
Plaintext Recovery Attacks Against WPA/TKIP∗

Kenneth G. Paterson, Bertram Poettering, and Jacob C.N. Schuldt

Information Security Group
Royal Holloway, University of London

March 1, 2014

Abstract

We conduct an analysis of the RC4 algorithm as it is used in the IEEE WPA/TKIP wireless
standard. In that standard, RC4 keys are computed on a per-frame basis, with specific key
bytes being set to known values that depend on 2 bytes of the WPA frame counter (called
the TSC). We observe very large, TSC-dependent biases in the RC4 keystream when the
algorithm is keyed according to the WPA specification. These biases permit us to mount an
effective statistical, plaintext-recovering attack in the situation where the same plaintext is
encrypted in many different frames (the so-called “broadcast attack” setting). We assess the
practical impact of these attacks on WPA/TKIP.

Keywords: WPA, TKIP, RC4, plaintext recovery attack.

1 Introduction

The cryptographic mechanisms that aim at protecting transmitted data in modern wireless com-
puter networks have seen an ongoing evolution. Most prominent are the results of the IEEE 802.11
standardization effort; amongst others, IEEE introduced Wired Equivalent Privacy (WEP) in
1999, Wi-Fi Protected Access (WPA) in 2003, and WPA2 in 2004.

In a nutshell, the WEP protocol [1] works as follows: when a message m is to be transmit-
ted, a CRC32 checksum is appended to it and the resulting string encrypted using RC4; the
corresponding packet-specific RC4 key consists of the concatenation of a monotonically increas-
ing sequence number and a shared secret. Practical attacks against integrity, authenticity, and
secrecy of transmitted data were reported soon after the publication of WEP, exploiting a wide
range of shortcomings of the protocol (including short sequence numbers, lack of randomization,
linearity of both RC4 encryption and CRC32, and others) [4]. Refined versions of these attacks
[5, 21, 19] rely on advanced cryptanalysis of RC4 and are based on the fact that the (public)
packet sequence number is part of the encryption key. Today, WEP is considered fully broken,
and its usage is discouraged even in the IEEE 802.11 standard itself.

To counter these attacks, IEEE decided to redesign the cryptographic components of their
wireless standards from scratch. Indeed, the WPA2 standard mandates support for encryption
based on the AES block cipher running in CCM mode instead of on RC4 [2]. However, as most
wireless devices implement their core cryptographic routines directly in silicon, switching from
WEP to WPA2 also requires the replacement of hardware in all involved network computers and
access points. In order to mitigate these costs, IEEE additionally proposed the Temporal Key
Integrity Protocol (TKIP) as part of the WPA standard as an intermediate solution1. The design

∗The research of the authors was supported by an EPSRC Leadership Fellowship, EP/H005455/1.
1Note that the WPA2 standard has optional support for TKIP for backward compatibility.

1

of WPA/TKIP is by intention quite close to that of the original WEP, so that all required mod-
ifications can be implemented using only firmware updates. Indeed, WPA/TKIP also encrypts
packets using RC4, but with (supposedly) better per-packet keys.

The intention of IEEE was that WPA/TKIP should only be a temporary standard during the
transition to WPA2. Indeed, it was recently announced that IEEE will deprecate WPA/TKIP
in 2014. Yet use of WPA/TKIP is still widespread. For example, the 2013 paper [23] reported
that 71% of 6803 different IEEE 802.11 networks surveyed still permit WPA/TKIP, with 19% of
those networks using encryption only allowing WPA/TKIP. Given its widespread use, and the
spurred on by the WEP fiasco, WPA/TKIP has received a good deal of attention from researchers,
including [13, 20, 7, 14, 19, 22, 23].

WPA/TKIP requires the 16-byte RC4 key K = (K0, . . . , K15) used to encrypt a frame to be
generated in a very specific way from the temporal encryption key TK (128 bits), the TKIP se-
quence counter TSC (48 bits, incremented for each frame that is transmitted), and the transmitter
address TA (48 bits). Specifically, K is computed via a so-called ‘key mixing’ procedure, which
we write as K← KM(TA, TK, TSC). Internally, KM implements key derivation by mixing together its
inputs using a custom 8-round Feistel cipher whose round function relies on the AES S-boxes.
Key K is derived from the output of this routine, with some structure added to “preclude the
use of known RC4 weak keys” [2]. More precisely, writing TSC = (TSC0, TSC1, . . . , TSC5), i.e., the
least-significant byte on the left, we have

K0 = TSC1 K1 = (TSC1 | 0x20) & 0x7f K2 = TSC0 (1)

and K3, . . . , K15 being assigned from the output of the Feistel cipher. Notably here, bytes K0, K1, K2
depend only on bytes TSC0 and TSC1 of TSC. Moreover, the bits of TSC1 are used twice. So the
bytes of K have more structure than they would if they were chosen with uniform distribution
(as is the case when RC4 is used in TLS, for example); in addition, as TSC values are public
information, partial information about K might be known to attackers.

Recently, AlFardan et al. [3] showed that RC4 with uniformly distributed keys (as in TLS)
is biased in its initial keystream bytes, and that these biases can be exploited in passive attacks
to recover plaintext. More specifically, they worked in the broadcast or multi-session setting,
wherein the same plaintext is repeatedly encrypted under different, independent keys. This
setting is readily realised for TLS protecting web traffic by using JavaScript code running in
the client’s browser to automatically generate the required encryptions, with the target plaintext
being a secure cookie belonging to the client. AlFardan et al. [3] presented two attacks on RC4 in
TLS, one based on single-byte biases in the initial keystream bytes, the other based on the long-
term Fluhrer-McGrew double-byte biases [6]. The first attack proceeds on a simple statistical
basis: given enough ciphertext samples encrypting the same plaintext, one may proceed position
by position, by simply trying each possibility for plaintext byte Pr (in position r), recovering the
corresponding keystream bytes Kr, and then selecting as the output plaintext byte Pr the one for
which the induced distribution on the keystream bytes has the highest likelihood when compared
to an empirical estimate of the distribution for that position. This attack, therefore, requires the
attacker to first build a good estimate of the keystream distribution in each output position r;
this was done in [3] using 244 random RC4 keys to get very accurate estimates of the keystream
byte distributions.

It is natural to ask whether the same techniques might be deployed against other applications
of the RC4 algorithm. In this paper, we address that question for WPA/TKIP.

1.1 Overview of Results

We begin by simply applying the single-byte plaintext recovery attack of AlFardan et al. [3]
to RC4 with keys generated according to the TKIP specification, as described above. More
exactly, we build a keystream estimate using 241 RC4 keys obtained by considering 219 random
choices for TK and TA, and then 222 TSC values (implemented as a counter with a random starting

2

value). We then simulate the single-byte bias attack of [3], again generating the RC4 keys and
ciphertexts according to the TKIP specification. This not only produces encouraging results in
terms of plaintext recovery, but also reveals intriguing behaviour in the biases and in the plaintext
recovery rates. The keystream biases that we observe exhibit more complex behaviour than for
the random 16-byte RC4 keys used in TLS and that were considered in [3] (see in particular,
Figures 2, 3 and 4 in Section 3 below). This makes plaintext recovery easier in some positions,
but harder in others when compared to the case of TLS.

In this first approach, the keystream estimates are calculated averaging over the values of the
pair (TSC0, TSC1), whereas it might be expected that there would also be keystream biases that
depend on the specific values of TSC0 and TSC1 because of the way the TKIP key K in turn depends
on these bytes. Thus it seems reasonable that, even though we have already observed significant
and exploitable biases in the course of developing our first attack on TKIP, quite different and/or
bigger biases might be found by sampling over keystreams for keys having specific values for the
TSC pair (TSC0, TSC1). In fact, we discover that the keystream distributions are not just different
for different (TSC0, TSC1) pairs – they are radically different. Moreover, very large biases in the
RC4 keystream distributions appear, much larger than were observed in our first analysis. In a
sense, these larger and different biases disappear to leave a different set of much smaller biases
behind when one averages over the TSC pair (TSC0, TSC1) as in our first attack

These (TSC0, TSC1)-dependent biases can be exploited to build a second, more powerful attack,
which, at a high level, works as follows:

1. Bin the available ciphertexts into 216 bins according to the value of the TSC pair (TSC0, TSC1).
This binning is possible in TKIP because the TSC field is sent in the clear in each frame’s
header.

2. Perform a likelihood analysis of plaintext candidates for each of the bins.

3. Combine the resulting plaintext likelihood estimates for the different bins in a statistically
sound procedure to get an estimate of the overall likelihood for each plaintext.

Essentially, while our first analysis effectively averages out any (TSC0, TSC1)-specific behaviour,
our second, more delicate analysis exploits it to the full. We refer to this attack as a (TSC0, TSC1)
binning attack.

This second approach once again requires the computation of keystream biases, but now we
need a good estimate of the distribution of keystream bytes in each output position r (1 ≤ r ≤
256) 2 for each of the 216 (TSC0, TSC1) pairs, a dataset containing 232 items. To gain a similar level
of accuracy for each (TSC0, TSC1) pair as we obtained for our first attack, we would need to compute
statistics for around 256 RC4 keystreams. This is currently well beyond our computational reach:
generating 240 RC4 keystreams currently takes about 4 days on our 16-core machine, and gives
estimates for keystream biases based on only 224 RC4 keystreams for each of the 216 (TSC0, TSC1)
pairs, while the desired computation would be 216 times larger (estimated at 222 core days).
The estimates for the biases that we get from 224 RC4 keystreams per (TSC0, TSC1) pair are
somewhat noisy, in the sense that they do not accurately reflect the true keystream distributions
except when there are large biases present. And, unfortunately, our experience is that using a
noisy set of keystream estimates introduces inaccuracies into our plaintext recovery attacks which
substantially reduces their success rates.

We present and investigate two methods to compensate for the problem of not having very
accurate estimates of the keystream biases for each (TSC0, TSC1) pair:

1. TSC1 is used to set two of the TKIP RC4 key bytes, so one may suspect that the keystream
biases would be particularly dependent on this single byte of TSC. We therefore carry out

2We focus on the keystream distributions in the first 256 bytes because we did not observe significant biases
beyond these bytes in our experiments, with the exception of byte 257.

3

the approach suggested above, but computing 28 keystream estimates, one for each value
of TSC1, instead of the original 216 estimates. In our experiments, we use 232 keystreams
to obtain each estimate, bringing the total computation up to that of 240 RC4 keystreams.
In the attack, we then bin the available ciphertexts into 28 bins according to the known
value of TSC1, perform our likelihood analysis for each bin, and then combine the results.
We refer to this attack as a TSC1 binning attack.

2. Based on a computation with 224 RC4 keystreams for each of the 216 (TSC0, TSC1) pairs,
and confirmed by larger computations for specific (TSC0, TSC1) pairs, we have observed
that there are many very large biases present in the (TSC0, TSC1)-specific keystreams. For
example, while the typical bias observed in our first (TSC-averaged) analysis is on the order
of ±2−16, we find that there are many thousands of (TSC0, TSC1)-specific biases on the order
of ±2−12 and larger. (See Figure 7(a) for a pictorial representation of the numbers of
such large biases across all (TSC0, TSC1) pairs in each position.) Heuristically, these biases
might be expected to dominate the plaintext recovery procedure. We therefore “de-noise”
our keystream distribution estimates by applying a cut-off procedure to them, setting all
probability estimates that fall within a threshold around 2−8 to an average value, and leaving
those that lie outside that threshold untouched. We then execute our binning attack using
these idealised keystream estimates.

Of course, these two methods can be combined, and we examine the effect of doing so on the
success rate of our plaintext recovery attacks.

As we shall see in Section 5, our attacks are effective. For example, using just the first method
above with 226 ciphertexts, we obtain an average success rate of 65% in recovering each of the
first 256 bytes of plaintext. The rate rises to higher than 90% in even positions, this improvement
being due to the presence of particularly large and TSC1-specific RC4 keystream biases in the even
positions when TKIP keys are used.

1.2 Related Work

In independent and concurrent work, Sen Gupta et al. [16] have identified biases in WPA that are
TSC-dependent, and speculated that there may be correlations between keystream bytes and linear
combinations of the known key bytes K0, K1, K2 (which are computed exclusively from the TSC).
This is similar to our approach. However, they did not perform a systematic search for biases, and
did not apply them to plaintext recovery except in positions 1, 2, 3, 256 and 257. Their approach
to plaintext recovery uses an ad hoc approach, with each linear combination being used to compute
a keystream estimate, which then suggests a plaintext byte. Our approach is likelihood-based,
and takes the reverse approach: for every possibility for the plaintext byte, and each (TSC0, TSC1)
pair (or TSC1 value), we compute the likelihood of the resulting induced keystream estimate, and
combine these estimates to select the plaintext having the highest likelihood. Note that this
recovery algorithm is optimal.

1.3 Paper Organisation

Section 2 provides further background on the RC4 stream cipher and its use in WPA. Section 3
reports biases in RC4 keystreams when RC4 is keyed according to the WPA specification, compar-
ing biases for random-TSC WPA keys with biases for keys generated according to specific values
of TSC1 and (TSC0, TSC1). Section 4 describes our plaintext recovery attacks on WPA that exploit
these biases. We evaluate the attacks in Section 5 via simulation. Finally, Section 6 discusses the
impact of and countermeasures to our attacks.

4

Algorithm 1: RC4 key scheduling (KSA)

input : key K of l bytes
output: initial internal state st0
begin

for i = 0 to 255 do
S[i]← i

j ← 0
for i = 0 to 255 do

j ← j + S[i] +K[i mod l]
swap(S[i],S[j])

i, j ← 0
st0 ← (i, j,S)
return st0

Algorithm 2: RC4 keystream generator (PRGA)

input : internal state str
output: keystream byte Zr+1

updated internal state str+1

begin
parse (i, j,S)← str
i← i+ 1
j ← j + S[i]
swap(S[i],S[j])
Zr+1 ← S[S[i] + S[j]]
str+1 ← (i, j,S)
return (Zr+1, str+1)

Figure 1: Algorithms implementing the RC4 stream cipher. All additions are performed mod-
ulo 256.

2 Further Background

2.1 The RC4 Stream Cipher

The stream cipher RC4, originally designed by Ron Rivest, became public in 1994 and found
application in a wide variety of cryptosystems; well-known examples include SSL/TLS, WEP [1],
WPA [2], and some Kerberos-related encryption modes [8]. RC4 has a remarkably short descrip-
tion and is extremely fast when implemented in software. However, these advantages come at
the price of lowered security: several weaknesses have been identified in RC4 [6, 5, 11, 10, 9, 17,
19, 18, 24].

Technically, RC4 consists of two algorithms: a key scheduling algorithm (KSA) and a pseudo-
random generation algorithm (PRGA), which are specified in Algorithms 1 and 2. The KSA
takes as input a key K, typically a byte-array of length between 5 and 32 (i.e., 40 to 256 bits),
and produces the initial internal state st0 = (i, j,S), where S is the canonical representation of
a permutation on the set [0, 255] as an array of bytes, and i, j are indices into this array. The
PRGA will, given an internal state str, output ‘the next’ keystream byte Zr+1, together with the
updated internal state str+1.

2.2 WPA

We describe the cryptographic operation of WPA when RC4 is selected as the encryption method
(referred to as TKIP). Our description is not complete, but provides sufficient detail to enable our
subsequent attacks to be understood. We refer the reader to our introduction for an explanation
of how TKIP generates its per-frame key K as a function K ← KM(TA, TK, TSC) of the temporal
encryption key TK (128 bits), the TKIP sequence counter TSC (48 bits), and the transmitter
address TA (48 bits). The per-frame key K is then used to produce an RC4 keystream, following
the above description. The initialisation of RC4 in WPA is the standard one for this algorithm.
Notably, none of the initial keystream bytes is discarded when RC4 is used in WPA, despite these
bytes having known weaknesses.

The TKIP plaintext (consisting of the frame payload, a 64-bit MAC value MIC , and a 32-bit
Integrity Check Vector ICV) is then XORed in a byte-by-byte fashion with the RC4 keystream,
i.e., the ciphertext bytes are computed as

Cr = Pr ⊕ Zr for r = 1, 2, 3, . . . ,

where Pr are the individual bytes of P , and Zr are the RC4 keystream bytes. The data transmitted

5

0.387%'

0.388%'

0.389%'

0.390%'

0.391%'

0.392%'

0.393%'

0.394%'

0.395%'

0' 32' 64' 96' 128' 160' 192' 224' 256'

Pr
ob

ab
ili
ty
*

Byte*value*

(a) Biases at position Z1

0.389%'

0.390%'

0.391%'

0.392%'

0.393%'

0.394%'

0.395%'

0' 32' 64' 96' 128' 160' 192' 224' 256'

Pr
ob

ab
ili
ty
*

Byte*value*

(b) Biases at position Z17

0.389%'

0.390%'

0.391%'

0.392%'

0.393%'

0.394%'

0' 32' 64' 96' 128' 160' 192' 224' 256'

Pr
ob

ab
ili
ty
*

Byte*value*

(c) Biases at position Z33

0.389%'

0.390%'

0.391%'

0.392%'

0.393%'

0' 32' 64' 96' 128' 160' 192' 224' 256'

Pr
ob

ab
ili
ty
*

Byte*value*

(d) Biases at position Z49

Figure 2: Measured distribution of the TKIP keystream at positions Z1, Z17, Z33, and Z49 (blue).
These estimates were obtained by considering more than 241 KM-generated keys. For reference,
we overlay the biases of the RC4 keystream with random 128-bit keys (red).

over the air then has the form
HDR||C ,

where C is the concatenation of the bytes Cr and HDR is the unencrypted frame header.

3 Biases in the RC4 Keystream for WPA Keys

In the context of our analysis, we need to assess the strength of biases in the RC4 output streams
for the keys K output by KM. If strong biases exist, then an attack on WPA is likely to be feasible
using the ideas sketched in the introduction. That is, in a setting where the same plaintext
message is repeatedly transmitted in a WPA-protected wireless network, one can expect that this
plaintext is (at least partially) recoverable.

3.1 Fully Aggregated Biases for TKIP

We first experimentally determined single-byte keystream biases in WPA, without regard to TSC

values (as would be consumed in a direct application of the attack from [3]). We refer to the biases
obtained as being fully aggregated biases, since they are computed by using random TSC values and
hence can be considered as being generated by aggregating over all (TSC0, TSC1) pairs (in contrast
to the (TSC0, TSC1)-pair-specific biases that we consider below). More precisely, we implemented
the KM key derivation function, verified it against the test vectors from [2, Annex M.1.2], and

6

0.390%&

0.391%&

0.392%&

0.393%&

0.394%&

0& 16& 32& 48& 64& 80& 96& 112& 128& 144& 160& 176& 192& 208& 224& 240& 256&

Pr
ob

ab
ili
ty
*

Byte*posi/on*

Figure 3: Strength of the bias towards 0x00 of TKIP keystream bytes at positions 1–256 (blue).
The red line corresponds to the biases of RC4 with random 128-bit keys.

computed keys

KM(TA, TK, TSC), KM(TA, TK, TSC + 1), . . . , KM(TA, TK, TSC + (222 − 1))

for 219 random assignments of variables TA, TK, TSC, aiming at modelling a realistic application
of TKIP. Considering all resulting 241 RC4 keys, we measured the distribution of keystream
bytes at positions 1–256. Independently, from the set of all keys K consistent with equation (1),
we generated 241 random keys (i.e., with random TSC, but also setting K3, . . . , K15 randomly
instead of using the Feistel cipher). We identified the corresponding keystream distributions at
the same positions. We observed that the difference between these two sets of distributions is
small, allowing us to make the assumption that the action of the Feistel cipher does not affect the
output distribution of RC4. We hence base all of our further observations on statistics obtained
from random keys conforming with (1). Here, and throughout, we use AES with a fixed key in
counter mode to generate any random values needed (so that they are in fact pseudorandom, and
we are relying on AES being a good block cipher to ensure our keys are well distributed).

In contrast to the internal Feistel cipher of KM, the structure on RC4 keys implied by equa-
tion (1) has a significant influence on the aggregated biases in TKIP. For instance, at positions
17, 33, 49, 65, 81, and 97 (i.e., 16k + 1 for small k), new peaks in the distribution show up that
do not appear in RC4 with random 128-bit keys. For the distributions at positions 17, 33, and 49
see Figures 2(b), 2(c), and 2(d). Even more extreme is the difference at position 1, shown in
Figure 2(a). It is also interesting to observe how the bias towards 0x00 behaves in the TKIP
case: the probability Pr(Zr = 0x00) is persistently smaller than in the case of random 128-bit
keys at positions 2–32 and 128–160, whereas for the other positions its value alternates from byte
to byte between being significantly larger and being significantly smaller than the corresponding
probabilitiy for uniform keys. This is illustrated in Figure 3, which compares the strength of
the bias towards 0x00 for TKIP and for random 128-bit RC4 keys. Finally, to make it easier
to compare the TKIP-specific biases with the biases for random 128-bit keys in [3], we present
Figure 4, in which we depict side-by-side the full set of biases for both cases. Figure 4(c) shows
the differences between the two sets of biases; blue and red pixels show the places where the
biases differ significantly.

It is an interesting theoretical problem to explain the differences between RC4 biases for
random 128-bit keys and TKIP keys (though we stress that having such an explanation does not
affect the performance of our attacks to follow).

3.2 (TSC0, TSC1)-pair-specific Biases for TKIP

As explained in the introduction, we wish to examine how the biases in RC4 keystreams for TKIP
keys depend on the (TSC0, TSC1) byte pair used in defining the keys. For each (TSC0, TSC1) pair,
we computed 224 RC4 keystreams by assigning the bytes K0, K1, K2 according to the (TSC0, TSC1)

7

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

Position [1...256]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

(a) Biases in RC4 keystream (ran-
dom 128-bit keys)

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

Position [1...256]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

(b) Biases in RC4 keystream
(TKIP keys)

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

Position [1...256]

-0.5

-0.25

 0

 0.25

 0.5

(c) Map indicating the difference
between Figures 4(a) and 4(b).

Figure 4: Pictorial representation of biases in RC4 keystreams for random 128-bit keys and
for TKIP keys, for different positions (x-axis) and byte values (y-axis). For each position we
encode the bias in the keystream for the (position,value) combination as a colour; in Figures 4(a)
and 4(b) the colouring scheme encodes the absolute biases, i.e., the absolute difference between
the occurring probabilities and the (expected) probability 1/256, scaled up by a factor of 216,
capped to a maximum of 0.5. In Figure 4(c), the colour encodes the difference between the
absolute biases arising for random 128-bit keys and for TKIP keys, scaled up by a factor of 216

and capped to the range [−0.5, 0.5]. We provide high-resolution versions of Figures 4(a)–4(c) on
pages 22–24.

pair (as per the specification, see equation (1)) and assigning the remaining 13 key bytes at
random.

Using each set of 224 RC4 keys, we then computed the distribution of keystream bytes at
positions 1–256, giving a dataset containing 256 keystream byte distributions for each of the 216

(TSC0, TSC1) pairs. Of course, it is not possible to represent such a large dataset in full here, but we
provide two small samples in Figures 5 and 6. The former shows how the distribution of keystream
byte Z1 depends heavily on the value of the (TSC0, TSC1) pair. The latter shows how different
is the distribution of keystream bytes in a variety of positions for a specific (TSC0, TSC1) pair,
(0x00, 0x00), when compared to the fully aggregated results reported above. This is indicative
that plaintext recovery attacks that focus on exploiting biases arising for individual (TSC0, TSC1)
pairs may perform better than those working with fully aggregated biases.

Our plaintext recovery attacks to be presented in Section 4 proceed on a position-by-position
basis, and can be expected to work well in a given position r if there are large biases in that
position over the different (TSC0, TSC1) pairs. Figure 7(a) shows that large biases are indeed
plentiful and well-spread over the keystream positions. For instance, it reveals that the 256
strongest biases at positions 1–128 have a value of about 2−11, with a couple of exceptions where
strengths of more than 2−10 can be reported. Even more impressive are the many thousands of
biases of strength > 2−10 at positions 1–3. Also for position 256 many thousands of relatively
strong biases do exist. The interesting structure in intervals 32–128 and 160–256, where positions
with strong biases alternate with positions having no strong biases, will considerably affect the
recovery rate of our attacks, as we will see. To conclude, the numbers of large biases seen is
significantly larger than one would expect if the keystream bytes were uniformly random. For
example, with 224 keystreams per (TSC0, TSC1) pair, we would expect the count for each byte
value in each position to follow a (roughly) Normal distribution with mean 216 and standard
deviation σ approximately 28. We would then expect the number of counts outside the range[
216 − 210, 216 + 210

]
(i.e., outside the 4σ range) to be roughly 0.2%, whereas the actual rate of

such counts is about 1.5–2% for at least half of the positions, and for some positions even larger.
We recall from the introduction our hunch that the TKIP keystream biases would be partic-

ularly dependent on the single byte TSC1. To test this, we used our bias data for all (TSC0, TSC1)
pairs to compute TSC0-aggregated biases, that is, we aggregated our previous data over TSC0 val-

8

0.250%&

0.300%&

0.350%&

0.400%&

0.450%&

0.500%&

0.550%&

0& 32& 64& 96& 128& 160& 192& 224& 256&

Pr
ob

ab
ili
ty
*

Byte*value*

(a) Biases for (TSC0, TSC1) = (0x00, 0x00)

0.250%&

0.300%&

0.350%&

0.400%&

0.450%&

0.500%&

0.550%&

0& 32& 64& 96& 128& 160& 192& 224& 256&

Pr
ob

ab
ili
ty
*

Byte*value*

(b) Biases for (TSC0, TSC1) = (0x00, 0x20)

0.250%&

0.300%&

0.350%&

0.400%&

0.450%&

0.500%&

0.550%&

0& 32& 64& 96& 128& 160& 192& 224& 256&

Pr
ob

ab
ili
ty
*

Byte*value*

(c) Biases for (TSC0, TSC1) = (0x8F, 0x34)

0.250%&

0.300%&

0.350%&

0.400%&

0.450%&

0.500%&

0.550%&

0.600%&

0.650%&

0& 32& 64& 96& 128& 160& 192& 224& 256&

Pr
ob

ab
ili
ty
*

Byte*value*

(d) Biases for (TSC0, TSC1) = (0xFF, 0xFF)

Figure 5: Measured distribution of the TKIP RC4 keystream at position Z1 for (TSC0, TSC1) pairs
(0x00, 0x00), (0x00, 0x20), (0x8F, 0x34), (0xFF, 0xFF) (blue). These estimates were obtained by
considering more than 236 keys per (TSC0, TSC1) pair. For reference, we overlay the corresponding
fully aggregated TKIP keystream biases (red).

ues to obtain 28 different keystream distributions for positions 1–256, one distribution for each
value of TSC1. Effectively, this gives us distribution estimates based on 232 keystreams for each
value of TSC1. We then compared the original distributions to the TSC0-aggregated data.

An indication towards the correctness of our hunch is provided by Figure 7(b) that reports
strengths of biases similarly to Figure 7(a) – however aggregating over TSC0 values as described.
Indeed, both the obvious similarity of the graphs and the applied scaling factor of 256 along the
y-axis are exactly as expected when assuming that each strong bias in the aggregated counts
appears 256 times in the plain (unaggregated) counts. This suggests that our hunch concerning
the relative importance of TSC1 is correct, and gives weight to the idea of considering TSC0-
aggregated biases in our plaintext recovery attack (the first of our two methods designed to
compensate for the problem of not having very accurate keystream bias estimates as mentioned
in the introduction).

Given a fixed position in the keystream, our attack on TKIP works best if there are strong bi-
ases for many (TSC0, TSC1) combinations (or TSC1 values) for that position. In practice, only TKIP
frames with such TSC values will contribute noticeably to plaintext recovery. While Figures 7(a)
and 7(b) tell us that quite large biases do exist almost everywhere in the first 256 positions of
the RC4 keystream for some TSC values, it is yet unclear for which TSC values they occur. We
provide Figures 8(a) and 8(b) to shed more light on the distribution of ‘bias-friendly’ TSC values.
We see that for positions 1–3, 16–17, 32–33, 48–49, 64–65, 80–81, and 96–97 strong biases exist
for more than 50% of all TSC1 values. Orthogonally to that, a TSC1 value of 127 guarantees strong
biases in the first 128 keystream positions. Further, it is quite interesting to trace the origin of

9

0.385%'

0.390%'

0.395%'

0.400%'

0.405%'

0.410%'

0' 32' 64' 96' 128' 160' 192' 224' 256'

Pr
ob

ab
ili
ty
*

Byte*value*

(a) Biases at position Z17

0.340%&

0.380%&

0.420%&

0.460%&

0.500%&

0.540%&

0& 32& 64& 96& 128& 160& 192& 224& 256&

Pr
ob

ab
ili
ty
*

Byte*value*

(b) Biases at position Z33

0.3898%'

0.3904%'

0.3909%'

0.3915%'

0.3920%'

0' 32' 64' 96' 128' 160' 192' 224' 256'

Pr
ob

ab
ili
ty
*

Byte*value*

(c) Biases at position Z129

0.330%%

0.340%%

0.350%%

0.360%%

0.370%%

0.380%%

0.390%%

0.400%%

0% 32% 64% 96% 128% 160% 192% 224% 256%

Pr
ob

ab
ili
ty
*

Byte*value*

(d) Biases at position Z256

Figure 6: Measured distribution of the TKIP keystream at positions Z17, Z33, Z129, Z256 for
(TSC0, TSC1) pair (0x00, 0x00) (blue; see Figure 5(a) for distribution of Z1). These estimates
were obtained by considering more than 236 keys per TSC pair. For reference, we overlay the
corresponding fully aggregated TKIP keystream biases (red).

the alternating behaviour in Figures 7(a) and 7(b) at position ranges 32–128 and 160–256. Fi-
nally, note the strong tendency at positions 1–128 of the TKIP cipher to produce byte values 128
and 129, and also value 65 at positions 1–64.

Again, we note that finding the underlying reasons for the observed bias behaviours in TKIP
keystreams is an interesting theoretical problem.

4 Plaintext Recovery Attacks

4.1 The Attack of AlFardan et al.

The idea behind the single-byte bias attack of AlFardan et al. [3] is to first obtain a detailed
picture of the distributions of RC4 keystream bytes Zr, for all positions r of interest, by gathering
statistics from keystreams generated using a large number of independent keys. That is, for all r,
we (empirically) estimate

pr,k := Pr(Zr = k), k = 0x00, . . . , 0xFF,

where the probability is taken over a random choice of the RC4 encryption key. In [3], these keys
were taken to be random 128-bit values, reflecting how session keys are set in TLS; for TKIP,
these keys should be generated according to the procedure described in Section 3.1.

The second step in the approach of [3] is to use the pr,k estimates to recover plaintext using
a maximum-likelihood approach, as follows. Suppose we have S ciphertexts C1, . . . , CS available

10

 0

 512

 1024

 1536

 2048

 2560

 3072

 3584

 4096

 1 32 64 96 128 160 192 224 256

B
ia

se
s

o
rd

e
re

d
 b

y
 s

tr
e
n
g
th

Position [1...256]

 0

 8

 16

 24

 32

 40

 48

 56

 64

(a) Largest 4096 biases of the RC4 keystream, taken
over all 216 (TSC0, TSC1) combinations

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 32 64 96 128 160 192 224 256

B
ia

se
s

o
rd

e
re

d
 b

y
 s

tr
e
n
g
th

Position [1...256]

 0

 8

 16

 24

 32

 40

 48

 56

 64

(b) Largest 16 biases of the RC4 keystream, taken over
all 28 aggregated counts for TSC1

Figure 7: Pictorial representation of the number of large biases in TKIP keystream distributions
across different positions in the keystream. For each position we show the strengths of the largest
biases, sorted in descending order (largest bias on the bottom line). The colouring scheme encodes
the absolute difference between the occurring probabilities and the (expected) probability 1/256,
scaled up by a factor of 216, capped to a maximum of 64.

for our attack (for the r-th byte of ciphertext Cj we write Cj,r). For any fixed position r and any

candidate plaintext byte µ for that position, vector (N
(µ)
0x00, . . . , N

(µ)
0xFF) with

N
(µ)
k = |{j | Cj,r = k ⊕ µ}1≤j≤S | (0x00 ≤ k ≤ 0xFF)

represents the distribution on Zr required to obtain the observed ciphertext bytes {Cj,r}1≤j≤S by
encrypting µ. We compare these induced distributions (one for each possible µ) with the accurate
distribution pr,0x00, . . . , pr,0xFF and interpret a close match as an indication for the correspond-
ing plaintext candidate µ being the correct one, i.e., Pr = µ. More formally, we observe that
the probability λµ that plaintext byte µ is encrypted to ciphertext bytes {Cj,r}1≤j≤S follows a
multinomial distribution:

λµ =
S!

N
(µ)
0x00! · · ·N

(µ)
0xFF!

∏
k∈{0x00,...,0xFF}

p
N

(µ)
k

r,k . (2)

The approach of [3] then determines the (optimal) maximum-likelihood plaintext byte value µ
by computing λµ for all 0x00 ≤ µ ≤ 0xFF and identifying µ such that λµ is largest. Algorithm 3
more formally specifies the described attack, incorporating some optimizations discussed in [3]
(in particular, as the fraction in equation (2) is independent of µ, we compute the λµ values only
up to that constant; in fact, we actually compute and compare log λµ, rather than λµ).

4.2 Attack Based on (TSC0, TSC1) Pair Binning

We next discuss our extension of the attack in Algorithm 3 that uses the single-byte RC4 biases,
along with their strengths, on a per (TSC0, TSC1) pair basis. For ease of notation, we let TSC

denote the pair (TSC0, TSC1) in mathematical expressions.
The idea is to first obtain a detailed picture of the distributions of RC4 keystream bytes Zr,

for all positions r in some range, on a per (TSC0, TSC1) pair basis, by gathering statistics from
keystreams generated using a large number of keys (224 per (TSC0, TSC1) pair in our case). That
is, for all r in our selected range, we now estimate

pTSC,r,k := Pr(Zr = k), TSC = (0x00, 0x00), . . . , (0xFF, 0xFF) , k = 0x00, . . . , 0xFF ,

11

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

T
S
C

1
 [

0
..
.2

5
5

]

Position [1...256]

 0

 0.5

 1

 1.5

 2

(a) Strength of largest available bias for each combi-
nation of position and TSC1 value

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

Position [1...256]

 0

 0.5

 1

 1.5

 2

(b) Strength of largest available bias for each combi-
nation of position and byte value

Figure 8: Pictorial representation of the correlation between position in TKIP keystream, TSC1
value (respectively, byte value), and the corresponding strength of the largest occurring bias.
The colouring scheme encodes the absolute difference between the occurring probabilities and
the (expected) probability 1/256, scaled up by a factor of 216, capped to a maximum of 2. We
provide high-resolution versions of Figures 8(a) and 8(b) on pages 25 and 26, respectively.

where the probability is taken over the random choice of the RC4 encryption key K, subject to
the structure on K0, K1, K2 induced by TSC = (TSC0, TSC1).

Using these biases pTSC,r,k, in a second step, plaintext can be recovered using a variation of
the preceding maximum-likelihood approach, as follows.

Suppose we have S ciphertexts C1, . . . , CS available for our attack. We partition these into 216

groups according to the value of the (TSC0, TSC1) pair; for convenience, we assume the resulting
bins of ciphertexts are all of equal size T = S/216, but this need not be the case. Let the bin of
ciphertexts associated with a particular TSC = (TSC0, TSC1) pair be denoted STSC and have mem-
bers CTSC,j for j = 1, . . . , T ; we denote the byte at position r of CTSC,j by CTSC,j,r. For any fixed

position r and any candidate plaintext byte µ for that position, vector (N
(µ)

TSC,0x00
, . . . , N

(µ)

TSC,0xFF
)

with
N

(µ)

TSC,k
= |{j | CTSC,j,r = k ⊕ µ}1≤j≤T | (0x00 ≤ k ≤ 0xFF)

represents the distribution on Zr required to obtain the observed ciphertext bytes {CTSC,j,r}1≤j≤T
for bin STSC by encrypting µ. We compare these induced distributions (one for each possible µ
and for each possible (TSC0, TSC1) pair) with the accurate distribution pTSC,r,0x00, . . . , pTSC,r,0xFF
and interpret a close match as being an indication for the corresponding plaintext candidate µ
being the correct one, i.e., Pr = µ, in bin STSC. The probability λTSC,µ that plaintext byte µ is
encrypted to ciphertext bytes {CTSC,j,r}1≤j≤T in bin STSC now follows a multinomial distribution:

λTSC,µ =
T !

N
(µ)

TSC,0x00
! · · ·N (µ)

TSC,0xFF
!

∏
k∈{0x00,...,0xFF}

p
N

(µ)

TSC,k

TSC,r,k
. (3)

The probability that plaintext byte µ is encrypted to ciphertext bytes {CTSC,j,r}1≤j≤T across all
bins STSC can then be precisely calculated as

λµ =
∏

(0x00,0x00)≤TSC≤(0xFF,0xFF)

λTSC,µ .

12

Algorithm 3: Single-byte bias attack from [3]

input : {Cj}1≤j≤S – S independent encryptions of fixed plaintext P
r – byte position
(pr,k)0x00≤k≤0xFF – keystream distribution at position r

output: P ∗r – estimate for plaintext byte Pr
begin

N0x00 ← 0, . . . , N0xFF ← 0
for j = 1 to S do

NCj,r ← NCj,r + 1

for µ = 0x00 to 0xFF do
for k = 0x00 to 0xFF do

N
(µ)
k ← Nk⊕µ

λµ ←
∑0xFF

k=0x00N
(µ)
k log pr,k

P ∗r ← arg maxµ∈{0x00,...,0xFF} λµ
return P ∗r

By computing λµ for all 0x00 ≤ µ ≤ 0xFF, and identifying µ such that λµ is largest, we deter-
mine the (optimal) maximum-likelihood plaintext byte value. This informal description, together
with some optimisations that we describe next, is specified in algorithmic form in Algorithm 4.

Observe that, for each fixed position r and set of ciphertexts {CTSC,j,r}1≤j≤T , values N
(µ)

TSC,k

can be computed from values N
(µ′)

TSC,k
by equation N

(µ)

TSC,k
= N

(µ′)

TSC,k⊕µ′⊕µ, for all k. In other words,

for a fixed (TSC0, TSC1) pair, vectors (N
(µ)

TSC,0x00
, . . . , N

(µ)

TSC,0xFF
) and (N

(µ′)

TSC,0x00
, . . . , N

(µ′)

TSC,0xFF
) are

permutations of each other; by consequence, the term T !/(N
(µ)

TSC,0x00
! · · ·N (µ)

TSC,0xFF
!) in equation (3)

is a constant for each choice of µ (but not necessarily constant across different values for the
(TSC0, TSC1) pair). If T is fixed (as we assume it to be), then the T ! terms can all be omitted
from all calculations. Furthermore, computing and comparing log(λTSC,µ) and log(λµ) instead
of λTSC,µ and λµ makes the computation more efficient and accuracy easier to maintain.

Comparing with Algorithm 3, we see that our new Algorithm 4, at its core, runs Algorithm 3
once for each (TSC0, TSC1) pair, and then combines the resulting likelihood estimates λTSC,µ to
obtain the final estimate λµ for plaintext candidate µ. Some care is needed, however, to use the

correct scaling factors (T ! and N
(µ)

TSC,0x00
! · · ·N (µ)

TSC,0xFF
!) for each (TSC0, TSC1) pair.

4.3 Attack Based on Aggregation over TSC0 Values

As mentioned in the introduction, one method of coping with noisy estimates for the probabilities
pTSC,r,k is to consider aggregation of biases over TSC0. This is supported by the experiments
reported in Section 3.2, where we saw that there is broad agreement between the TSC0-aggregated
data and the data for individual (TSC0, TSC1) pairs.

It is not difficult to see how to modify Algorithm 4 to work with 28 bins, one for each value
of TSC1, instead of 216 bins. The execution of the modified algorithm becomes in practice faster,
since each estimate for a plaintext byte µ now only involves calculation of λTSC,µ over 28 TSC1

values instead of 216 (TSC0, TSC1) pair values.

4.4 Further Optimizations

In specific settings where the attacker has a priori information about the encrypted plaintext the
performance of Algorithms 3 and 4 can be further improved. Here, the considerations are similar
to those in [3] and so we omit further discussion.

13

Algorithm 4: Plaintext recovery attack using (TSC0, TSC1) binning

input : {CTSC,j}(0x00,0x00)≤TSC≤(0xFF,0xFF),1≤j≤T – S = 216 · T independent encryptions of
fixed plaintext P
r – byte position
(pTSC,r,k)(0x00,0x00)≤TSC≤(0xFF,0xFF),0x00≤k≤0xFF – keystream distributions for all

(TSC0, TSC1) pairs at position r
output: P ∗r – estimate for plaintext byte Pr
begin

N(0x00,0x00),0x00 ← 0, . . . , N(0xFF,0xFF),0xFF ← 0

for TSC = (0x00, 0x00) to (0xFF, 0xFF) do
for j = 1 to T do

k ← CTSC,j,r

NTSC,k ← NTSC,k + 1

for TSC = (0x00, 0x00) to (0xFF, 0xFF) do
FTSC ←

∑
0x00≤j≤0xFF log((NTSC,j)!)

for µ = 0x00 to 0xFF do
for k = 0x00 to 0xFF do

N
(µ)

TSC,k
← NTSC,k⊕µ

λTSC,µ ← −FTSC +
∑0xFF

k=0x00N
(µ)

TSC,k
log(pTSC,r,k)

for µ = 0x00 to 0xFF do
λµ ←

∑
(0x00,0x00)≤TSC≤(0xFF,0xFF) λTSC,µ

P ∗r ← arg maxµ∈{0x00,...,0xFF} λµ
return P ∗r

5 Experimental Results

In this section, we report on the results obtained by simulating the plaintext recovery attacks
described in Section 4. To be exact, we did not mount the attacks against real TKIP traffic, but
instead generated TKIP ciphertexts corresponding to a plaintext consisting of 0x00 bytes and
then tested our attacks’ abilities to recover this plaintext.

5.1 Attack Using Fully Aggregated Biases

We first ran 256 times the attack in Algorithm 3 for each of S = 224, 226, 228, 230 simulated
frames to estimate the attack’s success rate. We used the fully aggregated biases described in
Section 3.1 in the attack. The results are shown in Figures 9(a)–9(d), which display the success
rate of recovering the correct plaintext byte versus the byte position r in the keystream. Some
notable features of these figures are:

• With S = 226 frames, the first 55 plaintext bytes are recovered with rate at least 50%
per byte. Comparing Figure 9(b) with the corresponding Figure 5(a) from [3] created for
random 128-bit keys reveals that many plaintext bytes are recovered with a significantly
higher rate in the TKIP case, leading to a higher average recovery rate.

• With S = 230 frames, the first 130 plaintext bytes are recovered with rate close to 100%;
the first 211 bytes are recovered with rate at least 50%. Note again that, while according
to Figure 5(c) in [3] for random 128-bit keys the first 251 bytes are recovered with at least
50% probability, in the TKIP case many plaintext bytes are recovered with significantly
higher probability.

14

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

Re
co
ve
ry
(ra

te
(

Byte(posi/on(

(a) 224 frames

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

Re
co
ve
ry
(ra

te
(

Byte(posi/on(

(b) 226 frames

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

Re
co
ve
ry
(ra

te
(

Byte(posi/on(

(c) 228 frames

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

Re
co
ve
ry
(ra

te
(

Byte(posi/on(

(d) 230 frames

Figure 9: Success rate for 256 runs of attack based on fully aggregated TKIP biases using 224,
226, 228 and 230 simulated frames (4, 16, 64, and 256 keys generating 222 frames each).

• Independently of the number S of considered frames, the recovery rate is highly correlated
with the strength of the bias towards 0x00 at the same position: to see this, compare
Figures 9(a)–9(d) with Figure 3.

By comparing Figure 9 with the corresponding figures in [3], we observe that the structure on keys
enforced by (1), which was aiming to ‘preclude the use of known RC4 weak keys’ [2] (to prevent
WEP key recovery), effectively allows easier recovery of plaintext bytes than with uniform keys,
at least in some positions.

5.2 Attacks Using TSC Binning

Secondly, we simulated the attack based on (TSC0, TSC1) pair binning described in Algorithm 4,
as well as the variant of the attack described in Section 4.3 which aggregates the biases over all
TSC0 values. For both attacks, we used per-output-byte probabilities {pTSC,r,k}1≤r≤256,0x00≤k≤0xFF
derived from the keystream distribution estimate described in Section 3.2. Recall that this
estimate was generated based on 224 RC4 keystreams for each of the 216 (TSC0, TSC1) pairs.
To judge the effect of noise in the keystream distribution estimate, we furthermore simulated
the attacks using an idealised estimate. Specifically, we used a modified set of per-output-byte
probabilities {p′

TSC,r,k
}1≤r≤256,0x00≤k≤0xFF for which all probabilities corresponding to a bias below

a threshold of four times the standard deviation for a normal distribution were replaced by the
average value of these probabilities. All of the simulations were done for 224 frames and each
attack was run 256 times. The resulting recovery rates are shown in Figures 10(a)–10(d). We
make the following observations:

15

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

Re
co
ve
ry
(ra

te
(

Byte(posi/on(

(a) Attack based on (TSC0, TSC1) pair binning using
non-idealised keystream distribution estimate.

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

Re
co
ve
ry
(ra

te
(

Byte(posi/on(

(b) Attack based on (TSC0, TSC1) pair binning using
idealised keystream distribution estimate.

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

Re
co
ve
ry
(ra

te
(

Byte(posi/on(

(c) Attack based on aggregation of TSC0 values using
non-idealised keystream distribution estimate.

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

Re
co
ve
ry
(ra

te
(

Byte(posi/on(

(d) Attack based on aggregation of TSC0 values using
idealised keystream distribution estimate.

Figure 10: Success rate for attacks on TKIP based on (TSC0, TSC1) pair binning and aggregation
of TSC0 values, for both idealised and non-idealised keystream distribution estimates. All success
rates are based on 256 runs of each attack using 224 simulated frames.

• The recovery rate for all byte positions improves significantly for the attack based on full
(TSC0, TSC1) binning when using an idealised keystream distribution estimate. This in-
dicates that the level of noise in our keystream distribution estimate based on 224 RC4
keystreams for each (TSC0, TSC1) pairs has an adverse effect on the recovery rate and is too
significant for the binning attack to work optimally.

• The recovery rate for the attack based on aggregation over TSC0 values is very similar when
using idealised and non-idealised keystream distribution estimates. The recovery rate in the
latter case is in fact slightly higher than in the former. This indicates that the idealisation,
using a threshold of four times the standard deviation of the normal distribution, removes
structure from the keystream distribution estimate that would otherwise improve the re-
covery rate, and that the level of noise does not have a significant effect on the recovery
rate. Note that when aggregating over all TSC0 values, the keystream distribution estimate
for each TSC1 value is based on 232 RC4 keystreams.

• The recovery rate for the attack based on aggregation over all TSC0 values is noticeably
higher than the recovery rate for the attack based on full (TSC0, TSC1) binning, even if using
an idealised keystream distribution estimate in the latter case.

Based on the above observations, we decided to study in more detail the attack based on
aggregation over all TSC0 values using a non-idealised keystream estimate. Specifically, we ran

16

the simulation of this attack 256 times for S = 220, 222, 224, 226, 228 simulated frames. The
resulting recovery rates can be seen in Figures 10(c) and 11(a)–11(d). We observe the following:

• Even with as few as S = 220 frames, a few positions of the plaintext are correctly recovered
with high probability. In particular, byte positions 1, 2 and 256 are recovered with a rate of
100%, whereas positions that are low multiples of 16 are recovered with a rate higher than
50%.

• With S = 222 frames, 26 positions are recovered with a rate higher than 80%, and the av-
erage recovery rate is 24%. In comparison, for 224 frames, the attack using fully aggregated
biases recovers only 7 positions with a rate higher than 80% and has an average recovery rate
of 13% (cf. Figure 9(a)). Furthermore, the recovery rate for even positions is comparable
to that of the attack using fully aggregated biases for 226 frames (cf. Figure 9(b)).

• With S = 226 frames, 146 positions are recovered with a rate higher than 80%, and the
average recovery rate has increased to 65%. This is similar to the corresponding numbers
for the attack using fully aggregated biases, but with 228 frames. The recovery rate for the
even positions has furthermore increased to 90%.

• For up to S = 226 frames, the number of positions recovered with a rate above 80% and the
average recovery rate seems to exceed or match the corresponding numbers for the attack
using fully aggregated biases with four times the number of frames. For even positions, the
number of frames required in the attack using fully aggregated biases to get comparable
recovery rates seems to be a factor of 16 larger.

To enable easy comparison of the different attacks, Figure 12(a) shows the recovery rate for
224 frames for both the attack using fully aggregated biases and the attack based on aggregation of
TSC0 values, and Figure 12(b) shows the average recovery rates of the two attacks as the number
of frames increases. As can be seen from these figures and the comparisons made above, the
attack based on aggregation of TSC0 values is noticeably more successful in correctly recovering
the correct plaintext bytes, in particular at even plaintext positions.

6 Practical Impact, Countermeasures and Open Problems

We have shown that plaintext recovery for RC4 in WPA is possible for the first 256 bytes of a
frame, provided sufficiently many independent encryptions of the same plaintext are available.
Certainly, the security level provided by RC4 is far below the strength implied by the 128-bit key
in WPA. We are confident that the attacks could be improved further by using more accurate
estimates of the TKIP keystream distributions in our full (TSC0, TSC1) binning attack; obtaining
these estimates is simply a matter of computation.

6.1 Practical Impact

Concerning the practical impact of our attacks, we note that WPA frames are quite likely to
contain fixed, but known bytes, as well as fixed but unknown bytes. Examples of the former were
already used in keystream recovery attacks against TKIP, as a prelude to MIC key recovery and
frame injection attacks — see, for example, [20, 23]. The latter would be suitable targets for our
attacks and would include fields in IP, UDP and TCP headers, such as source and destination
IP addresses, the IP header protocol field, and UDP and TCP port numbers. Another target of
potential interest would be passwords or cookies in HTTP traffic (that are not already protected
with TLS), with Javascript running in a browser as in [3] providing one possible mechanism to
generate the traffic needed in the attacks.

We do not claim that our work enables practical attacks against WPA, in the same way that
the work of [20, 23] does, for example. Rather our work unveils some fundamental weaknesses

17

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

Re
co
ve
ry
(ra

te
(

Byte(posi/on(

(a) 220 frames

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

Re
co
ve
ry
(ra

te
(

Byte(posi/on(

(b) 222 frames

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

Re
co
ve
ry
(ra

te
(

Byte(posi/on(

(c) 226 frames

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

Re
co
ve
ry
(ra

te
(

Byte(posi/on(

(d) 228 frames

Figure 11: Success rate for attack on TKIP based on aggregation of TSC0 values for 256 simu-
lations, each using 220, 222, 226, and 228 frames. See Figure 10(c) for the success rate for 224

frames.

in the way in which RC4 is employed in WPA which make it easier to attack in the broadcast
setting than should be the case. In this sense, our paper places limits on the security that can
be achieved by WPA.

Our work does bear further comparison with previous attacks on WPA, however. In par-
ticular, we stress that our attacks are passive, ciphertext-only attacks, with modest ciphertext
requirements. This contrasts with the active attacks of [20, 23] and the known-plaintext attack
of [19]. The active attacks are rate-limited, in that they cannot recover more than 1 byte of
plaintext per minute (this is because of peculiarities of the way in which WPA reacts to MAC
errors). The attack of [19] requires 238 known plaintexts and has complexity 296. On the other
hand, our attacks have a repeated (but unknown) plaintext requirement and can only target the
initial bytes in a frame; furthermore, we only recover plaintext, in contrast to the key-recovery
attack of [19].

6.2 Countermeasures

There are some countermeasures to the attacks. These include:

• Discarding the initial keystream bytes output by RC4, as recommended in [12] (but then
double-byte-bias attacks like those developed in [3] may still be applicable).

• Changing the manner in which WPA’s RC4 keys are computed (but then the analysis of
RC4 in TLS from [3] might apply, so security might be increased, but not all known attacks
eliminated).

18

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

Re
co
ve
ry
(ra

te
(

Byte(posi/on(

(a) Recovery rate for 224 frames.

0%#

20%#

40%#

60%#

80%#

100%#

18# 20# 22# 24# 26# 28# 30# 32#

Re
co
ve
ry
(ra

te
(

Number(of(frames((log)(

(b) Average recovery rate.

Figure 12: Comparison of attack using fully aggregated biases (red) and attack based on aggre-
gation over all TSC0 values (blue). Figure (a) shows the recovery rates of the two attacks for
256 runs each with 224 simulated frames. Figure (b) shows the average recovery rates of the two
attacks. The dashed lines correspond to the average recovery rates for even positions.

• Abandoning TKIP and switching to CCMP, a confidentiality mode that is based on the
CCM authenticated encryption scheme.

Of these, the third is the only one that can be recommended, since the first two would still leave
vulnerabilities and would require further changes to the WPA/TKIP specification.

6.3 Open Problems

Open problems suggested by this paper include:

• Carrying out a larger-scale computation to obtain more accurate estimates of the per
(TSC0, TSC1) pair keystream distributions, and investigating the effect of using these better
estimates in our (TSC0, TSC1) binning attack.

• Explaining the genesis of the RC4 keystream biases when TKIP keys are used. This has
already been completed to some extent for the case of random 128-bit keys (as used in TLS)
in [15], and it seems plausible that similar techniques could be deployed for the TKIP case.
Indeed, recent progress on this problem has been made in [16]. A full theoretical description
of the TKIP biases would obviate the need for extensive computations to establish the
keystream distributions.

• Extending the 2-byte plaintext recovery attack of [3] to TKIP. This would, potentially,
enable plaintext recovery attacks beyond the first 256 positions in each frame. It is also
possible that there are strong dependencies between adjacent pairs of keystream bytes in
the initial positions. A large computation would be needed to test this.

• Exploring whether it is possible to combine our attack methods with those of [19] to
avoid the onerous known plaintext requirements of those previous attacks, and investi-
gating whether it is possible to improve TKIP TK key recovery attacks further by using
TSC-specific biases.

• Studying other applications of RC4 in which the RC4 key is changed frequently.

Acknowledgements

We thank Jon Hart of the ISG at RHUL for his assistance with computing infrastructure.

19

References

[1] Wireless LAN medium access control (MAC) and physical layer (PHY) specification, 1997.

[2] Wireless LAN medium access control (MAC) and physical layer (PHY) specification: Amend-
ment 6: Medium access control (MAC) security enhancements, 2004.

[3] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. N. Schuldt.
On the security of RC4 in TLS. In USENIX Security, 2013. https://www.usenix.org/

conference/usenixsecurity13/security-rc4-tls.

[4] N. Borisov, I. Goldberg, and D. Wagner. Intercepting mobile communications: The insecurity
of 802.11. In C. Rose, editor, MOBICOM, pages 180–189. ACM, 2001.

[5] S. R. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling algorithm of
RC4. In S. Vaudenay and A. M. Youssef, editors, Selected Areas in Cryptography, volume
2259 of Lecture Notes in Computer Science, pages 1–24. Springer, 2001.

[6] S. R. Fluhrer and D. McGrew. Statistical analysis of the alleged RC4 keystream generator.
In B. Schneier, editor, FSE, volume 1978 of Lecture Notes in Computer Science, pages 19–30.
Springer, 2000.

[7] F. M. Halvorsen, O. Haugen, M. Eian, and S. F. Mjølsnes. An improved attack on TKIP. In
A. Jøsang, T. Maseng, and S. J. Knapskog, editors, NordSec, volume 5838 of Lecture Notes
in Computer Science, pages 120–132. Springer, 2009. ISBN 978-3-642-04765-7.

[8] K. Jaganathan, L. Zhu, and J. Brezak. The RC4-HMAC Kerberos Encryption Types Used
by Microsoft Windows. RFC 4757 (Informational), Dec. 2006. http://www.ietf.org/rfc/
rfc4757.txt.

[9] S. Maitra, G. Paul, and S. Sen Gupta. Attack on broadcast RC4 revisited. In A. Joux,
editor, FSE, volume 6733 of Lecture Notes in Computer Science, pages 199–217. Springer,
2011.

[10] I. Mantin. Predicting and distinguishing attacks on RC4 keystream generator. In R. Cramer,
editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 491–506.
Springer, 2005.

[11] I. Mantin and A. Shamir. A practical attack on broadcast RC4. In M. Matsui, editor, FSE,
volume 2355 of Lecture Notes in Computer Science, pages 152–164. Springer, 2001.

[12] I. Mironov. (Not so) random shuffles of RC4. In M. Yung, editor, CRYPTO, volume 2442
of Lecture Notes in Computer Science, pages 304–319. Springer, 2002.

[13] V. Moen, H. Raddum, and K. J. Hole. Weaknesses in the temporal key hash of WPA. Mobile
Computing and Communications Review, 8(2):76–83, 2004.

[14] M. Morii and Y. Todo. Cryptanalysis for RC4 and breaking WEP/WPA-TKIP. IEICE
Transactions, 94-D(11):2087–2094, 2011.

[15] S. Sarkar, S. Sen Gupta, G. Paul, and S. Maitra. Proving TLS-attack related open biases of
RC4. Cryptology ePrint Archive, Report 2013/502, 2013. http://eprint.iacr.org/.

[16] S. Sen Gupta, S. Maitra, W. Meier, G. Paul, and S. Sarkar. Some results on RC4 in WPA.
Cryptology ePrint Archive, Report 2013/476, 2013. http://eprint.iacr.org/.

[17] S. Sen Gupta, S. Maitra, G. Paul, and S. Sarkar. (Non-) random sequences from (non-)
random permutations – analysis of RC4 stream cipher. Journal of Cryptology, 27(1):67–108,
2014.

20

https://www.usenix.org/conference/usenixsecurity13/security-rc4-tls
https://www.usenix.org/conference/usenixsecurity13/security-rc4-tls
http://www.ietf.org/rfc/rfc4757.txt
http://www.ietf.org/rfc/rfc4757.txt
http://eprint.iacr.org/
http://eprint.iacr.org/

[18] P. Sepehrdad, S. Vaudenay, and M. Vuagnoux. Discovery and exploitation of new biases in
RC4. In A. Biryukov, G. Gong, and D. R. Stinson, editors, Selected Areas in Cryptography,
volume 6544 of Lecture Notes in Computer Science, pages 74–91. Springer, 2010.

[19] P. Sepehrdad, S. Vaudenay, and M. Vuagnoux. Statistical attack on RC4 – distinguishing
WPA. In K. G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer
Science, pages 343–363. Springer, 2011.

[20] E. Tews and M. Beck. Practical attacks against WEP and WPA. In D. A. Basin, S. Capkun,
and W. Lee, editors, WISEC, pages 79–86. ACM, 2009. ISBN 978-1-60558-460-7.

[21] E. Tews, R.-P. Weinmann, and A. Pyshkin. Breaking 104 bit WEP in less than 60 seconds. In
S. Kim, M. Yung, and H.-W. Lee, editors, WISA, volume 4867 of Lecture Notes in Computer
Science, pages 188–202. Springer, 2007.

[22] Y. Todo, Y. Ozawa, T. Ohigashi, and M. Morii. Falsification attacks against WPA-TKIP in
a realistic environment. IEICE Transactions, 95-D(2):588–595, 2012.

[23] M. Vanhoef and F. Piessens. Practical verification of WPA-TKIP vulnerabilities. In K. Chen,
Q. Xie, W. Qiu, N. Li, and W.-G. Tzeng, editors, ASIACCS, pages 427–436. ACM, 2013.
ISBN 978-1-4503-1767-2.

[24] S. Vaudenay and M. Vuagnoux. Passive-only key recovery attacks on RC4. In C. M. Adams,
A. Miri, and M. J. Wiener, editors, Selected Areas in Cryptography, volume 4876 of Lecture
Notes in Computer Science, pages 344–359. Springer, 2007.

A Keystream Biases for Random 128-bit Keys and TKIP Keys

In the following, the graphical representations of the biases in the RC4 keystream, for random
128-bit keys and TKIP keys, that are shown in Figures 4(a), 4(b), 8(a), and 8(b), are reproduced
in a larger format.

21

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

Position [1...256]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Figure 13: Pictorial representation of biases in RC4 keystreams for random 128-bit keys, for
different positions (x-axis) and byte values (y-axis). For each position we encode the bias in
the keystream for the (position,value) combination as a colour; the colouring scheme encodes the
absolute biases, i.e., the absolute difference between the occurring probabilities and the (expected)
probability 1/256, scaled up by a factor of 216, capped to a maximum of 0.5.

22

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

Position [1...256]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Figure 14: Pictorial representation of biases in RC4 keystreams for TKIP keys, for different posi-
tions (x-axis) and byte values (y-axis). For each position we encode the bias in the keystream for
the (position,value) combination as a colour; the colouring scheme encodes the absolute biases,
i.e., the absolute difference between the occurring probabilities and the (expected) probabil-
ity 1/256, scaled up by a factor of 216, capped to a maximum of 0.5.

23

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

Position [1...256]

-0.5

-0.25

 0

 0.25

 0.5

Figure 15: Pictorial representation of the difference of biases in RC4 keystreams for random keys
and TKIP keys, for different positions (x-axis) and byte values (y-axis). At each point we encode
as a colour the difference between the absolute biases arising for random 128-bit keys and for
TKIP keys for the specific (position,value) combination, scaled up by a factor of 216 and capped
to the range [−0.5, 0.5]

24

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

T
S
C

1
 [

0
..
.2

5
5

]

Position [1...256]

 0

 0.5

 1

 1.5

 2

Figure 16: Pictorial representation of the correlation between position in TKIP keystream, TSC1
value, and the corresponding strength of the largest occurring bias. The colouring scheme encodes
the absolute difference between the occurring probabilities and the (expected) probability 1/256,
scaled up by a factor of 216, capped to a maximum of 2.

25

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

B
y
te

 v
a
lu

e
 [

0
..
.2

5
5

]

Position [1...256]

 0

 0.5

 1

 1.5

 2

Figure 17: Pictorial representation of the correlation between position in TKIP keystream, byte
value, and the corresponding strength of the largest occurring bias. The colouring scheme encodes
the absolute difference between the occurring probabilities and the (expected) probability 1/256,
scaled up by a factor of 216, capped to a maximum of 2.

26

	Introduction
	Overview of Results
	Related Work
	Paper Organisation

	Further Background
	The RC4 Stream Cipher
	WPA

	Biases in the RC4 Keystream for WPA Keys
	Fully Aggregated Biases for TKIP
	(TSC0,TSC1)-pair-specific Biases for TKIP

	Plaintext Recovery Attacks
	The Attack of AlFardan et al.
	Attack Based on (TSC0,TSC1) Pair Binning
	Attack Based on Aggregation over TSC0 Values
	Further Optimizations

	Experimental Results
	Attack Using Fully Aggregated Biases
	Attacks Using TSC Binning

	Practical Impact, Countermeasures and Open Problems
	Practical Impact
	Countermeasures
	Open Problems

	Keystream Biases for Random 128-bit Keys and TKIP Keys

