
Dietary Recommendations for
Lightweight Block Ciphers:

Power, Energy and Area Analysis of
Recently Developed Architectures

Lejla Batina1,2, Amitabh Das2, Barış Ege1

Elif Bilge Kavun3, Nele Mentens2,4, Christof Paar3

Ingrid Verbauwhede2, Tolga Yalçın3

1Inst. for Computing and Information Sciences, Radboud University Nijmegen, The Netherlands
2ESAT/COSIC, KU Leuven & iMinds, Belgium

3Horst Görtz Institute for IT-Security, Ruhr University Bochum, Germany
4ACRO/ES&S, Katholieke Hogeschool Limburg, Belgium

Abstract. In this paper we perform a comprehensive area, power, and energy
analysis of some of the most recently-developed lightweight block ciphers and
we compare them to the standard AES algorithm. We do this for several different
architectures of the considered block ciphers. Our evaluation method consists
of estimating the pre-layout power consumption and the derived energy using
Cadence Encounter RTL Compiler and ModelSIM simulations. We show that the
area is not always correlated to the power and energy consumption, which is of
importance for mobile battery-fed devices. As a result, this paper can be used to
make a choice of architecture when the algorithm has already been fixed; or it can
help deciding which algorithm to choose based on energy and key/block length
requirements.

1 Introduction

In the past decade various proposals for “lightweight” symmetric ciphers have been
made. Among more carefully investigated ones are Clefia [20], HIGHT [21], KATAN
[4], mCrypton [22], and PRESENT [3]. This turned into a very active area of research as
evident by several algorithms proposed over the course of the past two years, including
KLEIN [18], LED [1], Piccolo [2] and PRINCE [16]. The dominant metric used in the
majority of the proposals has been the number of gate equivalence, or GE, needed for
realizing the cipher in hardware. This number is derived by dividing the silicon area
used for a cipher with a given standard-cell library by the area of a two-input NAND
gate. Hence, the popular gate equivalence count can be thought of as a normalized
area measure. Even though helpful, the metric does not answer all questions regarding
lightweight ciphers.

The purpose of the investigation at hand is to perform a comprehensive area, power,
and energy analysis of some of the most recently-developed lightweight block ciphers
along with the well-known block ciphers, which can be helpful for both the engineer-
ing and theoretical communities concerned with lightweight cryptography. Given that



lightweight algorithms are particularly interesting for battery-powered or passive sys-
tems such as RFID tags, a valid energy prediction is very desirable.

In the most recent work of Kerckhoff et al. [15], the area, power consumption,
throughput and energy of 6 block ciphers are evaluated. Conclusions are drawn with
respect to round unrolling, parallelism and pipelining. The paper at hand covers 11
lightweight block cipher architectures (of 7 different lightweight block ciphers) and
6 different AES architectures. The differences between the AES architectures are not
limited to round unrolling, parallelism and pipelining, but are based on specific de-
sign choices. This gives a more fair comparison of the standardized AES to recently-
developed lightweight block ciphers.

Other related works in the past were focused mainly on other, more specific aspects
of low-cost applications. For instance, the work of Singelée et al. [14] focuses on the
computation and communication energy budget of authentication protocols for active
RFID tags. Accordingly, they consider other cryptographic primitives that can be used
for authentication i.e. ECC-based protocols. On the other hand, the AES algorithm as
the main standard for encryption in the past decade, has been already evaluated on the
energy consumption in several previous studies [8, 11, 17]. In particular the work of
Tilich et al. [17] examines several different AES S-box implementations that are based
on three different design strategies. The results addressed the consequences of different
design strategies on critical path delay, silicon area, and power consumption.

All those works contributed to the better understanding of low-cost design princi-
ples. As mentioned above, the requirements of extreme low-cost applications of today
require more lightweight solutions as advocated by the new block ciphers’ proposals.
Our work extends those studies with an extensive suite of recent lightweight symmetric
schemes.

The paper is organized as follows. In Sect. 2, the considered block ciphers are briefly
revisited together with the specific architectures. Sect. 3 elaborates on our analysis
methodology. Finally, Sect. 4 presents and discusses the results and Sect. 5 concludes
the paper.

2 Background

In this section, we provide background information on the evaluated block cipher archi-
tectures. The information is grouped according to similarities in the architectures.

2.1 Parallel Implementation of Block Ciphers

We have implemented fully parallel versions of AES-128, CLEFIA-128, PRESENT-
80, LED-128, KLEIN-64, mCrypton-96 and PRINCE-128, where the number next to
each cipher represents the key length chosen for the implementation. Among these,
AES and CLEFIA are 128-bit block ciphers, whereas all others are 64-bit. For a fair
comparison, we have implemented the encryption-only version of each cipher. All the
implemented block ciphers share the same structure. Any such block cipher can be
implemented as shown in Fig. 1, where the round function is instantiated only once. In
this case, the initial input (upon a start signal) of the round function is the sum of the



input key and the plaintext (i.e. the initial state). It is processed by the combinational
round function and the next state is generated. It is then stored in the state register,
whose output becomes the input to the round function in the next cycle. The iteration is
as many rounds as the cipher is defined for. Finally, the ciphertext can be taken either
from the state register output or some internal node of the round function block. In some
cases, a final whitening key may also be added onto the value from the output node to
generate the ciphertext (as in the case of PRINCE). The datapath width inside the round
function block is equal to the cipher block size, i.e. 128 bits for AES and CLEFIA, 64
bits for all others, while the datapath width of the key scheduling block depends on
the selected key size. In the case of LED, we use a fixed key (fixed means either the
original input key, or a function of it). Fig. 2 illustrates the no key-update case for such
a round-based implementation.

round 
function

ptext

key sch 
roundkey

roundinit
state 

update

ctext

Fig. 1. Folded (round-based) implementation of a generic block cipher

This is basically the design strategy we used in all our parallel implementations. In
order to keep the round numbers minimum, we got the ciphertext from internal nodes
inside the round function instead of the outputs of the state registers. This way, it was
ensured that the cipher could be run in maximal throughput, that is the distance between
two consecutive starts is equal to the number of rounds.

We furthermore implemented parallel versions of AES in various flavors. Mainly,
we focused on the S-box, which is the most area consuming unit inside the AES al-
gorithm. The first implementation (AES lut 128) uses lookup-table based S-boxes. The
second version implements the S-box in the composite field GF((24)2) (AES 4 2 128),
and the third version in the composite field GF(((22)2)2) (AES 2 2 2 128), both as ex-
plained in [5]. We have also observed that the isomorphic transform matrices used for
composite implementations are very area-consuming due to the high number of 1’s in-
side, that correspond to XOR gates in hardware. In order to reduce these number of 1’s,



round 
function

ptext

key

roundinit
state 

update

ctext

Fig. 2. Folded (round-based) implementation of a generic block cipher – no key schedule

it is possible to use other isomorphic matrices, that are affine equivalent to the origi-
nal matrices. Of course, this requires that the corresponding affine and inverse affine
transformations have to be applied to the plaintext and ciphertext, respectively. Simi-
larly, the key scheduling has to be also carried on the affine equivalent “domain”. De-
pending on the choice of the affine transformation, it is possible to reduce the area or
the power consumption or both of the overall design. We chose transforms that would
minimize the power consumption, and have implemented two more flavors of AES,
namely affine-transformed in the composite field GF((24)2) (AES iso 4 2 128), and
affine-transformed in the composite field GF(((22)2)2) (AES iso 2 2 2 128).

2.2 Unfolded Implementation of PRINCE

Since PRINCE is originally designed for unfolded implementation, i.e. all round func-
tions are realized within a single cycle without need for a state register, we have also
added an unfolded version of PRINCE. It is basically a realization of PRINCE with
all 12 rounds unfolded. In our unfolded implementation strategy, the key is added to
the input plaintext to generate the initial state followed by various numbers of identical
rounds in order to update the state. This is shown in Fig. 3 for the unfolded version of
a generic three-round block cipher. However, as PRINCE uses a fixed key, we actually
implement the no key-update version of this implementation. Fig. 4 illustrates this case.

2.3 Implementation of KATAN

KATAN is a block cipher that belongs to a family of small and efficient hardware-
oriented block ciphers. KATAN ciphers include KATAN32, KATAN48, and KATAN64.
All three ciphers use 80-bit keys and have a different block size (KATANn has an n-bit



round 
function

ptext

key sch 
round

key

round 
function

key sch 
round

round 
function

key sch 
round

round -1 round -2 round -3init

ctext

Fig. 3. Unfolded implementation of a generic 3-round block cipher

round 
function

ptext

key

round 
function

round 
function

round -1 round -2 round -3init

ctext

Fig. 4. Unfolded implementation of a generic 3-round block cipher – no key schedule



block size). All three block ciphers are highly compact,with the one having the smallest
block size resulting in the smallest circuit area of only 801 GEs.

In KATAN, the plaintext is loaded in two registers. In each round, several bits are
taken from the registers and entered in two nonlinear Boolean functions. The output
of the Boolean functions is loaded to the least significant bits of the registers (after
they are shifted). This is done in an invertible manner. To ensure sufficient mixing, 254
rounds of the cipher are executed. A round counting LFSR is used instead of a counter,
for counting the rounds to stop the encryption after 254 rounds, and to introduce more
diffusion as well. As there are 254 rounds, an 8-bit LFSR with a sparse feedback poly-
nomial can be used. The LFSR is initialized with some state, and the cipher has to stop
running the moment the LFSR arrives to the predetermined state. The key schedule of
the KATAN cipher loads the 80-bit key into another LFSR (the least significant bit of
the key is loaded to position 0 of the LFSR). In each round, positions 79 and 78 of the
LFSR are generated as the round’s subkey, and the LFSR is clocked twice [4].

2.4 Compact Implementation of AES

The compact AES core, as described by Moradi et al. [12] (AES small core), is byte-
based. It uses only one S-box, which is implemented using composite field arithmetic in
GF(((22)2)2) [5]. Note that Moradi et al. suggest to use scan-flip-flops, while we follow
the conventional tool flow that does not introduce a scan-flip-flop for the combination
of a multiplexer and a flip-flop. We also did not make an effort in reducing the area of
the control logic, which results in an area (reported in Table 1) that is larger than the
area reported by Moradi et al.

3 Analysis Strategy

3.1 Architectural Decisions

In order to perform a fair comparison, we make the following architectural decisions:

– All inputs and outputs of the cipher are buffered through a flip-flop.
– We consider encryption-only architectures. This is justified by the fact that the most

popular modes of operation do not need decryption [24].

3.2 Evaluation of Design Parameters

The area reports are generated after hierarchical synthesis in Cadence Encounter RTL
Compiler using UMC 130 nm low-leakage Faraday technology library. The area num-
bers in the tables are given in terms of two-input NAND gate equivalents (GEs).

Each module is first synthesized for the best power. We used Cadence Encounter
RTL Compiler in this step. The implementations have been synthesized in UMC 130
nm low-leakage Faraday technology library. The generated netlists are then used to
simulate the actual module with 100 random keys together with 10 random plaintexts
per key to get the best statistics. From these simulations, SAIF files are generated, which
also contain the toggle counts. All simulations are performed using Modelsim. In the
last step, the SAIF files are sent back to the synthesis tool together with the netlist from
the initial synthesis to run power analysis.



4 Results

In this section, we list the generated design properties for the different architectures.
Further, we detect anomalies based on the fact that we expect the dynamic power con-
sumption to be larger for designs with a larger area. The anomalies represent archi-
tectures of which (some) gates contribute less to the static and/or dynamic power con-
sumption than the gates of other architectures. This is mainly related to the number of
transistors that are conducting (for the static power consumption) and the number of
nodes that switch (for the dynamic power consumption). The energy per bit is calcu-
lated by dividing the total power by the clock frequency and then multiplying by the
cycle count, followed by dividing by the block length.

A comparison of the AES architectures in Table 1 shows that AES small core con-
sumes less area and power than the other 5 parallel cores, as expected. However, be-
cause of the large number of required cycles to perform the computation, the energy
consumption is higher than the parallel architectures. The parallel architectures only
differ in the way the S-box was implemented. The table shows that the architectural
differences in the S-boxes cause significant differences in area, power and energy. The
reason for some architectures to have a larger dynamic power consumption compared
to others while they have a smaller area is probably caused by the fact that these archi-
tectures give rise to more internal glitches. The reason for some architectures to have a
larger static power consumption compared to others while they have a smaller area is
probably caused by the fact that parts of the architecture are not being used all the time
during the computation.

KLEIN parallel in Table 2 is a round-wise implementation which processes 1 round
of KLEIN-64 in one clock cycle. However, KLEIN serial in the same table is a byte se-
rialized implementation of the same version of KLEIN. Since some of the resources are
re-used in the serial implementation, the dynamic power is decreased by half. However,
this has a negative effect on the number of rounds that need to be run and therefore
we can see the serialized approach is not energy efficient. In the KATAN designs, the
block size changes while the key size is the same. Therefore a slight change in area and
also in static power consumption is observed in Table 2. But the dynamic power is quite
low due to the simplistic round operations included in KATAN. When comparing LED
and CLEFIA, both with block length 128, it is noticeable that the area ratio is much
smaller than the power consumption ratio, in favor of LED. The reason is that LED is
based on a fixed key and a simpler round computation compared to CLEFIA. The en-
ergy comparison also turns out in favor of LED. In the same way, the round function of
PRESENT is much simpler in terms of logic depth compared to mCrypton, resulting in
a similar trend. The energy comparison turns out in favor of mCrypton though. This is
due to the fact that PRESENT needs more cycles. The reason that the unfolded version
of PRINCE is only 13 times larger than the folded version but consumes 60 times more
power is because of the fact that the unfolded version does not contain any registers. A
comparison of the energy consumption also turns out in favor of the folded version.

Note that all the implementations of the ciphers and architectures listed in Tables 1
and 2 are re-implemented from the references.



Cipher Architecture Block Encryption Freq. Area Static Dynamic Energy Energy
length time power power per bit

(# cycles) (KHz) (GEs) (µW) (µW) (pJ/bit) (nJ)
AES small core 128 211 100 3685 6.25 11.31 289.47 37.05
AES 2 2 2 128 128 10 100 12405 24.46 210.15 183.29 23.46
AES 4 2 128 128 10 100 11453 21.37 135.26 122.37 15.66
AES iso 2 2 2 128 128 10 100 15442 30.41 52.85 65.05 8.33
AES iso 4 2 128 128 10 100 13052 25.19 37.06 48.63 6.23
AES lut 128 128 10 100 19591 30.81 96.11 99.16 12.69

Table 1. Performance and energy numbers of various AES realizations all using 128-bit block
lengths.

Cipher Architecture Block/Key Encryption Freq. Area Static Dynamic Energy Energy
length time power power per bit

(# cycles) (KHz) (GEs) (µW) (µW) (pJ/bit) (nJ)
CLEFIA 128/128 18 100 6941 13.24 37.09 70.78 9.06
KLEIN parallel 64/64 12 100 2760 4.88 2.18 13.24 0.85
KLEIN serial 64/64 98 100 1432 2.56 1.48 61.86 3.96
LED 64/128 48 100 3194 5.62 2.34 59.70 3.82
mCrypton 64/96 13 100 3197 5.80 2.50 16.86 1.08
PRESENT 64/80 31 100 2195 3.75 1.14 23.69 3.82
PRINCE folded 64/128 12 100 2953 5.75 2.80 16.03 1.03
PRINCE unfolded 64/128 1 100 8577 16.13 120.20 21.30 1.36
Katan 32 32/80 254 100 801 1.52 0.43 154.78 4.94
Katan 48 48/80 254 100 925 1.71 0.49 116.42 5.60
Katan 64 64/80 254 100 1048 1.94 0.56 99.22 6.34

Table 2. Performance and energy numbers of lightweight block ciphers implementations.



5 Conclusions and Future Work

In this paper, we evaluated the area, power consumption, and energy of 11 lightweight
block cipher architectures (parallel, serial, and unfolded implementations) and 6 AES
architectures (1 byte-based core and 5 parallel cores). We discussed the differences in
dynamic power consumption in relation to the area. The results show that the parallel
AES core with LUT-based S-boxes is the largest in terms of GEs, but consumes the
least dynamic power of all parallel cores. For the other ciphers, the comparison between
parallel and serialized versions depends on the algorithm, namely on the complexity of
the round function.

It is evident from the results presented in this paper, dynamic power consumption
plays an important role on the energy/power consumption of cryptographic chips. Al-
though in this work, industrial tools are used to generate dynamic power consumption
results, one can also investigate the HDL implementation of a cipher and estimate the
dynamic power consumption through measuring the toggle activity. The basic idea is to
measure the total number of bit toggles, i.e., bit flips, that happen during the encryption
of a single block of a given algorithm. This metric can be in particular helpful when
considering energy. The energy consumption in CMOS circuits is dominated by the
dynamic power dissipation. This is directly proportional to the number of bit toggles
and hence provides a good prediction for the energy consumption of a cipher. As future
work, we will investigate the relation between the number of toggles from an HDL im-
plementation and power reports from synthesis. We believe coming up with a high-level
method to estimate power consumption of a cryptographic chip is very important and
we will argue this in our future work as well.

Acknowledgments

This work was supported in part by Technology Foundation STW, The Netherlands as
STW project SIDES and by the Research Council KU Leuven: TENSE (GOA/11/007),
by iMinds, by the Flemish Government, FWO G.0550.12N and by the Hercules Foun-
dation AKUL/11/19.

References

1. J. Guo, T. Peyrin, A. Poschmann, M. J. B. Robshaw. The LED Block Cipher. In B. Preneel,
and T. Takagi (Eds.), Proceedings of the 13rd International Workshop on Cryptographic
Hardware and Embedded Systems (CHES ’11), Lecture Notes in Computer Science, volume
6917, pages 326–341. Springer-Verlag, 2011.

2. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, T. Shirai. Piccolo: An Ultra-
Lightweight Blockcipher. In B. Preneel, and T. Takagi (Eds.), Proceedings of the 13rd Inter-
national Workshop on Cryptographic Hardware and Embedded Systems (CHES ’11), Lecture
Notes in Computer Science, volume 6917, pages 342–357. Springer-Verlag, 2011.

3. A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw, Y. Seurin, and
C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In P. Paillier, and I. Ver-
bauwhede (Eds.), Proceedings of the 9th International Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES ’07), Lecture Notes in Computer Science, volume 4727,
pages 450–466. Springer-Verlag, 2007.



4. C. De Cannière, O. Dunkelman, and M. Knezevic. KATAN and KTANTAN - A Family
of Small and Efficient Hardware-Oriented Block Ciphers. In C. Clavier, and K. Gaj (Eds.),
Proceedings of the 11th International Workshop on Cryptographic Hardware and Embedded
Systems (CHES ’09), Lecture Notes in Computer Science, volume 5747, pages 272–288.
Springer-Verlag, 2009.

5. D. Canright. A Very Compact S-box for AES. In J.R. Rao and B. Sunar (Eds.), Proceed-
ings of the 7th International Workshop on Cryptographic Hardware and Embedded Systems
(CHES ’05), Lecture Notes in Computer Science, volume 3659, pages 441–455. Springer-
Verlag, 2005.

6. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES Implementation on a Grain of Sand. In
IEE Proceedings of Information Security, volume 152(1), pages 13–20. 2005.

7. D. Hein, J. Wolkerstorfer, and N. Felber. ECC is Ready for RFID - A Proof in Silicon. In
R. Avanzi, L. Keliher, and F. Sica (Eds.), Selected Areas in Cryptography, Lecture Notes in
Computer Science, volume 5381, pages 401–413. Springer-Verlag, 2009.

8. A. Hodjat, and I. Verbauwhede. The Energy Cost of Embedded Security for Wireless Sensor
Networks. In G. Griffin, T. La Porta, and S. Phoha (Eds.), Sensor Network Operations, John
Wiley & Sons, pages 510–522, 2006.

9. M. Knezevic. Efficient Hardware Implementations of Cryptographic primitives. Ph.D. thesis,
Katholieke Universiteit Leuven, Belgium, 208 pages, 2011.

10. Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede. Elliptic Curve Based Security
Processor for RFID. In IEEE Transactions on Computer, volume 57(11), pages 1514–1527,
November 2008.

11. G. de Meulenaer, F. Gosset, F.-X. Standaert, and O. Pereira. On the Energy Cost of Com-
munications and Cryptography in Wireless Sensor Networks, (extended version). In IEEE
Int. Workshop on Security and Privacy in Wireless and Mobile Computing, Networking and
Communications (SecPriWiMob ’08), pages 580–585. IEEE, October 2008.

12. A. Moradi, A. Poschmann, S. Ling, C. Paar, H. Wang. Pushing the Limits: A Very Com-
pact and a Threshold Implementation of AES. In K. Patterson (Ed.), Advances in Cryptol-
ogy (EUROCRYPT 2011), Lecture Notes in Computer Science, volume 6632, pages 69–88,
Springer-Verlag, 2011.

13. C. Rolfes, A. Poschmann, G. Leander, and C. Paar. Ultra-Lightweight Implementations
for Smart Devices - Security for 1000 Gate Equivalents. In proceedings of the 8th IFIP
WG 8.8/11.2 International Conference on Smart Card Research and Advanced Applications
(CARDIS ’08), Lecture Notes in Computer Science, volume 5189, pages 89–103, Springer-
Verlag, 2008.

14. D. Singelée, S. Seys, L. Batina, and I. Verbauwhede. The Communication and Computation
Cost of Wireless Security – Extended Abstract. In G. Tsudik, and N. Asokan (Eds.), Pro-
ceedings of the 4th ACM Conference on Wireless Network Security (WiSec ’11), pages 1–3.
ACM, 2011.

15. S. Kerckhof, F. Durvaux, C. Hocquet, D. Bol, F.-X. Standaert. Towards Green Cryptogra-
phy: a Comparison of Lightweight Ciphers from the Energy Viewpoint. in E. Prouff and
P. Schaumont (Eds.), Proceedings of CHES 2012, Lecture Notes in Computer Science, vol
7428, pp 390-407, Leuven, Belgium, September 2012, Springer.

16. J. Borghoff, A. Canteaut, T. Güneysu, E. Bilge Kavun, M. Knezevic, L. R. Knudsen, G. Le-
ander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen, T. Yalçın. PRINCE
- A Low-Latency Block Cipher for Pervasive Computing Applications - Extended Abstract.
In Xiaoyun Wang, Kazue Sako (Eds.), Advances in Cryptology (ASIACRYPT 2012) Lecture
Notes in Computer Science, volume 7658, pages 208–225, Springer-Verlag, 2012.

17. S. Tillich, M. Feldhofer, T. Popp, J. Großschädl: Area, Delay, and Power Characteristics of
Standard-Cell Implementations of the AES S-box. Signal Processing Systems 50(2): 251-
261 (2008)



18. Z. Gong, S. Nikova, Y. W. Law. KLEIN: A New Family of Lightweight Block Ciphers. In Ari
Juels, Christof Paar (Eds.), Proceedings of RFID. Security and Privacy - 7th International
Workshop, RFIDSec 2011, Lecture Notes in Computer Science, volume 7056, pp. 1– 18,
Springer 2011.

19. P. Hämäläinen, T. Alho, M. Hännikäinen, T. D. Hämäläinen Design and Implementation
of Low-area and Low-power AES Encryption Hardware Core Proceedings of the 9th EU-
ROMICRO Conference on Digital System Design (DSD’06), pp. 577-583, 2006.

20. T. Shirai, K. Shibutani, T. Akishita, S. Moriai, T. Iwata. The 128-bit Block-cipher CLEFIA
(Extended Abstract). In Proceedings of FSE 2007. LNCS, vol. 4593, pp. 181-195. Springer,
2007.

21. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Ko, C. Lee, D. Chang, J. Lee, K. Jeong, H.
Kim, J. Kim, S. Chee. HIGHT: A New Block Cipher Suitable forLow-Resource Device. In
L. Goubin, M. Matsui, (eds.), In Proceedings of CHES 2006. LNCS, vol. 4249, pp. 46-59.
Springer, 2006.

22. C. Lim, T. Korkishko. mCrypton - A Lightweight Block Cipher for Security of Low-cost
RFID Tags and Sensors. In J. Song, T. Kwon, M. Yung, M. (eds.) Proceedings of WISA
2005. LNCS, vol. 3786, pp. 243-258. Springer, 2006.

23. J. Guo, T. Peyrin, A. Poschmann, A. J. B. Robshaw. The LED Block Cipher. In Proceedings
of CHES 2011. LNCS, pp. 326-341. Springer, 2011.

24. Morris Dworkin. NIST Recommendation for Block Cipher Modes of Operation, Methods
and Techniques. NIST Special Publication 800-38A, 2001.


