
Authenticated Multiple Key Establishment Protocol for
Wireless Sensor Networks

Jayaprakash Kar

Information Security Research Group
Faculty of Computing & Information Technology

Department of Information Systems
King Abdulaziz University, Kingdom of Saudi Arabia

jayaprakashkar@yahoo.com

Abstract. The article proposes a provably secure authenticated multiple key estab-
lishment protocol for Wireless Sensor Network. Security of the protocol is based on
the computational infeasiblity of solving Elliptic Curve Discrete Logarithm Problem
and Computational Diffie-Hellman Problem on Bilinear Pairing. User authentication
is a one of the most challenging security requirement in wireless sensor networks
(WSN). It is required to establish the correct session key between two adjacent nodes
of WSNs to achieve this security goal. Here we prove that, the proposed protocol is
secure against the attack on data integrity and known key security attack on session
key. It also provides perfect forward secrecy.
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1 Introduction

WSN systems are usually deployed in hostile environments where they encountered a wide
variety of malicious attacks. Information that is the cooked data collected within the sensor
network is valuable and should be kept confidential. In order to protect this transmitted
information or messages between any two adjacent sensor nodes key establishment protocol
and a mutual authentication are required for wireless sensor networks. Due to nature restric-
tions like low power, less storage space, low computation ability and short communication
range of sensor nodes, most conventional protocols establish authenticated multiple keys
between any two adjacent sensor nodes by adopting a key pre-distribution approach. How-
ever, these techniques have vulnerability. With rapid growth of cryptographic techniques,
recent results show that Elliptic Curve Cryptography (ECC) is suitable for resource-limited
WSNs. Cryptosystems based on Elliptic Curve Cryptography are especially interesting for
sensor networks since they are more efficient in resource utilization than any other public key
techniques [1] [12]. The computational capability of sensor nodes are limited, so traditional
public-key cryptography, in which the computation of modular exponentiation is required,
cannot be implemented on WSNs. Fortunately, Elliptic curve cryptosystem (ECC) [6] [2],
compared with other public-key cryptography, has significant advantages like smaller key
sizes, faster computations. Thus, ECC-based key establishment protocols are more suitable
for resource constraints sensor node than other cryptosystem.

2 Preliminaries

Definition 1. Bilinearity Let G1 and G2 be two cyclic groups of same prime order q. G1

is an additive group and G2 is a multiplicative group. Let e be a computable bilinear map
e : G1XG1 → G2 , which satisfies the following properties:

– Bilinear: e(aP, bQ) = e(P,Q)ab, where P,Q ∈ G1 and a, b ∈ Z∗
q and for P,Q,R ∈

G1, e(P +Q,R) = e(P,R)e(Q,R).
– Non-degenerate: If P is a generator of G1, then e(P, P ) is generator of G2. There

exists P,Q ∈ G such that e(P,Q) ̸= 1G2

– Computability: There exists an efficient algorithm to compute e(P,Q) for all P,Q ∈
G1.

We call such a bilinear map e is an admissible bilinear pairing.



2.1 Mathematical Assumption

Definition 2. Bilinear Parameter Generator : A bilinear parameter generator G is
a probabilistic polynomial time algorithm that takes a security parameter k as input and
outputs a 5-tuple (q,G1,G2, e, P ) as the bilinear parameters, including a prime number q
with |q| = k, two cyclic groups G1,G2 of the same order q, an admissible bilinear map
e : G1XG1 → G2 and a generator P of G1

Definition 3. Bilinear Diffie-Hellman Problem: Let (q,G1,G2, e, P ) be a 5-tuple gen-
erated by G(k), and let a, b, c ∈ Z∗

q . The BDHP in G is as follows: Given (P, aP, bP, cP ) with

a, b, c ∈ Z∗
q , compute e(P, P )abc ∈ GT . The (t, ϵ) -BDH assumption holds in G if there is no

algorithm A running in time at most t such that

AdvBDH
G (A) = Pr[A(P, aP, bP, cP ) = e(P, P )abc] ≥ ϵ

where the probability is taken over all possible choices of (a, b, c). Here the probability is
measured over random choices of a, b, c ∈ Z∗

q and the internal random operation of A. More
formally, for any PPT algorithm A consider the following experiment:
Let G be an algorithm which on input 1k outputs a (description of a) group G of prime order
q (with |q| = k) along with a generator P ∈ G. The computational Diffie-Hellman (CDH)
problem is the following:

ExpCDH
G(k)

1. (G, q, P )← G(1k)
2. a, b, c← Z∗

q

3. U1 = aP,U2 = bP, U3 = cP
4. if W = e(P, P )abc return 1 else return 0

We assume that BDHP is a hard computational problem: letting q have the magnitude
2k where k is a security parameter, there is no polynomial time (in k) algorithm which has
a non-negligible advantage (again, in terms of k) in solving the BDHP for all sufficiently
large k.

Definition 4. Decisional Diffie-Hellman Problem : Let (q,G,GT , e, P ) be a 5-tuple
generated by G(k), and let a, b, c, r ∈ Z∗

q . The DBDHP in G is as follows: Given Given

(P, aP, bP, cP, r) with some a, b, c ∈ Z∗
q , Output is yes if r = e(P, P )abc and no otherwise.

The (t, ϵ)-HDDH assumption holds in G if there is no algorithm A running in time at most
t such that

AdvDBDH
G (A) = |Pr[A(P, aP, bP, cP, e(P, P )abc)) = 1]− Pr[A(P, aP, bP, cP, r) = 1]| ≥ ϵ

where the probability is taken over all possible choices of (a, b, c, h).

Definition 5. Hash Decisional Diffie-Hellman Problem :Let (q,G,GT , e, g) be a 5-
tuple generated by G(k),H : {0, 1}∗ → {0, 1}l be a secure cryptographic hash function,
whether l is a security parameter, and let x, y ∈ Z∗

q , h ∈ {0, 1}l, the HDDH problem in
G is as follows: Given (P, aP, bP, cP, h), decide whether it is a hash Diffie-Hellman tuple
((P, aP, bP, cPH(e(P, P )abc)). If it is right, outputs 1; and 0 otherwise. The (t, ϵ)-HDDH
assumption holds in G if there is no algorithm A running in time at most t such that

AdvHDDH
G (A) = |Pr[A(P, aP, bP, cPH(e(P, P )abc)) = 1]− Pr[A(P, aP, bP, cP, h) =

1]| ≥ ϵ

where the probability is taken over all possible choices of (a, b, h).

3 Notations

The following notations and system parameters are used throughout the article.

– P : a generator of order n on an Elliptic Curve E and satisfies n× P = O. where q is a
large prime number and O is a point at infinity.

– q : the order of the group.
– SKi, 1 ≤ i ≤ 4 : the established session key between node i and node j.
– Qi: the public key of sensor node i.
– λi : the private key of node i, λi ∈ Z∗

q .



4 Security Model

We follow the security model based on et.al. [5] [3]

– Protocol Participants: Each participant in authenticated multiple key establishment
protocol is a node i ∈ I.

– Protocol execution: The interaction between an adversary A and the protocol par-
ticipants occurs only via oracle queries, which model the adversary capabilities in a real
attack. During the execution, the adversary may create several instances of a partici-
pant. While in a concurrent model, several instances may be active at any given time,
only one active user instance is allowed for a given intended partner and password in a
non-concurrent model. Let U i denote the instance i of a participant U and let b be a bit
chosen uniformly at random. The query types available to the adversary are as follows:
• Execute(Ci, Sj): This query models passive attacks in which the attacker eavesdrops
on honest executions between a client instance Ci and a server instance Sj . The
output of this query consists of the messages that were exchanged during the honest
execution of the protocol.
• Send(U i,m):This query models an active attack, in which the adversary may tamper
with the message being sent over the public channel. The output of this query is the
message that the participant instance U i would generate upon receipt of message
m.
• Reveal(U i): This query models the misuse of session keys by a user. If a session key
is not defined for instance U i or if a Test query was asked to either U i or to its
partner, then return ⊥. Otherwise, return the session key held by the instance U i.
• Test(U i): This query tries to capture the adversary’s ability to tell apart a real
session key from a random one. If no session key for instance U i is defined, then
return the undefined symbol ⊥. Otherwise, return the session key for instance U i if
b = 1 or a random key of the same size if b = 0.

Notation. An instance U i is said to be opened if a query Reveal(U i) has been made by the
adversary.We say an instance U i is unopened if it is not opened. We say an instance U i has
accepted if it goes into an accept mode after receiving the last expected protocol message.
Partnering. The definition of partnering uses the notion of session identifications (sid). More
specifically, two instances U i

1 and U j
2 are said to be partners if the following conditions are

met: (i) Both U i
1 and U j

2 accept. (ii) Both U i
1 and U j

2 share the same session identifications;

(iii) The partner identification for U i
1 is U j

2 and vice-versa; and (iv) no instance other than

U i
1 and U j

2 accepts with a partner identification equal to U i
1 or U j

2 . In practice, the sid could
be taken to be the partial transcript of the conversation between the client and the server
instances before the acceptance.

Freshness. The notion of freshness is defined to avoid cases in which adversary can
trivially break the security of the scheme. The goal is to only allow the adversary to ask
Test queries to fresh oracle instances. More specifically, we say an instance U i is fresh if
it has accepted and if both U i and its partner are unopened. Semantic security. Consider
an execution of the key establishment protocol P by an adversary A, in which the latter is
given access to the Reveal, Execute, Send, and Test oracles and asks a single Test query to
a fresh instance, and outputs a guess bit b

′
. Such an adversary is said to win the experiment

defining the semantic security if b
′
= b, where b is the hidden bit used by the Test oracle. Let

Succ denote the event in which the adversary is successful. The advantage of an adversary
A in violating the semantic security of the protocol P .

Advake
P (A) = 2 · Pr[Succ]− 1 and Advake

P (t, R) = max{AdvakeP (A)}
Where maximum is considered over all A with most t time complexity using resources at
most R i.e the number of queries to its oracles. The definition of time-complexity that we
use henceforth is the usual one, which includes the maximum of all execution times in the
experiments defining the security plus the code size.

5 Proposed Protocol based on ECC

Consider two arbitrary nodes i and j would like to share session keys to establish secure
communication. Node i has computed long-term private and public key as Qi = λi · P .
Similarly node j has computed his long-term private and public key as Qj = λj · P .



The set of session key are computed by node i and j as follows

– Step-I Node i chooses two ri1 and ri2 randomly and computes Vi1 = ri1 · P , Vi2 =
ri2 · P . Where ri1, ri2 ∈ Z∗

q . Let Xi1 and Xi2 be x-coordinate of the points Vi1 and Vi2

respectively. Then node i computes Si by the following equation:

Si = λi − ri1Xi1 − ri2Xi2 mod n (1)

Node i sends the tuples {Vi1, Vi2, Si, Cert(Qi) to node j

– Step-II Similarly node j chooses rj1 and rj2 randomly and computes Vj1 = rj1 · P ,
Vj2 = rj2 · P . Where rj1, rj2 ∈ Z∗

q . let Xj1 and Xj2 be x-coordinate of the points Vj1

and Vj2 respectively. Node j computes Sj be the following equation:

Sj = λj − rj1Xj1 − rj2Xj2 mod n (2)

Node j sends the tuples {Vj1, Vj2, Sj , Cert(Qj) to node i

– Step-III Node i prove the validation of message by the following equation taking x-
coordinate Xj and Xj2 from Vj1 and Vj2.

Qj = Sj · P +Xj1 · Vj1 +Xj2 · Vj2 (3)

If it hold, node i compute the following set of session keys are

SK1 = ri1 · Vj1

SK2 = ri1 · Vj2

SK3 = ri2 · Vj1

SK4 = ri2 · Vj2

– Step-IV Similarly node j prove the validation of message by the following equation
taking x- coordinate Xi and Xi2 from Vi1 and Vi2.

Qi = Si · P +Xi1 · Vi1 +Xi2 · Vi2 (4)

If it hold, node i compute the following set of session keys as

SK1 = rj1 · Vi1

SK2 = rj1 · Vi2

SK3 = rj2 · Vi1

SK4 = rj2 · Vi2

The protocol is presented as



Node i Node j

Select ri1 and ri2 randomly
Where ri1, ri2 ∈ Z∗

q

Computes Vi1 = ri1 · P, Vi2 = ri2 · P
Computes Si = λi − ri1Xi1 − ri2Xi2 mod n

{Vi1, Vi2, Si, Cert(Qi)}
-

Take the Xi1 and Xi2 from Vi1 and Vi2

Verify Qi
?
= SiP +Xi1Vi1 +Xi2Vi2

If holds computes the Session key
SK1 = rj1 · Vi1

SK2 = rj2 · Vi1

SK3 = rj1 · Vi2

SK4 = rj1 · Vi2

Select random numbers rj1 and rj2
Where rj1, rj2 ∈ Z∗

q

Computes Vj1 = rj1 · P, Vj2 = rj2 · P
Computes Sj = λj − rj1Xj1 − rj2Xj2 mod n

{Vj1, Vj2, Sj , Cert(Qj)}
�

Take the Xj1 and Xj2 from Vj1 and Vj2

Verify Qj
?
= SjP +Xj1Vj1 +Xj2Vj2

If holds computes the Session key
SK1 = ri1 · Vj1

SK2 = ri1 · Vj1

SK3 = ri2 · Vj2

SK4 = ri2 · Vj2

6 Security Analysis

In this section, we analyze the security of our proposed protocol . The security of the
protocol is based on the difficulty of breaking of Elliptic Curve Discrete Logarithms. We
claim that the proposed protocol is resistant against attack on data integrity of sensor node.
Also this protect the known session keys, if the adversary can able to compute the previous
session keys. Subsequently we prove that the protocol achieves the most important security
requirement implicit key authentication and full forward secrecy.

Definition 6. Authentication multiple key establishment protocol is said to achieve the
property of data integrity, if there is no polynomial time algorithm that can alter or ma-
nipulate the transmitted messages.

Theorem 1 The proposed Protocol is resistant against the attack on data integrity if and
only if Elliptic Curve Discrete Logarithm Problem is hard to solve(ECDLP).

Proof : While the node i sends the sensitive data to another node j by the communication
channel, the adversary alter or manipulate the data and cheat the honest nodes by relying
the wrong session keys. Assume that, adversary would like to compute Si to validate the
verification equation-4 for cheating node j. He can select randomly two points Vi1 and Vi2

and extract the x-coordinate Xi1 and Xi2 respectively. After that, he has to find µ in the
elliptic curve that satisfies the Equation µ ·P = Qi−Xi1Vi1−Xi2Vi2. But to compute µ in
the elliptic curve, it is required for the adversary to solve Elliptic Curve Discrete Logarithm
Problem. Therefore it is computationally infeasible to forge a valid message to cheat node j
by relying invalid common session keys. �



Definition 7. A protocol can protect the subsequent session keys from disclosing even if the
previous session keys are revealed by the intendant user is called Known key security.

Theorem 2 It is computationally infeasible for an adversary to generate the correct session
keys even if the previous keys are disclosed.

Proof : Node i and j select fresh random number in each round of the protocol and compute
Si and Sj by equation-1 and 2. This implies that the four generated session keys are distinct
and does not depend in each round in the execution of the protocol. It is computationally
infeasible for the adversary to derive the random numbers in each round of the protocol that
need to compute the session key. Hence the proposed protocol is resistant against known
key attack. �

Definition 8. An authenticated multiple Key establishment protocol provides perfect for-
ward secrecy if the compromise of both the node’s secret keys cannot results in the compro-
mise of previously established session keys [10] [11].

Theorem 3 The proposed protocol provides perfect forward secrecy if and only if Elliptic
Curve Discrete Logarithm Problem is hard to solve(ECDLP).

Proof : From the above equation, Session keys are established by established by two random
numbers and the generator of group of points on Elliptic curve. Therefore if is infeasible
for the adversary to derive previous session keys by the long-term secret keys directly. The
adversary would like to take publicly known information and use the following equation to
derive possible session keys.
SKij = λiλj · P
λi = Si + ri1Xi1 + ri2 and λj = Sj + rj1Xj1 + rj2
λiλj = (Si + ri1Xi1 + ri2)(Sj + rj1Xj1 + rj2)
= SiSj + Sirj1Xj1 + Sirj2 + ri1Xi1Sj + ri1rj1Xi1Xj1 + ri1rj1Xi1 + ri2rj1Xj1 + ri2rj2
So λiλj ·P = (SiSj +Sirj1Xj1+Sirj2+ ri1Xi1Sj + ri1rj1Xi1Xj1+ ri1rj1Xi1+ ri2rj1Xj1+
ri2rj2) · P = SiSjP + Sirj1Xj1P + Sirj2P + ri1Xi1SjP + ri1rj1Xi1Xj1P + ri1rj1Xi1P +
ri2rj1Xj1P + ri2rj2P
= SiSjP + SiXj1Vj1 + SiXj2Vj2 + SjXi1Vi1 + SjXi2Vi2 + Xi1Xj1SK1 + Xi1Xj2SK2 +
Xi2Xj1SK3 +Xi2Xj2SK4

We can note that the above equation consists of four unknown variables. Therefore it
is not possible for the adversary to solve the equation to compute the correct session keys.
On the other hand, the adversary may try to compute random numbers ri1, ri2, rj1 and rj2
from the publicly known parameters Vi1, Vi2, Vj1 and Vj2. For that it need to solve ECDLP
problem. Hence the proposed protocol provides perfect forward secrecy.�

7 Proposed Protocol on Bilinear Pairings

Consider two arbitrary nodes i and j would like to share session keys to establish secure
communication. Node i has computed long-term private and public key as Qi = λi · P .
Similarly node j has computed his long-term private and public key as Qj = λj · P .

The set of session key are computed by node i and j as follows

– Step-I Node i chooses two ri1 and ri2 randomly and computes Vi1 = ri1 · P , Vi2 =
ri2 · P . Where ri1, ri2 ∈ Z∗

q . Let Xi1 and Xi2 be x-coordinate of the points Vi1 and Vi2

respectively. Then node i computes Si by the following equation:

Si = (ri1Xi1 + ri2Xi2) · Vi1 + λi · Vi2 mod n (5)

Node i sends the tuples {Vi1, Vi2, Si, Cert(Qi) to node j
– Step-II Similarly node j chooses rj1 and rj2 randomly and computes Vj1 = rj1 · P ,

Vj2 = rj2 · P . Where rj1, rj2 ∈ Z∗
q . let Xj1 and Xj2 be x-coordinate of the points Vj1

and Vj2 respectively. Node j computes Sj be the following equation:

Sj = (rj1Xj1 + rj2Xj2) · Vj1 + λj · Vj2 mod n (6)

Node j sends the tuples {Vj1, Vj2, Sj , Cert(Qj) to node i



– Step-III Node i prove the validation of message by the following equation taking x-
coordinate Xj and Xj2 from Vj1 and Vj2.

e(Sj , P ) = e(Xj1Vj1 +Xj2Vj2, Vj2) · e(Vj2, Qj) (7)

If it hold, node i compute the following set of session keys are

SK1 = e(ri1Vj1, Qi +Qj)
SK2 = e(ri1Vj2, Qi +Qj)
SK3 = e(ri2Vj1, Qi +Qj)
SK4 = e(ri2Vj2, Qi +Qj)

– Step-IV Similarly node j prove the validation of message by the following equation
taking x- coordinate Xi and Xi2 from Vi1 and Vi2.

e(Si, P ) = e(Xi1Vi1 +Xi2Vi2, Vi1) · e(Vi2, Qi) (8)

If it hold, node i compute the following set of session keys as

SK1 = e(rj1Vi1, Qi +Qj)
SK2 = e(rj1Vi2, Qi +Qj)
SK3 = e(rj2Vi1, Qi +Qj)
SK4 = e(ri2Vi2, Qi +Qj)

The protocol is presented as

Node i Node j

Select ri1 and ri2 randomly
Where ri1, ri2 ∈ Z∗

q

Computes Vi1 = ri1 · P, Vi2 = ri2 · P
Computes Si = (ri1Xi1 + ri2Xi2) · Vi1 + λi · Vi2 mod n

{Vi1, Vi2, Si, Cert(Qi)}
-

Take the Xi1 and Xi2 from Vi1 and Vi2

Verify e(Si, P )
?
= e(Xi1Vi1 +Xi2Vi2, Vi1) · e(Vi2, Qi)

If holds computes the Session key
SK1 = e(rj1Vi1, Qi +Qj)
SK2 = e(rj1Vi2, Qi +Qj)
SK3 = e(rj2Vi1, Qi +Qj)
SK4 = e(ri2Vi2, Qi +Qj)

Select random numbers rj1 and rj2
Where rj1, rj2 ∈ Z∗

q

Computes Vj1 = rj1 · P, Vj2 = rj2 · P and
Sj = (rj1Xj1 + rj2Xj2) · Vj1 + λj · Vj2 mod n

{Vj1, Vj2, Sj , Cert(Qj)}
�

Take the Xj1 and Xj2 from Vj1 and Vj2

Verify e(Sj , P )
?
= e(Xj1Vj1 +Xj2Vj2, Vj2) · e(Vj2, Qj)

If holds computes the Session key
SK1 = e(ri1Vj1, Qi +Qj)
SK2 = e(ri1Vj2, Qi +Qj)
SK3 = e(ri2Vj1, Qi +Qj)
SK4 = e(ri2Vj2, Qi +Qj)

8 Security Analysis

In this section, we analyze the security of our proposed protocol . The security of the
protocol is based on the difficulty of breaking of Elliptic Curve Discrete Logarithms. We



claim that the proposed protocol is resistant against attack on data integrity of sensor node.
Also this protect the known session keys, if the adversary can able to compute the previous
session keys. Subsequently we prove that the protocol achieves the most important security
requirement implicit key authentication and full forward secrecy.

Definition 9. Authentication multiple key establishment protocol is said to achieve the
property of data integrity, if there is no polynomial time algorithm that can alter or ma-
nipulate the transmitted messages.

Theorem 4 The proposed Protocol is resistant against the attack on data integrity if and
only if Elliptic Curve Discrete Logarithm Problem is hard to solve(ECDLP).

Proof : While the node i sends the sensitive data to another node j by the communication
channel, the adversary tries to alter or manipulate the data and cheat the honest nodes by
relying the wrong session keys. Assume that, adversary would like to compute Si to validate
the verification equation-4 for cheating node j. He can select randomly two points Vi1 and
Vi2 and extract the x-coordinateXi1 andXi2 respectively. After that, he has to find a Si that
satisfies the Equation e(SiP ) = e(Xi1Vi1+Xi2Vi2, Vi1) ·e(Vi2, Qi). But it is computationally
infeasible for the adversary to compute Si without the knowledge of λi by equation-1. To
compute λi from the known Qi for the adversary, it is required to solve ECDLP. Therefore
it is not possible to forge a valid message to cheat node j by relying invalid common session
keys. �

Definition 10. A protocol can protect the subsequent session keys from disclosing even if
the previous session keys are revealed by the intendant user is called Known key security.

Theorem 5 It is computationally infeasible for an adversary to generate the correct session
keys even if the previous keys are disclosed if and only if Elliptic Curve Discrite Logarithm
and Computational Diffie-Hellman Problem are hard.

Proof : Node i and j select fresh random number in each round of the protocol and compute
Si and Sj by using equation-1 and 2. This implies that the four generated session keys are
distinct and does not depend in each round in the execution of the protocol. Even the session
keys are reveled, it is not possible for the adversary to find the random numbers. Since to
compute the random numbers ri1, r12, rj1 and rj2 from the four session keys SK1, SK2, SK3

and SK4, it is required to solve ECDLP problem. So it is computationally infeasible for
an adversary to compute the long-term secret key by using equation-1 and 2 without the
knowledge of these random numbers. Hence the adversary does not collect the related infor-
mation to compute the later session keys. Further, all the four session keys are generated in
the execution of the protocol. Let us assume that the adversary can able to collect all the
four session keys SK1, SK2, SK3 and SK4 and try to derive the long-term session key SKij .
The adversary may try to compute SKij = e(λiλjP,Qi + Qj) from the respective public
keys Qi = λiP and Qj = λjP of nodes i and j. In order to compute λiλjP , the adversary
has to solve Computational Diffie-Hellman Problem. Further, the adversary tries to find the
random numbers ri1, ri2, rj1 and rj2 using SK1, SK2, SK3 and SK4. Hence we conclude
that, it is computationally infeasible to solve like this. Again λi and λj are unknown, the
adversary will have no enough information to derive long-term shared session key SKij from
the above equations.

SKij = e(λiλjP,Qi +Qj)
= e(λiλjP, λiP + λjP )
= e(P, λiP + λjP )λiλj

= e(P, P )λiλj(λi+λj)

Hence all the four session keys exist in the protocol and is resistant against known key
attack. �

Definition 11. An authenticated multiple Key establishment protocol provides perfect for-
ward secrecy if the compromise of both the node’s secret keys cannot results in the compromise
of previously established session keys [10] [11].



Theorem 6 The proposed protocol provides perfect forward secrecy if and only if Elliptic
Curve Discrete Logarithm Problem is hard to solve(ECDLP).

Proof : From the above equation, Session keys are established by two random numbers and
the generator of group of points on Elliptic curve. The four short-term session keys are
computed as

SK1 = e(ri1Vj1, Qi +Qj) = e(P, P )ri1rj1(λi+λj)

SK2 = e(ri1Vj2, Qi +Qj) = e(P, P )ri1rj2(λi+λj)

SK3 = e(ri2Vj1, Qi +Qj) = e(P, P )rj2rj1(λi+λj)

SK4 = e(ri2Vj2, Qi +Qj) = e(P, P )ri2rj2(λi+λj)

Long-term shared session key SKij is

SKij = e(λiλjP,Qi +Qj) = e(P, P )λiλj(λi+λj)

Hence the proposed protocol provides perfect forward secrecy.�

9 Conclusion

In this article we have proposed a novel construction of Multiple key establishment protocols
for WSNs which have the memory space required for each node is fixed. Also here the sensor
node can establish secure communications with other adjacent nodes by protecting the
subsequent session keys even if the previous session keys are revealed by the intendant user.
The protocol is secure against perfect forward key secrecy and modification attack. The
proposed protocol provides two significant advantages as (1) the memory space required for
each node is fixed. So it is compatible for implementation in WSN, (2) the sensor node can
establish secure communications with other adjacent nodes by protecting the subsequent
session keys.
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