Obfuscation-based Non-black-box Simulation and
Four Message Concurrent Zero Knowledge for NP

Omkant Pandey* Manoj Prabhakaran' Amit Sahai?

Abstract

As recent studies show, the notions of program obfuscation and zero knowledge are intimately con-
nected. In this work, we explore this connection further, and prove the following general result. If there
exists differing input obfuscation (diO) for the class of all polynomial time Turing machines, then there
exists a four message, fully concurrent zero-knowledge proof system for all languages in NP with neg-
ligible soundness error. This result is constructive: given diO, our reduction yields an explicit protocol
along with an explicit simulator that is “straight line” and runs in strict polynomial time.

Our reduction relies on a new non-black-box simulation technique which does not use the PCP
theorem. In addition to assuming diO, our reduction also assumes (standard and polynomial time) cryp-
tographic assumptions such as collision-resistant hash functions.

The round complexity of our protocol also sheds new light on the exact round complexity of con-
current zero-knowledge. It shows, for the first time, that in the realm of non-black-box simulation,
concurrent zero-knowledge may not necessarily require more rounds than stand alone zero-knowledge!

1 Introduction

Zero-knowledge and program obfuscation. Zero-knowledge proofs, introduced by Goldwasser, Micali
and Rackoff [GMRS35] are the classical example of the simulation paradigm. They allow a prover to con-
vince a verifier that a mathematical statement x € L is true while giving no additional knowledge to the
verifier. Prior to 2001, all known zero-knowledge simulators used the (cheating) verifier V* as a black-box to
produce their output (called the simulated view). Barak [BarO1] demonstrated how to take advantage of ver-
ifier’s program to build, more powerful, non-black-box simulation techniques. Constructing and analyzing
non-black-box simulators is significantly more challenging task.

The reason why taking advantage of verifier’s code is difficult is because of the intriguing possibility of
program obfuscation. Roughly speaking, program obfuscation is a method to transform a computer program
(say described as a Boolean circuit) into a form that is executable but otherwise completely “unintelligible.”
In its strongest form, an obfuscated program leaks no information about the program beyond its “function-
ality” or the “input-output behavior”. Therefore, access to the obfuscated program is no better than having
black box access to it. This property, as formalized by Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vad-
han, and Yang [BGI*01], is called the virtual black box (VBB) security. It was shown in [BGIT01] that
VBB-secure obfuscation is impossible in general. In the hindsight, this negative result is also the funda-
mental reason why non-black-box (NBB) simulation techniques prove to be more powerful than black box
techniques.

*University of Illinois at Urbana-Champaign, Email: omkant@uiuc.edu
TUniversity of Illinois at Urbana-Champaign, Email: mmp@uiuc.edu
#University of California, Los Angeles, Email: sahai@cs.ucla.edu

Zero-knowledge, in particular non-black-box simulation, is intimately connected to program obfusca-
tion. This connection has been explicitly studied in the works of Hada [Had00], and Bitansky and Paneth
[BP12b, BP12a, BP13a], and alluded to in several other works, e.g., [HT99, BarO1]). In this work, we ex-
plore this line of research further, particularly in light of recent breakthrough work on indistinguishability
obfuscation (I0) [GGH™13].

Indistinguishability obfuscation. Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH™ 13] present a
candidate construction for a weaker notion of obfuscation called indistinguishability obfuscation [BGIT01].
Roughly speaking, iO guarantees that if two (same size) programs Cj, C; are functionally equivalent, then
their obfuscations are computationally indistinguishable. A closely related notion is that of differing input
obfuscation (diO) [BGIT01] which, roughly speaking, guarantees that the obfuscations of Cy and C} are
computationally indistinguishable provided that it is hard to find an input = such that Cy(z) # C1(x).

Garg et. al. [GGH™13] present a candidate construction of iO for the class of all polynomial size
circuits. Candidate constructions of diO for the class of all polynomial time Turing machines were recently
constructed by Ananth et. al. [ABG™'13], and Boyle, Chung, and Pass [BCP14].

Our results. In this work we show how to use program obfuscation to build a new non-black-box simula-
tion strategy that works for fully concurrent zero-knowledge. More specifically, we show that:

e If differing-input obfuscation (diO) exists for the class of all polynomial time Turing machines, then
there exists a constant round, fully concurrent zero knowledge protocol for NP with negligible sound-
ness error. The protocol has an explicit simulator;' the simulator is “straight line” and runs in strict
polynomial time.

e We also show how to implement the core ideas of the above protocol in only four rounds. That is, our
new protocol requires sending only four messages between the prover and the verifier.

Our protocol can be instantiated using the diO construction of Ananth et. al. [ABG™13] which ob-
fuscates polynomial time Turing machines that can accept inputs of variable length (at most polynomial in
the security parameter).> We stress that we are able to obtain an explicit simulator for our protocol irre-
spective of the computational assumptions underlying the above mentioned diO. This is because we use the
security—i.e., indistinguishability property—of obfuscation only in proving the soundness of our protocol.
The simulator only depends on the correctness or the functionality of the obfuscated program, and hence
can be described explicitly. As is usually the case with most cryptographic applications of obfuscation, we
also require that obfuscation is “secure” w.r.t. auxiliary information. In our case the auxiliary information
will consist of the transcripts of Barak’s preamble (see theorems 5.1 and 6.1 for a precise statement).

Other than (auxiliary input) diO, our reduction only assumes standard (polynomial time hardness) as-
sumptions, namely injective one-way functions and collision-resistant hash functions. Interestingly, our
reduction does not explicitly depend on CS-proofs/universal-arguments [Kil92, Mic94, Kil95, BG02]; in
particular, if we instantiate the construction of [ABG™ 13] using the “SNARKSs” of Bitansky et al. [BCCT13]
(which does not rely on the PCP theorem), we obtain an instantiation of our protocol that also does not rely
on the PCP theorem.

'In some protocols, specifically those based on knowledge-type assumptions [HT99], by virtue of the assumption that there
exists an “extractor,” we only obtain an existential result that a simulator exists; however, the actual program of the simulator is not
explicitly given in the security proofs.

2See Section 3.2 for the cryptographic assumptions underlying the candidate construction of [ABG T 13].

The round complexity of our final protocol also sheds new light on the exact (as opposed to asymptotic)
round-complexity of concurrent zero-knowledge. Even in the simpler case of stand alone zero knowl-
edge, the best known constructions require at least four rounds [FS89], and historically, concurrent zero-
knowledge has always required more rounds than stand alone zero-knowledge.> Our four round protocol,
for the first time, closes the gap between the best known upper bounds on round complexities of concurrent
versus standalone zero-knowledge protocols (whose simulators can be explicitly described).

In retrospect, the fact that obfuscation actually helps non-black-box simulation can be perplexing. In-
deed, in all prior works along this line [Had00, BP12b, BP13a], the core ideas for simulation are of opposite
nature: it is the inability to obfuscate the “unobfuscatable functions” that helps the simulator. In our case,
similar to [BP12a], it is the ability to obfuscate programs that allows polynomial time simulation.

1.1 Technical Overview: Non-black-box Simulation via Program Obfuscation

Let us start by considering the simplest approach to zero-knowledge from (the possibility of) program ob-
fuscation. For now, let us restrict ourselves to the case of stand alone zero-knowledge for NP-languages.
Let z € L be the statement and R be the witness-relation.

One simple approach is to have the verifier send an obfuscation of the following program M, ¢ which
contains a secret string s € {0,1}": M, s(a) = s if and only R(z,a) = 1 and M, s(a) = 0™ otherwise.
Let Mmjs denote the iO-secure obfuscation of M, ;. The real prover can recover s by using a witness w to
x. Further, if x is false, M, is identical to M, o» and therefore must hide s, ensuring the soundness.* This
gives us a two-message, honest verifier ZK proof. However, this idea does not help the simulation against
malicious verifiers.

To fix this, let us try to use Barak’s preamble (called GenStat [BarO1]) which has the following three
rounds: first, the verifier sends a collision-resistant hash function A : {0,1}* — {0,1}", then the prover
sends a commitment ¢ to 0" (using a perfectly binding scheme Com), and then the verifier sends a string
r € {0,1}". The transcript defines a “fake statement” A = (h, ¢, r). A “fake witness” w for the statement
consists of a pair (II, u) such that ¢ = Com(h(II) ; u) and II is a program of length poly(n) which outputs
the string 7 on input the string ¢ (say, in n'°81°8"™ steps). If h is a good collision-resistant hash function, then
it was shown in [Bar01, BG02], no efficient prover P* can output a satisfying witness w to the statement A
(sampled in an interaction with the honest verifier). However, a simulator can commit to h(V*) (instead of
0™) so that it will have a valid witness to the resulting transcript .

Coming back to our protocol, we use this idea as follows. We modify our first idea, and require the ver-
ifier to send a the obfuscation of a new program M), ¢ (instead of M, ;) where A = (h, ¢, r) is the transcript
of GenStat. The new program M) , outputs s if and only if it receives a valid witness w to the statement
A (as described earlier) and 0™ on all other inputs. To prove the statement = will be proven by proving the
knowledge of either a witness w to x or the secret s (using an ordinary witness-indistinguishable proof-
of-knowledge (WIPOK)). A simulator can “succeed” in the simulation as before: it commits to verifier’s
program in ¢ to obtain (an indistinguishable statement) A, then uses the fake witness w (which it now has)
to execute the program M) s(w) and learn s and complete the WIPOK using s.

We now draw attention to some important points arising due to the use of A in the obfuscation (instead
of x). First, the length of the fake witness w that the simulator has depends on the length of the program of
V*. Since the protocol needs to take into account V'* of every polynomial length, the obfuscated program

SBarak’s (bounded-concurrent ZK) protocol [Bar01] and recent construction of Chung, Lin, and Pass [CLP13b] require at least
six rounds even after optimizations; the recent protocol of Gupta and Sahai [GS12b] requires five rounds.

. . r Cc 7 r . .
*By security of iO, M, s ~ M, on and M, on has no information about s.

M A,s Must accept inputs w of arbitrary, a-priori unknown, polynomial length. In other words, the obfuscated
program M, A,s must be a Turing machine which accepts inputs of arbitrary, a-priori unknown, (polynomial)
length. Therefore, we will have to use program obfuscation for Turing machines.

Second, the statement A = (h, ¢, r) is not a “false” statement since an all powerful prover can always
find collisions in h and obtain a satisfying input to M) ;. The only guarantee we have is that if A is sampled
as above, then it would be hard for any efficient prover—even those with a valid witness to z—to find a
satisfying input for M) . Therefore, unlike before (when x was used instead of \), obfuscations M) , and
M. 0 are not guaranteed to be indistinguishable if we use an iO-secure obfuscation; this is because the
Turing machines M) s and M) o» are not functionally equivalent. Therefore, we will have to use diO-secure
obfuscation (since finding a differing input is still hard for these programs). As a matter of fact, we will
need to assume auxiliary input diO as discussed later.

By putting these ideas together, we actually a get a standalone ZK protocol for NP (summarized below).
The protocol needs to use some kind of reference to s other than the obfuscated program. This is done by
using a f(s) where f is a one-way function. This protocol has a “straight line” simulator. Further, unlike
Barak’s protocol, this protocol does not use universal arguments (and hence the PCP theorem).

Standalone Zero-Knowledge using Obfuscation. The protocol has three stages.

1. Stage-1 is the 3 round preamble GenStat: V' sends a CRHF h, P sends a commitment ¢ =
Com(0™;u) and V' sends a random r < {0, 1}".

2. In stage 2, V sends (f,s, M;HS) where f is a one-way function, s = f(s), and]TJ/A,S is the
obfuscation of Turing machine M) 5 described earlier and A = (h,c,r) is the transcript of
stage-1. V' also proves that (f, s, M)) are correctly constructed (using a standard ZK proof).

3. In stage-3 P provess, using a standard WIPOK, the knowledge of “either a witness w to x or
secret s such that s = f(s).”

Standalone ZK of this protocol can be proven by following Barak’s simulator which commits to the
code of V* and therefore has an w for simulated statement A such that M) ;(w) = s within a polynomial
number of steps; the simulator computes s and uses it in the WIPOK. The soundness of the protocol relies
on the diO-security of obfuscation. Indeed, following [Bar01], for a properly sampled A, it is hard to find
w such that M) s(w) # M)y gn (w), and therefore it is hard to distinguish M), s from M) o» by diO-security
of obfuscation. Now, soundness is argued using three hybrid experiments: first use the simulator of the ZK
protocol in stage 2, then replace M) s from M) o», and finally extract s from the WIPOK in stage 3 and
violate the hardness of one-way function f (since x is false, extraction must yield s).

The issue of auxiliary information. An important point we wish to highlight here is that of auxiliary
input. A cheating prover P* in the protocol above, will have access to the statements A in addition to
the obfuscated program M) ;. Therefore, A is the auxiliary information that the receiver of the obfuscated
program already has! Therefore, we must require the obfuscation to satisfy the (stronger) notion of auxiliary
input diO [ABG™13, BCP14] w.r.t. the transcripts of GenStat (i.e., Barak’s preamble).

1.2 Towards Constant Round Concurrent Zero-knowledge

The simplest way to see why the protocol of previous section does not work in the concurrent setting is to
consider its execution in a recursively interleaved schedule (described by Dwork, Naor, and Sahai [DNS98]).

In the context of our protocol, this schedule will have n sessions interleaved recursively as follows: session
n does not “contain” any messages of any other session, and all messages of session 7 are contained between
messages c¢;—1 and r;_1 of session ¢ — 1 for every ¢ , starting from ¢ = n. For completeness, this scheduling
is shown in figure 1 (towards the end of the paper) with respect to 3 sessions. The double-headed arrows
marked by 7; represent the rest of the messages of the i-th session. Roughly speaking, the simulation fails
because of the following: in order to simulate session 7, the simulator needs to extract the secret s; by
running the program M), ,,; however, the execution of M. \i,s; contains an execution of M. \ and due
to this recursion, simulator’s total running time in session 1 is exponential in n.

More formally, consider the scheduling given in figure 1. Let t3 > 1 be the time taken by the verifier in
computing 73 on input the string c3. Then clearly, the time taken by the simulator in running the obfuscated
machine M), ,, is T3 > t3. Then, if {5 denotes the time taken by the simulator to obtain string r2, we
have that {9 > t3 + T3 > 2¢3. Clearly, the time taken by the simulator to extract sp by running the
program M), ,, will be at least T > t9 > 2t3. By repeating this argument for session 1, we have that
Ty >ty > tg+ T > 2ty > 22t5. Repeating this argument for n sessions in the DNS schedule, the total
time taken by the simulator will be > 271,

i+1,Si+1

Vi Va Vs
hy
-
C1
ho
C2
h3
C3
T3, M)\g,sLo,
3
T2, M)\g,sz
2
T1, M)\l,sl
1

Figure 1: DNS scheduling for our protocol

Avoiding recursive computation via DGS-oracle. It is clear that the reason our stand-alone simulator
runs in exponential time is because in order to compute s; for session ¢, the simulator runs (the obfuscation

of) a program which recursively runs such a program for every interleaved session between ¢; and ;. That
is, the program M), . ends up recomputing all of the secrets of the interleaved sessions even though they
have already been computed.

We can avoid this recomputation as follows. Let Z be an oracle which takes as input queries of the form
(f,8)—where f is an injective one-way function and s is in the range of f—and returns the unique value
s such that f(s) = 5> Now consider an arbitrary program IIZ which has access to the inversion oracle
Z. Clearly, if 7 is chosen randomly, then for any (fixed) program IIZ and any fixed input a, the probability
that IT1Z(a) = r is at most 27", This is because once the description of the oracle program 1) is fixed,
the output of IT% (a) is deterministically fixed (for any fixed input a chosen prior to seeing r) and 7 hits this
value with probability at most 27".

Our main point here is that it is hard to come up with a satisfying “fake witness” w to the transcripts
A = (h,c,r) even if the program committed in ¢ is given access to the inversion oracle Z. On the other
hand, the simulator can still predict r as before. However, more importantly, by means of the oracle Z we
can avoid the recursive re-computation of the secrets in the concurrent setting as follows.

Consider an alternative simulator S which will be given access to the oracle Z. This simulator will
have access to both, the program of the verifier V* as well as its own program, given as explicit inputs,
collectively denoted as H<'?V*. The simulator, on input a session index ¢, will work by initiating an execution

of V*. It will commit to program Hg>v* (7) in session j (ignoring for the moment the fact that simulator

needs fresh randomness); finally, this simulator does not run any obfuscated program to compute the secrets.
Instead it queries the oracle Z on “well formed” (f;, 5;) for every session j # 4; when j = i it simply returns
the string ;. Then, if all goes well, observe that program II{" (7) predicts string 7; in polynomial time (given
7) and this holds for every session ¢. In particular, there is no recursive recomputation of the secrets since
they can be fed to the program directly once they have been computed. We note that such an oracle was first
used by Deng, Goyal, and Sahai [DGS09] to construct the first resettably-sound resettable zero-knowlege
protocol for NP.

It should be clear that the actual simulation will be performed by a “main” simulator St iy Which will
not have access to any inversion oracle, and run in (strict) polynomial time. The main simulator will run in
the same manner as the alternative simulator S except that instead of using Z, it will run the obfuscated
programs (only once for each session) to recover the secrets. To ensure efficient simulation, once a session
secret has been recovered, it will be stored in a global table 7 (which will be used to simulate answers of
T). Therefore the “fake witness” will now have the form w = (u, II¢?,), but the statements will still have
the same form A\ = (h, ¢, r); and we require that 17 outputs ~ within finite steps. These requirements will
be formally captured by defining a relation R, w.r.t. the preamble GenStat in Section 4. We will discuss
the overview of four round construction in Section 6.

1.3 Related Work

Concurrent zero-knowledge and non-black-box simulation. From early on, it was understood and ex-
plicitly proven in [FS90, GK96], that zero-knowledge is not preserved under parallel repetition where mul-
tiple sessions of the protocol run at the same time. The more complex notion of concurrent zero-knowledge
(cZK) was introduced and achieved by Dwork, Naor, and Sahai [DNS98] (assuming “timing constraints”
on the underlying network). A large body of research on cZK studied the round-complexity of black-box
concurrent ZK with improving lower bounds on the same [KPR98, Ros00, CKPRO3]. The state of art is the

SWe assume that it is easy to test that f is injective and that 5 is in the range of f. These requirements are only for simplicity
and the protocol works even if it is not easy to test these properties.

lower-bound is by Canetti, Kilian, Petrank, and Rosen [CKPRO3] who prove that black-box c¢ZK requires at
least O (log n/ log log n) rounds where n is the length of the statements being proven. Prabhakaran, Rosen,
and Sahai [PRS02], building upon the prior works of Richardson and Kilian [RK99] and Kilian and Pe-
trank [KPO1], presented a ¢ZK protocol for NP which has 9] (log n) rounds, matching the lower bound of
[CKPRO3].

The central open question in this area is to construct a constant round cZK protocol for NP languages
based on standard (or at least reasonable) assumptions. Barak [BarO1] showed that in the bounded concur-
rent setting where there is an a-priori upper bound on the number of sessions, there exists a constant round
non-black-box cZK protocol for NP; the protocol is based on the existence of collision-resistant hash func-
tions [BarO1] and uses universal arguments [Kil92, Mic94, Kil95, BG02]. The communication complexity
of Barak’s protocol depends on the a-priori bound on the sessions.

It has proven difficult to extend Barak’s NBB techniques to the setting of fully concurrent ZK (i.e., to
unbounded polynomially many sessions) in o(log n) rounds. Nevertheless, NBB techniques have enjoyed
great success resulting in the construction of resettable protocols [BGGLO1, DL0O7, DGS09, GM11], non-
malleable protocols [Bar02, PRO5b, PRO5a], leakage-resilient ZK [Pan14], bounded-concurrent secure com-
putation [PRO3, Pas04], adaptive security [GS12a], and so on. Bitanksy and Paneth [BP12a] showed that
it is possible to perform non-black-box simulation using oblivious transfer (instead of collision-resistant
hash functions and universal arguments). This eventually led to the construction of resettablly-sound ZK
under one-way functions [BP13a, CPS13, COPV13]. Goyal [Goy13] presents a non-black-box simulation
technique in the fully concurrent setting and achieves the first public-coin cZK protocol in the plain model.®

An alternative approach to construct round-efficient zero-knowledge proofs is to use “knowledge as-
sumptions” [Dam91, HT99, BP04]. The recent work of Gupta and Sahai [GS12b] shows that such assump-
tions also yield a constant round concurrent ZK protocol for NP. However, all known ZK protocols based
on knowledge-type assumptions do not yield an explicit simulator. This is because the knowledge-type
assumptions assume the existence of a special “extractor” machine (which is not explicitly known); this
extractor is used by the simulator of ZK protocols and only provides an “existential” result.

Chung, Lin, and Pass [CLP13b] recently presented the first construction of a constant-round fully con-
current ZK protocol which has an explicit simulator. Their result is based on a new complexity-theoretic
assumption, namely the existence of so called “strong P-certificates.”

Another alternative proposed in the literature is to assume some kind of a setup such as timing con-
straints, (untrusted) public-key infrastructure, and so on [DNS98, DS98, CGGMO00, Dam00, Gol02, PTV 10,
GJO™13] or switch to super-polynomial time simulation [Pas03, PV08]. We will not consider such models
further in this work.

Program obfuscation. After the strong impossibility results of [BGI*01], research in program obfusca-
tion proceeded in two main directions. The first line of research focussed on constructing obfuscation for
specific functionalities such as point functions and their variants, proxy re-encryption, encrypted signatures,
hyperplanes, conjunctions, and so on[Wee05, LPS04, HRSV07, Had10, CRV10, BR13a]. The other line of
research focussed on finding weaker definitions and alternative models. Goldwasser and Rothblum [GRO7]
considered the notion of best possible obfuscation (and is equivalent to iO when the obfusactor is polyno-
mial time); and Bitansky and Canetti [BC10] considered virtual grey box security. Alternative models for
obfuscation such as the hardware model were considered in [GIST10, BCGT11].

After [GGH'13], an improved construction of iO was presented by Barak et. al. [BGK™'13]. Further,

SThe protocol requires poly(n) rounds. Canetti et al. [CLP13a] obtain a similar result, albeit in the “global hash” model where
a global hash function—which the simulator cannot program—is known to all parties.

in an idealized “generic encodings” model it is shown that VBB-obfuscation for all circuits can be achieved
[CV13, BR13b, BGK ™ 13]. These results often involve a “bootstrapping step”’; Applebaum [App13] presents
an improved technique for bootstrapping obfuscation. Further complexity-theoretic results appear in recent
works of Moran and Rosen [MR13], and Barak et. al. [BBC'14].

Sahai and Waters [SW13] show that indistinguishability obfuscation is a powerful tool and use it to
successfully construct several (old and new) cryptographic primitives; further applications of iO appear in
[HSW13, BZ13, BCP14, KRW13, MO13]

Differing input obfuscation was studied by Ananth et. al. [ABG™13], who present a candidate construc-
tion of diO for the class of polynomial time Turing machines and demonstrate new applications. Another
variant of their construction allows the Turing machines to accept variable length inputs. Concurrent work
of Boyle, Chung, and Pass [BCP14] introduces a related notion of extractability obfuscation and shows con-
ditions under which this notion (and diO) are implied by iO. In addition, it also presents obfuscation for the
class of polynomial time Turing machines, building upon the work of Brakerski and Rothblum [BR13a].

The issue of auxiliary information in program obfuscation was first considered by Goldwasser and Kalai
[GKO5], and further explored in [GK13, BCPR13, BP13b]. The work of Bitansky, Canetti, Paneth, and
Rosen [BCPR13] shows that if iO exists then “extractability primitives” such as knowledge-types assump-
tions and extractable one-way functions [CD09] cannot exist in the presence of arbitrary auxiliary informa-
tion. Boyle and Pass [BP13b] strengthen this result further by showing a pair of (universal) distributions
Z,2’ on auxiliary information such that either extractable OWF w.r.t. Z do not exist or extractability-
obfuscations w.r.t. Z’ do not exist.

2 Preliminaries

We use standard notations which are recalled here. This section can be skipped without affecting readability.

Notation. For a randomized algorithm A we write A(x;r) the process of evaluating A on input x with
random coins r. We write A(x) the process of sampling a uniform r and then evaluating A(z;). We define
A(z,y;r) and A(z, y) analogously. We denote by N and R the set of natural and real numbers respectively.
The concatenation of two string a and b is denoted by a || b.

We assume familiarity with interactive Turing machines (ITMs). For two randomized ITMs A and
B, we denote by [A(z,y) < B(z,z)] the interactive computation between A and B, with A’s inputs
(z,y) and B’s inputs (z, z), and uniform randomness; and [A(z,y;74) <> B(x,z;7p)] when we wish to
specify randomness. We denote by VIEW p[A(z,y) <> B(z,z)] and OUT p[A(x,y) <+ B(z,z)] the view
and output of machine P € {A, B} in this computation. Finally, TRANS[A(z,y) < B(z,z)| denotes
the transcript of the interaction [A(x,y) <> B(x,z)] which consists of all messages exchanged in the
computation.

We also assume familiarity with oracle Turing machines, which are ordinary TMs with an extra tape
called the oracle communication tape. An oracle TMs A will be written as AL to insist that it is an oracle
TM; in addition, we write AZ when A’s oracle is fixed to Z. Recall that each query to Z counts as one step
towards the running time of AZ.

Unless specified otherwise, all algorithms receive a parameter n € N, called the security parameter,
as their first input. Often, the security parameter will not be mentioned explicitly and dropped from the
notation. With some exceptions, all algorithms run in poly(n) steps and all inputs have poly(n) length. A
function negl : N — R is negligible if it approaches zero faster than every polynomial.

Two ensembles { X}, }en and { Yy, }nen are said to be computationally indistinguishable, denoted { X}, } ~
{V,}, if for all non-uniform probabilistic polynomial time (PPT) distinguishers D, sufficiently large n, and
every advice string z,,: [Prpx, [Dn(2) = 1] = Pryey, [Dn(y) = 1]| < negl(n), where we write D,,(a) to
denoted D(n, z,, a), and negl is a negligible function. The statistical distance between two probability dis-
tributions X’ and) over the same support S is denoted by A(X,Y) = 1> o | Pr[X = a] — Pr[Y = d]|.
We say that ensembles { X, }nen and {V, }nen are statistically indistinguishable (or statistically close),
denoted {X,,} ~ {)}, if there exists a negligible function negl such that A (X,,, V,) < negl(n) for all
sufficiently large n.

Standard primitives. In this work, we will be using a family of injective one-way functions. In addition,
unless specified otherwise, we assume that all functions f € F,, in the family have an efficiently testable
range membership: i.e., there exists a polynomial time algorithm to test that y € Range(f) where Range(f)
denotes the range of f.

We will also be using a family of collision resistant hash functions (CRHF) {#H,,} where h : {0,1}* —
{0,1}P°Y(") for h € H,; recall that {#,} is a CRHF family if there exists a negligible function neg|
such that for every non-uniform PPT machines A, every sufficiently large n, and every advice string z,,:
Preqq, [h(z) = h(y) : (2,y) < A(zn, h)] < negl(n).

Finally, we will also be using a non-interactive, perfectly binding commitment scheme for committing
strings of polynomial length. A commitment to a string m using randomness » will be denoted by ¢ =
Com(m;u). Without loss of generality, we assume that the message m committed to in ¢ can be recovered
given the randomness u and the string c. We assume perfectly binding schemes purely for the simplicity of
exposition. One can replace Com by the 2-round statistically-binding commitment scheme of Naor [Nao89]
without affecting our results.

2.1 Interactive Proofs, Proofs of Knowledge, and Witness Indistinguishability

We recall the standard definitions of interactive proofs [GMRS85], witness indistinguishability [FS90], and
proofs of knowledge [GMRS&5, TW87, FFS88, FS90, BG92, PRO5b].

Definition 2.1 (Interactive Proofs). A pair of probabilistic polynomial time interactive Turing machines
(P, V) is called an interactive argument system for a language L € NP with witness relation R if there
exists a negligible function negl : N — R such that the following two conditions hold:

e Completeness: for every x € L, and every witness w such that R(z, w) = 1, it holds that
Pr[OUTy[P(z,w) +» V(z)] = 1] = 1.
e Soundness: for every x ¢ L, every interactive Turing machine P* running in time at most poly(|z|),
and every y € {0,1}*,
Pr[OUTy [P*(z,y) +> V(x)] = 1] < negl(|z]|).
If the soundness condition holds for every (not necessarily PPT) machine P* then (P, V') is called an
interactive proof system. [

The probability in the soundness condition is called the soundness error of the system, and we say that
the system has negligible soundness error since this probability is at most negl(|z|). Although, traditionally

soundness error is defined in terms of the statement length |z|, in cryptographic contexts, it is convenient
to define it in terms of the security parameter n, and write negl(n). This is without loss of generality,
since in our setting since |x| = poly(n). Also, in this work, we will use words “argument” and “proof”
interchangeably throughout the paper.

Definition 2.2 (Proof of Knowledge). Let (P, V') be an interactive proof system for a language L. € NP
with witness relation R. We say that (P, V') is a proof of knowledge (POK) for relation R if there exists
a polynomial p and a probabilistic oracle machine E (called the extractor) such that for every PPT ITM
P*, there exists a negligible function negl such that for every x € L, and every (y,r) € {0,1}* such that
Qzyr = Pr[OUTy [Py, . > V(z)] = 1] > 0 where P}, .. denotes the machine P* whose common input,
auxiliary input, and randomness are fixed to x,y and r respectively and the probability is taken over the

randomness of V, the following conditions holds:

is bounded by pl2l) \where EFv.r is machine E with

*
Px,yﬂ' .
qz,y,r

e the expected number of steps taken by

* .
oracle access to Py, .}

e except with negligible probability, E z.v.r outputs w* such that R(z,w*)=1.0

Definition 2.3 (Witness Indistinguishable Proofs). Let (P, V') be an interactive proof system for a language
L € NP with witness relation R. We say that (P, V') is witness indistinguishable (WI) for relation R if
for every PPT ITM V*, every statement x € L, every pair of witnesses (w;, w2) such that R(z,w;) = 1

for every i € {1,2}, and every (advice) string z € {0, 1}*, it holds that {VIEW|(;|)} & {VIEW‘(;)} where
{VIEW()} = VIEWy-[P(2, w;) <> V*(z, 2)]. O

As before, w.l.o.g., we can replace |x| by the security parameter n in all definitions above. We remark
that there exists a WIPOK with strict polynomial time extraction in constant rounds using non-black-box
techniques [BL04] and in w(1) rounds using black-box techniques [GMR85, Blu87].

Three round, public-coin WIPOKand ZAPs. The classical protocols of [GMR85, Blu87], based on the
existence of non-interactive perfectly binding commitment schemes, are 3-round witness indistinguishable,
proof of knowledge (WIPOK) protocols (for every language in NP). We will use Blum’s protocol [Blu87] as
a building block and denote its three messages by {(«, 3,7), where 3 is random string of sufficient length.’

A ZAP for a language L, introduced by Dwork and Naor [DNOO], is a two round witness indistinguish-
able interactive proof for L. ZAPs can be constructed from a variety of assumptions such as non-interactive
zero-knowledge proofs [BFM88, BSMP91] (which in turn can be based on trapdoor permutations [FLS99])
and verifiable random functions [MRV99]. In fact, even non-interarctive (i.e., one round) constructions for
ZAPs for all of NP exist based on bilinear pairings [GOS06] and derandomization techniques [BOVO03].

We will use the two round construction of [DNOO] based on NIZK as a building block and denote its
two messages by (o, m) where o is a randomly string of sufficient length. An important property of this
construction is adaptive soundness: the statement to be proven can be chosen after the string o has been
sent by the verifier. We will rely on this property in our security proofs.

"We remark that this protocol has a black-box extractor whose expected running time is proportional to the inverse of a cheating
prover’s success probability. However, there also exist WIPOK with strict polynomial time extraction in constant rounds using
non-black-box techniques [BL04] and in w(1) rounds using black-box techniques [GMR85, Blu87].

10

2.2 Concurrent Zero Knowledge

We now recall the notion of concurrent zero-knowledge [DNS98] in which one considers a “concurrent
adversary” V* who interacts in many copies of P, proving adaptively chosen, possibly correlated, polyno-
mially many statements. We follow conventions established in [DNS98, PRS02, Ros04].

Concurrent attack. The concurrent attack on an interactive proof systems (P, V') for language L € NP
with witness relation R considers an arbitrary interactive TM V* which opens at most m = m(n) sessions
for an arbitrary polynomial m with arbitrary auxiliary input z € {0,1}*. Let & := {z;} € L™ be set of
statements in L of length at most poly(n), and @ := {w; };c|m) be such that R(z;, w;) = 1. The attack
proceeds by uniformly fixing the random coins of V* and initiating its execution on input the security
parameter n € N and auxiliary input z. At each step, V'* either initiates a new session—in which case a new
prover instance P(z;, w;) with fresh randomness is fixed who interacts with V* in session 4; or V* schedules
the delivery of a message of an existing session in which the corresponding prover instance responds with
corresponding message. There is no restriction on how V* schedules the messages of various sessions. We
say that V* launches m-concurrent attack on (P, V). The output of the attack consists of the view of V*,
denoted VIEW!Y (n, m, 2,17, 2).

Definition 2.4 (Concurrent Zero Knowledge). We say that an interactive proof system (P, V') for a language
L € NP (with witness relation R) is concurrent zero knowledge if for every polynomial m : N — N, every
PPT ITM V* launching a m-concurrent attack, there exists a PPT machine Sy - such that for every set
7 = {z;} € L' of statements of length at most poly(n), every @ := {w;} e[, such that R(z;, w;) = 1,
and every auxiliary input z € {0, 1}* it holds that

{Sv* (n, &, z)} £ {V|EW<VFLV> (n, m, &, z)} .
neN neN

Machine Sy« is called the simulator. [

In what follows, we will sometimes abuse the notation and write V* to also mean the description of the
Turing machine V*. However, when we want to be explicit about the description of a Turing machine M
(including V*), we will actually write desc(M). For the simulator, we may sometimes write Sy« (-) :=
S(V*,+) to insist that the program of V* is given as an explicit input to the simulator (and drop n from the
notation). Further, we will assume a (unique) session identifier for each session represented by a string of
length n; this session identifier can be chosen by V* so long as it is unique for every session. W.l.0.g. we
assume that the all-ones string 1™ (not to be confused with the unary representation of the security parameter)
is never used as a session identifier and denotes a special symbol.

3 Differing Input Obfuscation for Turing Machines

In this section, we recall the notion of differing input obfuscation (diO) for Turing machines. A weaker
somewhat variant of this definition, namely extractability obfuscation (eQ) was defined and explored in
[BCP14]. As mentioned earlier, we will actually need to work with what is called distributional auxiliary
infomration diO (or eQ) where the auxiliary information will be sampled according a hard distribution, say
Z, over the statements of L% for an arbitrary polynomial a. Recall that L. is the language corresponding

sim sim
to relation R% , which are decidable in time at most poly(a(n)).

11

3.1 Definitions

Let Steps(M, z) denote the number of steps taken by a TM M on input z; we use the convention that if
M does not halt on x then Steps(M, x) is defined to be the special symbol co. We define the notion of
“compatible Turing machines” and “nice sampler.” A pair of TMs (M, M) is said to be compatible if they
have the same size, and more crucially, for every input x if M halts on x then M also halts on x in the same
number of steps. Le., for every x, Steps(Mj, x) = Steps(Mi,x). We then consider sampling algorithms
Samp which output a pair of compatible TMs (M, M), and say that Samp is “nice” if no PPT adversary
A can produce an z such that: My(x) # M (x) and both My, My halt within a polynomial number of steps
on input . This requirement, or some variant of it, is necessary [ABG™ 13, BCP14].

Definition 3.1 (Compatible TMs). A pair of Turing machines (M, M) is said to be compatible if | My| =
| M| and for every string x € {0, 1}* it holds that Steps(My,) = Steps(M, x).

By our convention, the second condition implies that M halts on x if and only if M; halts on x.

Definition 3.2 (Nice TM Sampler). We say that a (possibly non-uniform) PPT Turing machine Samp is a
nice sampler for Turing machines if the following conditions hold:

1. the output of Samp is a triplet (z, My, M) such that (Mg, M) is always a pair of compatible TMs,
and z € {0, 1}* is a string;

2. there exists a negligible function negl such that for every polynomial ¢ : N — N, every sufficiently
large n € N, and every (possibly non-uniform) TM A running in time at most a(n), it holds that:

z, Mo, My) < Samp(1™) ; A(z, My, M,) = x;
Crens(o) < aln) s o) A | Sredlm.

Some remarks are in order. First, note that since My, M are always compatible and Steps(My, z) <
a(n), we have that Steps(My,z) < a(n). Further, the “event” in the parentheses above can actually be
tested in polynomial time. This is because every step defining this event can be performed in polynomial
time. Finally, note that since the definition quantifies over all polynomials a, it allows A to produce any
input x so long as My, M; halts on = within a polynomial number of steps.

The first output of Samp above will be used as auxiliary information in the definition below. We will
denote the distribution of first output of Samp by Z.

Differing input obfuscator. We now present the definition of a Z-auxiliary differing input obfuscator for
Turing machines. Roughly speaking, the notion states that a machine O is a Z-auxiliary diO for (possibly
non-uniform) efficiently samplable Z = {Z,,} if the following holds: if there exists a PPT distinguisher
D who distinguishes O(Mj) from O(M;) when given auxiliary input z < Z,,, then it is easy to find an z
(given z) such that My(z) # M (z). In other words, if it is hard to find the “differing input” x then the two
obfuscations are indistinguishable.

We now present the definition below, following [ABG™ 13]. We note that since we want to be explicit
about the distribution of the auxiliary information (the first output of the sampling algorithm Samp), we will
denote it by Z.

Definition 3.3 (Z-auxiliary Differing Input Obfuscator for Turing Machines). A uniform PPT machine O
is called a differing input obfuscator for a class of Turing machines {M,,} if the following conditions are
satisfied:

12

1. Polynomial slowdown and functionality: there exists a polynomial ag;, such that for every n € N,
every M € M,, every input x such that M halts on x, and every M <+ O(n, M), the following
conditions hold:

° Steps(]\7, x) < agio (n, Steps(M, 1:))
o M(z)= M(z)
Polynomial ag;, is called the slowdown polynomial of O.

2. Indistinguishability: for every nice sampler Samp (i.e., satisfying definition 3.2) whose first output
is distributed according to Z, there exists a negligible function negl such that for every polynomial
a : N — N, every sufficiently large n € N, and every (possibly non-uniform) TM D running in time
at most a(n), it holds that:

Pr [D (z,0(n, My)) = 1: (2, My, M;) <+ Samp (1") |
—Pr [D(z,0(n,M)) =1: (2, Mo, M) < Samp (1")]| < negl(n).
Machine D is called the distinguisher. [

3.2 Candidate Constructions

As noted earlier, our reduction requires the existence of Z-auxiliary diO for the class of all polynomial
size Turing machines which accept inputs of arbitrary polynomial length (in n) and halt within polynomial
steps with respect to all (possibly nonuniform) efficiently samplable distributions Z that are hard over the
statements of L for every polynomial a. A candidate construction for this primitive appears in the work
of [ABG™13]. Their construction is based on diO of the class of all polynomial-size circuits (constructed
in [GGH™13]), fully homomorphic encryption (e.g., [Gen09, BV11], and SNARKs [BCCT13] (which re-
quire knowledge-type assumptions). If an a-priori bound on the input is known, then comparatively better
constructions are possible [ABG' 13, BCP14].

Our requirements from obfuscation are actually weaker than stated above. We do not need obfuscation
for the class of all (polynomial size and running time) Turing machines; instead we only require the obfus-
cation of the machine SimLock which (receive inputs of arbitrary, a-priori unknown, polynomial length and)
halt within a polynomial number of steps. We also do not need security w.r.t. every hard distribution Z over
Lg ; instead, we only need to assume that it holds for the statements \ that are transcripts of the GenStat
protocol (with an arbitrary cheating prover P;"). Interestingly, this kind of advice can be simulated using the
distribution Z* that simply outputs (h, 7); therefore distribution Z’ can actually be uniform distribution if h
is a “public-coin” CRHF [HR04] making it a more plausible assumption.

As we have to come to learn [GKO05, GK13, BCPR13, BP13b], security w.r.t. arbitrary auxiliary in-
puts might be too strong an assumption. Bitansky, Canetti, Paneth, and Rosen [BCPR13] show that either
indistinguishability obfuscation does not exist for all circuits or for every OWF-family F there exists an
auxiliary input distribution Zx w.r.t. which F is not an extractable OWF family [CD09]. Boyle and Pass
[BP13b] further strengthen this result by showing a pair of distributions Z,Z” such that either extractable
OWEFs do not exist w.r.t. Z or diO for (the class of all PPT) Turing machines does not exist w.r.t. Z’. Thus
at least one of these assumptions must fall. However, as they further note, it does not invalidate assump-
tions for other distributions Z” (in particular when Z” can be uniform). These negative results also do not

13

necessarily contradict the conjectured security of candidate construction of [ABG™13] w.r.t. the auxiliary
input distributions we need (namely transcripts of GenStat or Z* mentioned above). Nevertheless, we hope
that candidate constructions based on better complexity-theoretic assumptions will be discovered for this
primitive in the future.

4 Relation R, and A Nice Sampler

In this section, we define the preamble GenStat, relations Rgim, RS, and prove that a randomly sampled
transcript of GenStat is a hard distribution over the statements of language Lg;,,, (corresponding to relation
Rsim). For convenience, we use a non-interactive perfectly binding commitment scheme; the two-round

statistically-binding commitment scheme of [Nao89] also works.

4.1 Preamble GenStat

Statement generation protocol. Let {#,} be a family of collision-resistant hash functions (CRHF) h €
‘Hy, such that & : {0,1}* — {0,1}" and Com be a non-interactive perfectly-binding commitment scheme
for {0,1}". The statement generation protocol GenStat := (P;, V}) is a three round protocol between P,
and V; which proceeds as follows:

Protocol GenStat := (P, V7):

1. V4 sends arandom h < H,,
2. P sends a commitment ¢ = Com(0"; u) where w is a randomly chosen

3. Vi sends a random string r < {0, 1}"

The transcript of the protocol is A := (h, ¢, 7). O

4.2 Relation R,

We now define the relation Rgiy,. Let {F, }nen and {H, }nen denote the family of injective one-way
functions and collision-resistant hash functions respectively. Let Com be a non-interactive, perfectly binding
(string) commitment scheme. The relation is formally defined in figure 2. The statements for the relation
Rein, are the transcripts A := (h, ¢, 7) and the witnesses are of the form w := (u,II"),T) such that c is
a commitment to the oracle-TM TI(using randomness u, 7 is a table containing answers to all inversion
queries that TI¢" makes (for functions f € F,), and II” outputs r.%

An important observation regrading Ry, is that since table 7 is not a part of the commitment ¢ (and it
should not be), we must enforce that II") never makes any invalid queries to T This is because after seeing
r, it is easy to design a “bad” table 7 which will encode r by means of “bad” entries and “satisy” .

Relation Ry, is undecidable in general. For convenience, we define a decidable, polynomial time,
version of Ry, denoted by R% where a : N — N is a polynomial, as follows.

sim

a
sS1m

Relation R, and language L, : Leta : N — N be a polynomial; relation R,

except that the witness (u, I, T) satisfies following additional constraints:

is identical to Rgim

8For simplicity, we assume that it easy to test the that functions f are injective and whether a given element is in the range of
f for every f € {F,}. Note that n is implicit in the definition of Rsim and can, for example, be obtained from the description of
A—in particular, length of 7 or description of h.

14

Instance: A tuple (h,c,r) € H,, x {0,1}PO¥(™) x {0, 1}" where h : {0,1}* — {0, 1}™.

Witness: A tuple (u, I, T) € {0,1}PoY(") x {0,1}* x {0, 1}* where II¢") is an oracle Turing
machine, and 7 is a table containing entries of the form (f,, s) such that when queried on (f,),
T returns s, denoted 7 (f,s) = s.
Relation: Ry, ((h,c,7), (u,II¢?, 7)) = 1if and only if all of the following conditions hold:
1. ¢=Com (h (H<'>) ; u)
2. V(f,s,s) € T itholds that f € F,, is an injective function and f(s) = §
3. Program I17, takes no input, outputs the string r, and halts

4. Program I17 makes oracle queries of the form (f,) such that:

V queries (f,3) 3s s.t. (f,5,8) €T

Figure 2: Relation Ry, based on a perfectly binding commitment Com.

1. ‘7" < a(n),
2. TI7 halts in at most a(n) steps.

a
s1um

Let Lgim (resp. L)) be the language corresponding to relation Ry, (resp., RS,). Note that L

sim
NP. Note that R, can be tested in time poly(a(n)) = poly(n).
Hard distributions over L, . We say that Z = {Z,,} is a hard distribution over the statements of L% |
if there exists a negligible function negl such that for every non-uniform PPT algorithm A* and every
sufficiently large n it holds that
PrA < Z;w + A*(1", A); RE (N, w) = 1] < negl(n).
The following lemma states that the transcripts of GenStat form a hard distribution over Lgj,,. That is, it
is hard for any PPT machine P;" to compute a witness w to statements A\ when \ is the transcript of GenStat
between P and an honest V;. The proof follows [BarO1].

Lemma 4.1 (Hardness of GenStat). Assume that {H,} is a family of collision-resistant hash functions
against (non-uniform) PPT algorithms. There exists a negligible function negl such that for every (non-
uniform) PPT Turing machine Py , the probability that Py, after interacting with an honest V; in protocol
GenStat, writes a string w on its (private) output tape such that Rgim (X, w) = 1 is at most negl(n), where X
is the transcript of interaction between Py and V1, and the probability is taken over the randomness of both

P and V.

Remark. We note that, by definition of Ry, expression Rgim (A, w) = 1 is only defined for those tuples
(A, w) for which Ry, is decidable (not necessarily in polynomial time). Therefore, the statement of the
lemma, in particular, means that the prover must write a string w for which it is possible to test (not neces-
sarily in polynomial times) that Reim (A, w) = 1. We can restate the lemma in terms of relations Rg, for

15

every polynomial a, but as we shall see in the proof, a does not actually play a role. Therefore, we have
chosen to avoid the use of a and directly state the lemma in terms of Rgjy,.

Proof of lemma 4.1. Assume, on the contrary, that there exist polynomials p, ¢ and a prover P;" such that
Py takes at most p(n) steps and writes a string w on its private output tape such that for infinitely many
values of n, 6(n) > 1/q(n) where d(n) is the probability that Rgip, (A,w) = 1 (where A is sampled as
defined in the lemma). Now consider the machine P;* in an execution of GenStat and let (5, ¢) be the first
two messages in this interaction. Let the machine P}, . denote the machine P whose state has been frozen
up to the point where c is sent in this execution. B’y’ a standard averaging argument, it follows that with
probability at least §/2 over the sampling of (h, c) in this interaction, the probability that P, . writes a
valid witness w at the end of the interaction is at least 6 /2. We call such (h, ¢) “good.” h

The following procedure finds collisions in h provided (h,c) are good: the procedure chooses two
random strings 71, 72 each of length n, feeds P} with 1 and then with 75 separately; let w; = (u;, H§"> ,Ti)
be the contents of the private output tape of P}, . when fed with string r; for i € {1,2}. The procedure
outputs (II;, II2) as the potential collision on h.

We claim that the procedure finds collisions in h with noticeable probability as follows. Note that since
(h, c) is good, with probability §2 /4, it holds that Rgjm (A;, w;) = 1 where \; = (h, ¢, ;). Hence, H;ﬁ =7
and h(IT;) = h(Ilz) w.h.p. since c is perfectly binding.

Now, define Z to be an inversion oracle which on input a query of the form (f,s) for f € F, and
5 € Range(f) outputs s = f~(3). Then, by definition of Ry, (in particular, due to condition 4 in figure
2), we have that the output of H;ﬁ is the same as that of TIZ. Le., IIZ outputs r;. Since 117 is a deterministic
computation, it holds that ITy and Il are different programs whenever r1 # ro (which happens with prob.
1 —27"). Further, since P} runs in time at most p(n), programs II;, ITs are of size at most p(n). Therefore,
IT; and II; are collisions in A, found with probability at least % (1 —27") > §%/8.

It follows that collisions can be found for a noticeable (specifically, at least 4/2) fraction of functions in
{H,,} with noticeable probability (specifically, §2/8). This concludes the proof. [|

4.3 A Nice Sampler for TM

Protocol GenStat allows us to build a (non uniform) sampling algorithm Samp which will be nice according
to definition 3.2. In addition, the distribution of first output of Samp will give us a hard distribution over the
statement of LZ, | for every polynomial a.

Samp uses the following simple TM:®

SimLock(\, w, s):
Test if Rsim (A, w) = 1, and if so output s;
Else, output the empty string 0™.

Also, for a fixed (A, s), define SimLock) s(-) := SimLock(}, -, s). Machine SimLock, s essentially
tests whether the input is a valid witness to A, and if so outputs the fixed value s, and nothing other-
wise. Note that it is possible that SimLock does not halt on some inputs. Also, w.l.o.g., we assume
that Steps(SimLocky s,,w) = Steps(SimLock) s,,w) for every A, w and (s1, s2){0,1}" x {0, 1}".

SimLock stands for “simulator’s lock,” i.e., only the simulator (having access to the code of the verifier) will be able to “unlock”
the secret s. We note that when we write “Test if Rsim (A, w) = 17, it means that the relation Rim is tested using a Turing machine.
If this test does not halt, then SimLock also does not halt.

16

The sampler. The sampling algorithm, Samp, Py is defined with respect to a string s € {0,1}" and an
arbitrary PPT interactive TM P;. ITM P; follows the instructions of GenStat protocol and interacts with
algorithm V. The distribution of first output of Samp, Py is independent of s, and captured by separately
defining distribution Zpx := {Z, pr }

Samp p-(17).
e Sample a random transcript A of GenStat by interacting with P;* honestly according to V;

e Output (/\7 SimLocky s, SimLockA,on)
Distribution Z,, Pre
e Output a randomly sampled transcript A of GenStat, obtained by honestly interacting with P;".

Note that the first output of Samp, p-(1") and Z, p, are distributed identically for every (n,s). The
following lemma is essentially a corollary of lemma 4.1.

Lemma 4.2. For every non-uniform PPT TM Py, and every s € {0,1}", Sampsvpl* is a nice sampler for
Turing machines (according to definition 3.2). Further, for every polynomial a : N — N, Z,, p+ is a hard
distribution over L, .
Proof. Observe that the pair (SimLocky 5, SimLocky gn) is always a pair of compatible TMs, by definition
of SimLock. Now suppose that the second property of definition 3.2 is not satisfied. Then there exists an A,
running in time at most a(n) for some polynomial a, which outputs an « with noticeable probability such
that SimLocky s(x) # SimLocky g» (), and Steps(SimLock) s,2) < a(n); here the probability is taken
over the sampling of A (which in turn is distributed according to Z, py). It follows, from the definition
of SimLocky s, that x must be a witness to A and therefore A is a PPT machine which finds witnesses to
statements A € L% with noticeable probability. We can use A to violate lemma 4.1 as follows.

Consider the machine Bf ; which incorporates P/ and A. It then samples A by routing messages be-
tween P} and an external (honest) V;, and returns the output of A()\, SimLock) s, SimLockA,On). It is
straightforward to see that By ; violates lemma 4.1 (for every fixed s). Further, A is distributed according
Zp,py and a is an arbitrary polynomial, this also proves the second part of the lemma. |

5 A Simpler Variant of Our Protocol

In this section, we describe the simpler version of our protocol, namely Simple-cZC; it is a (fully) concurrent
zero-knowledge protocol in constant (but not four) rounds. Let P denote the prover algorithm and V' denote
the verifier algorithm. Informally, the protocol has three stages:

1. Instage 1, P and V sample a statement A = (h, ¢, r) for the relation Rg;y, using the protocol GenStat.

2. In stage 2, V sends the image s of a randomly chosen input s under an injective OWF f and also
sends f. Additionally,

(a) V also sends an obfuscation of the machine SimLock) ; which outputs s on every input w for
which Rgim (A, w) = 1.

(b) V proves, using a ZK proof, that it computed all values in this stage honestly.

17

3. In stage 3, P proves that either it knows a witness w to x or it knows the pre-image f~! (3).

The formal description of protocol Simple-cZK appears in figure 3. The main result of this section is the
following theorem.

Theorem 5.1. Assume the existence of collision-resistant hash functions and injective one-way functions.
Further, for every polynomial a : N — N, and every hard distribution Z over the statements of Lg; ,
assume the existence of Z-auxiliary differing-input obfuscation (diO) for the class of all polynomial-size
Turing machines that halt in a polynomial number of steps.'’ Then, there exists a constant round, fully

concurrent zero-knowledge protocol with negligible soundness, for all languages in NP.

We prove the above theorem by proving that protocol Simple-cZK is a fully concurrent zero-knowledge
protocol with negligible soundness error (Theorem 5.6). It is clear that the protocol has constant rounds and
perfect completeness. The soundness and concurrent-ZK properties of this protocol are proven in next two
sections.

Inputs. The common input to P and V is a statement x € L where language L € NP. The prover’s
auxiliary input is a witness w such that R(z,w) = 1. The security parameter n is an implicit input to
both parties.

Protocol. The protocol proceeds in three stages.

Stage 1: P and V execute the GenStat protocol in which V' sends the first message h < H.,,, P sends
the second message ¢ = Com(0™; u) for a random u, and V' sends the final message r < {0, 1}".
Let A = (h, ¢, r) be the transcript.

Stage 2: V samples an injective one-way functions f «+ F,,, a random input s € {0,1}", and a
sufficiently long random tape ¢ € {0, 1}P°Y(™) and computes:

5=f(s), My, <+ O(SimLockys; C) (5.1)

V sends (f, s, M. A,s)» and proves using a constant round ZK protocol (say Ilzk) that there exist
(s, C) satisfying equation (5.1) above.
Stage 3: P proves to V, using a 3-round WIPOK (say Ilwipok) the knowledge of either:
e w such that R(z,w) = 1; OR
e ssuchthat f(s) =5.

Verifier’s output: V accepts if the proof in stage 3 succeeds; otherwise, it rejects.

Figure 3: The simpler variant of our protocol: Simple-cZX.

5.1 Soundness

Lemma 5.2. Simple-cZK has negligible soundness error.

1%We note that we actually do not need obfuscation for the class of all PPT Turing machines. Instead, we only need obfuscation
for those Turing machines of the form SimLock® where a is a polynomial and SimLock® is the same as SimLock except that it
runs for at most a(|z|) steps on input z.

18

Proof. Let P* be a non-uniform cheating prover who succeeds in proving a false statement ¢ L with
some non-negligible probability. There are two parts of the proof:

e first part shows that P* cannot compute the secret s with noticeable probability,

e second part shows that if z ¢ L and P* convinces V' with noticeable probability, then it can be used
to compute s with noticeable probability—violating the first part.

We start with the first part of the proof. Let Py . , denote the prover algorithm P* with non-uniform advice

z and random tape fixed to p. Further define the following two machines:

Machine Py (@20)° This machine is identical to P,) except that it only executes stage I of the protocol,
i.e., the Gen%tat part, aborts the rest of the execution and halts. The transcripts of this machine’s

interactions are of the form A = (h, ¢, 7).

Machine P} (@,20)" This machine is identical to P; . , except that it only executes first two stages of the
protocol, namely stage I and stage 2, aborts the rest of the execution and halts. The transcripts of this

machine’s interaction contain A = (h, ¢, r), (f, 5, M))), and the transcript of the ZK protocol.

Observe that the sampler Samp, Pr o defined in section 4.3, is a well defined machine for every s
7 1,(x,2,p
with respect to our first algorithm P}

1,(z,2,p)"
that PQ* (2,2,p) cannot learn the inverse of s. That is,

Further, it is a nice sampler due to lemma 4.2. We now prove

Claim 5.3. The probability that P (,2.0) after an interacting with the honest verifier V' in protocol Simple-cZIC,
writes a string s € {0, 1}" on its private output tape such that

5= f(s)
is at most negl(n) where (X, (f,3, M A,s)) is the (partial) transcript of the interaction and the probability

is taken over the randomness of V.

Proof. Assume on the contrary that P;: (.2,

probability § = §(n). We show how to use this machine to invert the injective function f in polynomial
time. We start by consider the following machine BJ (,2:0) which takes no input.

Machine B’2k

) does write a string s satisfying the lemma with non-negligible

(z.20)°

1. The machine incorporates P (@,2,p) and interacts with it by playing the role of V' honestly until
the end of stage 1. Let A be the transcript of this stage.

2. At the start of stage 2, B (

3 B;V(w,p)

4. At the end of simulation, B; (2,2,p) OULPULS the contents of PQ*(

,2,p) generates (fv g) M)\’s) hOneStly.

employs the simulator of the ZK protocol and samples a a view for B; (@,2.0)"

.20 ’s private output tape.

By construction, the view of P} (2,2.p) is simulated perfectly by B} (2,2.p) until the the ZK protocol begins.

Therefore, from the properties of the ZK-simulator, it holds that the view of P (w,2,p) & the end of the sim-
ulation is computationally indistinguishable from its view in a real execution with V. It follows that the
outputs of B is a string s such that f (s) = § with probability 6’ > § — negl(n).

To build the inverter for f, the next step is to slightly modify B} (.2.p)" instead of computing the

obfuscated TM M. A,s honestly, the new machine Bg*(w 2p) sends the machine which instead outputs 0”. Le.,

19

Machine B, : This machine is identical to B3 except at the start of stage 1 it sends (f, s, M, A,0m)

(x,2,0)° 2,(z,2,p)
where:

M)\’On — O (SimLOCk)\’On 5 C)

always outputs 0" on all inputs and A is the transcript of stage 1.

We claim that B3",) outputs s such that f (s) = 5 with probability 6" > §" — negl(n). To prove this,
we construct a hybrid machine 3. Machine HJ violates the indistinguishability property of the obfuscator

O with respect to the nice sampler Samp, P for every s € {0, 1}".
T 1,(x,z,p

Machine H5: The machine proceeds as follows:

1. It samples a random f € F,,, s € {0,1}". Sends s to the challenger, who feeds H; with a
challenge (A, M}) where b is a random bit and:

(A, SimLocky 5, SimLocky gn) <= Samp, P
W 1,(x,z,p

Mo +— (’)(n,SimLockkys),Ml < O(n, SimLocky n)

Note that the state of P* at the end of stage-1 can be completely defined by specifying the
transcript of stage-1 (and in particular, (h,r)). Let st; denote the state of the prover when the
transcript is fixed to A (sampled above).

2. Run the prover P* from the state st; and complete stage 2 as follows: send the tuple (f,s =

f(s), Mb) at the start of the stage 2, and proceed exactly as B§7($7z7p). I.e., use the simulator of

the ZK protocol to complete stage 2 and output the contents of PQ*,(:c,z,p) ’s private output tape.

Now observe that since the randomness p has been fixed, the state st; sampled by Samp, Pl is dis-
’ (z,z,p
tributed identically to the state of P , | at the end of stage 1. Further, when b = 0, the rest of the execution

T,2,pP

(and output) of Hj is distributed identically to that of B} (2,2,p)? and when b = 1 it is identical to that of
B; *(1,)" Due to lemma 4.2, Samp, Pl is a nice sampler. /3 therefore violates the indistinguishability
sy 7 1,(z,z,p

property of the obfuscator O unless |6 — 5 | < negl(n).

»*(I,z,p) ;k(fr,zw
need to know the value of s, and executes perfectly even if (f,s) are given by an outside challenger. There-

fore, B3* is actually an inverter for f € F,, succeeding with the final probability 6 — negl(n). It

2,(z,2,p)

follows that & must be negligible in n, establishing the claim. [

Therefore, the machine B; outputs s with probability §”. However, note that B) does not

We now come to the second part of the proof. Suppose that = ¢ L and the success probability of P,
is not negligible. This means that there exists a polynomial ¢ such that for infinitely many values of n, P _ ,
succeeds with probability d2(n) > 1/q(n). We show how to build a prover Py (2,2,p) Which violates claim
5.3.

Let Extwipok be the knowledge extractor corresponding to the 3-round WIPOK. For concreteness,
assume that Extwpok is a black-box extractor which uses cheating prover Py, pok as an oracle. Let p :=

p(n) be the polynomial associated with the running time of the extractor Extwpok; i.e., Extwipok extracts
the witness in expected time anucmds}. The machine Pﬁz%p) incorporates the original prover Py
and proceeds as follows.

20

Cheating prover PQ*’EQ: op)t

1. Initiate an execution of Simple-cZ/C with an external V, routing its messages to the internal
prover P, up to stage 2. Let sty be the state of Py at the end of stage 2. Denote the residual
prover by Pg. .

2. Stop the execution with outside V" after stage 2, and apply the extractor Extywpok to the machine
Pg,.

3. If the extractor halts within % steps, output whatever it outputs. Otherwise, output a random
string of length n and halt.

*

Clearly, the running time of ng(x,z,p) is at most poly(n) +4p/dy = poly(n) + 4pq, which is polynomial.
Further, by a standard averaging argument, it holds that if we fix the prover’s state to sto, then with proba-
bility at least 2 /2 over the sampling of sta, the success probability of the residual prove Py, is at least d2/2
in the remainder execution (i.e., the WIPOK). Call such states sty “good”.

For every good sty, the expected running time of the Extypok is 2p/d2 and it outputs a valid witness—
specifically the secret s (since is x is false)—with probability 1—negl(n). Therefore, by Markov’s inequality,
if sty is good, stopping Extwipok after 4p/d2 steps (twice the expectation), still produces s with probability
at least (1 — negl(n))/2. Since sty is good with probability at least d2/2, we have that our extractor outputs
s with probability at least d2/2 x 1/2 — negl(n) > 62/8. This contradicts claim 5.3 unless d5 is negligible.
This completes the proof of soundness. [|

Proof of knowledge property of Simple-cZX. We wish to note that the current construction may not
satisfy the proof (argument) of knowledge property since for many states sta Extyypok might take too long.
Nevertheless, by a simple and standard modification, it is possible to build a witness extended emulator
[LinO1, BL0O4] for our protocol. This is usually sufficient for most applications of POK. Alternatively, we
can use a WIPOK with strict polynomial time extraction, in which case protocol Simple-cZ K also becomes
a POK.

5.2 The Simulator

The simulator is described in two parts. First we describe an “internal simulator” S¢”, which requires access
to an oracle 7 that inverts injective one-way functions. This internal simulator is invoked by a “main”
simulator Sy,ain, Which is described later.

Before jumping into the full description of our simulators, we make a few remarks to aid our description:

1. The internal simulator is essentially a “light weight twin” of the main simulator. Meaning that it is
identical to the main simulator in all respects except that it does not run the “heavy” computation for
computing the simulation trapdoor (i.e., the secret s). The internal simulator simply makes queries to
the inversion oracle, denoted Z.

2. The main simulator therefore commits to its “light weight twin” as the program which will determin-
istically predict the string 7 in every session opened by V*.

3. Although this works, implementing this idea leads to small circularity. To correctly predict r, it is
essential that the twin simulator use the same random tape. In particular, this means that the random-
ness to commit to the program (that predicts r) should come from the program to be committed. l.e.,
the randomness for the commitment is correlated to the message (i.e., the program) to be committed.
This is also true for all subsequent messages which require randomness.

21

4. The above circularity can be avoided as follows. We allow the internal “twin” simulator to only have
a commitment to each bit of the random tape. The twin can access the bit by making a query to the
inversion oracle Z. Since Z only inverts (injective) one-way functions, we implement “commitment
to the random tape” as hardcore bits of injective functions. The “committed” tape will be denoted by
p = (P15, Ppoly(n)) and the i-th bit of the tape will be defined as:

pi = heby (g™ (51))

where g is a global function fixed at the beginning by the main simulator. It will be convenient to
define a procedure RandomBit which computes the bit p; as defined here.

5. We note that only the randomness that is used to “interact” with V* needs to be the same for both
simulators. The main simulator can have additional randomness, which is not available to its twin, for
other tasks.

We now describe the twin simulator S to be used internally by the main simulator. Without loss of
generality, we assume that the string 1" is never chosen as a session identifier for any session; it will be
used as a special trigger during execution of the simulator. We will use the words “internal simulator” and
“twin simulator” interchangeably to mean the simulator S {) described below. For concreteness, we recall
the inversion oracle 7 here and fix a procedure Random Bitgﬁ as follows:

Inversion oracle Z. The inversion oracle Z(-) takes queries of the form (f,s) where f € F, is a injective
function from the family of (certified) injective functions {F,,}, and 5 is an element in the range of f.
The oracle returns the (unique) value s = f~!(3) if one exists; otherwise it returns a special symbol
1.

Procedure Random Bitgﬁ(k). The procedure is defined for an injective function ¢ € F, and a string
p = (p1, p2, . ..) of arbitrary length such that every component py, is in the range of g. On input an
integer k, the procedure returns:

pr = hebg(pi) where i < Z (g, pr)

Twin simulator S”(i, A"}, B, z, g, p). Algorithm S is an oracle TM. The input to the algorithm consists of
a “session identifier” ¢ € {0, 1}", a string A interpreted as an (interactive) oracle TM, a string B interpreted
as an interactive TM, a string z € {0, 1}* interpreted as an advice string, a string g describing an injective
one-way function, and a sufficiently long string p = (p1,p2,...) € {0,1}* such that every component
pi € Range(g).

Simulator S has access to an inversion oracle Z(-) as defined above. Inputs (g, p) fix the implicit
random tape of S which is the unique bit-string p = (p1, p2 . ..) where bit p;, = RandomBit;‘:ﬁ(k).11 If,
during its execution, S needs to access py, it calls RandomBit, 5(k).

The simulator S computes its output as described below. It writes z on the auxiliary input tape of B,
and a sufficiently long random string (taken from p) on the random tape of B. It then initiates an execution
of B. If TM B launches a concurrent attack w.r.t. the protocol Simple-cZX, S proceeds as described below.
Otherwise, if B deviates from the concurrent attack, .S aborts the execution, outputting a special symbol L.

" contains random tapes for TM B, A and randomness for all other tasks to be performed by the S. Further, S accesses any
given bit of p only when it is needed in the computation.

22

1. If B opens a new session j, let x; be the statement to be proven and let /; be the first message of
stage-1 of this session. S responds by sending the second message c;, which is computed as follows.

(a) Define the program Hf: B, to be the following oracle-TM:

HXBJ. = AL (7, desc(A'), desc(B), z, g, D).
Le., program HQ B.j is an oracle-TM which takes no input and it is essentially the program A
whose first input has been fixed to j (a session identifier), second input has been fixed to the
description of A", third input has been fixed to the description of machine B, and last three
inputs are fixed to z, g, and p.

(b) Compute c¢; to be commitment to HX B

c; = Com (hj (desc (HXBJ)) ; Uj))

where u; is a uniform string taken from the implicit randome tape p.

2. If B sends a string r;, denoting the third message of stage 1 of session j, do the following: if j = 1,
output the string r; and halt. Otherwise, enter stage 2 of session j.

3. If B initiates stage-2 of an existing session j # i by sending:

as first message of stage-2 of this session. The simulator responds to each message of this stage
honestly by playing the role of the honest verifier of ZK protocol. If B sends the final message of this
stage and succeeds in the proof, it marks the start of stage-3.

4. If B initiates stage-3 of an existing session j # 4, S sends the query (f;,s;) to the oracle Z, and learns
the answer s;. Le.,

S; <—I(fj,§j) .

If s; = L, S outputs a special symbol sim_fail and halts. Otherwise, it uses s; as the witness and
completes the WIPOK honestly.

5. If B halts without sending the third message of stage-1 of session ¢, denoted r;, output the view of
B and halt.'?

This completes the description of the twin simulator S .o

We now describe the main simulator Sy,,i,. This simulator essentially runs the twin simulator S by
setting its input A = S (i.e., the code of the twin simulator itself) and B = V* (i.e., the concurrent
adversarial verifier). In addition, S, also simulates the inversion oracle 7 for S by keeping a track of the
queries and recovering s; for every session ¢ using the obfuscated TM M), ;.

Intuitively, setting B = V* and A = S, results in an execution where the twin simulator commits to its

own code. Further, since Sp,i, only initiates an execution S on these inputs, the “simulated transcript” for

I2In particular, this happens necessarily when ¢ = 1™.

23

both Spain and S become identical. As a result, this ensures that Sp,,i, does have a “fake witness,” namely
the program Ilgy«; (along with a partial table 7; containing inverses for various one-way functions), to
successfully run M), 5. and get s;.

We need to fix a global polynomial bound, denoted Qv+ (n), defined w.r.t. a given PPT adversary V*.
This bound will be used in terminating certain computations in the main simulator, if they run for too long.
Roughly speaking, it is the total time that the obfuscated code will take in outputting the secret s when it is
fed with a valid witness w (for some statement \).

Polynomial)y« (n): The polynomial is defined as follows. Let Ty« (n) be the fixed polynomial bounding
the running time of V*. Let ag;, be the slowdown polynomial of the obfuscator 0.3 Let T v+ be a
polynomial bounding the running time of the program IT% . . := ST (17, desc(S1)), desc(V*), z, g, p)
(for all strings z, g, p which are always bounded by Ty +).

Finally, recall that the program SimLocky s(w) takes as input a witness w = (u, I, 7) and halts in
time that is polynomial in the running time of II” and the size of 7. Let ajocx denote this polynomial, i.e.,
Steps(SimLock,\ﬁ,w) < alock(TH’V* (n), |T|) < alock(va* (TL), Tv* (n)) Then,

Qv=+(n) = ago (m arock (T, v+(n) , Ty+(n))) (5.2)
The description of our main simulator follows.

The main simulator Sy, (d esc(V*),z; &) . The input to the main simulator is the description of the TM
implementing the cheating verifier V*, the auxiliary input string z, and a sufficiently large random tape €.
Smain cOmputes its output as follows:

1. Sample a (certified) injective OWF g € F,,, a sufficiently large bit-string p = (p1, p2, .. .), a collection
of strings (p71, g2, . . .) such that for every valid k: p;, = hcby(p;). Finally, define

p=(g(p1), 9(p2), -..)

and we write pr = g(px). The size of p is at most (a known polynomial) 7y «. Finally, initialize a
global table 7 containing the inverses of all coordinates of p:

T = { (9, P, P) }

2. Perform all steps of the program Hg?v*,ln answering its oracle queries using the table 7, which is
updated dynamically as described below. If a query cannot be answered using 7, output sim_fail. Let
us recall that,

115 e 1o = ST(17, desc(S), desc(V*), 2, g,). (5.3)

Note that since 1™ is never selected as a session identifier, the output of this simulation is always either
a view of V*, special symbol sim_fail, or abort symbol _L.

3. Table 7 is updated dynamically as the execution of Hg>v* 1» proceeds. To describe how 7 is updated,
define the following three quantities associated with a session whose identifier is ¢ € {0, 1}™ \ {1"}:

PThat is, aqio is such that for every TM M, and input x for which Steps(M, x) is defined, it holds that Steps(O(M), z) <
adio (1, Steps(M, x)).

24

(a) Statement \; = (h;, ¢;, 1)
(b) Table 7; which is equal to the contents of 7 at the time when 7; is sent by V*
(c) “Fake” witness w; = (ui, desc(Hg?V*’i), ’72)

Note that the value of w; also gets completely defined when r; is received. Further, Spain has access
to w; for every session ¢ in the simulation.

4. When V* completes stage-2 of some session 4, it has successfully proven the validity of the statement
defined by the tuple (firSi, M /\z‘73i> . Compute

Si = M&wsi (WZ)

by running the obfuscated program M. A;,s; for at most Qv «(n) steps (see (5.2). If a valid s; is received,
append (fi,3;, s;) to T ; otherwise, output sim_fail and halt.'*

5. When HQV* 1 sends a query (f;, 5;), Smain locates the corresponding entry in 7. If a matching entry
(fi, Si, si) is found, it returns s;. If a matching entry is not found, Syain aborts the entire execution,
outputs a special symbol sim_fail, and halts.

When the program HQV* 1 halts, Siain outputs whatever H§>V* 1 outputs and halts. O

5.3 Indistinguishability of Simulation

We argue that the output of Spain, on input the description of a cheating verifier V*, is computationally in-
distinguishable from the output of V* in a random execution of the concurrent attack experiment. We prove
this by designing a several hybrid experiments, starting from the “real” experiment in which all witnesses
are actually given to the experiment.

At a high level, there are three main steps in the proof:

1. The first step is to commit to the description of the twin simulator using fresh randomness u; (that is
not correlated to p) for every session i.

2. The second step is to argue that even if Sy,in uses randomness derived from Random Bity 7 (which is
correlated to p), the simulated view is computationally indistinguishable.

3. The third step is to use the secret s; instead of the witness w; in the WIPOK part. However, this needs
to be done one-by-one for each session in the order in which r; is received. The order is important
to ensure that all sessions whose stage-3 gets scheduled before a particular r;, are actually using the
“fake witness” (and not the real witnesses). This will ensure that the fake witness for session % is also
available to the simulator.

We now describe our hybrids.

“Note that in general 7; does not contain s; since s; is computed after 7; was sent, which in particular fixes 7; before s; is even
defined.

25

Hybrid H;. This experiment is identical to the concurrent attack experiment. The experiment incorpo-
rates the verifier program V* and auxiliary input z. It initiates a concurrent execution with V*. For
every session ¢, H; is provided with a witness w; to the statement z; being proven. H;p uses honest
prover algorithms and fresh randomness for all tasks. When V* halts, H; outputs the view of V*,
denoted 1.

Hybrid Hs. This hybrid is identical to H; except that at the start of the experiment, Ho samples the
function g, string p, and table 7 exactly as in step 1 of Syain. Let v2 denote the output of Ho.

Hybrid Hs. This experiment is identical to Hy except that in every session ¢, commitment ¢; (i.e., the
second message of stage 1) is computed as follows:

¢i = Com (hi (desc <H<S>V*Z)) ; uz) ,
()

where h; is the first message of session 4, program II¢',,. , is defined in (5.3),'° and w; is uniformly
chosen. Let 3 denote the output of Hs.

Hybrid H4. This experiment is identical to Hs except that after sampling g, p, and 7T, the experiment
does not sample any more random bits. Instead, H4 keeps a counter £ initialized to 0 and whenever a
new random bit is needed, it does the following: increments k by 1, sets p;. <— Random Bitgyﬁ(k), and
uses py, as the random bit. Let 14 denote the output of Hy.

Before going further, observe the following (straightforward) claim:

Claim 5.4. For every i € [4], hybrid H; halts in polynomial time and outputs the symbol sim fail with
probability 0. Further, v1 = v ~ Vs ~ V4.

Proof. By construction, every H; uses the real witnesses {w), } to succeed in WIPOK part of the protocol,
and all other steps are polynomial time computations. Further, every H; only access 7 via RandomBit
procedure. By construction 7 contains answers to all queries of RandomBit, never leading to sim_fail.

The difference between H; and H» does not change the output, and hence v; = v5. By computational
hiding of Com, 1 ~ v3 since the only difference between Ho and Hj is that they commit different, but
known, strings to V*. By applying the same argument to Hs and Hy, and using the pseudo-randomness
property of hard-core bits, we conclude that v ~ vy. O

For every partial transcript v of the concurrent execution, we can define an ordering of the sessions that
appear in v. We order the session identifiers ¢ according to the order in which strings r;—which is the
second message of stage-1 of session :—are received. L.e., identifier ¢; is ordered before identifier ¢9 if 7;,
is scheduled before 7;,. Note that ordering depends on the scheduling and hence the actual transcript v. The
ordering is well defined for the sessions which have appeared in v even if v is not completely fixed yet and
this order does not change as new sessions are added to v in course of a concurrent attack.

Define id, (7) to be a number which tells us the position of session i in (possibly partial) transcript v
acceding to the above ordering. Note that id;, ! (1) is also well defined and identifies which session’s 7 was
received in m-th position. The transcript v will often be clear from the context, and we will drop it from the
notation and simply write id(7) and id =1 (m).

For m € [Ty +], we define our next set of hybrids.

5Note that g, 7 are already defined at this point and so this program is also well defined.

26

Hybrid Gy.2. This hybrid is same as Hy.

Hybrid G,,.1. This hybrid is same as G,,,_1.2 except for the following difference. Let i, = id_l(m) be
the session-id of a session such that r; is the m-th such string scheduled/sent by V*. Then, this
experiment computes: .

Sig & My, si (Wiy,)

for at most Qv+ (n) steps; (here all quantities are defined as before w.r.t. the session i,,). If s;,, # L,
Gm:1 appends (f;, S, , si,.) to T; otherwise it outputs a special symbol sim_fail, and halts. Let v;,.1
denote the output of G,.1.

Hybrid G,,.2. This hybrid is same as G,,,.1 except that when stage-3 of session ¢,, begins, it probes 7 on
query (f;,.,Si,,) toobtain s; . If s; = is found, it is used as the witness to complete the WIPOK proof.
If s;,, is not found, G,,,.2 outputs sim_fail. Let v,,.2 denote the output of this experiment.

It should be noted that the output of the final hybrid, namely G'7y. .2, is identical to that of Sp,ain. We now
show that:

Lemma 5.5 (Main Lemma). For every m € {1,...,Ty~}, the following conditions hold:

o Gu.1 and G0 are PPT experiments which output sim_fail with only negligible probability, where
the probability is taken over the sampling of tuple (g, p) used by the procedure RandomBit, ;.

s c
® Um—12 = Vm:l = VUm:2

Proof. We start by observing that G2 is the same as Hy, it is a PPT experiment which outputs sim_fail
with negligible probability (by claim 5.4). Recall that program Hg,v*,z‘ outputs sim_fail if and only if there
exists a session j in the execution such that (f;, 5;) is sent as a query but a unique f~'(5;) does not exist.
However, since we assumed!© that it is possible to efficiently test that fj is injective and s; is in the range of
f;, it follows that a unique inverse always exists, and hence Hg v+ ; never outputs sim_fail.

Let us compare the hybrids G,,,—1.0 and G,,.1. If we fix the random tape of these hybrids to be the same
string & then, by construction, the execution of the two experiments are identical up to the point where r;,
is sent (where i,, = id~!(m) is the identifier of the session in m-th position in the order). Let 7;, be the
contents of the table at this point. Further, let

c;,, = Com (hi,, (desc (Hg>v*zm)> ; uim)

be the commitment sent as the second message of stage-1 of session i,,.!” If G,,_1.2 does not output sim_fail
on randomness &, then the string:

Wi

L= (Ui, desc(Hg?V*’im), 7§m>
16 As noted earlier, these assumption are only for simplicity and can be removed because of the following. The proof ITzk given
by the verifier already proves that §; is in the range of f;; we can further require it to also prove that f; was sampled using the
key-generation algorithm of {,, } which is known to be injective. By soundness of ZK, it will follow that Hg’v* _; outputs sim_fail
with negligible probability.
17By construction, ¢;,,, 7;

and r;,, are same in both experiments.

m?

27

is a “fake witness” to the statement \;,, = (h;,,, i, , i,). This is because by our ordering relation, every
message between r;, | and 7, is either a stage-3 message of a session j such that id(j) < m or it is

not a stage-3 message at all. Therefore, if V* sends a TM M, Aipn»si,, Which is indeed an obfuscation of
SimLock Nimrss > Gum:1 learns s; , successfully (since the obfuscated TM takes less than Qy«(n) steps, by

definition of Qy+). By the soundness of ZK protocol (stage 2), M. i, s, 18 indeed a correct obfuscation

with 1 — negl(n) probability, and hence outputs s;,, within Qv+ (n) steps. As the only difference between
Gm—1:2 and Gp,:2 is in how they sample s;, , it follows that:

s
® Um—12 = VUmil

o G takes at most a(Qy+) steps more than the running time of G,,,—1.2

Next, we compare G,,.1 and G,,.2. The only difference between two hybrids is that they use a different
witness in WIPOK stage of session 7,,. Clearly this does not affect the running time. This is because WIPOK
proves an NP statement with a known bound on the witness size; therefore, w.l.o.g., the prover of WIPOK
can be assumed to run in the same time for every witness (with all other things being equal).

Finally, we show that due to WI property of the WIPOK proof, it must be that v/, ~ Vm:2. If the
two outputs are not computationally indistinguishable, the following hybrid machine G, violates the WI
property of stage 3: G, is identical to G,,,.; except that instead of internally running the prover algorithm
of WIPOK in stage 3 of session ¢,, it receives these messages from an external prover.

Note that prior to the start of stage 3 of session 4,,, G, receives no external messages and therefore
it successfully completes every session prior to stage of 7,,. For all sessions after i,,, the hybrid uses the
real witnesses to complete stage 3. Therefore, G, is indeed PPT which is identical to either G,,.; or
G'm:2 depending upon which witness is used by the external prover. It follows that G}, violates WI unless

(&

VUm:l = VUm:2. n

Theorem 5.6. Assume that {H,,} is a family of collision-resistant hash function, {F,} a family of injective
one-way functions, Com a non-interactive perfectly binding (string) commitment scheme, and protocols
Ilzk and Tlywpok are (constant-round) ZK and WIPOK systems respectively for NP. Further assume that
for every polynomial a : N — N, and every hard distribution Z over the statements of L%, O is a Z-
auxiliary differing-input obfuscation (diO) for the class of all polynomial-size Turing machines that halt
in a polynomial number of steps. Then, Simple-cZIC is a constant-round, fully concurrent zero-knowledge

protocol for all languages in NP, with perfect completeness and negligible soundness.

Proof. The perfect completeness and constant-round claim is straightforward to see. The negligible sound-
ness was proven in lemma 5.2. Concurrent ZK follows by observing that the output of Spain 1s indistin-
guishable from the view of V* in a concurrent attack due to claim 5.4 and lemma 5.5 and by observing that
m is bounded by the (polynomial) running time V*. [|

6 The Four Round Protocol

In the previous section, we presented a reduction from constant round, concurrent zero-knowledge to diO
based on standard cryptographic assumptions. In this section, we present a similar reduction for four mes-
sage concurrent zero-knowledge.

28

Let us start by optimizing the number of rounds in our constant round protocol of previous section. The
standalone ZK protocol used in stage 2 has at least four rounds.'® Since the last message of this ZK protocol
must come from the verifier, our resulting protocol will have at least five rounds even after optimizations.

We consider two approaches to obtain a four round protocol. First, we can use a two-round ZK protocol
with super polynomial time simulation[Pas03]. This approach gives us a reduction where the soundness of
the resulting protocol must assume sub-exponential hardness assumptions. The second approach is to use a
WI protocol to prove the correctness of the obfuscated program. However, in typical applications of WI, to
get any useful security we must somehow ensure that the statement being proven has at least two witnesses.

The standard approach in such cases is to consider two independently sampled statements, in this case,
two obfuscated programs M) s and M) o ; and prove that at least one of them is correctly constructed using
a WI proof. However, this approach actually fails for a very interesting reason. Although it does hide one
of the secrets s, s, it actually breaks the simulation. Indeed, the internal simulator committed to in the
preamble, will have no efficient way of knowing which of these two programs is actually correctly prepared.
In particular, it will have to ask for the inversion of rwo challenges per session but the main simulator might
be able to return only one of them (since one of the obfuscated programs could have been maliciously
prepared). Attempting to overcome this subtle issue actually breaks the hardness of Rygjyy,.

We therefore use a different approach; we set up an “intermediate statement” which is selected by the
prover, and require the prover to provide a WIPOK of its correctness. The verifier then proves that either this
intermediate statement is true or the obfuscated program is correctly prepared. The intermediate statement
is prepared in such a way that it is possible to make it false and succeed (using the real witness for x) without
the verifier noticing. This allows us to ensure that the obfuscated program must be correctly prepared and
simulation still continues to go through. For the soundness, roughly speaking, we can extract the witness
corresponding to the “intermediate statement” by using the extractor of WIPOK; we then use it to simulate
the WI proof that comes from verifier’s side. This allows us to again enforce the ideas we developed to prove
the soundness of the Simple-cZ K protocol.

To setup the “intermediate statement” we use perfectly binding commitments to specially prepared
strings. In the final proof, we will need to actually extract the secret s to violate the hardness of one-
way functions. We get around this difficulty by using a combination of the WIPOK used by the prover and
a ZAP proof. We now present an overview of our four round protocol below. The formal description of the
protocol appears in Section 6.1. A pictorial representation of the protocol appears in figure 4.

Four round protocol for concurrent zero-knowledge. The protocol has four components whose mes-
sages will be sent in parallel (as depicted in figure 4).

1. The first component is the GenStat protocol, producing statements of the form A = (h, ¢, r).

2. The second component is a three round WIPOK given by the prover to the verfier. The prover prepares
two commitments, namely ¢; = Com(0 || ¢1;v1) and ta = Com(0 || ¢2;v2) and proves that either
(t1,t2) are correctly prepared or x is true. The 3 messages of this WIPOK will be denoted by («, 3, 7).

3. The final component is a ZAP for a specially prepared statement, which will let us extract either a
witness to x or the secret s in the proof of soundness. The special statement is prepared as follows.

The prover creates two commitments 71, 7o such that 77 uses string ¢; (defined above in item 2) as
its randomness; likewise 75 uses to. Further, the value committed to in one of them is the witness w

18To keep our reduction from concurrent ZK to obfuscation free from “knowledge assumptions,” we cannot use 3-round ZK
protocols based on such assumptions.

29

for statement x. The prover then proves, using a ZAP, that there exists ¢ € {1, 2} such that 7; is a
commitment to w using ¢;. The two messages of this ZAP are denoted by (o’ 7').

The main result of this section is the following theorem, which is proven by showing that protocol cZK
is fully concurrent zero-knowledge (Theorem 6.3) shortly.

Theorem 6.1. Assume the existence of collision-resistant hash functions and trapdoor one-way permuta-
tions (alternatively, injective one-way functions and ZAP proofs for NP). Further, for every polynomial
a : N — N, and every hard distribution Z over the statements of Lg;, assume the existence of Z-auxiliary
differing-input obfuscation (diO) for the class of all polynomial-size Turing machines that halt in a poly-
nomial number of steps. Then, there exists a four message, fully concurrent zero-knowledge protocol with

negligible soundness, for all languages in NP.

P %4
DR
¢ (t1,t2), « - o
r B (f,ﬂsv,]/\\j)\’s), T o’
gl (r1,72), 7

Figure 4: Schematic diagram of the four round protocol

6.1 Protocol cZKC

Inputs. The common input is a statement x € L where language L. € NP. The prover’s auxiliary
input is a witness w such that R(z,w) = 1. Let us assume that L is the NP-complete language of graph
Hamiltonicity.'®

The security parameter n is an implicit input to both the prover as well as the verifier. Without loss of
generality, we assume that jw| = n. Let {H,} be a family of CRHF, {F,,} be a family of injective one-
way functions with efficiently testable range membership, and Com be a non-interactive perfectly binding
commitment scheme for committing strings of arbitrary polynomial length. For concreteness, let IIywpok
be a 3-round public-coin WI protocol with special properties (described in Section 2) and IIzap be a ZAP
proof system.

Rounds. The prover P and the verifier V interact as follows.

1. The verifier sends a CRHF function h < H,,.

<c, AN a>

"“The statements « € L are graphs which contain a Hamiltonian cycle, and the witness w is a Hamiltonian cycle in 2.

2. The prover sends

where:

30

(a) ¢ = Com(0™;u) for a randomly chosen u;

(b) 11,12 are commitments created as follows: £; = Com(0 || ¢; ; v;) for every i € {1,2} and t;, v;
are random strings (of sufficient length);

(c) « is the first prover message of Iy pok for the statement:

e Jws.t. R(z,w) =1;OR

e 3 (ty,t2,v1,v9) s.t. t1 = Com(0 || t1;v1) and t2 = Com(0 || t2; v2)
(d) o is the first message of the ZAP proof;

The prover uses witness of the second part, namely (t1, t2, v1, v2), for computing « and all subsequent
messages corresponding to the prover of ITwpok.

3. The verifier sends
(T, (f’ ga M)\,S)? Ba , OJ)

where:

(a) 7 < {0,1}"™ is arandom string, and A := (h, ¢, r) is already defined by the transcript;

(b) f € F, is a (randomly chosen) injective one-way function, s = f(s) for a random string
s € {0,1}", and M) ; is the obfuscation of SimLock) s, generated using randomness (say) (.20
Le.,

My s < (’)(SimLock,\S ; C).
(c) [is the second message of IIwipok (a random string);
(d) m is the second message of ZAP proof (w.r.t. first message o) proving the statement:
e J(s,()s.t: 5= f(s)and MAﬁ = O(SimLock)VS ; C); OR
o 3 (t1,ta,v1,v2) s.t. t; = Com(0 || t1;v1) and £ty = Com(0 || to; vo)
The verifier uses (s, ¢) as the witness to compute 7.

(e) o’ is a freshly sampled first message of the ZAP proof.

4. The prover checks that (o, 7) is a valid proof. If so, it sends
<77 <T17 72>7 7TI>

(a) - is the last message of Ilywpok (computed using the witness (¢1, ta, v1, v2)—see step 2).

where:

(b) One of the strings 71, 72 is a commitment to the real witness w using one of t1, to as randomness.
That is, P chooses a random 7 € {1,2} and sets: 7; = Com(w;t;). The other string is a
commitment to 0™, That is, 7y = Com(0™;t;) where ¢/ = {1,2} \ i.

PRecall that SimLocky s(-) = SimLock(), -, s), defined earlier, is a TM which outputs s if and only if its input is w s.t.
Reim (A, w)=1; otherwise it outputs the string 0™.

31

(c) 7 is the the second message of the ZAP proof, proving that there exists an 4 such that either
“7; commits to w OR it commits to the secret s using randomness ¢;.” Formally, 7’ proves that:
3 (i, a,t;, v;) such that 7; = Com(a; t;) where i € {1,2},a € {0,1}", t; = Com(0 || t;;v;) and
it holds that either R(z,a) = 1 OR f(a) = 5. The prover computes 7’ using the knowledge of
(i, w, ti, Ui)-

5. Verifier’s output. The verifier accepts if and only if both («, 8,7v) and (¢, ') are accepted by the
corresponding verifier algorithms. Otherwise it rejects.

This completes the description of our protocol. []

We now prove that cZXC is a concurrent zero-knowledge protocol with negligible soundness error.

6.2 Proof of Soundness

The proof of soundness is very similar to the soundness of Simple-cZK. We therefore only present a proof
sketch.

Lemma 6.2. Prototocol cZK has negligible soundness error.

Proof. The main idea of the proof is to extract the values ¢1, t2, v1, v2 from a cheating prover P*, and use
them in the ZAP proof given by the verifier. Thereafter, extract the value of s from 7y, 7 using ¢1,%2 and
invert the one-way function family. The details follow.

Suppose that there exists a polynomial g and a cheating prover P* such that for infinitely many values
of the security parameter n, P* successfully proves a false x ¢ L probability § = 1/q(n). Further, let
p = p(n) be the polynomial associated with the running time of the extractor Extwpok; i.e., Extwipok

: : : p(n)
extracts the witness in expected time Pr{ Py succeeds]
Consider the following prover machine M which behaves like P* except that it also attempts to extract

the value of the secret s.

Machine)M7: this machine incorporates the prover P* and interacts with an external V' of our cZK
protocol as follows:

1. Route the first two messages between P* and V. Let P} denote the state of P* at this point
and let (t1,%2) be the two commitments in the second message and « be the first message of the
WIPOK protocol. Before proceeding further, do the following:

(a) Consider the machine B* which acts as prover of the IIwpok protocol for the statement
(ﬂ,fg). B* always sends « that has already been received. Upon receiving a challenge /3,
B* samples the third message of our ¢ZXC protocol honestly by following V’s algorithm
except that it uses 3 received from the outside party as the challenge for the internal WIPOK
protocol. If internal P responds with a convincing last message, B* forwards only the first
component, namely -y to the outside verifier. This defines the machine B* completely.

(b) Apply the extractor Extwpok to the machine B*, running for at most 4p/J steps. If a
correct witness to (1, £3) is not extracted, abort the entire execution; otherwise continue to
the next step with the extracted value, say (¢1, t2, v1, v2).

32

2. Receive the third message from the outside verifier of our cZK protocol, feed it to P, and
forward the resulting response to V. In addition, if 71, 7o are the commitment strings in the last
message, attempt to extract the values ay, az (using the randomness ¢1, t2) in these commitments.
If f(a;) = s for some ¢ € {1,2} (where (f,s) are received from V' in the third round) write a;
on its private output tape and halt.

Observe that the only difference between M{ and P* is that the former employs a witness extraction
strategy and aborts if it fails after 4p/0 steps. Since there is at least §/2 fraction of states st such that P,
succeeds with probability at least §/2 in the remainder of the execution, we have that the extraction does
succeed with probability at least 1/2 — negl(n) for such a Pj;. Since = ¢ L, this extraction results in
s = f~1(5. Therefore, M; writes s on its private output tape with at least % X (% — negl(n)) x % > %.

Next, we consider the machine which uses the extracted values (t1, t2, v1, v2) as the witness in comput-
ing the verifier’s ZAP (o, 7). Formally, consider the following machines:

Machine M/5: identical to M7 except that it internally simulates all the steps of our honest verifier V" and
does not communicate with an external V.

Machine) identical to M5 except that it uses extracted values (¢1,t2,v1,v2) in computing the ZAP
proof .

It is clear that the outputs of M| and Mj are distributed identically; further due to the WI property, the
output of M3 is computationally indistinguishable from that of My It follows that M3 writes a string s on
its private output tape such that f~!(s) = s with probability at least §2/16 — negl(n).

Finally, consider the following machine Mj: this machine is identical to M3 except that instead of
sending the obfuscation of SimLock) g, it sends obfuscation of SimLock)y g» (in the internal simulation
of honest V). We claim that the outputs of M3 and M} are computationally indistinguishable. This is
demonstrated by the following hybrid machine:

Machine H*: this machine is identical to M except that it does not simulate the messages \ := (h, ¢, 1)
and M. \,s internally. Instead these messages are received from an external verifier V/ which acts
exactly like the GenStat verifier V;; however, after the messages (h, ¢, r) are completed, H* inter-
nally generates (f, f(s)) and then sends s to V;. Verifier V/ responds by sending either an honestly
generated obfuscation of SimLock) ; or that of SimLock o=, chosen randomly.

It is straightforward to see that machine H* satisfies the conditions of a nice sampler; in particular, it
receives the obfuscation of one of the two machines produced by the nice sampler Samp, 7« H™ is identical
to M3 (resp., M) if V/ sends an obfuscation of SimLocky s (resp., SimLocky o»). Therefore, from the
indistinguishability property of O, the outputs of M3 and M are computationally indistinguishable. It
follows that M also write the inverse s on its private output tape. However, note that the execution of M
does not need to know the string s and runs perfectly even if only (f,5 = f(s)) are provided to it by an
external challenger. Therefore M} is an inverter for the one-way function. Hence the lemma. [|

6.3 The Simulator and Proof of Concurrent Zero-Knowledge

As before, the simulator is described in two parts: an internal/twin simulator which requires access to the
oracle 7 and a main simulator which invokes the internal simulator. The description of these simulators is

33

really the same as for the Simple-cZ/C protocol except that the messages are computed according to the
four-round ¢ Z X protocol.

To distinguish the simulators from previous sections, the internal and the main simulators for the four-
round protocol will be denoted by Sp and S

main

respectively.

Twin simulator Sf (1, AY B,z g, p). This simulator proceeds identically to the twin simulator S ¢ de-
fined in section 5.2 except that it only has to send two messages in every session: the second and the fourth
messages. We only mention how these messages are prepared:

1. When B opens a new session j, let x; be the statement to be proven and h; be the first verifier
message. Sy prepares the commitment c; exactly as S does (by committing to the “hash” of program

HX B.j under h;. In addition, it creates the rest of the components, namely <;fv1,j, 527j>, aj, and o;
exactly as the honest prover algorithm does. It then sends this message to B.

2. If B sends the third message of an existing session j # i, say (rj, (fj,gj,ﬂkﬁsj), Bj, mj, a}),
simulator verifies that (o, 7;) is a valid ZAP proof and f; € F,, and s; is in the range of f;. If so, S4
sends queries (f;,s;) to the oracle Z, and learns the inverse s;. Le.,

sj < L(fj:55)-

Sy sends the fourth message of session j, denoted (7j, (T1,5:72,5), 71'3) where ; is computed honestly,
and the rest of the messages are computed using s as the witness as described below.

(a) S4 chooses a random ¢ € {1,2} and sets: 7,7 ; = Com(s;;ty ;). The other string is a commit-
ment to 0". That is, 7;» ; = Com(0™; t;» ;) where i = {1,2} \ 7.

(b) ZAP proof ; is computed honestly by using the knowledge of (', 5, 2y j, vt ;).

3. If the third message corresponds to session j = ¢, the simulator outputs the string ; and halts. If,
however, B halts without sending the third message of session ¢, S4 outputs the view of B and halts.

This completes the description of the internal simulator S7. [J

We note that the polynomials T3+, Tty y+, and Qv+ are all still well defined w.r.t. the four round protocol

and simulator S)

The main simulator Sr(f;in (desc(V*), z; £). As before, the main simulator initializes the values g, p, and
7T, and then emulates actions of the twin simulator S i>

actions of the program II 5@

. In particular, for a given verifier V*, it emulates the

I and computes the simulation trapdoor s; for every session j by running
the obfuscated program M A;s; forevery j € [Ty+]. The only difference from the main simulator Syain
is that the messages are now prepared according to the specifications of the four round protocol cZX. We

omit a complete description.

Theorem 6.3. Assume that {H,,} is a family of collision-resistant hash function, { F,} a family of injective
one-way functions, Com a non-interactive perfectly binding (string) commitment scheme, and protocols
IIwipok and Ilzap are 3-round-WIPOK and ZAP systems respectively for NP. Further assume that for

34

every polynomial a : N — N, and every hard distribution Z over the statements of LS, , O is a Z-
auxiliary differing-input obfuscation (diO) for the class of all polynomial-size Turing machines that halt in
a polynomial number of steps. Then, cZK is a four message, fully concurrent zero-knowledge protocol for

all languages in NP, with perfect completeness and negligible soundness.

Proof (sketch). The proof is obtained by following the proof of theorem 5.6. Namely, the same proof
and the hybrid experiments are also valid for proving the computational indistinguishability of the output
of the main simulator Sr(rgin described above. However, one additional argument is required to prove zero-
knowledge—in particular to show that in hybrid G,,.;, the extracted value is indeed the secret s;,, (i.e., a
correct inverse).

Let us highlight why this new argument is needed. In the earlier Simple-cZXC protocol, the soundness
of ZK protocol ensured that the extracted value is indeed the correct secret s;,, . However, since we are now
using a ZAP proof in the four round protocol (¢Z), we need to argue this claim separately. Below we argue
(only) this claim, and the rest of the proof is the same as before.

Suppose that the claim is not true in the hybrid G,,.1. That is, with noticeable probability, the extracted
value s;,, is not a correct inverse of the corresponding values (f;, ,S;,,) that appears in the transcript of
session i,,. Recall that in hybrid G,.1, all sessions i,,,, for m’ > m still use a valid witness in preparing the
values (Tl,im, , TQ,im/) and W;m/. We consider the following two hybrid experiments:

1. Hybrid G/, .;: same as G,,.1 except that in the WIPOK proof of session i,,, instead of using values
(t1,t2,v1,v2), the prover uses the real witness w to compute messages («, 3,7).

2. Hybrid G/ .: same as G),,.; except that one of the two strings (t1,t2), say ty for a randomly chosen
i' € {1,2} is incorrectly prepared by appending 1 (instead of 0) in front of ¢;/; that is: £;; = Com(1 ||
ti 5 uy). We note that i’ is fixed at this step, and in the last step 7; contains w such that ¢ # 4’. This
is necessary since otherwise the hybrid cannot complete the proof successfully.?!

Now, observe that the output of G/, ; is computationally indistinguishable from that of G,;,.1 due to the
W1 property of Ilwpok. Further, G/ , is computationally indistinguishable from G,,.; due to the security
of commitment scheme. This can be seen in three steps as follows. In the first step, the randomness used in
the committing 7, (in game G/, is changed from ¢; to a random string; the output of the game even after
this change remains computationally indistinguishable from its previous output because this change can be
simulated perfectly by taking a commitment from outside challenger who either commits to 0 || ¢ or O || ¢*
for a random string ¢*. In the second step, string #; is changed to a commitment to 1 || ¢; instead of 0 | ¢
and this keeps the output of the game computationally indistinguishable, since, as before this change can be
perfectly simulated by receiving string ¢; from an outside challenger who either commits to 0 || tirorl | ty.
In the final step, the randomness of 7;s is changed back from uniform (i.e., t*) to ¢;; and indistinguishability
is argued as in the first step. Hence, the outputs of G/, and G/ ., are computationally indistinguishable.
Therefore, it follows that if s;,, is not a correct inverse in GG;,,.1, then the same holds for it in hybrid
m:1- However, the soundness of ZAP now implies that the statement represented by (t1, ?2) is false and
thus the obfuscation must have been correctly computed. Therefore, in G;’m , the value computed by Srgi)lin
by running the obfuscated code must indeed yield a correct inverse s;,,, . This is a contradiction. We conclude

that the outputs of the obfuscated programs in game (.1 must yield correct inverses as desired. [|

1

2I'We also note that this is in fact identical to first choosing 7 randomly (to be used in the last step to set up 7;) and then choosing
(uniquely defined) i € {1,2} \ i (or equivalently i # i’) for defining ¢,/ as described above.

35

References

[ABG*13]

[App13]

[BarO1]
[Bar02]

[BBCT14]

[BC10]

[BCCT13]

[BCGT11]

[BCP14]

[BCPR13]

[BFMS88]

[BG92]

[BGO2]

[BGGLOI]

[BGI101]

[BGK*13]

[BLO4]

[Blu87]

[BOVO3]

[BP04]

Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-inputs obfus-
cation and applications. JACR Cryptology ePrint Archive, 2013, 2013.

Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. Cryptology ePrint
Archive, Report 2013/699, 2013. http://eprint.iacr.org/2013/699.pdf.

B. Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106-115, 2001.

Boaz Barak. Constant-round coin-tossing with a man in the middle or realizing the shared random string
model. In FOCS, 2002.

Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Obfuscation
for evasive functions. In TCC, 2014. Preliminary version on Eprint 2013: http://eprint.iacr.
org/2013/668.pdf.

Nir Bitansky and Ran Canetti. On strong simulation and composable point obfuscation. In CRYPTO,
pages 520-537, 2010.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrap-
ping for snarks and proof-carrying data. In STOC, pages 111-120, 2013.

Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai, and Guy N. Rothblum.
Program obfuscation with leaky hardware. In ASTACRYPT, pages 722-739, 2011.

Elette Boyle, Kai-Min Chung, and Rafael Pass. Extractable obfuscation and applications. In TCC, 2014.
Preliminary version on Eprint 2013: http://eprint.iacr.org/2013/650.pdf.

Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. More on the impossibility of virtual-black-
box obfuscation with auxiliary input. Cryptology ePrint Archive, Report 2013/701, 2013. http://
eprint.iacr.org/2013/701.pdf.

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In STOC, pages 103112, 1988.

Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In CRYPTO, pages 390-420, 1992.

Boaz Barak and Oded Goldreich. Universal arguments and their applications. In Annual IEEE Conference
on Computational Complexity (CCC), volume 17, 2002. Preliminary full version available as Cryptology
ePrint Archive, Report 2001/105.

B. Barak, O. Goldreich, S. Goldwasser, and Y. Lindell. Resettably-sound zero-knowledge and its appli-
cations. In FOCS 2001, pages 116—-125, 2001.

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In Crypto '01, pages 1-18, 2001.

Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting obfuscation
against algebraic attacks. JACR Cryptology ePrint Archive, 2013:631, 2013.

Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and extraction. SIAM Journal on
Computing, 33(4):783—-818, August 2004. Extended abstract appeared in STOC 2002.

Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of the International
Congress of Mathematicians, pages 1444—1451, 1987.

Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. In CRYPTO, pages
299-315, 2003.

Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In CRYPTO, pages 273-289, 2004.

36

[BP12a]

[BP12b]

[BP13a]

[BP13b]

[BR13a]

[BR13b]

[BSMPI1]

[BV11]

[BZ13]

[CDO09]

[CGGMO0]

[CKPRO3]

[CLP13a]

[CLP13b]

[COPV13]

[CPS13]

[CRV10]

[CV13]

[Dam91]

Nir Bitansky and Omer Paneth. From the impossibility of obfuscation to a new non-black-box simulation
technique. In FOCS, pages 223-232, 2012.

Nir Bitansky and Omer Paneth. Point obfuscation and 3-round zero-knowledge. In TCC, pages 190-208,
2012.

Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation and applications to
resettable cryptography. In STOC, pages 241-250, 2013.

Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional auxiliary input.
Cryptology ePrint Archive, Report 2013/703, 2013. http://eprint.iacr.org/2013/703.
pdf.

Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. In CRYPTO (2), pages 416-434,
2013.

Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits via generic graded
encoding. Cryptology ePrint Archive, Report 2013/563, 2013. http://eprint.iacr.org/2013/
563.pdf.

Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-knowledge.
SIAM J. Comput., 20(6):1084-1118, 1991.

Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) lwe.
In FOCS, pages 97-106, 2011.

Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from indis-
tinguishability obfuscation. Cryptology ePrint Archive, Report 2013/642, 2013. http://eprint.
iacr.org/.

Ran Canetti and Ronny Ramzi Dakdouk. Towards a theory of extractable functions. In TCC, pages
595-613, 2009.

Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-knowledge. In Proc.
32th STOC, pages 235-244, 2000.

Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-knowledge requires
(almost) logarithmically many rounds. SIAM Journal on Computing, 32(1):1-47, February 2003. Pre-
liminary version in STOC "01.

Ran Canetti, Huijia Lin, and Omer Paneth. Public-coin concurrent zero-knowledge in the global hash
model. In TCC, pages 80-99, 2013.

Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero knowledge from p-
certificates. In FOCS, 2013.

Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, and Ivan Visconti. Simultaneous resettability from one-
way functions. In FOCS, pages 231-240, 2013.

Kai-Min Chung, Rafael Pass, and Karn Seth. Non-black-box simulation from one-way functions and
applications to resettable security. In STOC, pages 231-240, 2013.

Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of hyperplane membership. In TCC,
pages 72-89, 2010.

Ran Canetti and Vinod Vaikuntanathan. Obfuscating branching programs using black-box pseudo-free
groups. IACR Cryptology ePrint Archive, 2013:500, 2013.

Ivan Damgard. Towards practical public key systems secure against chosen ciphertext attacks. In
CRYPTO, pages 445456, 1991.

37

[DamO0]

[DGS09]

[DLO7]

[DNOO]
[DNS98]

[DS98]

[FFS88]

[FLS99]

[FS&9]

[FS90]

[Gen09]
[GGH113]

[GIST10]

[GJOT13]

[GK96]

[GKO5]

[GK13]

[GM11]

[GMR&5]

[Gol02]

[GOS06]

[Goy13]

Ivan Damgard. Efficient concurrent zero-knowledge in the auxiliary string model. In EUROCRYPT,
pages 418—430, 2000.

Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous resettability conjecture and a new
non-black-box simulation strategy. In FOCS, 2009.

Yi Deng and Dongdai Lin. Instance-dependent verifiable random functions and their application to si-
multaneous resettability. In EUROCRYPT, pages 148-168, 2007.

Cynthia Dwork and Moni Naor. Zaps and their applications. In Proc. 41st FOCS, pages 283-293, 2000.

Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero knowledge. In Proc. 30th STOC, pages
409-418, 1998.

Cynthia Dwork and Amit Sahai. Concurrent zero-knowledge: Reducing the need for timing constraints.
In CRYPTO, pages 442457, 1998.

Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of Cryptology,
1(2):77-94, 1988. Preliminary version in STOC 1987.

Feige, Lapidot, and Shamir. Multiple noninteractive zero knowledge proofs under general assumptions.
SIAM Journal on Computing, 29, 1999.

U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds. In CRYPTO, pages 526—
545, 1989.

U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols. In Proc. 22nd STOC,
pages 416426, 1990.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169—178, 2009.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In FOCS, 2013.

Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia. Founding cryptog-
raphy on tamper-proof hardware tokens. In TCC, pages 308-326, 2010.

Vipul Goyal, Abhishek Jain, Rafail Ostrovsky, Silas Richelson, and Ivan Visconti. Concurrent zero
knowledge in the bounded player model. In TCC, pages 60-79, 2013.

Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. SIAM
Journal on Computing, 25(1):169-192, February 1996. Preliminary version appeared in ICALP’ 90.

Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary input. In
FOCS, pages 553-562, 2005.

Shafi Goldwasser and Yael Tauman Kalai. A note on the impossibility of obfuscation with auxiliary
input. Cryptology ePrint Archive, Report 2013/665, 2013. http://eprint.iacr.org/2013/
665 .pdf.

Vipul Goyal and Hemanta K. Maji. Stateless cryptographic protocols. In FOCS, pages 678-687, 2011.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems. In
Proc. 17th STOC, pages 291-304, Providence, 1985. ACM.

Oded Goldreich. Concurrent zero-knowledge with timing, revisited. In Proc. 34th STOC, pages 332-340,
2002.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for nizk. In
CRYPTO, pages 97-111, 2006.

Vipul Goyal. Non-black-box simulation in the fully concurrent setting. In STOC, pages 221-230, 2013.

38

[GRO7]
[GS12a]

[GS12b]

[Had00]
[Had10]
[HRO4]

[HRSVO07]

[HSW13]

[HT99]

[Kil92]

[Kil95]
[KPO1]

[KPRO§]

[KRW13]

[LinO1]

[LPS04]

[Mic94]

[MO13]

[MR13]

[MRV99]

[Nao&9]

[Pan14]

Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In TCC, pages 194-213, 2007.

Sanjam Garg and Amit Sahai. Adaptively secure multi-party computation with dishonest majority. In
CRYPTO, pages 105-123, 2012.

Divya Gupta and Amit Sahai. On constant-round concurrent zero-knowledge from a knowledge assump-
tion. CoRR, abs/1210.3719, 2012.

Satoshi Hada. Zero-knowledge and code obfuscation. In AsiaCrypt 00, pages 443-457, 2000.
Satoshi Hada. Secure obfuscation for encrypted signatures. In EUROCRYPT, pages 92—-112, 2010.

Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do secure hash functions
need secret coins? In CRYPTO, pages 92—-105, 2004.

Susan Hohenberger, Guy N. Rothblum, Abhi Shelat, and Vinod Vaikuntanathan. Securely obfuscating
re-encryption. In TCC, pages 233-252, 2007.

Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain hash
from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2013/509, 2013. http:
//eprint.iacr.org/2013/509.pdf.

Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols. Cryptology
ePrint Archive, Report 1999/009, 1999. http://eprint.iacr.org/.

Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In Proc. 24th
STOC, pages 723-732, 1992.

Joe Kilian. Improved efficient arguments (preliminary version). In Crypto ’95, pages 311-324, 1995.

Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-logarithm rounds. In
STOC, pages 560-569, 2001.

J. Kilian, E. Petrank, and C. Rackoff. Lower bounds for zero knowledge on the Internet. In Proc. 39th
FOCS, pages 484-492, 1998.

Venkata Koppula, Kim Ramchen, and Brent Waters. Separations in circular security for arbitrary length
key cycles. Cryptology ePrint Archive, Report 2013/683, 2013. http://eprint.iacr.org/
2013/683.pdf.

Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation. In CRYPTO,
pages 171-189, 2001.

Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques for obfuscation. In
EUROCRYPT, pages 20-39, 2004.

S. Micali. CS proofs. In Proc. 35th FOCS, pages 436-453, 1994.

Antonio Marcedone and Claudio Orlandi. Obfuscation ==;, (ind-cpa security =/=; circular security).
Cryptology ePrint Archive, Report 2013/690, 2013. http://eprint.iacr.org/2013/690.
pdf.

Tal Moran and Alon Rosen. There is no indistinguishability obfuscation in pessiland. Cryptology ePrint
Archive, Report 2013/643, 2013. http://eprint.iacr.org/2013/643.pdf.

Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In FOCS, pages
120-130, 1999.

Moni Naor. Bit commitment using pseudo-randomness (extended abstract). In CRYPTO, pages 128-136,
1989.

Omkant Pandey. Achieving constant round leakage-resilient zero-knowledge. In TCC, 2014. Preliminary
version on Eprint 2012: http://eprint.iacr.org/2012/362.pdf.

39

[Pas03]

[Pas04]

[PRO3]

[PRO5a]
[PRO5b]

[PRSO02]

[PTV10]

[PVO8]

[RK99]

[Ros00]

[Ros04]

[SW13]

[TW8T7]

[Wee05]

Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol composition. In Euro-
crypt 03, 2003.

Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In Proc.
36th STOC, pages 232-241, 2004.

Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party computation in a constant number of
rounds. In Proc. 44th FOCS, 2003.

Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In FOCS, 2005.

Rafael Pass and Alon Rosen. New and improved constructions of non-malleable cryptographic protocols.
In STOC, 2005.

Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with logarithmic round-
complexity. In FOCS, 2002.

Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasubramaniam. Eye for an eye:
Efficient concurrent zero-knowledge in the timing model. In 7CC, pages 518-534, 2010.

Rafael Pass and Muthuramakrishnan Venkitasubramaniam. On constant-round concurrent zero-
knowledge. In TCC, pages 553-570, 2008.

R. Richardson and J. Kilian. On the concurrent composition of zero-knowledge proofs. In Eurocrypt *99,
pages 415432, 1999.

Alon Rosen. A note on the round-complexity of concurrent zero-knowledge. In Crypto *00, pages 451—
468, 2000.

Alon Rosen. The Round-Complexity of Black-Box Concurrent Zero-Knowledge. PhD thesis, Department
of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, 2004.

Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryption, and
more. IACR Cryptology ePrint Archive, 2013:454, 2013.

M. Tompa and H. Woll. Random self-reducibility and zero-knowledge interactive proofs of possession
of information. In Proc. 28th FOCS, pages 472482, 1987.

Hoeteck Wee. On obfuscating point functions. In STOC, pages 523-532, 2005.

40

