¢, = Encpy (7, -). Then using PoE, the prover P can prove to any verifier V € P (knowing
Com,,,, ¢, ¢, and pk;) that the message encrypted in c,, is also committed in Com,,,, under the randomness
encrypted in c,; i.e.,

m,r,r1,7re : Com,, = Commit(m,7) A ¢y = Encpy,(m,71) A ¢ = Encpy, (1, 72).

2) Zero knowledge proof of correct pre-multiplication (PoCM). Given publicly known commitments
Com,, = Commit(v;, ;) and corresponding ciphertexts c,; = Encpk (vj, ), ¢r; = Encpy (1, ) for j €
[1,n], there exists a prover P € P who selects a random v € Z,, and t-degree random polynomials m(-)
and () in Zp[z] with m(0) = 7 (0) = 0. Let m; = m(j) and m; = m(j) for j € [0,n]. In addition,
P publishes Com,, = Commit(u, -) and Com,,, = Commit(m;,172;). Using the homomorphic property of
commitments and encryptions, P computes and publishes the commitment Com,,.,; 1, = Commit(u - v; +
mj,u - rj + m;) and encryptions Cyov;+m; and Cuorj+1n; of u-v; +mj and u - r; + 7 respectively. Then
using PoCM, P can prove to any verifier V € P that all values Comy,.; ., Were generated by multiplying
Com,; with the same u followed by re-randomization using the same m(-) and 772(-) polynomials, and that
all €y.v;+m; and Cy.r;+m; values were generated by multiplying c,; and c,; respectively with the same w,
followed by re-randomization using the same m(-) and m(+) respectively. i.e.,

EIu,p,m(-),ﬁ@('),{kj,/%j}je[l’n} : Comy = Commit(u, p) A deg(m(-)) <t A deg(m(:)) <t A
m(0) =0 =1m(0) A Comy.y;1m; = u® Com,, & Commit(m;, ;) A

~

Covy+m; = U E Cp; BENCok (M, kj) A Cupjm; = u B ey B Encpk (1725, Kj).

Both the ZK protocols are based on standard X:-protocols [BG92|] and have communication complexity
O(k) bits and O(nk) bits respectively. See Appendix [B|for their instantiations based on the ZK protocols
in [CS97].

Certificates of Claims. Hirt, Nielsen, and Przydatek [HNPOS]| introduced this concept to allow a prover
P € P to publicly prove correctness of a certain claim (like real-life certificates), without revealing any
additional information. Here, to certify validity of a statement m, the prover P proves m to every verifier



P; € ‘P using an appropriate zero-knowledge (ZK) protocol. A verifier F;, upon successful verification,
sends a signature to P on an “appropriate” message (known publicly), corresponding to m. P cannot wait
for all n signatures in the asynchronous environment; thus, upon receiving (n — t) = ¢t + 1 signatures, the
prover P concatenates them to construct a certificate « for the claim m. These ¢ + 1 signatures ensure that at
least one honest party has verified the claim, and that m is true with an overwhelming probability. Assuming
each signature to be of size O(k) bits, the size of a will be O(nk) bits; this can be reduced to O(k) bits
using a threshold signature scheme with threshold ¢ [BTHN10]. Here, the verifiers send signature shares
and the prover P, instead of concatenating, combines (n — t) shares to a single signatureﬂ

Let zkp be the ZK protocol corresponding to the claim m. We denote the task of constructing a certificate
a for m as a = certify,,(m). Similarly we say that “P; verifies the certificate a for the claim m” to mean
that that P; verifies that « is a valid (threshold) signature on the appropriate message corresponding to m.
The communication cost of constructing « is the same as that of executing n instances of the corresponding
ZK protocol zkp.

Reliable Broadcast (r-broadcast). This asynchronous primitive [Bra84,Tou84, HT94| allows a sender S to
send a message m identically to all the parties: For a given instance 73, of r-broadcast, when S is honest, all
honest parties eventually terminate with output (75, m); if S is corrupted and some honest party terminates
with (7, m'), then every honest party also eventually terminates with (73, m’); for any instance, at most one
message can be delivered by an honest party.

The resiliency bound for r-broadcast is n > 3t + 1 [Bra84,Tou84,HT94]]; however, assuming transfer-
able non-equivocation, an r-broadcast protocol with n > ¢ + 1 and O(n?(¢ + k)) bits of communication
for broadcasting an /-bit message is available [CJKRI12,|CVL10]. The high-level idea of the protocol is
as follows: S first (non-equivocally) sends m to all the parties; this prevents a corrupted S from send-
ing different messages to different honest parties. However, a corrupted S can avoid sending m, to some
honest parties. Thus, to ensure that all the honest parties eventually receive m,, whenever an honest party
(non-equivocally) receives some message M., before delivering the message, it non-equivocally forwards
it to every other party. This ensures that whenever an honest party receives m, then it will be eventually
received by every other honest party.

In the rest of the paper, the term “P; broadcasts m” means that P; as a sender invokes an r-broadcast
instance for m. Similarly, “P; receives m from the broadcast of P;” means that P; terminates the r-broadcast
instance 73, invoked by P; with the output (75, m).

Agreement on a Common Subset (ACS). This primitive allows the parties to agree on a common sub-
set of (n — t) parties, who correctly invoked some protocol, say II, satisfying the following requirements:
(a) If an honest party invokes an instance of II then all the (honest) parties eventually terminate the in-
stance; (b) If some honest party terminates an instance of II invoked by a corrupted party, then every hon-
est party eventually does the same. ACS can be realized by executing n instances (one for each party)
of an asynchronous Byzantine agreement (ABA) protocol to decide if it should be included in the com-
mon subset. Assuming transferable non-equivocation, ABA, and hence ACS, can be implemented with
n > 2t + 1 [CIKR12,CVL10,(KBC™12]. An efficient ACS protocol with expected communication com-
plexity of O(n3k) bits can be obtained by using the Neq mechanism in the multi-valued ABA of [CKPSO1].

3.4 Secret Sharing Notations

Given a secret s € Zy, let ¢(-),(-) € Z,[x] be, respectively, a degree t sharing polynomial with ¢(0) = s
and a t-degree randomness polynomial required for commitments; here, p is a x-bit prime. For party P;,
s; = ¢(j) and 7; = )(j) are respectively her shares of s and the randomness polynomial. Let cs, =

*Note that the AMPC protocols of [HNPOS,[BTHN10] also assume a threshold signature setup.
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Encpk; (5, ), €, = Encpk, (1, ) and Com,; = Commit(s;, ;) and let Com; = Commit(s, 1(0)). We call
{€s;5¢r; }je(1,n) the encrypted shares and {Coms;, } <1 ) the committed shares of s.
[-]-sharing: A secret s is said to be [-]-shared, if every (honest) party P; € P holds s;, 75, {Coms; }jc1,n]
and Comg. The information held by the (honest) parties corresponding to [-]-sharing of s is denoted
as [s].
Privileged party: P; is called a privileged party of [-]-sharing of s if it holds the encrypted shares
{5 ¢} jepin)-
Due to linearity of sharing and commitments, [-]-sharing is also linear: given [a], [b] and a public constant
¢, every party can locally compute its information corresponding to [a + b] and [c - al, as [a + b] = [a] + [D]
and [c - a] = ¢ - [a] resepctively.

4 Our AVSS Protocol

Protocols Sh and Rec presented in Figure [3] constitutes an AVSS scheme with n = 2t + 1. Protocol Sh
allows a dealer D to “verifiably” generate [s] for a secret s € Z,,. It ensures that if the protocol terminates
then there exists a value (say 5) which will be [-]-shared among the parties; if D is honest then 5 = s, and
A learns no new information on s. The protocol always terminates for an honest D and has communication
complexity O(n?k). Protocol Rec allows the parties to reconstruct s, given that s is [-]-shared.

In the Sh protocol, D polynomial-shares the secret s with threshold ¢ to generate shares {s; } (1, and
computes the commitments Com,, = Commit(s;,r;), where r; is a share of a random ¢-degree random-
ness polynomial ¢(-). It also computes the encryptions ¢,; = Encyk, (s;) and ¢,; = Encyi (r;) of each
share-pair s;, 7, and the commitment Coms = Commit(s,(0)). D then (non-equivocally) sends {cs; } oy,
{er; }op and {Comy;, }4, for all j € [1,n], and {Coms} s, to every party and claims that it has correctly
[-]-shared a secret: the claim involves proving that the plaintexts in cs; and c;, are committed in Com;
and that the values committed in {Comg, }jc[1,, constitute shares of the secret committed in Com with
threshold ¢. Note that although sending the full vector {cs; } o, {Cr; }o, and {Comy; } 5, to each party looks
a bit non-intuitive, it is the crux of our Sh protocol to ensure that every party eventually receives its shares
for [s].

To verify D’s claim, upon (non-equivocally) receiving information from D, every P; verifies if the com-
mitted shares {Com; }jc(1 ) constitute Shamir sharing of the secret committed in Comg with threshold .
For this, the parties use the fact that given the commitments to at least ¢ + 1 distinct points on a ¢ degree
polynomial, it is possible to (homomorphically) compute the commitments of the coefficients of the polyno-
mial [GRRI8,CKASO2]. In particular, party P; takes Com along with { Com; } je[1,g and homomorphically
computes the commitments of the sharing and randomness polynomial. Using these commitments, party F;
then computes the commitments of the remaining n — points and matches them with {Com, } jelt+1,n)- Ad-
ditionally P; engages in n instances of PoE (one per triplet {c;;, c;,, Coms, }) with D. By non-equivocally
sending messages to the parties, it is ensured that the parties who receive the messages from D, receive the
same messages. D then constructs a certificate o7 (for session id 7) to support its claim of correct sharing
and broadcasts it. A party proceeds further only upon receiving a valid certificate. A valid o®'™ ensures that
at least one honest party, say Py, has verified D’s claim; P}, will be an honest privileged party.

A valid certificate from D does not ensure that every (honest) P; will eventually hold its information cor-
responding to [s]: due to asynchrony or possible corrupted behavior of D, ¢ honest parties may not receive
their shares corresponding to [s]. We solve this problem by using two additional “rounds” of communica-
tion, which we call the D-independent phase. Each privileged party non-equivocally forwards only {cs; }op,,
{cr; }op» and {Comy, } 5, to every party P;, who can decrypt cs; and c;; to obtain s;, r;. Existence of at
least one honest privileged party ensures that every P; eventually receives sj,7; and Comg,. Next, every
P; forwards {Comg, }, to all parties. As all ¢ + 1 honest parties would eventually receive their respective
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Protocol Sh(D, 7, s): 7 is the session id

I. D-Dependent Phase:
Share Computation and Certificate Generation—Given the secret s € Z,,, D executes the following
code:

1. Select t-degree polynomials ¢(-), ¥(-) with ¢(0) = s. For j € [1,n], compute share-pairs s; =
¢(4),rj = ¥(j), ciphertexts c;; = Encyk (s5),¢r; = Encpk (1) and committed share Com,; =
Commit(s;, ;). Compute Comg = Commit(s,(0)).

2. Send messages {Cs; }op» 1€, }op and {Comg, }4,, forall j € [1,7n], and {Com,} 4, to each P;. Start
constructing a certificate aP™ = certifypog(claimp ;) claiming that “D has correctly shared a secret
in session 77 This indirectly requires a proof that “3¢p(-), ¢ () : deg(p(-)) <t A deg(y(-)) <
t A cs; = Encpe (6(5),°) A er; = Encp, (¥(4), ) A Com; = Commit(é(j), ¥ (j)) A Comy =
Commit(¢(0),(0))”. For this, run an instance of PoE for each (c;;, ¢;;, Comy;) triplet with every
party P;. Broadcast o7 once it is constructed.

Share Verification and Certification—Every party P; € P including D executes the following code:
1. On receiving {cs, }op. {Cr, }op and {Comy, },,, for all j € [1,n], and {Com,},, from D, perform
the following verifications:
(a) Verify if {Comy, };¢(1,,, and Comy define unique ¢-degree polynomials.
(b) If the above verification is successful, then participate in the PoE instances of D to verify
claimp , and enable D to construct a certificate aP7 for claimp ;.

II. D-Independent Phase and Termination—Every party P; € P including D executes the following
code:
1. Upon receiving the broadcasted certificate a®>™ from D, verify aP'7 for claimp ;. Upon successful
verification, if {Cs; }o» {Cr; }op and {Comy, } 4, forall j € [1, 1] have been received from D,
(a) then compute s; = Decg,(cs;),7i = Decg,(cr,), and Vj € [1,n] forward only
{cs; o, {€r; ton, {Comy; }o, o P,
(b) else wait for {cs, }sp, {Cr, }op, and {Comyg, },,, to be forwarded by some party. Once received,
compute the share-pair s; = Decg, (cs,) and r; = Decg, (¢, ).
2. Forward {Comy, },, to each P;. On receiving ¢t + 1 {Coms;, },,, homomorphically compute
{Comy; } je[1,n), Com; and terminate.

Protocol Rec(D, 7, [s]): T is the session id
Every party P; € P executes the following code:
1. Send the share-pair (s;, ;) to every party P; € P.
2. On receiving the share-pair (s, r;) from party P;, verify whether Comg; L Commit(s;, ;). If the
verification is successful, then include s; in a set 7;, initialized to ().
3. Once |T;| = t + 1, construct a t-degree polynomial ¢(-) by interpolating the points {(j, 5;)}s,e7;-
Output s = ¢(0) and terminate.

Figure 3: AVSS with n = 2t + 1 using Transferable Non-equivocation

{cs; }ops {Cr, Fop» and {Comyg, }, messages at the end of first “round” of the D-independent phase, eventu-
ally every honest party will receive t+ 1 forwarded committed shares. Now using the homomorphic property
of commitments every party can compute the remaining committed shares and Comg, thus possessing all
the necessary information of [s].

Given [s] generated using Sh, protocol Rec is based on the standard reconstruction protocol used in the
existing computationally secure AVSS [BKP11, CKASO02], which allows the parties to robustly reconstruct
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s. In the protocol, each party sends its share-pair to all the parties, which are verified with the corresponding
commitment, available with the parties (as part of [s]). Once t + 1 “correct” share pairs are received, the
sharing polynomial, and hence s, is reconstructed. As there exist at least ¢ 4+ 1 honest parties whose shares
will eventually be communicated among themselves, the Rec protocol eventually terminates. As stated in
Lemmalfd.1] the pair of protocols (Sh, Rec) constitutes an AVSS scheme with n = 2¢+1 and communication
complexity O(n?k) bits.

Lemma 4.1. Protocols (Sh, Rec) constitute a computational secure AVSS scheme tolerating t < n/2 cor-
ruptions, where both Sh and Rec incur communication cost of O(n’k) bits.

This lemma follows immediately from lemma(5.1] comparing the protocols Sup-Sh and Sh.
Notice that the above AVSS scheme is also publicly verifiable [Sta96| as any third party can verify the
consistency of the shares using the valid certificate broadcasted by D.

Commitment to Shares instead of Polynomial Coefficients during Sh: In most existing computational
secure VSS schemes [Ped91,BKP11]], D commits to the polynomial coefficients of sharing and randomness
polynomials during the sharing phase, and the parties homomorphically generates the committed shares from
those. This approach makes VSS simpler as the parties are not required to verify whether the committed
shares lie on degree ¢ polynomial.

If we follow this approach in our Sh protocol, then D has to non-equivocally distribute the commit-
ment to polynomial coefficients of the sharing and randomness polynomials. In that case, however, the
homomorphically generated committed shares will not have the necessary non-equivocation tag as the non-
equivocation mechanism is not required to be homomorphic in nature. As a result, a corrupted privileged
party can forward some incorrect committed shares to the respective parties during the D-independent phase,
and the correctness of the protocol. Although the privileged parties can be asked to non-equivocally forward
the polynomial coefficients during the D-independent phase, and it will result in an additional ©(n) com-
munication overhead.

S Supervised Sharing Protocols

In this section, we present two protocols for generating [-]-sharings with different properties under the su-
pervision of a king Fy;,g. Here, if the protocols terminate, then an honest Pying Will be a privileged party
with respect to the generated sharings.

5.1 Protocol Sup-Sh: Supervised [-]-sharing

In our first supervised sharing protocol Sup-Sh, a dealer D verifiably generates [s] for a secret s under the
supervision of Pying € P. If the protocol terminates then there exists a value (say 5) which will be [-]-shared
among the parties; if D is honest then 5 = s, and A learns no new information on s from the protocol
execution. Moreover, if Pying is honest then it will be a privileged party. The protocol always terminates for
an honest D and Fying and has communication complexity O(n?k).

We obtain protocol Sup-Sh by adding two small verification steps during the D-dependent phase in the
protocol Sh in[Figure 3] Specifically, in the term of properties Sup-Sh is the same as Sh, with the additional
requirement that Pyi,g is a privileged party. To ensure the same, in protocol Sh, during the D-dependent
phase, we ask Py, to broadcast an “acknowledgement” (a special message) after verifying the claim of
D during the D-dependent phase. Additionally, we enforce that every party should this receive acknowl-
edgement from Pyng, before proceeding further. As an honest Fyj,g will broadcast the acknowledgement
only after verifying the claim of D, these additional steps ensure that indeed Fing Will be a privileged party.
To avoid repetition, we avoid giving the complete formal details of Sup-Sh and instead state the following
lemma. The proof can be found in Appendix
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Protocol Sup-PreMul-Sh(D, 7, Pxing, P, [v]): 7 is the session id
Let {c,,,c,;,Com,, = Commit(vj,7;)};ep,n and Com, = Commit(v,-) be information corresponding to [v]
available to all parties;
I. Generating [u]: On having a value u, D invokes an instance Sup-Sh(D, 7, Piing, u) of Sup-Sh to generate [u]
under the supervision of Fjns and every party in P participates in this instance and wait for its termination. Let
Com, = Commit(u,-) be the commitment of u which is computed and communicated during this instance of
Sup-Sh (along with the other information corresponding to [u]).

II. Generating [u - v]—The following code is executed by the respective parties only upon terminating the Sup-Sh
instance of D:
a. D-Dependent Phase
1. Share Computation and Certificate Generation—The following code is executed only by D:

(a) Select random masking polynomials m(-) and m(-) of degree at most ¢t with m(0) = m(0) = 0.
For j € [l,n], compute m; = m(j),m; = m(j),Com,,, = Commit(m;,m;) and Com,, =
Commit(m(0),7(0)).

(b) For j € [1,n], using the homomorphic property of the encryption and commitment scheme, compute the
new encrypted share pair Cy.,; +m; = u [ c,, B Encpkj (M, ), Coerjin; = u B cp; B Encpkj (M, -)
and the new committed share'Cor'nu.v].er]. = u® Com,, @ Comn;j. In addition,'compute the new
commitment Com,,., = u ® Com, ® Com,,.

(c) Send messages {Cu.v;+m, top> {Cu-r;+1m; fops 1COMu; +m; fop and {Comy,; }s, for all j € [1,n]
and {Com,},p, {Comy.,}o, and {Com,,},, to each P;. Start constructing a certificate 07 =
certifypocm(claimp ;) claiming that “D has correctly done the pre-multiplication in session 7. This
claim indirectly requires the following proof:

Elu,p,m(~),m(~),{kj,l%j}je[17n} : Com,, = Commit(u, p) A deg(m(:)) <t A deg(n()) <t
A m(0) =0=m(0) AComy., ym; =u® Com,, & Com,y,,

A\ Cuwj4+m,; = UL Cy; H Encpkj (mj, k‘]) 74\ Curj4in; = UL Cp, H Encpkj (mj7 k’j)

For this, run an instance of PoCM for
({cv;,€r;, COMy, s Couvjtmy s Cuvrjtain s COMu; 1, COMyp }i1,m), Comy,, Comypy )

with every party P;. Broadcast the certificate 3°°7 once it is constructed.

2. Share Verification and Certification—Every P; € P upon receiving
{Cuv;4m, Yoo> {Cur; 41, Yoos 1COMucy, 4m; top  and  {Comy,, }oy,  for all  je[l,n] and
{Comy}op, {Comy.y}op and {Com,,},, from D, participate (as a V) in the instance of PoCM with
D to verify the claim claimp , and enable D to construct the certificate B8P for claimp . Upon successful
verification, broadcast the message (approve, D) if P; = Fying.

b. D-Independent Phase and Termination—Every party P; € P executes the following code:

1. Upon receiving the broadcasted certificate 527 from D and the broadcasted message (approve, D) from
Piing, verify B8P for claimp . Upon successful verification:

(@) If Vj € [1,n],{Cuw;+m; fop> {1Cu-r;+rm; toos 1COMuw, +m; }op, have been received from D, then
compute w; = Decg,(Cyv;4m;);7i = Decs(Cur,1mm,;), and forward only {Cy.v,+m; }op
{Cu-rjtm; }oor 1COMu.v; 1m; }op to each P,

(b) else wait for {Cy.v, +m; }ops 1Cu-r;+1m; fop> A {COMy.4, +m, }op to be forwarded by some party. Once
received, compute the share-pair w; = Decg, (Cy-v;+m; ) and 7; = Decek, (Copor; 1m0 )-

2. Forward {Comy,.,, +m, }op to every P;. On receiving t + 1 {Comy,.y, +m, o, messages, homomorphically
compute {Comy.y; 4m; }jef1,n]; COMy., and terminate.

Figure 4: Supervised Pre-multiplication Protocol for generating [u] and [u - v] under Pyjng

Lemma 5.1. Let s be the D’s secret. Then for every possible A and scheduler, protocol Sup-Sh achieves
the following properties up to a negligible probability in k: (1) TERMINATION: if D and Pying are honest
then all the honest parties eventually terminate the protocol. Moreover, if some honest party terminates the
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protocol, then every other honest party eventually does the same. (2) CORRECTNESS: if some honest party
terminates the protocol, then there exists a value s which will eventually be |-|-shared among the parties.
Moreover, if D is honest then' s = s. Furthermore if Pying is honest then Pii,g will be a privileged party.
(3) PRIVACY: if D is honest then s remains private. (4) COMMUNICATION COMPLEXITY: the protocol has
communication complexity of O(n*k) bits.

The proof can be found in Appendix

5.2 Supervised Pre-multiplication Protocol

The Sup-PreMul-Sh protocol (FigureE]) takes input a [-]-shared uniformally random and private value v and
allows a dealer D € P to verifiably generate [u] as well as [u - v] for a value u of his choice, under the
supervision of a designated Fijng € P. As a pre-condition, the protocol assumes that every (honest) party
is a privileged party with respect to the input [v]. The protocol ensures that v and u - v remains private,
and when D is honest then A learns no new information on u. Finally if Pyng is honest then it will be a
privileged party with respect to [u] as well as [u - v]. The protocol always terminates for an honest D and
Piing and has communication complexity O(n?k) bits.

Let {cvj ,€r;, Comy, }ie(1,n) and Com,, be the encrypted shares and the committed shares corresponding
to [v] that is available to all the parties. Let ¢(-) and (+) be the sharing and randomness polynomial corre-
sponding to [v]. Thus v; = ¢(i), r; = 9(4) is the share-pair available with P, and ¢,; = Encyk (v;), ¢r; =
Encpk, (), Comy; = Commit(v;, 7;) and Com, = Commit(¢(0), ¢(0)). To generate [u], D first invokes
an instance of Sup-Sh. The next task for D would be to generate [u - v] and that too without knowing v.
To do this, we observe that u - ¢(-) + m(-) and u - 1(-) + m(-) constitue correct sharing and randomness
polynomial respectively for [u - v], where m(-) and 772(-) are random masking polynomials of degree at most
t selected by D with the constraint m(0) = 72(0) = 0. This is because u - ¢(-) + m(-) and u - P(-) + 7(-)
will have degree at most ¢, with the constant term of w - ¢(-) + m(-) being u - v. Thus w; = u - v; + m(j)
and 7; = w - r; + m(j) constitute valid share-pair for [v - v] and so by using the homomorphic property
of encryption and commitment, D can compute the encrypted shares and committed shares of [u - v] and
distribute the same to the parties; the presence of masking polynomials preserves the privacy of u and u - v.

The rest of the protocol is now similar to Sup-Sh, except that PoCM is used instead of PoE by D to
construct the certificate that it has done “correct pre-multiplication”. As nothing about the masking polyno-
mials is revealed, u remains private. The properties of the protocol are stated in Lemma 5.2} with the proofs

being in Appendix|[C.2]

Lemma 5.2. Let v be a completely random and unknown value which is [-]-shared among P and let u
be a value selected by D. Then for every possible A and scheduler, protocol Sup-PreMul-Sh achieves the
following properties up to a negligible probability in k: (1) TERMINATION: if D and Piing are honest
then all the honest parties eventually terminate the protocol. Moreover, if some honest party terminates the
protocol, then every other honest party eventually does the same. (2) CORRECTNESS: if some honest party
terminates the protocol, then there exists a value T, such that u and @ - v will eventually be |-]-shared among
the parties. If D is honest then u = u. Moreover if Pyng is honest then Pying will be a privileged party
with respect to [u] as well as [t - v]. (3) PRIVACY: v and u - v remains private at the end of the protocol.
Additionally, if D is honest then u also remains private. (4) COMMUNICATION COMPLEXITY: the protocol
has communication complexity of O(n’k) bits.

6 Supervised Triple Generation

Protocol SupTripGen generates [u], [v], [w] for a uniformly random and private multiplication triple (u, v, w)
under the supervision of a king P,z with O(n®k) communication complexity. It employs two sub-protocols,
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Sup-Second and Sup-FirAndThd. We only include informal description of the protocols here; for details
see Appendix D}

6.1 Generating the Second Component of the Triple

Protocol Sup-Second generates [v] for a uniformly random value v, unknown to .4, under the supervision of
Piing- For a requirement clarified in the sequel, Sup-Second also ensures that each (honest) party becomes
a privileged party with respect to [v]. In the protocol, each P; invokes an instance Sup-Sh; of Sup-Sh (as a
D) to generate [v(i)] for a uniformly random v@ . Let Txing be the set of first ¢t + 1 parties whose instance
of Sup-Sh is terminated by Piing, and let v = ZPkeﬁing v%). As at least one party in 7ying is honest, v
is uniformly random and private. Next, Fj;ng broadcasts Tying and every party waits until it terminates all
Sup-Shy, instances of Py, € Tiing; this ensures that every party obtains its share-pair and all committed shares
of v.

As Piing is a privileged party for every [v()], it computes all encrypted shares of [v], using the homo-
morphic property of encryptions. However, unlike F;,g, other honest parties may be non-privileged for one
or more [v(¥)]s, and thus may not compute the encrypted shares of [v]. The way out is that Piing “helps”
other parties by broadcasting the encrypted shares of v, which costs O(n>) bits. To confirm whether Piing
indeed broadcasted the correct encrypted shares of v, Fij,g is also asked to non-equivocally forward the
encrypted shares corresponding to each [v(k)] to every other party. We stress that this information is not
broadcasted, and rather communicated over the point-to-point channels, which costs O(n3k) bits. Once this
information is non-equivocally received by a party, it re-computes the encrypted shares of v, verifies them
with the Pying’s broadcast, and broadcasts the verification result. If ¢ + 1 parties broadcasts “positively” for
Piing, then at least one honest party must have successfully verified those encrypted shares; so every party
terminates the protocol with [v] and the broadcasted encrypted shares of [v].

Lemma 6.1. For every possible A and every possible scheduler, protocol Sup-Second achieves the follow-
ing properties up to a negligible probability in k: (1) TERMINATION: if Ping is honest, all honest parties
eventually terminate the protocol. Even if Pyng is corrupted and some honest party terminates, then ev-
ery other honest party eventually does the same. (2) CORRECTNESS: if the honest parties terminate the
protocol, then the parties output |-|-sharing [v] of a value v. Moreover, each party will be a privileged
party having all the encrypted share-pairs of v. (3) PRIVACY: the output shared value will be random from
the viewpoint of A. (4) COMMUNICATION COMPLEXITY: the protocol has communication complexity of
O(n>k) bits.

The proof can be found in Appendix

6.2 Generating First and Third Components of the Triple

Protocol Sup-FirAndThd takes as input a [-]-shared uniformly random, say v, unknown to A such that
every party is a privileged party for [v]. It then generates [u] for a uniformly random u, unknown to A,
along with the []-sharing [u - v], under the supervision of Piing. The protocol follows the same principle as
Sup-Second, except that each party P; now invokes an instance Sup-PreMul-Sh; of Sup-PreMul-Sh with [v]
and a uniformly random value u(") to generate [u(?] and [u(?) - v]; this is possible as every P is a privileged
party with respect to [v]. Now the parties set u = Zpkemng u®) and w = Zpkemng u) . v, where Tiing is
the set of ¢ + 1 parties P, such that the instance Sup-PreMul-Shy, has been terminated by Piing.

Lemma 6.2. For every possible A and every possible scheduler, the protocol Sup-FirAndThd achieves
the following properties up to a negligible probability in r: (1) TERMINATION: if Png is honest, then
all honest parties eventually terminate. Moreover, if one honest party terminates, then all honest parties
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eventually terminate. (2) CORRECTNESS: after termination, all parties hold a sharing [u], [w] such that
[w] = [u-v]. (3) PRIVACY: the view of the adversary is indistinguishable for different values of u and v.
(4) COMMUNICATION COMPLEXITY: the protocol has communication complexity of O(n>k) bits.

The proof can be found in Appendix

6.3 Sup-Second+Sup-FirAndThd==SupTripGen

Finally SupTripGen consists of two steps: (1). The parties execute Sup-Second and output [v]; (2). On
terminating Sup-Second, the parties execute Sup-FirAnd Thd, output [u] and [w] = [u - v] and terminate (cf.
Figure [5). Lemma [6.3| describes the SupTripGen properties, and follows easily from lemmas [6.1] and
and the protocol steps:

Lemma 6.3. For every possible A and every possible scheduler, the protocol SupTripGen achieves the
following properties up to a negligible probability in k: (1) TERMINATION: if Png is honest then all
honest parties eventually terminate the protocol. Moreover, even if Ping is corrupted and some honest party
terminates the protocol, then every other honest party eventually does the same. (2) CORRECTNESS: if the
honest parties terminate the protocol, then the parties output [-|-sharing ([u], [v], [w]) of a multiplication
triple (u,v,w). (3) PRIVACY: the shared multiplication triple (u,v,w) will be random from the viewpoint
of A. (4) COMMUNICATION COMPLEXITY: the protocol has communication complexity of O(n?k) bits.

Protocol SupTripGen(Pxing, 7): T is the session id

i. GENERATING THE SECOND COMPONENT OF THE TRIPLE—The parties in P execute an instance of
Sup-Second(Fing, T) to generate a uniformly random [-]-shared value, say [v].

ii. GENERATING THE FIRST AND THIRD COMPONENT OF THE TRIPLE—On terminating the instance of
Sup-Second(Piing, 7). the parties execute Sup-FirAnd Thd(Piing, [v], 7) to obtain [u] and [w = u - v], output
([u], [v], [w]) and terminate.

Figure 5: Supervised generation of a uniformaly random [-]-shared multiplication triple, unknown to
A, under the supervision of Fi;n,.

7 The NeqAMPC Protocol

The key idea of the NeqAMPC protocol has already been discussed in Section |2 It is a sequence of three
phases, where a party proceeds to the next phase only after completing the current phase:

Preprocessing Phase. To generate c); + cg [|-shared random multiplication triples, the preprocessing
phase protocol PreProcess performs the following steps: each party P; € P is asked to act as a king
and invoke C”tﬂr# parallel instances of SupTripGen to generate % random [-]-shared multiplication
triples under its supervision. The parties then execute an instance of ACS and agree on a common sub-
set Tking of (n —t) = t + 1 kings whose instances of SupTripGen (as a king) will eventually be ter-
minated by all the parties. The parties finally output the shared multiplication triples, generated during
the instances of SupTripGen, corresponding to the kings in 7ying and terminate; thus they will obtain
| Ting| - C“gij = c¢) + cg shared multiplication triples. As there exist at least ¢ + 1 honest parties, whose
instances of SupTripGen as a king will be eventually terminated by all the (honest) parties (see Lemmal6.3)),

protocol PreProcess will eventually terminate. Similarly, as the shared triples generated in the instances of
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SupTripGen corresponding to each king in 7ying remain private, the output shared triples remain private. It
is easy to see that PreProcess has communication complexity O(n - %{Tﬂcﬂ‘ n3k) = O((epr + cr)nk) bits
ast = ©(n). As the protocol is quite straightforward, we skip the formal details.

Input Phase. The goal of the input phase protocol Input is to allow each individual party P; € P to generate
[-]-sharing of its private input x; for the computation. For this each party P; € P invokes an instance of the
sharing protocol Sh (see Section as D to generate [z;]. To avoid indefinite waiting, the parties execute an
instance of ACS and agree on a common subset of (n — t) parties, say CORE, whose instances of Sh (as
a dealer) will eventually be terminated by all the parties. The parties finally output the sharings, generated
during the instances of Sh, corresponding to the parties in CORE; on behalf of the remaining parties in
P\ CORE, a default [-]-sharing of O is considered. As there exist at least ¢ + 1 honest parties, whose
instances of Sh as a dealer will eventually be terminated by all the (honest) parties, protocol Input will
eventually terminate. The shared inputs generated in the instances of Sh corresponding to the honest parties
in CORE remain private due to the privacy property of Sh. The Input protocol runs n instances of Sh, and
has communication complexity of O(n-n?k) = O(n3k) bits. Again as the protocol is quite straight-forward,
we skip the formal details.

Computation Phase. The computation phase protocol Compute performs the shared circuit evaluation on a
gate-by-gate basis, by maintaining the following invariant for each gate of the circuit: given the [-]-sharing
of the input(s) of a gate, the protocol allows the parties to securely compute the [-]-sharing of the output
of the gate. The invariant is trivially maintained for the addition (linear) gates in the circuit, thanks to
the lineaity property of [-]-sharings. For a multiplication gate, the invariant is maintained by applying the
Beaver’s circuit randomization technique and using a [-]-shared multiplication triple from the pre-processing
stage (recall from Section . For a random gate, a [-]-shared multiplication triple from the pre-processing
stage is considered and the first component of the triple is associated with the random gate. Finally, once
the [-]-sharing [y] of the circuit output y is generated, the parties execute the reconstruction protocol Rec,
reconstruct y and terminate.

Again as the protocol is quite standard in the literature (see for example [[CHP13]]), we omit the complete
details and state only the main theorem here.

Theorem 7.1 (The NeqAMPC Theorem). Ler f : Z;, — Z;, be a function expressed as an arithmetic
circuit over Zyp, consisting of cy; multiplication gates and cr random gates. Assume a non-equivocation
oracle associated with every party. Then for every possible A and for every possible scheduler, there exists
a computationally secure AMPC protocol to securely compute f with communication complexity O(((car +
cr) - n3 + n3)k) bits.
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A Non-equivocation Implementations

Chun et al. [CMSKO7|| observed that the fundamental distributed computing problem of “Byzantine gener-
als” has been proved unsolvable for three parties when one of those is corrupted [LSP82] precisely because
the corrupted party can spread contradictory messages to the remaining two honest parties. They demon-
strated that if we can stop the corrupted party from equivocating (i.e., making conflicting statements to
different honest parties) using a small trusted module on every party, it is possible to improve the resilience
of distributed computing tasks in the asynchronous setting. They implemented non-equivocation using a
(signed) trusted log abstraction called Attested Append-Only Memory (A2M), and designed a Byzantine-
tolerant state machine replication (SMR) system for n > 2t 4 1.

Levin et al. [LDLMOQ9] further simplified the trust assumption from [CMSKO07|] and showed that a min-
imal trusted module called TrInc consisting of only a non-decreasing counter ¢ € N and a signing key-pair
(pk, sk) is sufficient to generate A2M logs and to implement SMR with n > 2¢ + 1. Conceptually, Trlnc
provides a unique, once-in-a-lifetime attestations, and implements non-equivocation using the fact that the
counter cannot be decreased, and consequently for every counter value c there is at most one message signed
by the module.

Levin et al. implemented Trinc on Gemalto .NET SmartCards. It is also possible to implement TrInc
over the computers enabled with TPM chips, where its features of trusted identity, sealed storage, and remote
code attestation will be used. Although the TPM specification does not readily implement a trusted counter,
it can be achieved using a TPM-based hypervisor framework such as TrustVisor [MLQ™10]. Recently,
Kapitza et al. [KBC™ 12| further simplified the Trinc design by replacing individual singing key-pairs with
a replicated message authentication code (MAC) key.
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Notation | Meaning

Kpriv Unique private key

Kpup Public key corresponding to K,

A Certificate of the device’s validitiy

id Identity of the current counter (Initially 0)
c Current value of the counter

(a) State of a device

Function Operation
CreateCounter() Increases id. Sets ¢ to 0 and returns ¢d.
Attest(id,c’,h) Verifies that id is a valid counter with some value c and key K,,;. Verifies

that ¢ < . If any verfiication fails, return L, otherwise create an attestation
a =< COUNTER,id,c,c',h >k, ,,. Setc = ¢'. Return a.
getCertificate() Returns (K, A)

(b) API for the device

Figure 6: The API and the state of a simplified TrInc device.

Clement el al. [CJKR12]] observed that the definitional non-equivocation itself actually does not provide
any improvement to the resiliency bound; however, appropriately combining it with digital signature oracles
(or MAC oracles with a key replicated across all oracles) provides the improvements observed in [CMSKO07,
LDLMO09,CVL10,KBC™12], where the transferability of verifications provided by signatures is a key along
with non—equivocationE] They further noted that this combination (i.e., transferable non-equivocation) also
provides a generic transformation that allows a crash fault tolerant protocol to tolerate the same number of
Byzantine faults. Nevertheless, their generic transformation does not consider privacy (or confidentiality),
required in the AVSS and AMPC tasks, and we observe in this paper that encryptions and zero-knowledge
proofs are required along with signatures when privacy is required.

A.1 Realizing the Neq mechanism using Trinc

As discussed earlier, the Neq mechanism as described in Figure [2| can easily be realized using a Trinc
implementation [LDLMO09] (a simplified version of a TrInc device’s state and API can be found in Figure|[6).
Here, we provide an informal proof for the realization.

We will use the fixed counter identity 1 for our protocols as we need only one Trinc instance for each
party. In addition, we need to assume that the protocol steps are mapped to the natural numbers such that
the order of these steps is preserved.

1. Implementation of a (Setup) invocation by party P;: Invoke CreateCounter() on Trinc. Let ¢ be
the return value of the invocation. If i # 1 return L. Store the value oldL = 0. Invoke Trinc on
GetCertificate() and let crt be the result. Send (Registered, P;, crt) to all parties. Upon receiving
the registered message, every party checks the validity of the crt certificate.

2. Implementation of a (Neq-Sign, P;, 1, m) invocation by party P;: Invoke Attest on Trinc with the
arguments (1,7,m). Let a be the result. If « = L return L, otherwise return ¢ = (a,oldL,[) and
update oldL = I.

3. Implementation of a (Neq-Verify, P;, [, m, o) invocation by party P;: If the message (Registered, P;, crt)
was not received by P;, return 0. Otherwise split crt into (K, A) and o into (s,oldL,l"). If I’ # I

3They also prove that signatures themselves are also powerless.
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return 0, otherwise compute a signature verification on message (COUNTER, 1, oldL, [, m) with sig-
nature s and verification key K and return the outcome of the verification.

In the beginning every counter has internal value 0 stored. The method CreateCounter() increases that
value and returns it, as the counter for that identity is created now (with counter value 0). Therefore, the
method always returns a value greater than 1 after the first invocation and consequently the setup returns | as
done by the Neq mechanism. For the first invocation, the setup sends the value (Registered, P;, crt) where
crt is necessary for the other methods to work. In particular, the checking of crt ensures that the certificate
belongs to a Trinc device assuming that the manufacturer was honest and did not sign other devices or keys
of this form with the same key.

The signing request (Neq-Sign, P;, [, m) from P, is done by invoking her Trinc device on Attest(1,1,m).
The Attest method checks that 1 is a valid counter, i.e., if the setup was not done before it outputs L which
leads to the signing request returning 1. The same holds for the Neq mechanism since L is returned in
case that the internal list L; was not generated (by the setup) before. The next step of the attestation process
is that the key (or label) I — which we map to an integer — is greater than the previous key Valueﬁ This
check corresponds to the check that [ is in the list L; done by the Neq mechanism. And in the mechanism
as in the implementation, a fail of the check leads to the outcome L. If all checks so far succeeded, the
mechanism returns a random value and the TrInc implementation returns a triple ¢ consisting of a signature
a, the previous key oldL and I.

Finally, consider the implementation of the verification query. The mechanism returns 0 if the setup was
not done before. The implementation does the same, however, since the Registered message can be forged,
there is a different reason here. Since the setup creates the counter, there can only be a signature on any mes-
sage (COUNTER, 1, _, _, ) if the counter was created. This is implied by the unforgeability of the signature
scheme. Combined with the requirement that the Registered message has to arrive beforehand, this implies
that the setup method was executed (in particular the setup checks that the Registered message contains
a valid TrlInc certificate, i.e., there was no other “virtual” counter implemented). In the mechanism’s case
that (I,m, o) € L, i.e., the output 1 is done, the signing request was done before giving the corresponding
output since there is no other way to add elements to the list L; except the signing queries. Consequently,
in the TrInc implementation’s case, o has the corresponding form and the signature verification succeeds
leading to an output of 1, as well. If the mechanism outputs 0 because (I, m,0) ¢ L; that means that m
was never signed with key [ by TrInc in the implementation. Thus the implementation outputs only 1 if the
signature was forged, i.e., only with negligible probability.

As we have seen, the TrInc usage as described above implements the Neq mechanism with the restriction
that the keys are ordered and the assumptions that the signature scheme require and that the Trlnc manufac-
turer can be trusted. Finally, we note that it is easy to realize our Neq mechanism with the modified Trinc
mechanism by Kapitza et al. [KBC™ 12] in the similar manner.

B Instantiation of Various Primitives

In this section we instantiate the primitives we used in our protocol construction. These are the following:
commitment scheme, encryption scheme and zero-knowledge proofs. As commitment scheme we simply
use Pedersen commitments [Ped91], i.e., we commit to m using randomness r by computing ¢g"*h" for two
generators g, h of a suitable group. In particular, this commitment scheme has the properties we required in
section

SThis is slightly more restrictive than the Neq mechanism since we require the signature requests to be done by a certain order,
but in order to use TriInc it seems to be necessary to require an order.
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B.1 Encryption scheme Enc

We use the encoding-free ElGamal encryption scheme proposed in |[CMPPO6|. Let p, g be primes such that
q | p— 1 and let g be an integer of order pg modulo p? that generates a group G = (g). Let (x,%) be the
unique integer in Z,, such that (z,y) =  mod p and (z,y) = y mod ¢. The class of an element of
w = g¢®¥) € G is x. We denote the class of w as [w]. It is easy to see that [w - w'] = [w] 4 [w’] and that
Gp := (g mod p) has order q.

Definition B.1 (Encoding-Free ElGamal [CMPPO0G]).
1. Setup: Let p, q be primes such that q | p — 1 and let g be a generator of G, of order q.
2. Key generation: The private key is a random x € Zg; the public key is h = g mod p.

3. Encryption: The encryption algorithm chooses randomly an r € Z, and computes

Enc(m,r) = (¢" mod p,m + [h" mod p] mod p)

4. Decryption: The decryption works as follows:

Dec(z, (R,c)) =c—[R* mod p] modp

The scheme is CPA-secure under the Decisional Class Diffie-Hellman problem [CMPPO06]] which is de-
fined as the Diffie-Hellman problem under the class operation [-]. It has been shown that the Computational
Class Diffie-Hellman problem is equivalent to the Computational Diffie-Hellman problem. However, the
same result for the decisional case has not been shown.

We define two operations on ciphertexts in order to describe their homomorphic properties.

Definition B.2 (Homomorphic operations). Let x1,¥y1, T2, Y2,V € Zy. Define the following operations:
- (w1,y1) B (z2,92) := (z1 - 2 mod p,y1 +y2 mod p)
- v & (21,41) := (¥ mod p,v-y; mod p)

Note that [w] + [w'] = [w - w'] and that the latter operation can also be done by iteratively applying
the first operation.

Lemma B.3 (Homomorphic operations). The operations defined in Definition [B.2| implement the following
operations on the plaintexts: Let a,b,c,d,v € Zyq.

- Enc(a,b) BEnc(c,d) = (¢**? mod p, (a + c) + [A**T¢ mod p] mod p)

- v @ Enc(a,b) = (¢** mod p,va + [h*®* mod p] mod p)

Proof. The proof is straight-foreward considering definition O

The encryption scheme has the properties required in section[3.3] For more details, we refer to [CMPPOG].

B.2 Zero-knowledge Proof Schemes

In this subsection we will present a proof scheme using the primitivies instantiated previously. The structure
of the both ZK protocols is based on Y-protocols [BG92||. These protocols have been well-studied and are
usually easy to understand. Intuitively, a >-protocol is a proof that a party knows a witness w for a statement
x such that (z,w) € R. The relation R, which can be proven, is specific for the ¥ protocol.
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Definition B.4 (3-Protocol [BG92|). Let R be a relation. A Sigma Protocol for a relation R is a 3-round
protocol, i.e., it consists of four algorithms (Py, Py, V1, Va) where Py, P, is for the prover and V1, Vs is
for the verifier such that the following holds. Let x,w be bitstrings and (a,sp) := Pi(z,w), (c,sy) =
Vi(z,a), p:= Py(c,sp) and d := Va(sy,p). Then the following holds:

1. Completeness: If (x,w) € R then a protocol run using Py, Pa, V1, V3 leads to d = 1.

2. Special soundness: There is an extraction algorithm E such that for any fixed statement x and for any
two transcripts (a, ¢, p) and (a,c,p') such that the Vy outputs 1 for both and where ¢ # ¢ holds, it
follows that (z, E(a,c,d,p,p')) € R.

3. Special honest verifier zero-knowledge. There is a simulator S such that for any x for which there is
a w such that (x,w) € R holds, the simulator produces on input x and random input c a transcript
(a, ¢, p) which is computationally indistinguishable from a protocol transcript generated during the
execution of the protocol using Py, Po, V1, V5.

ZK Proofs technique: hiding the representation with respect to a fixed set of generators. We briefly
recall this technique which was described in [|[CS97].

For a set of generators {g;} we prove that we know a set {x;} such that y = [, g;* by randomly
choosing r; values and sending ¢ = [, g;* to the verifier. The verifier then sends a challenge ¢ and the
prover computes s; := r; — cx; and sends the s; to the verifier. The verifier accepts iff ¢ = y°© Hl gfl

B.2.1 ZK-Proof Scheme PoE

The relation for PoE we need to prove is the following:
Im,r,r1,r9 : Comy,, = Commit(m,r) A ¢, = Enc(m, 1) A ¢, = Enc(r,12)
Using the instantiations we get the statement:
Im,r,r1,re : Comp, = g"h" A (.1, Cm2) = (g™, m + [R™]) A(cra,cr2) = (g, 7 + [R™])

In order to prove the equations for Com,,, and ¢, 1, ¢, 1, we use the technique mentioned above.

For the remaining part, i.e., ¢, 2 = m+ [h"] (c, 2 works analogously), we give a X-protocol following
the idea of the one above. This is done by computing 7; and s; as in [CS97]], however, the ¢ is computed and
verified differently; this is done by computing ¢ as 7, + [h"] and verifying it to be ¢ - ¢, 2 + S, + [R].
Given this construction it is straightforward to prove that the corresponding protocol is indeed a >-protocol.

Combining these two X-protocols we get a >.-protocol for PoE.

B.2.2 Zero-knowledge Proof Scheme PoCM

As for the previous proof scheme, we will use a X-protocol in order to construct an interactive ZK proof
scheme. The overall statement that we show is the following.

Hu,p,m(-),fn(-),{kj,fcj}je[lm : Com, = Commit(u, p) A deg(m(-)) <t A deg(m(:)) <t A
m(0) =0 =1m(0) A Comy.y;4m; =u® Comy, ® Comyy; A Cypjpm; = u B Cy; B Encpkj (mj, kj)
A Cyrin; = u B ey H Encpkj (my, 12:])
We need to mention here that it is unintuitive that ¢,; is multiplied by u instead of 7. However, this

is correct since we need to maintain the property that every party knows how to open their share, i.e.,
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Comy.y;+m; Which is derived from Com,, by exponentiating by u. Hence not only the value of v; is
multiplied by u but also the value of the corresponding randomness. This is also the reason why we need to
rerandomize by adding Com,;, ; if we would not a party could try out wheter u has some particular value o
by exponentiating the value Com,; by u’ and equality-checking with the new value. Now, we show how to
achieve a zero-knowledge construction for the overall statement.

The check for the polynomial degree can be done using the representation problem, e.g., in order to
check that variables x and y satisfy the equation 2x + 5y = 1 we can check that we know the representation
of g with respect to the base {g2, g°}. Consequently, we can check the degree by evaluating the (inverse)
Vandermonde matrix on the quantified values and comparing the result with constants.

However, in order to give an instantiation with respect to the previously defined instantiations of Com
and Enc we need to existentially quantify over the corresponding randomnesses as well. In addition, we
split the proof into two statements which can be combined into a proof for the conjunction using standard
techniques, i.e., using the same r,, s, for shared variables .

The first relation can be proven using results described in [CS97]]. We want to prove the knowledge of a
representation of the commitments — with respect to the base of the Pedersen commitments — Com,, and
Com,;,, together with an additional verification step to verify the property we require for Comy,.,; 4, This
additional check can be rephrased as follows:

X = Comu_ijrmj &) Commj — (g’l)thvj )u

where Ty, is the randomness used to construct Comvj which is unknown to the prover.

Hence, we need to verify that we know the representation of X with respect to the base Com,,; (and that
this is the same as for the representation of Com,,). Therefore we can simply use the proof scheme [CS97],
as for PoE, for the first part of the scheme.

However, it is not obvious that we can use this technique in order to verify Cuwj+m; = U [ Cy, H
Encpk, (m;, k;). Looking at the first component of our instantiation of Enc leads to an equation of the form
X = Y. gk which corresponds to the representation knowledge problem, since the X is represented via
the base {Y, g} using u and k;. Hence we can use the same technique. We need to show the correspondence
for the second part as well. This part looks like

X:uY+m]+k:jZ

here Y" is second part of ¢, and Z is [A]. This is a linear version of the base representation problem and the
technique can be applied here as well. The corresponding ¢ constructed using randomness 71, 72, 3 of this
equation is 71 & ¢,; B Encpy, (12, 73).

B.3 Asynchronous Reliable Broadcast (r-broadcast) Using Transferable Non-equivocation

The r-broadcast primitive allows a S € P to reliably send a message m to all the parties. Using transferable
non-equivocation, it can achieved for ¢ < n [CVLI10,/CJKR12]. The high-level idea of this r-broadcast
protocol is simple, and it follows from the crash-fault tolerant r-broadcast [GT89]: S first (non-equivocally)
sends m to all the parties; this prevents a corrupted S from sending different messages to different honest
parties. However, a corrupted S can avoid sending m, to some honest parties. Thus, to ensure that all the
honest parties eventually receive m,g, whenever an honest party (non-equivocally) receives some message
Mg, before delivering the message, it once non-equivocally forwards it to every other party. This ensures
that whenever an honest party receives m, then it will be eventually received by every other honest party.
We present the pseudocode for the protocol r-broadcast in Figure (7] .

The properties of the protocol are stated in Theorem[B.5] which follows easily from the protocol description
and the properties of transferable non-equivocation.
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Protocol r-broadcast(7,, m)
SENDER S (WITH INPUT m) —S executes the following code:
1. Send (73, my) to every party in P.
PARTY P, — Every party in P, including S, executes this code:

1. If (75, Mo ) is received from S or forwarded by some party P; € P (for the first time), then
forward (7, mas) to every party in P, output (73, m) and terminate.

Figure 7: Asynchronous r-broadcast protocol using transferable non-equivocation for t < n [CVLI10,
CIKR12]

Theorem B.5. Protocol r-broadcast achieves the following properties for every instance 1, and every
possible A and scheduler:

(1) TERMINATION: If S is honest, then all the honest parties eventually terminate the protocol. Moreover,
even if S is corrupted and some honest party terminates the protocol, then except with negligible probability,
every other honest party eventually terminates the protocol . (2) CORRECTNESS: (a) If S is honest then
except with negligible probability, all honest parties output (1,, m). (b) If S is corrupted and some honest
party outputs (1, m'), then except with negligible probability, all the honest parties output (1, m'). (3)
COMMUNICATION COMPLEXITY: The protocol incurs communication of O(n?(¢ + k)) bits, where the
message m is of size { bits.

C Properties of the Various Supervised Sharing Protocols and Proofs

C.1 Properties of the Protocol Sup-Sh

Lemma C.1. Let s be the D’s secret. Then for every possible A and scheduler, protocol Sup-Sh achieves
the following properties: (1) TERMINATION: if D and Piing are honest then all the honest parties eventu-
ally terminate the protocol, except with negligible probability. Moreover, if some honest party terminates
the protocol, then every other honest party eventually does the same, except with negligible probability.
(2) CORRECTNESS: if some honest party terminates the protocol, then there exists a value s which will
eventually be |-]-shared among the parties, except with negligible probability. Moreover, if D is honest then
5 = s. Furthermore if Pying is honest then Pyng will be a privileged party. (3) PRIVACY: if D is honest
then s remains private. (4) COMMUNICATION COMPLEXITY: the protocol has communication complexity
O(n?k) bits.

PROOF: For TERMINATION, we first consider an honest D and Ping. In this case, D will (non-equivocally)
send {¢s; }op, {Cr; }op, {Coms; }opy, {Comg )y, to all parties. In particular all honest parties will eventually
receive them and start participating in the instances of PoE, where all the verifications will pass. So Pyjng
will eventually broadcast the (OK, D) message, which from the properties of r-broadcast will eventually
reach every honest party with high probability. Moreover, since there exist at least n — ¢ = ¢ + 1 honest
parties, D will be able to construct the certificate «®™ and eventually broadcast the same. Therefore every
honest party eventually receives o™ as well as the (OK, D) message. Moreover, Fing Will be a privileged
party and forwards {cs; }op,, {Cr; }o, and {Comy, } 4, to every P;. It now follows easily that every honest
P; will eventually receive {cs. }s,,{¢Cr, }op and {Comy. },, from Piing and obtain its share pair s;,7; by
decrypting cs; and c,,. Moreover, since every such P; forwards its {Coms;, },, to every other party and
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there are at least t+1 such P;s, it follows that every honest party will eventually have at least £+ 1 committed
shares with high probability, using which it will homomorphically obtain the remaining committed shares
and terminate.

Now consider a corrupted D (and possibly a corrupted Fing) and let P; be an honest party that termi-
nates the protocol. We show that all other honest parties will eventually do the same. Since P; terminated the
protocol, it implies that P; received aP7 from the broadcast of D as well as (0K, D) from Piing’s broadcast.
From the properties of broadcast, it follows that with high probability, every other honest party will eventu-
ally receive them. In addition, since a® was constructed, at least ¢ + 1 and hence at least one honest party,
say P, must have received {cs; }o,,, {Cr; }op, {Coms; }opp, {Comy}y), from D and successfully performed
all the verifications. Since P}, is a privileged party, the rest of the proof follows using the same arguments
as above, except that P, plays the role of Ping.

CORRECTNESS: If some honest party, say F;, has terminated the protocol, then it follows that it has re-
ceived a valid certificate o®™ from the broadcast of D, which implies that with overwhelming probability,
there exists at least one honest party, say P,, who would have participated in the construction of . This
further implies that P, must have received {cs;}op, {Cr; }op, {{1CoMs; }op }icn ) and {Coms}y,, from
D and successfully performed the required verifications. Particularly, P, would have verified that there
exist polynomials of degree at most ¢, say ¢(-) and %(-), such that Comy = Commit(¢(0),%(0)) and
Comy, = Commit(¢(j), 1 (j)). We define 5 to be $(0) and show that eventually 5 will be [-]-shared. Since
P; has terminated the protocol, from the termination property of the protocol, it follows that each honest
party will eventually terminate with its shares s; and r; and a vector of committed shares, so what remains
is to show that they correspond to [¢(0)]. However, this follows from the properties of non-equivocation.
Specifically, neither a corrupted D nor any corrupted party can send or forward any other encrypted and
committed shares, different from {c; },,{cr, }o, and {Coms; },,, respectively, to any honest P;. Sim-
ilarly, no corrupted party P, can forward its committed share, different from {Comy, },,,, to any honest
party. Thus with high probability, s will be [-|-shared.

It follows easily that if D is honest then 3 = s, as in this case the polynomials ¢(-) and () are
the same as ¢(-) and 7(-), as selected by D. Moreover it follows easily that if Pyjg is honest then it
will be a privilged party, since an honest P, will broadcast the (OK, D) message only after receiving

{cs; Yops1€r; Yop, {Coms; }opy, {Coms )y, from D and successfully verifying it.

PRIVACY: We show that for an honest dealer D, and any s,s the adversary can not distinguish whether
D shared s or S. Since the non-equivocation signature {x},,, does not provide any information additional to
the signed value x, we drop the tag for this part of the proof for the sake of readability. So let 7., be the set
of corrupted parties. Hence define Koo := {si, 74, ki | Pi € Teorr, Where s;, 7; are the shares of party P;
and k; its encryption and decryption keys} U{sk; | sk; is the signing key of P,;}. Note that we only as-
sumed authentic channels; therefore, it is easy to see that the view of the adversary view4(x) during the
execution of the protocol with secret - consists of Comy, { Com,; = Commit(x;, 7z ;), Cz; = Encpy, (xj,-),
Cr,; = Encpk, (raj, ) Fie1,n) as well as aP7 (0K, D) and the messages during the protocol executions of
PoE.

Assume there is an adversary A that can distinguish whether x = s or £ = 3§ is shared with non-
negligible probability. We then show that there is an adversary that can distinguish Comg from Comg with
non-negligible probability. We do this in several steps; in particular, we define the following views and show
that these are indistinguishable for s and s.

o view!|(z) := view 4 () U Keorr

I
e view} (z) := Com,, {Com,,, ¢y, €, }je[l,n] and KCeopy
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e view? (z) := Com,, {Comy; }jcn,n) and Keopr
° Viewj(x) := Comy, and KCeppyr

° viewi(x) = Keorr
Next, we show for i € [1,4] that view'y (z) ~ view'] " (x). For each step we need to show that if for
each adversary A’ having input view'y (z), there is an adversary A**! which has an indistinguishable output

on input view';! (x)

1. view!,(z) ~ view? ()

Let A' be given, A? internally uses A' by computing (OK, D), computing o7 and simulating the
zero-knowledge proofs PoE. The first part is trivial, the second part can be done since the message
signed in « can be deduced from Viewi(:v) and A? has access to all signing key shares. In order
to prove the last part we need to distinguish two cases: PoE executions with honest parties and PoE
executions with corrupted parties. The executions with honest parties can be computed by A2 using
the simulator of the honest-verifier zero-knowledge property, since the honest parties choose their
challenge randomly. For the corrupted parties, the adversary A2 knows their s;. Consequently, he
can act as the dealer in PoE and use the adversary of the protocol execution in order to generate these
proofs.

Finally, we need to show that the output of A is indistinguishable from the output of A%. By con-
struction of A? it is sufficient to show that the input given to A! inside A? is indistinguishable from
the input that A' gets. For (OK, D) and o7 this is obvious. For the ZK proofs of honest parties, this
is implied by the honest-verifier zero-knowledge. The zero-knowledge proofs of the corrupted parties
consist of messages (a, ¢, ¢). Here a has the same distribution as in view!, (z), i.e., uniformly at ran-
dom. The part ¢ has the same distribution since A? internally invokes the adversary of the protocol
execution. Finally, e is completely determined by a and c. Therefore e has the same distribution as
well.

2. view? (z) ~ view? (z)

In this step we basically remove the ciphertexts from the input of A%. We construct A3 by internally
running A2 on view? (x) and the ciphertexts computed by A3. In order to compute the ciphertexts
A3 needs to distinguish two cases, ciphertexts of corrupted and ciphtertexts of honest parties. For
corrupted parties, A% can simply access the plaintexts using .o, and encrypt them as D does, hence
having indistinguishablility. The ciphertexts of honest parties are replaced by encryptions of Os. By
the IND-CPA property, it follows that this ciphertext is indistinguishable from the original message’s
ciphertext. Therefore the input to A2 is indistinguishable to view? (z) and consequently its output as
well.

3. view3 (x) ~ view? (z)

In this step we remove all commitments except the commitment to . The adversary A%(x) can com-
pute the set { Com,, } for the corrupted parties P; by recomputing them. For the other commitments,
the adversary A* can interpolate the polynomial inside the commitments; since he has ¢ values Comy;
and the value Com,, this leads to a unique polynomial inside the commitments, i.e., { Comy, } (1 -
Then A% invokes A2 on the computed input.

"Note that the adversary even knows the signing keys of the parties.
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4. view’ (z) ~ view’ ()

Finally we want to remove the commitment Com,,. Since there are exactly ¢ shares s; in the adver-
saries’ knowledge, any x can be used in order to determine a unique polynomial. By the computational
hiding property, committing to any random value using uniform randomness cannot be distinguished
from Com,,. Therefore A%(x) computes such a commitment and runs A* on this input.

We can conclude that view 4(s) ~ view>(s) and view,(5) ~ view’(3). Since we assume that
view 4 (s) is distinguishable from view 4(3), we can conclude that Keo(s) = view’(s) is distinguish-
able from oo () = Viewj (t). However, both .o ($) and Ko (S) consists of the adversaries keys and
— since D is honest — ¢ values which are uniformly random. Therefore they cannot be distinguished (a
contradiction). Hence the assumption has to be wrong and privacy follows by the contraposition.

COMMUNICATION COMPLEXITY: During the D-DEPENDENT PHASE, D has to non-equivocally distribute
O(n) encryted shares and committed shares to every party, which costs O(n?k) bits. Construction of the
certificate o requires O(n?k) bits of communication, as there are n ecnrypted and committed shares and
so D needs to execute in total n? instances of PoE. Broadcasting a® costs O(n?k) bits of communication,
as the certificate is of size O(k) bits. During the D-INDEPENDENT PHASE, each party just needs to send
one encrypted share and one committed share to every other party, incurring a communication of O(n?x)
bits. g

C.2 Properties of the Protocol Sup-PreMul-Sh

Lemma C.2. Let v be a completely random and unknown value which is |-|-shared among P and let u
be a value selected by D. Then for every possible A and scheduler, protocol Sup-PreMul-Sh achieves the
following (properties (1) and (2) up to a negligible error probability): (1) TERMINATION: if D and Piing
are honest then all the honest parties eventually terminate the protocol. Moreover, if some honest party
terminates the protocol, then every other honest party eventually does the same. (2) CORRECTNESS: if
some honest party terminates the protocol, then there exists a value u, such that w and u - v will eventually
be |-]-shared among the parties. If D is honest then @ = u. Moreover if Piing is honest then Pying will be a
privileged party with respect to [u] as well as [ - v]. (3) PRIVACY: v and u - v remains private at the end of
the protocol. Additionally, if D is honest then u also remains private. (4) COMMUNICATION COMPLEXITY:
the protocol has communication complexity O(n?k) bits.

Proof. 1. COMMUNICATION COMPLEXITY: The generating phase of the protocol consists of one in-
stantce of the Sup-Sh protocol which has communication complexity O(n?k). The D independent
phase of the protocol is similar as in the Sup-Sh protocol and hence has communication complexity
O(n?k). The same holds for the share verification and certification part of the protocol, a broadcast
from the king with complexity O(n?k) complexity and n? instances of PoCM (n parties running n
instances each). Hence this part has communication complexity O(n?x) as well. Finally, in the share
communication and certificate generation part, the certificate 3 is broadcasted by the dealer and the
dealer takes part in all executions of PoCM. In addition the dealer sends 3 4+ 2n commitments and n
ciphertexts non-equivocally to every party. The broadcast and PoCM executions have communication
complexity O(n?k) and the same holds for sending O(n) values of size O(k) non-equivocally to
every party. Consequently the overall protocol has complexity O(n?k).

2. TERMINATION: Termination of the generating (u) phase follows by the corresponding properties of
the Sup-Sh protocol. For the remaining phases of the protocol the termination properties follow
completely analogously to the corresponding properties of Sup-Sh since the protocol structure is
essentially the same.
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3. CORRECTNESS: For correctness we have to show that in the end there is an ¢-sharing u and @wv. We
have to show that for an honest D it holds that 4 = u and that if the king is honest, he is priviledged
with respect to [u] and [u - v].

The correctness of the protocol Sup-Sh already implies that there is a ¢-sharing of % and that an honest
D will share v = . In addition, the correctness of Sup-Sh implies that Pjing is privileged with respect
to [u].

Therefore we only need to show that upon termination, there is a ¢t-sharing of % - v and that an honest
Piing 1s privileged with respect to this sharing. Since an honest Pyng only broadcasts (approve, D)
when he has received {Comy}op,, {{Cuv;+m, }op, {Cur;+im; Yop el n]s 11 COMuw;+m; Yop }ielin)
and {Comy., }»p,, as a subset of this message received all necessary information to be priviledged with
respect to % - v. Finally, upon termination, every party P; received {Cg.v;+m,; top a0d {Ca.r, 44, top, S
well as the corresponding commitment. For the same reason as in the proof of protocol Sup-Sh, these
values correspond to the verified shares, i.e., belong to a degree ¢ polynomial, and by the nonequivo-
cation property, & = u is ensured.

4. PRIVACY: The privacy proof is threefold. First, we have to show that v remains private, i.e., commu-
nication during the protocol does not help in distinguishing the value of two different v. Second, we
have to show that v - v remains private in the same sense and third, we have to show that  is private
if the dealer D is honest. As in the proof for Sup-Sh we drop the op annotation here, since there is no
additional information in the tag than the tagged value already provides regarding the privacy.

(a) v remains private: Assume an adversary A can distinguish v from v’ after seeing the additional
information of the Sup-PreMul-Sh execution for some u. Since the execution requires that [v]
(or [v]) is already shared, it follows that an adversary B4 can internally simulate an execution
of Sup-PreMul-Sh using u and then invoke A in order to distinguish v from v'. Hence v an
adversary does not gain any additional information about v by the execution of Sup-PreMul-Sh.

(b) w-v remains private: Assume an adversary A can distinguish w = v -v from w’ = u’-v’. Since
D may be corrupted, D can choose u = u' = 1. As a consequence A can now distinguish the
cases v = w from v" = w’ contradicting the privacy of v. Hence u - v remains private as well.

(c) w remains private if D is honest: This case is more difficult than the other two cases since the
protocol leaks more information about u than the protocol Sup-Sh executed on u. However, we
can follow the privacy proof of Sup-Sh.

Assume there is an adversary A that distinguishes the protocol execution for some u and u’.
In addition to the execution of Sup-Sh on u, A gets {Cy.v;+m;, Cur;trm; > COMuv;+my }jc[,n]s
Comy,.,,, the executions of PoCM and (approve, D) as well as 37, As in the proof of privacy
with respect to the protocol Sup-Sh, the information (approve, D) and 3P does not help the
adversary in distinguishing v« from /.

Since Com,,., can be computed from Comu.vﬁmj, we know there is an adversary that dis-
tinguishes u from u' without the input Com,,.,. Using the zero-knowledge property we can
also simulate the proofs leading to an indistinguishable outcome of A (by definiton of zero-
knowledge). As a consequence there is an adversary that distinguishes u from u’ by seeing the
output of Sup-Sh, Cuvj+myjs Currjting s Comu.vj +m,;- Since the dealer D is honest, we can use the
IND-CPA property to remove the ciphertexts Cy.v;+m;; Cu.r;+1n; as we did in the privacy proof
for Sup-Sh. Also following the privacy proof for Sup-Sh, we can reduce the input of the adver-
sary to Com,,.,,, which finally contradicts the computational hiding property of our commitment
scheme. Consequently, there is no such adversary A.

O
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Protocol Sup-Second(Piing, 7): T is the session id

I. SHARING RANDOM VALUES—Every party P; € P including P, executes the following code:

1. Select a random value v(*) and invoke an instance Sup-Sh(P;, 7, Piing, v®) of Sup-Sh as a D to generate
[v(i)} under the supervision of Fing; let this instance of Sup-Sh be denoted as Sup-Sh;. Moreover, let
®i(-),%i(-),{Cu, ;i ; Fien,n]s 1COMy, ; }iem,n) and Com,y denote the sharing polynomial, randomness
polynomial, encrypted share-pair, committed shares and commitment, generated during Sup-Sh;, where
@ = ¢i(0), Vij = ¢i(7), Tij = Yi(4)s Co;; = Encpkj (Uidv ')7C7'i‘j = Encpkj (ri,jv ), Comvi,j =
Commit(v; j,7; ;) and Com iy = Commit(e;(0),%;(0)).

2. For j € [1,n], participate in the instance Sup-Sh;, invoked by P; as a D.

II. COLLECTING AND DISTRIBUTING THE INFORMATION FOR THE FINAL OUTPUT—Only Fj,, executes the
following code:

1. Include party P} in an accumulative set 7ying, Which is initially (), if the instance Sup-Shy is (locally)
terminated.

2. Wait till |Tying| = t + 1. Then using the linearity property of the encryption scheme, compute c,; =
Bp, T Cor,; and ¢, = Bp, e7,,.Cr,; for j € [1,n] and broadcast Tying, {Cuv; s Cr; }jc[i,n)-

3. For every Py, € Tiing, forward the encrypted share-pairs {c,, ,}o,;{Cr, ; }o,. forall j € [1,n], received as
a privileged party from the dealer Py during the instance Sup-Shy, to every party in P.

III. RESPONDING TO Fjjhy AND TERMINATION—Every party P; € P including Fj;,e executes the following code:

1. Include party P, in an accumulative set 7;, which is initially (), if the instance Sup-Shy, is (locally) termi-
nated.

2. Wait to receive Tiing and {cy;, €, } je[1,n) from the broadcast of Pying.

3. Upon receiving {Cy, ; }o,., {Cr, , }o, forall j € [1,n] from Pyg corresponding to each Py, € Tiing, Wait
till Tiing € 7i. Once Tiing € T, broadcast the message (0K, ) only if c,, = Bp c7;,Co,, and ¢, =
B P, 7uns Cri,; holds for every j € [1,n].

4. Wait to receive the (OK, x) message from the broadcast of at least ¢ + 1 parties. Upon receiving, wait till
Ting € 7T; and then compute v; = Z Vg, Ti = Z Vk,i, {Comy, = @p, e, COMy, | Hiclim
Pk: E7T<Ing Pk Eﬁing
and Com, = & P €Thing Com,, ), where vy, ;, 7. ; denotes the share-pair obtained at the end of the instance
Sup-Shy, and {Com,, ; }je(1,n) and Com,, ) denotes the vector of committed shares and the commitment
obtained at the .end of the instance Sup-Shy. Finally, output v;, 7, {Cy;, Cr; }ie[1,n]s {COMy; }jc(1,n) and
Com,, and terminate.

Figure 8: Supervised generation of [v] for a random v under the supervision of Png; if the protocol
terminates then each party will be a privileged party and will have all » encrypted shares of v.

D Protocol for Supervised Triple Generation and its Properties
Here we present our supervised triple-generation protocol; we first present the subprotocols used.

D.1 Protocol Sup-Second and Its Properties

Protocol Sup-Second (for generating the second component of the shared multiplication triple) is presented

in Fig.

The properties of the protocol Sup-Second are stated in Lemma6.1
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Lemma D.1. For every possible A and every possible scheduler, the protocol Sup-Second achieves the
following properties (properties (1) and (2) up to a negligible error probability): (1) TERMINATION: if
Piing is honest, then all honest parties eventually terminate the protocol. Moreover, even if Pying is corrupted
and some honest party terminates the protocol, then every other honest party eventually does the same. (2)
CORRECTNESS: if the honest parties terminate the protocol, then the parties output [-]-sharing [v] of a value
v. Moreover, each party will be a privileged party having all the encrypted share-pairs of v. (3) PRIVACY:
the output shared value will be random from the viewpoint of A. (4) COMMUNICATION COMPLEXITY: the
protocol has communication complexity O(n3k) bits.

Proof. 1. TERMINATION: in order to show termination, we need to show two properties; first, if Pjng is
honest, then every honest party eventually terminates and second, if any honest party terminates, all
other honest parties will do the same.

(a) Honest king leads to termination: if the king is honest, then the set 7ying Will eventually reach
the size t+ 1, because of Theorem[5.1]and since there are ¢+ 1 honest dealers in the executions of
Sup-Sh. In particular, since the honest party Fiing terminates for all executions corresponding to
Tking, all honest P; will eventually terminate for the same instances by the termination property
of Sup-Sh. Since Fiing is honest, the checks done by the honest parties in the response and
termination phase will succeed and they will broadcast (OK, ). Thus, eventually the number of
received (OK, x) broadcasts will reach ¢ 4 1 and the honest parties terminate.

(b) If an honest party terminates, then all honest parties do so: let P; be the honest party that termi-
nates. We show that if a party P; is honest, then P; eventually terminates. The set 7; contains
all parties for which P; terminated the corresponding Sup-Sh when P; terminated. By termina-
tion of the Sup-Sh protocol, it follows that eventually 7; C 7. Since Fiing broadcasts Tyjng all
parties will eventually receive the same 7ying and the condition 7yjng € 7; will eventually be
satisfied. In addition, since P; terminated, it received at least ¢ + 1 broadcasted messages (OK, *)
which will — since these messages were broadcast — eventually arrive at P;. Consequently,
this condition is satisfied as well. Thus P; finally terminates.

2. CORRECTNESS: At the end of the protocol execution every party outputs v;, 73, {Cy,, ¢;, Com,, } jell,n]
and Com,,. There is an honest party that verifies that this message is a linear combination of the shar-
ings run before. Since these precomputed sharings follow the correct protocol Sup-Sh and since
sharings are linear, it follows that the parties hold a sharing of some value v when terminating.

3. PRIVACY: For all honest parties it holds that their sharing is indistinguishable for any value they
shared, by the privacy of Sup-Sh. Since the overall output is a linear combination of ¢ + 1 sharings, at
least one honest sharing is contained in this combination. Assuming the adversary A could distinguish
this for any two different values v, v/, then the adversary could use this to break the privacy of Sup-Sh,
since he can control the ¢ other parties from the output sharing. Thus, the privacy of Sup-Sh implies
the privacy of Sup-Second.

Moreover, the honest party of which a share is contained in the linear combination chooses this share
uniformly at random. Consequently, the linear combination contains a value that is uniformly random
as well.

4. COMMUNICATION COMPLEXITY: in the Sharing random values part of the protocol, there are n
instances of the Sup-Sh protocol, i.e., a communication complexity of O(n3x).

The collection and distribution of the information is done only by the party Pjjng. During the ex-
ecution of this part of the protocol, the king broadcasts Txing and {c,;,c;, }je[l,n] and forwards
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Hew,; Yors (€ Yor tien,n for all Py € Tying. The broadcast message has size O(n«) leading to
a communication complexity of O(n3k) and the non-equivocally forwarded data has size O(n’k)
leading to communication complexity O(n3x) as well.

The final response and termination part which is executed by all parties consists only of broadcasting
(OK, 7). This message has size O(1) because the identity is encoded in the broadcast protocol. How-
ever, there are n broadcasts in the worst case, leading to a communication complexity of O(n’k).

O

D.2 Protocol Sup-FirAndThd and Its Properties

Protocol Sup-FirAndThd (for generating the first and third component of the shared multiplication triple) is
presented in Figure 9]
The properties of the protocol Sup-FirAndThd are presented in Lemma[6.2]

Lemma D.2. For every possible A and every possible scheduler, the protocol Sup-FirAndThd achieves the
following properties (properties (1) and (2) up to a negligible error probability): (1) TERMINATION: if
Pying is honest, then all honest parties eventually terminate. Moreover, if one honest party terminates, then
all honest parties eventually terminate. (2) CORRECTNESS: dfter termination, all parties hold a sharing
[u], [w] such that [w] = [u - v]. (3) PRIVACY: the view of the adversary is indistinguishable for different
values of w and v. (4) COMMUNICATION COMPLEXITY: the protocol has communication complexity
O(n?k) bits.

Proof. The proof completely follows the proof of Sup-Second, except that properties are now implied from
Sup-Sh, instead of Sup-PreMul-Sh. O

E Analysis of the AMPC Protocol of [BTHN10]

The AMPC protocol of [BTHN10] operates over Zy . The input stage consists of a synchronous broadcast
round, where every party encrypts its input and broadcasts it, along with a non-interactive zero-knowledge
(NIZK) proof that it knows the underlying plaintext, corresponding to the ciphertext. Thus the input stage
consists of a broadcast of O(nk) bits. The secure evaluation of the circuit is then done using the king-slave
paradigm, where every party in P acts as a king and all the n parties (including the king) act as slaves and
perform the computation on behalf of the king, so as to enable the king to obtain the output of the function
(to be computed). So in principle, the actual circuit is evaluated n times, once on behalf of each party. We
focus on the actual communication done among the slaves to evaluate the circuit on the behalf of a single
king.

Due to the homomorphic property of the encryption scheme, evaluating the addition gates required no
interaction among the slaves. For a multiplication gate, a random encrypted multiplication triple unknown
to A is generated for the slaves, under the supervision of the king. For this, the parties begin with a publicly
known default encrypted multiplication triple, which is then randomized to new encrypted triples, for ¢ + 1
iterations, by different slaves; the triple obtained after ¢ + 1th iteration is taken as the final triple. In every
iteration, to perform the randomization of an encrypted triple, the king sends a randomization request to all
the n slaves. A slave, on receiving a randomization request, performs the randomization, and to prove to the
king that he has the performed the randomization correctly, the slave provides a NIZK proof of O(k) bits
to every other slave, so as to obtain a threshold signature. In short, in every iteration, each slave performs
a randomization and communicates O(nk) bits to the other slaves to prove that he has the performed the
randomization correctly.
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Protocol Sup-FirAndThd(Piing, [v], 7): T is the session id

i. SHARING RANDOM VALUES—Every party P; € P including Piing €xecutes the following code:

1. Select a random value wu(? and invoke an instance Sup-PreMul-Sh(P;,, Ping, P,[v]) of
Sup-PreMul-Sh on [v] as a D to generate [u(”] and [u(? - v] = [w®] under the supervision
of Fiing; let this instance of Sup-PreMul-Sh be denoted as Sup-PreMul-Sh;. Moreover, let
{wij,7ij}jenm)s {Cus €, Fienn) {CoMu, ; }ien,ny and Com,,) denote the vector of share-pairs,
vector of encrypted share-pairs, vector of committed shares and the commitment corresponding to [u(i)]
generated during Sup-PreMul-Sh;. Similarly, let {w; j, 7 j}je[1,n]s {Cw; ;> €, Fie[1n]s 1COMuw, ; }ie[n)
and Com,,;) denote the vector of share-pairs, vector of encrypted share-pairs, vector of committed shares
and the commitment corresponding to [w(?)] generated during Sup-PreMul-Sh;.

2. For j € [1,n], participate in the instance Sup-PreMul-Sh;, invoked by P; as a D.

ii. COLLECTING AND DISTRIBUTING THE INFORMATION FOR THE FINAL OUTPUT—Only Fing executes the
following code:

1. Include party P in an accumulative set Tying, Which is initially @, if the instance Sup-Shy, is (locally)
terminated.

2. Wait till | Txing| = ¢ + 1. Then broadcast Tying.
iii. RESPONDING TO Fxing AND TERMINATION—Every party P; € P including Fiing executes the following code:

1. Include party Py in an accumulative set 7;, which is initially (), if the instance Sup-Shy, is (locally) termi-
nated.

2. Wait to receive Tiing from the broadcast of Fiing.

3. On receiving Tiing, check if it is of size ¢ + 1 and if so then wait till Tiing C 7;.

4. Compute u; = Z Upis Ty = Z Tri {Comy;, = ©p,eTin,COMu,  }iep n, Com, =
Py € Tiing Py, € Txing
O Py eTine COMy 0y, Where i, 735, {Comy, ;}ien,n) and Com,u) is obtained at the end of
Sup-PreMul-Shy,, corresponding to [u(®]. Similarly compute w; = Z Whi, T =
Py € Tiing
Z f‘km{comuu = @PkeTkingcomwk,j}je[l,n]aCom’w = @PkEﬁingcomw““)’ where
Py € Tiing

Wi, Tk,iy {COMuy, ; }jer,n) and Com,, ) is obtained at the end of Sup-PreMul-Shy, corresponding
to [w™]. Finally, output ui, T3, {Comy, }jeq1,n), Comy, as well as wy, 74, {Comy, }jen,n), Com,, and
terminate.

Figure 9: Supervised generation of [u| and [w = v - v] for a random v under the supervision of P,
where v is an existing [-|-shared value, with every party being a privileged party with respect to [v].

Each iteration involves a communication of O(n?k) bits in total, and so ¢ + 1 iterations require a total
communication of O(n®k) bits. Thus evaluating a single multiplication gate under the king requires a
communication of O(n?k) bits and so for c); multiplication gates, it will incur a total communication of
O(cpn?k) bits for a single king. Therefore, for n kings, the protocol will require an overall communication
of O(cpn?rk) bits.
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