
A Meet-in-the-middle Attack on Round-Reduced mCrypton

Yonglin Hao, Dongxia Bai

Department of Computer Science and Technology,
Tsinghua Universtiy, Beijing 100084, China

haoyl12@mails.tsinghua.edu.cn, baidx10@mails.tsinghua.edu.cn

Abstract. The meet-in-the-middle (MITM) attack on AES is a great success. In this paper, we apply
the method to the lightweight SPN block cipher mCrypton.
We prove that the multiset technique used to analyze AES can not be applied directly to mCrypton
due to the scarcity of information. As a solution, we replace the unordered multiset with the ordered
sequence. We lower the memory requirement from 2100 to 244 using the efficient differential enumeration
technique.
Based on these modifications, we construct a MITM attack on 7-round mCrypton-64/96/128 with
complexities of 244 64-bit blocks and 257 encryptions.
We further extend the attack to 8 and 9 rounds for mCrypton-128 by adding some key-bridging tech-
niques. The 8-round attack requires 244 blocks and 296 encryptions while the 9-round attack needs 2120

blocks and 2116 encryptions.

1 Introduction

The meet-in-the-middle (MITM) attack was first introduced by Diffie and Hellman in 1977[1]. Due to the
domination of differential and linear attacks, it did not draw too much attention in early 1990s.

However, the Advanced Encryption Standard competition, which lasts from 1997 to 2000, greatly promot-
ed the cryptanalysis of block ciphers. After the study of AES gets heated, the meet-in-the-middle strategy
also shows a trend of revivification. In the past decade, the MITM scenario has become one of the most
fruitful cryptanalysis method. It has been used to analyze block ciphers such as DES[12], KASUMI[15],
IDEA[8],XTEA[14], KTANTAN[9] and Camellia[17][18]. It also shows good efficiency in the cryptanalysis of
hash functions[10][11][13] and is adapted to attack against public key cryptosystem NTRU[16].

Among all the results of MITM attack, the most impressive ones come from the cryptanalysis on AES
block cipher in single-key setting[2][3][4][5][6].

1.1 Previous MITM Attacks on AES

Demirci and Selçuk launched the first MITM attack on AES at FSE 2008 [2]. They consider a set of functions
mapping one active byte to one byte after 4 rounds and prove that each byte of ciphertext can be determined
by 25 byte parameters. Based on this observation, they construct a 5-round distinguisher on AES and develop
a MITM attack on 7-round AES-192 and 8-round AES-256. This MITM attack has an obvious advantage.
Since their distinguisher is effective on any message m, the data complexity of their attack is quite low
(approximately 232). But its weakness is also undeniable: the high memory complexity. Actually, the basic
attack is appropriate for AES-256. In order to make it work on the 192-bit version, Demirci et al. have
to introduce some time/memory tradeoff, which makes their results on AES-192 quite marginal. Although
modifications have been made in [3] and [4], the crisis of memory requirement remains severe.

The first breakthrough was made by Dunkelman, Keller and Shamir in [5] at ASIACRYPT 2010. They
develop some new ideas to lower the memory complexity of the previous MITM attacks. Firstly, they store
the unordered multiset of the function rather than the whole ordered sequence. They prove that after such an
abbreviation, there is still enough information to make the attack work. Furthermore, the multiset technique
also avoids a byte of subkey guess in the online phase. Secondly, they use a differential enumeration tech-
nique and reduce the number of parameters determining the set of functions from 24 to 16. More precisely,
Dunkelman et al. only store the multisets determined by message pairs conforming a particular differential
characteristic. Such a restriction on messages diminish the size of the pre-computed table by a large margin

and enable them to attack the 128-bit version of AES. Besides, [5] also reveals some weaknesses in key sched-
ule and further reduce the time complexity of the attack on 8-round AES-192. Dunkelman et al.’s results
greatly improve the efficiency of MITM attack on AES, but they are not the best results at that time[19].

Recently at EUROCRYPT 2013, Derbez, Fouque and Jean improved the results of [5]. Using their efficient
differential enumeration technique, Derbez et al. further reduce the number of decisive byte parameters from
16 to 10. With this modification, they not only reduce the overall complexity of the existing MITM attacks
on 7 and 8 round AES, but mount to 9 rounds for AES-256 as well[6]. Due to their contributions, the memory
requirement is no longer the bottleneck of MITM attack on AES. It also makes the MITM attack surpass
the impossible differential attack in overall efficiencies.

1.2 Applying to mCrypton

In standard single-key model, the MITM attack has proved to be a great success in analyzing AES block
cipher. We try to apply the method to mCrypton.

mCrypton is a 64-bit lightweight block cipher introduced in 2006 by Lim and Korkishko[7], which is a
reduced version of Crypton[20]. It is specifically designed for resource-constrained devices like RFID tags
and sensors in wireless sensor networks. Like AES, mCrypton is also a SPN block cipher. According to
key length, mCrypton has three versions namely mCrypton-64/96/128, which is in high accordance with
AES-128/192/256.

In recent years, there are quite a few new results on mCrypton. Park launched a related-key rectangle
attack on 8-round mCrypton-128 in 2009[21]. Then, in [22], Mala et al. gave a related-key impossible differ-
ential cryptanalysis on 9-round mCrypton-96/128. There are two biclique results on full-round mCrypton:
[23] managed to attack mCrypton-96/128 and [24] further adapted the methods to all three versions. As to
classical single-key model, the latest result, to the best of our knowledge, is the collision attack introduced
in [25].

Table 1. Results of the Attacks on mCrypton.

Version Rounds Data Time Memory Method Reference

64
7 257 257 244 MITM Section 4

12 248 263.38 − Biclique [24]

96

7 257 257 244 MITM Section 4

8 248 265 281.6 CA [25]

9 259.9 274.9 263.9 RKIDC [22]

12 227.54 294.09 220 Biclique [23]

12 248 294.81 − Biclique [24]

128

7 257 257 244 MITM Section 4

8 246 246 − RKR [21]

8 248 265 281.6 CA [25]

8 257 296 244 MITM Section 5.1

9 259.7 266.7 255.7 RKIDC [22]

9 253 2116 2120 MITM Section 5.2

12 220.1 2125.84 220 Biclique [23]

12 248 2126.56 − Biclique [24]

CA: Collision Attack
RKIDC: Related-Key Impossible Differential Cryptanalysis.
MITM: Meet-in-the-Middle Attack.
RKR: Related-Key Rectangle Attack.

2

In this paper, we apply the methods of [6] to mCrypton and, with some modifications, we improve some
of the existing single-key results:
Our results. Firstly, we find that the multiset technique can NOT be applied to mCrypton directly because
of the information scarcity. As a solution, we replace the unordered multiset with ordered sequence and
lower the memory requirement using the differential enumeration technique. After making these changes, we
launch a MITM attack on 7 rounds for all three versions of mCrypton with a memory complexity of 244 64-bit
blocks. This is the best single-key result for mCrypton-64. Then, we show some properties of key schedule
and manage to attack 8 and 9 rounds for mCrypton-128. This is also the first single-key attack on 9-round
mCrypton-128. As can be seen from Table 1, compared with the collision attack, our MITM method has an
obvious advantage in memory requirement, which allows us to attack the short-key version and extend the
attack on mCrypton-128 to 9 rounds. But on the other hand, the high time complexity becomes a bottleneck
and impedes us to attack 8 or more rounds for mCrypton-96.
Organization of the Paper. In section 2, we describe the mCrypton block cipher and introduce the previous
attack procedure on AES. Then, in Section 3, we give the definitions of σ-set and multiset and explain why
the multiset technique does not work on the cryptanalysis of mCrypton. Also in this section, we further
give our solution and prove its effectiveness. In Section 4, we describe our basic MITM attack on 7-round
mCrypton-64/96/128 in detail and analyze its complexity. In Section 5, we extend the basic attack to 8-round
and 9-round mCrypton-128 using some key bridging techniques. Finally, we summarize our paper in Section
6.

2 Preliminary

This part contains some background information of our attack. It also gives the notations and units used in
this article. As is commonly accepted, the plaintexts are denoted by p and ciphertexts by c.

2.1 Description of mCrypton

mCrypton is a 64-bit lightweight block cipher based on SPN design. It consists of 16 4-bit nibbles which are
represented by a 4× 4 matrix as follows:

A =


a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

 (1)

It has three versions, categorized by key length, namely mCrypton-64/96/128. All the three versions have 12
rounds and each round consists of 4 transformations as follows.
Nonlinear Substitution γ. This transformation consists of nibble-wise substitutions using four 4-bit S-
boxes Si(0 ≤ i ≤ 3). The four S-boxes has relationship:

S0 = S−12 , S1 = S−13 .

According to our experiments, the S-boxes of mCrypton have the same property with the S-box of AES
(Property 1).

Property 1. Given ∆i and ∆o two non-zero differences in IF16, the equation

St(x)⊕ St(x⊕∆i) = ∆o, ∀t ∈ [0, 3]

has one solution on average.

Bit Permutation π. The bit permutation transformation π has the same function with the MixColumns
transformation of AES. It mixes each column of the 4 × 4 matrix A. For column i(0 ≤ i ≤ 3), it uses the
corresponding column permutations πi. Suppose

A = (A0, A1, A2, A3)

3

where A is the 4× 4 matrix and Ai is its i-th column. Then, we have

π(A) = (π0(A0), π1(A1), π2(A2), π3(A3)).

According to [7], each πi is defined for nibble columns a = (a0, a1, a2, a3)t and b = (b0, b1, b2, b3)t by

b = πi(a)⇔ bj =

3⊕
k=0

(m(i+j+k)mod4 • ak).

The symbol • means bit-wise AND and the masking nibbles mi are given by

m0 = 11102,m1 = 11012,m2 = 10112,m2 = 01112.

π transformation is an involution, which means π = π−1. It has a differential brunch number of 4.
Column-To-Row Transposition τ . This is simply the ordinary matrix transposition. It moves the nibble
from the position (i, j) to position (j, i).
Key Addition σ. It is a simple bit-wise XOR operation and resembles the AddRoundKey operation of AES.
The r-th round (1 ≤ r ≤ 12) of mCrypton applied to a 64-bit state x can be denoted by

ρkr (x) = σkr ◦ τ ◦ π ◦ γ(x).

Like AES, mCrypton also performs an initial key addition transformation (σk0) before round 1. In addition,
mCrypton adds a linear operation φ = τ ◦π ◦τ after round 12. So, the whole process of mCrypton encryption
is

c = φ ◦ ρk12 ◦ ... ◦ ρk1 ◦ σk0(p)

Since we use some key bridging skills to analyze mCrypton-128, we briefly introduce the key schedule of
mCrypton-128:
Key Schedule of mCrypton-128. The 128-bit internal register

U = (U0, U1, U2, U3, U4, U5, U6, U7)

is first initialized with the 128-bit user key. Each Ui(0 ≤ i ≤ 7) is a 16-bit (4-nibble) word, occupying a row
of the 4× 4 matrix. Round keys kr(0 ≤ r ≤ 12) are computed consecutively as follows:

T ← S(U0)⊕ Cr, Ti ← T •Mi

kr = (U1 ⊕ T0, U2 ⊕ T1, U3 ⊕ T2, U4 ⊕ T3)

U ← (U5, U6, U7, U
<<3
0 , U1, U2, U3, U

<<8
4).

S is the nibble-wise S-box operation using S-box S0. Cr is the round constant word for round r. Masking
words Mi is to take the i-th nibble of a word:

M0 = 0xf000,M1 = 0x0f00,M2 = 0x00f0,M3 = 0x000f.

The symbol X<<n means left rotation of a 16-bit word X by n bits.

2.2 Notations and Units

Here, we summarize the notations that we use through this paper.

State xi
r: The 64-bit mCrypton state is represented by different small letters. Plaintexts and ciphertexts

are represented by p and c. In the r-th round, we denote the internal state after σkr transformation by
xr, after γ by yr, after π by zr and after τ by wr. kr represents the round key while ur is calculated
linearly from kr with ur = π ◦ τ(kr). The difference of state x is denoted by ∆x. Besides, the superscript
represents the position that the state lies in a sequence (or set).

Nibble x[i]: We refer to the i-th nibble of a state x by x[i], and use x[i, ..., j] for nibbles at positions from
i to j. The nibbles of the state is numbered as the matrix in equation (1).

4

Bit x[i]|k: Each nibble has 4 bits numbered 4,3,2,1 from left to right. If we refer to bit k of nibble x[i], we
denote it by x[i]|k.

Tuple (p,p′,k): (p, p′) represents the plaintext pair and k is the subkey guesses that make (p, p′) conform
a particular differential characteristic. So within each tuple (p, p′, k), (p, p′) is the candidate of right pair
and k is the candidate of correct key guesses.

Bit-wise operators:
‖ concatenate two strings of bits.
⊕ bit-wise XOR.
• bit-wise AND.

In this paper, memory complexities of our attacks are measured by the number of 64-bit mCrypton blocks
and time complexities by mCrypton encryptions (decryptions).

2.3 The MITM Attack on AES

The method we use in this paper mainly depends on the MITM attack given by Derbez, Fouque and Jean in
[6], so we make a brief introduction of their work first.

Fig. 1. The 4-round truncated differential characteristic for AES. Dashed nibbles are active.

In [6], they denote the σ-set by {x01, ..., x2551 }. Their attack can be summarized in 3 steps:

Precomputation
a. In this step, they build a lookup table T containing 280 multisets. Each of the multisets is constructed

from a particular σ-set whose x01 is a member of the pair conforming the truncated differential
characteristic in Figure 1.

Online
b. In this step, they guess several key bytes in the first and last few AES rounds and find the right

message pairs conforming a particular differential characteristic through partial encryptions (decryp-
tions). Having acquired the members of the right pairs and utilizing the key guesses, they deduce the
σ-sets they want.

c. Using the key guesses, they deduce the multisets from the σ-sets and check whether the multisets exist
in the pre-computed lookup table T . If so, the key guesses are correct with high probability.

In this MITM attack, T contains |T | = 280 values and the total number of multisets is Nm = 2506.17, so the
error rate of this attack, denoted by Pe, can be computed with

Pe =
|T |
Nm

(2)

which is approximately 2−426.17.
According to (2), Pe depends on the size of pre-computed table |T | and the total number of multisets

Nm. Pe can be low only when |T | is much smaller than Nm. For AES, we have |T | << Nm. But as described
in the following section, this is not true for mCrypton.

3 Problems and Solutions

In this section, we first define the multiset of mCrypton and explain why it can not be used in our MITM
attack. As a solution, we replace the unordered multisets with ordered sequences and lower the memory
requirement by a large margin using the differential enumeration technique introduced in [5] and [6].

5

3.1 The Helplessness of the Multiset Technique

Similar to the definitions of AES multiset in [5] and [6], we can define the σ-set and multiset of mCrypton.

Definition 1. (σ-set of mCrypton). A σ-set is a set of 16 64-bit mCrypton-states that are all different
in one nibble (the active nibble) and all equal in the other state nibbles (the inactive nibbles).

Definition 2. (Multisets of nibbles). A multiset is a generalized concept of set. It is a set that allows
elements to appear more than once. For mCrypton, a multiset consists of 15 nibbles and can take as many

as
(
24+15−1

15

)
≈ 228.6 different values.

In [5], the authors constructed a truncated differential characteristic. In [6], it is proved that with the
help of the truncated characteristic, the needed multisets can be determined by 10 byte parameters and take
only 280 values. Based on the similarities between mCrypton and AES, we can also construct a differential
characteristic and lower the multiset number to 240. For example, suppose the mCrypton σ-set

Sσ = {x01, x11, ..., x151 }

has an active nibble at position 0 and x01 belongs to a pair conforming to the differential characteristic in
Figure 2.

Then, the multiset after 4 rounds of mCrypton encryption

SM = {x15 ⊕ x05[0], ..., x155 ⊕ x05[0]}

can be determined by 10 nibble parameters namely:

∆x1[0], x02[0, 1, 2, 3], x04[0, 4, 8, 12], ∆z4[0].

So we only need to store 240 multisets in the pre-computed lookup table.

Fig. 2. The 4-round truncated differential characteristic. Dashed nibbles are active.

However, according to Definition 2, there are totally about 228.6 multisets in theory, which means the
pre-computed lookup table is quite likely to cover all the multisets. In this case, the pre-computed table will
become useless in filtering and retrieving subkeys.

So, the multiset technique can not be applied directly to the MITM attacks on mCrypton.

3.2 The Ordered Sequence and the Efficient Differential Enumeration Technique

The failure of multiset technique in attacking mCrypton actually results from the lack of information. As a
straightforward solution, we replace the multiset with ordered sequence. The sequence is the same with that
of [25] but we use the efficient differential enumeration method of [6] to diminish the memory requirement.

In the following part of this paper, the σ-set with an active nibble at position j(0 ≤ j ≤ 15) is denoted by

Aj = {x01, ..., x151 } (3)

where x01 is decided by a differential characteristic and xi1(1 ≤ i ≤ 15) satisfies

xi1 ⊕ x01[j] = i. (4)

6

So the corresponding ordered sequence constituted by the l-th nibble (l ∈ [0, 15]) of x5 is denoted by

Blj = (x15 ⊕ x05[l], ..., x155 ⊕ x05[l]). (5)

Though the difference seems quite insignificant, the total number of ordered sequences soars dramatically
to 260 and allows us to launch our attack. Furthermore, in the following analysis, we can prove that such a
great increment of information only enhance the complexity of pre-computation by a small factor and it does
not affect the efficiency of online phase.

Proposition 1. ∀j ∈ [0, 15] and ∀l ∈ [0, 15]. Let the σ-set be

Aj = {x01, ..., x151 }

Then, the corresponding sequence

Blj = (x15 ⊕ x05[l], x25 ⊕ x05[l], · · · , x155 ⊕ x05[l])

can be fully determined by 25 nibble parameters:

– 1 nibble of x01.
– The full 16-nibble state x03;
– 4 nibbles of x02.
– 4 nibbles of x04.

Proof. We just let j = 0 and l = 0. Then, the 25 nibbles required are:

x01[0], x02[0, 1, 2, 3], x03[0, · · · , 15], x04[0, 4, 8, 12].

For the t-th element of B0
0 (t ∈ [1, 15]), the difference xt5 ⊕ x05[0] can be deduced from x04[0, 4, 8, 12] and

xt4 ⊕ x04[0, 4, 8, 12].
xt4 ⊕ x04[0, 4, 8, 12] requires the knowledge of x03[0, ..., 15] and xt3 ⊕ x03[0, · · · , 15].
xt3 ⊕ x03[0, ..., 15] is generated linearly from yt2 ⊕ y02 [0, 1, 2, 3], which can be deduced from x02[0, 1, 2, 3] and

xt2 ⊕ x02[0, 1, 2, 3].
xt2⊕x02[0, 1, 2, 3] is generated linearly from yt1⊕y01 [0], which requires the knowledge of x01[0] and xt1[0]⊕x01[0].

According to equation (4), we have xt1[0] ⊕ x01[0] = t. Hence, all the nibble parameters required are: x01[0],
x02[0, 1, 2, 3], x03, x04[0, 4, 8, 12]. ut

We deliberately restrict that the x01 of σ-set should belong to one of the right pairs satisfying the differential
characteristic in Figure 2. This method is called the differential enumeration technique in [6] and it can
diminish the size of lookup table from 2100 to 244 64-bit blocks (Proposition 2).

Proposition 2. If the x01 of a σ-set A0 belongs to a pair satisfying the differential characteristic in Figure
2, the corresponding sequence B0

0 can only take 244 values.

Proof. According to Proposition 1, B0
0 is determined by 25 nibbles namely:

x01[0], x02[0, 1, 2, 3], x03[0, · · · , 15], x04[0, 4, 8, 12].

The 11 nibbles
x01[0], ∆x1[0], x02[0, 1, 2, 3], x04[0, 4, 8, 12], ∆z4[0]

can only take as many as 244 values and deduce the values of the 25 nibbles determining B0
0 .

The knowledge of x01[0] and ∆x1[0] is sufficient to deduce ∆x2[0, 1, 2, 3]. Combining x02[0, 1, 2, 3] and
∆x2[0, 1, 2, 3], we get the 16-nibble difference ∆x3.

Similarly, we can deduce ∆y4[0, 4, 8, 12] from ∆z4[0]. Adding the knowledge of x04[0, 4, 8, 12], the 16-nibble
differential ∆y3 is determined.

Since y3 = γ(x3), according to the property of mCrypton S-boxes (Property 1), we can only get one value
on average for each of the 16-nibble state x3.

This is the way we deduce the sequence B0
0 from the σ-set A0. ut

7

4 Attacks on 7-Round mCrypton-64/96/128

We use the differential characteristic in Figure 2 and launch our basic attack on 7-round mCrypton-64/96/128.
The complete differential path can be seen in Figure 5 in Appendix A.

The algorithm is as follows:

1. Pre-computation: According to Proposition 2, we consider all the possible values of the 11 nibble
parameters namely

x01[0], ∆x1[0], x02[0, 1, 2, 3], x04[0, 4, 8, 12], ∆z4[0]

and deduce the 244 corresponding sequences B0
0 . We store the B0

0s in a hash table Ts.
2. Online:

Stage 1: Finding the right pair:
(i) Encrypt 241 structures of 216 plaintexts with active nibbles at positions 0,4,8,12. So there are

about 231 pairs, (p, p′), in each structure.
(ii) For each structure, find the pairs whose ciphertexts have no difference in all nibbles except

for positions 0, 4, 8, 12. Store the remaining pairs in a hash table Tc. This is a 48-bit filter, so
approximately 224 (p, p′) remain.

(iii) We assume that the (x1, x
′
1) only have non-zero difference at position 0. So, for each remaining

(p, p′), we guess ∆x1[0] and compute ∆y0[0, 4, 8, 12] linearly. Since ∆p = ∆x0 and y0 = γ(x0),
we can deduce the possible values of k0[0, 4, 8, 12]. According to Property 1, about 228 tuples
(p, p′, k0[0, 4, 8, 12]) are acquired.

(iv) For the tuples (p, p′, k0[0, 4, 8, 12]), we assume the ∆y5 of the message pair only have non-
zero difference at position 0. Then we guess ∆y5[0] and deduce the ∆x6[0...3] linearly. Since
∆y6 = τ(∆c), we can deduce the possible values of u7[0...3]. According to Property 1, 232 tuples
of (p, p′, k0[0, 4, 8, 12], u7[0...3]) are acquired.

Stage 2: Looking up the ordered sequence:
(v) For each of the 232 tuples (p, p′, k0[0, 4, 8, 12], u7[0...3]), we deduce 24 sequences B0

0 :
(a) Either choose p or p′ and denote it by p0. With the knowledge of k0[0, 4, 8, 12], we deduce

z00 [0, 4, 8, 12] through partial encryptions.
(b) For any i ∈ [1, 15], zi0[0, 4, 8, 12] is determined by

zi0[0] = z00 [0]⊕ i
zi0[4, 8, 12] = z00 [4, 8, 12].

Then pi[0, 4, 8, 12] is deduced through partial decryption while other nibbles of pi are identical
to those of p0. So we have a sequence of plaintexts:

(p0, p1, ..., p15).

(c) After encrypting the sequence of plaintexts and partially decrypting the ciphertexts with the
knowledge of u7[0...3]. we get a sequence:

(x06[0...3], ..., x156 [0...3]).

(d) Guess u6[0] and deduce the 15-nibble sequence B0
0 through partial decryptions. We have

B0
0 = (x15 ⊕ x05[0], ..., x155 ⊕ x05[0]).

(vi) Check whether B0
0 exists in the pre-computed lookup table Ts. If so, the (p, p′) is the right pair

and the key guesses k0[0, 4, 8, 12], u7[0...3], u6[0] are correct with high probability. The error rate
is 244−60 = 2−16 to be precise.

Memory Complexity:
In the pre-computation phase, Ts contains 244 sequences and each sequence occupies 60 bits of space, which
is much larger than Tc’s 224 message pairs. So the memory complexity of this attack is dominated by Ts’
244 64-bit blocks. Since each sequence has 15 nibbles, it requires 244 × 15 ≈ 248 encryptions to construct the
lookup table.
Time & Data Complexity:
As to online phase, Stage 1 encrypts 241× 216 = 257 plaintexts while Stage 2 is dominated by step (d) which
requires 232 × 24 × 16 = 240 encryptions. So the time and data complexity of our attack are both 257.

8

5 Extending the Basic Attack to 8 and 9 Rounds for mCrypton-128

Due to the complicated key schedule, we fail in extending our basic attack to more rounds for mCrypton-96.
But using the key bridging technique, we can still attack 8-round and 9-round mCrypton-128.

5.1 8-Round Attack on mCrypton-128

After studying the key schedule of mCrypton-128, we find that the knowledge of k8 can deduce some bits in
k0 and reduce the time complexity of the online phase:

Proposition 3. By the key schedule of mCrypton-128, knowledge of the entire 16-nibble k8 allows deduce
k0[6], 3 bits of k0[2] and 1 bit of k0[14].

Proof. According to the key schedule of mCrypton-128, the relationship of the 8 bits are:

k0[2]|4,3,2 = k8[3]|3,2,1 (6)

k0[6]|4,3,2 = k8[7]|3,2,1 (7)

k0[6]|1 = k8[4]|4 (8)

k0[14]|1 = k8[12]|4 (9)

The readers may refer to [7] for the detailed key schedule of mCrypton-128. ut

In order to make full use of Proposition 3, we deliberately change the positions of active nibbles (Figure
3). Within each structure of plaintexts, the active nibbles are located at position 2,6,10 and 14. The σ-set is

Fig. 3. The differential characteristic for 8-round mCrypton-128.

A8 and the corresponding ordered sequence becomes B0
8 .

The size of pre-computed lookup table is still 244 64-bit blocks and the 11 decisive nibbles become

x01[8], ∆x1[12], x02[0, 1, 2, 3], x04[0, 4, 8, 12], ∆z4[0].

Refer to Figure 6 in Appendix A for the complete differential characteristic.
For the online stage, the first step remains the same with the basic attack in Section 4. We also need to

consider 241 structures of plaintexts so the data complexity is still 257.

We hypothesize that each of the 241 ×
(
216

2

)
≈ 272 plaintext pairs (p, p′) conforms the differential charac-

teristic, so the possible values of k8 and k0[2, 6, 10, 14] can be determined with several simple steps of guessing
possible subkey nibbles and filtering the unqualified tuples. We call the following steps the Guessing and
Filtering process. Note that such a process is operated structure by structure so we do not have to store all
the ciphers in a table:

Step 1 For each of the 272 plaintext pairs (p, p′), we guess 216 possible ∆y6[0, 1, 2, 3] and deduce the corre-
sponding ∆x7. With the knowledge of ∆x7 and ∆y7 = τ(∆c), we further acquire the possible values of
k8. We acquire 288 tuples of (p, p′, k8).

Step 2 According to Proposition 3, we deduce k0[6] from k8 and acquire (y0[6], y′0[6]). Discard the tuple
(p, p′, k8) if ∆y0[6]|4 6= 0 since

∆y0[6] = m3 •∆z0[2] (10)

where m3 = 01112. It’s a one-bit filter so there are 287 tuples remaining.

9

Step 3 For each of the remaining tuples, we traverse the 2 possible values of ∆z0[2]1, linearly compute the
corresponding ∆y0[2, 6, 10, 14], and deduce the possible k0[2, 6, 10, 14]. At this point, we have 287×2 = 288

tuples of (p, p′, k0[2, 6, 10, 14], k8).
Step 4 For each tuple, we check whether k8 and k0[2, 14] conform equations (7) and (9). Since this is a 4-bit

filter, about 284 tuples are expected to remain.

After the Guessing and Filtering process, the following two steps are natural and in high accordance with
those in Section 4:

1. For each of the 284 tuples, we assume ∆y5 only has non-zero difference at position 0, guess ∆y5[0], and
deduce u7[0, ..., 3]. According to Property 1, we can attain about 288 tuples of

(p, p′, k0[2, 6, 10, 14], u7[0, 1, 2, 3], k8).

2. Then we guess u6[0], construct the corresponding ordered sequence, and check whether the sequence
exist in the pre-computed lookup table. This step dominates the time complexity of this attack with
288 × 24 × 16 = 296 encryptions (decryptions).

To sum up, the 8-round attack on mCrypton-128 has a time complexity of 296. The data complexity is
still 257. The memory complexity is still dominated by the pre-computed lookup table, which is 244 64-bit
blocks to be precise.

5.2 9-Round Attack on mCrypton-128

The key bridging technique we use in 9-round attack is as follows:

Proposition 4. By the key schedule of mCrypton-128, the knowledge of the entire 16-nibble k9 allows to
deduce k0[0, 3]

Proof. According to the key schedule, we have

k0[3]|4,3,2 = k9[12]|3,2,1

k0[3]|1 = k9[13]|4
k0[0] = S0((k9[8]|2,1‖k9[9]|4,3))⊕ (k9[13]|3,2,1‖k9[14]|4)⊕ 1

These relationships can be deduced easily from the key schedule. ut

For mCrypton-128, if we add one round, each ordered sequence need 25 + 16 = 41 decisive nibbles and
accordingly, the pre-computed table has to store 24×(11+16) = 2108 values, which exceeds the total number of
ordered sequences (260). Again, the scarcity of information becomes the barrier in our extension.

Fig. 4. The 5-round differential characteristic for attacking 9-round mCryton-128.

As a solution, we consider the σ-set with 2 active nibbles and contains 256 64-bit states. In order to make
full use of Proposition 4, we construct the 5-round differential characteristic in Figure 4 and deliberately
choose positions 0 and 12 as active nibbles. The σ-set should be denoted by A0,12:

A0,12 = {x01, x11, ..., x2551 }
1 Three bits of ∆z0[2] are known according to (10).

10

For the elements of A0,12, their superscripts are defined i(0 ≤ i ≤ 255) as follows:

i = (xi1 ⊕ x01[0]|4,3,2,1)‖(xi1 ⊕ x01[12]|4,3,2,1).

The corresponding sequence B0
0,12 consists of 255 nibbles:

B0
0,12 = (x16 ⊕ x06[0], x26 ⊕ x06[0], ..., x2556 ⊕ x06[0]).

In this way, the total number of ordered sequence soars to 24×255 = 21020, which is sufficient for us to launch
an attack. Each B0

0,12 is decided by 43 nibbles and the pre-computed table stores 2116 values determined by
29 nibble parameters namely:

x01[0, 12], ∆x1[0, 12], x02[0, 1, 2, 3], x03, x
0
5[0, 4, 8, 12], ∆z5[0].

Since each B0
0,12 requires 4 × 255 = 1020 bits for storage, the memory complexity of pre-computation is

2116 × 1020/64 ≈ 2120 64-bit blocks. To construct the lookup table, we also need 2116 × 256 × 2−4 = 2120

encryptions. The complete differential characteristic can be seen in Figure 7 in Appendix A.
As to the online part of the attack, we need 221 structures of plaintexts with active nibbles at positions

0,3,4,7,8,11,12,15. So the data complexity is 221×24×8 = 253. For the convenience of interpretation, we define
the set λ as follows:

λ = {0, 3, 4, 7, 8, 11, 12, 15}.
The online phase of the 9-round attack on mCrypton-128 can be summarized in the following 5 steps:

1. We firstly encrypt the 253 plaintexts. Then, for each of the 232+31×221 = 284 message pairs, we determine
216 possible k9 by considering the possible values of ∆y6[0, 1, 2, 3] and acquire 216+84 = 2100 tuples
(p, p′, k9).

2. For each tuple, we can deduce k0[0, 3] from k9 according to Proposition 4. After the Guessing and Filtering
process, we have approximately 2100 tuples of (p, p′, k0[λ], k9). The process requires 2100 encryptions.

3. For each (p, p′, k0[λ], k9), we guess ∆y6[0] and deduce 24 possible values of u8[0...3] under the hypothesis
that y6 only has non-zero difference at position 0. This step takes 2104 partial decryptions and attains
2104 tuples of (p, p′, k0[λ], u8[0, ..., 3], k9,)

4. For each of the 2104 tuples, we guess u7[0] and deduce the ordered sequence B0
0,12 through partial decryp-

tions. This step constructs 2108 sequences and dominates the time complexity of the online phase with
2104 × 24 × 256 = 2116 encryptions (decryptions).

5. Finally, we check whether any of the 2108 sequences exist in the pre-computed lookup table. If this is the
case, the corresponding key guesses k0[λ], u7[0], u8[0...3] and k9 should be correct with high probability.
The error rate is 2120/21020 = 2−900 to be precise.

To sum up, the 9-round attack on mCrypton-128 has a memory complexity of 2120 64-bit blocks and a
data complexity of 253 chosen plaintexts. The time complexity of online phase is 2116 and additional 2120

encryptions are required in the preprocessing phase to construct the lookup table.

6 Conclusion

In this article, we consider the standard single-key attack model and prove that the multiset technique
can NOT be used directly on lightweight SPN block cipher mCrypton. We solve this problem by turning
unordered multisets to ordered sequences and diminish the size of lookup table with the efficient differential
enumeration technique.

With these methods, we manage to launch a MITM attack on 7-round mCrypton of all versions. As far
as we know, this is the best result on mCrypton-64 in the single-key model.

Based on some key bridging techniques, we extend the basic attack to 8 rounds for mCrypton-128. Our
attack has significant advantages over the previous collision attack in memory complexity requiring only 244

64-bit mCrypton blocks.
Adding some other modifications, we further mount to 9 rounds for mCrypton-128 with memory com-

plexity 2120 and time complexity 2116. This is also the first 9-round single-key attack on mCrypton-128.
To be honest, the MITM attack on mCrypton does not seem as efficient as its application to AES. But

by using the differential enumeration technique, we lower the memory complexity by a large margin, which
enable us to attack short-key version and extend the basic attack to more rounds.

11

References

1. Diffie, W., Hellman, M. E. (1977). Special feature exhaustive cryptanalysis of the NBS Data Encryption Standard.
Computer, 10(6), 74-84.

2. Demirci, H., Selçuk, A. A. (2008, January). A meet-in-the-middle attack on 8-round AES. In Fast Software
Encryption (pp. 116-126). Springer Berlin Heidelberg.

3. Demirci, H., Taşkın, İ., Çoban, M., Baysal, A. (2009). Improved meet-in-the-middle attacks on AES. In Progress
in Cryptology-INDOCRYPT 2009 (pp. 144-156). Springer Berlin Heidelberg.

4. Wei, Y., Lu, J., Hu, Y. (2011). Meet-in-the-middle attack on 8 rounds of the AES block cipher under 192 key
bits. In Information Security Practice and Experience (pp. 222-232). Springer Berlin Heidelberg.

5. Dunkelman, O., Keller, N., Shamir, A. (2010). Improved single-key attacks on 8-round AES-192 and AES-256. In
Advances in Cryptology-ASIACRYPT 2010 (pp. 158-176). Springer Berlin Heidelberg.

6. Derbez, P., Fouque, P. A., Jean, J. (2013). Improved Key Recovery Attacks on Reduced-Round AES in the
Single-Key Setting. In Advances in Cryptology - EUROCRYPT 2013 (pp. 371-387). Springer Berlin Heidelberg.

7. Lim, C. H., Korkishko, T. (2006). mCrypton - A lightweight block cipher for security of low-cost RFID tags and
Sensors. In Information Security Applications (pp. 243-258). Springer Berlin Heidelberg.

8. Demirci, H., Selçuk, A. A., Türe, E. (2004, January). A new meet-in-the-middle attack on the IDEA block cipher.
In Selected Areas in Cryptography (pp. 117-129). Springer Berlin Heidelberg.

9. Bogdanov, A., Rechberger, C. (2011, January). A 3-subset meet-in-the-middle attack: cryptanalysis of the
lightweight block cipher KTANTAN. In Selected Areas in Cryptography (pp. 229-240). Springer Berlin Heidelberg.

10. Aoki, K., Sasaki, Y. (2009). Meet-in-the-middle preimage attacks against reduced SHA-0 and SHA-1. In Advances
in Cryptology-CRYPTO 2009 (pp. 70-89). Springer Berlin Heidelberg.

11. Sasaki, Y. (2011, January). Meet-in-the-middle preimage attacks on AES hashing modes and an application to
whirlpool. In Fast Software Encryption (pp. 378-396). Springer Berlin Heidelberg.

12. Dunkelman, O., Sekar, G., Preneel, B. (2007). Improved meet-in-the-middle attacks on reduced-round DES. In
Progress in Cryptology C INDOCRYPT 2007 (pp. 86-100). Springer Berlin Heidelberg.

13. Sasaki, Y., Aoki, K. (2009, January). Meet-in-the-middle preimage attacks on double-branch hash functions: Ap-
plication to RIPEMD and others. In Information Security and Privacy (pp. 214-231). Springer Berlin Heidelberg.

14. Sekar, G., Mouha, N., Velichkov, V., Preneel, B. (2011). Meet-in-the-middle attacks on reduced-round XTEA. In
Topics in CryptologyCCT-RSA 2011 (pp. 250-267). Springer Berlin Heidelberg.

15. Jia, K., Yu, H., Wang, X. (2011). A Meet-in-the-Middle Attack on the Full KASUMI. IACR Cryptology ePrint
Archive, 2011, 466.

16. Howgrave-Graham, N. (2007). A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In Ad-
vances in Cryptology-CRYPTO 2007 (pp. 150-169). Springer Berlin Heidelberg.

17. Lu, J., Wei, Y., Pasalic, E., Fouque, P. A. (2012). Meet-in-the-middle attack on reduced versions of the Camellia
block cipher. In Advances in Information and Computer Security (pp. 197-215). Springer Berlin Heidelberg.

18. Chen, J., Li, L. (2012, January). Low data complexity attack on reduced camellia-256. In Information Security
and Privacy (pp. 101-114). Springer Berlin Heidelberg.

19. Lu, J., Dunkelman, O., Keller, N., Kim, J. (2008). New impossible differential attacks on AES. In Progress in
Cryptology-INDOCRYPT 2008 (pp. 279-293). Springer Berlin Heidelberg.

20. Lim, C. H. (1998). CRYPTON: A new 128-bit block cipher. NIST AES Proposal.
21. Park, J. H. (2009). Security analysis of mCrypton proper to low-cost ubiquitous computing devices and applica-

tions. International Journal of Communication Systems, 22(8), 959-969.
22. Mala, H., Dakhilalian, M., Shakiba, M. (2012). Cryptanalysis of mCryptonA lightweight block cipher for security

of RFID tags and sensors. International Journal of Communication Systems, 25(4), 415-426.
23. Shakiba, M., Dakhilalian, M., Mala, H. (2013). Non-isomorphic Biclique Cryptanalysis and Its Application to

Full-Round mCrypton. IACR Cryptology ePrint Archive, 2013, 141.
24. Jeong, K., Kang, H., Lee, C., Sung, J., Hong, S., Lim, J. I. (2013). Weakness of lightweight block ciphers mCrypton

and LED against biclique cryptanalysis. Peer-to-Peer Networking and Applications, 1-17.
25. Kang, J., Jeong, K., Sung, J., Hong, S., Lee, K. Collision Attacks on AES-192/256, Crypton-192/256, mCrypton-

96/128 and Anubis. Journal of Applied Mathematics, http://downloads.hindawi.com/journals/jam/aip/

713673.pdf

12

Appendix

A The Complete Differential Characteristics Used in This Article

Fig. 5. Complete 7-round differential characteristic used in Section 4

13

Fig. 6. Complete 8-round differential characteristic used in Section 5.1

14

Fig. 7. Complete 9-round differential characteristic used in Section 5.2

15

