
A Revocable Online-Offline Certificateless Signature Scheme without

Pairing

Karthik Abinav∗ Saikrishna Badrinarayanan† C. Pandu Rangan‡

S. Sharmila Deva Selvi§ S. Sree Vivek¶ Vivek Krishna Pradhan‖

Theoretical Computer Science Lab,
Department of Computer Science and Engineering,

Indian Institute of Technology, Madras

Abstract

Certificateless Public key Cryptography is a widely studied paradigm due to its advantages of not
having the key-escrow problem and the lack of use of certificates. Online-Offline signature schemes are
extremely relevant today because of their great practical applications. In an online-offline signature
scheme all the heavy computation is done on powerful processors and stored securely in the offline
phase, and the online component requires only light computation. Hence, it is widely used in several
low-resource devices like mobile phones, etc. Revocation is another important problem of wide interest
as it helps to keep a check on misbehaving users. Currently, there are very few revocable certificateless
signature schemes in the literature. We have addressed some of the limitations of the previously existing
schemes and designed a new model for the same that involves periodic time generated keys. We present
a revocable online-offline certificateless signature scheme without pairing. Pairing, though a very useful
mathematical function, comes at the cost of heavy computation. Our scheme is proved secure in the
random oracle model using a tight security reduction to the computational Diffie-Hellman problem.

Keywords
Certificateless cryptography, Online/Offline, Revocable, Tight security, Random oracle.

∗Email: kabinav@cse.iitm.ac.in
†Email : bsai@cse.iitm.ac.in
‡Email : prangan@cse.iitm.ac.in
§Email : sharmila@cse.iitm.ac.in
¶Email : svivek@cse.iitm.ac.in
‖Email : vivek.k.pradhan@gmail.com

1

Contents

1 Introduction 3
1.1 Our Contribution . 4

2 Preliminaries 4
2.1 Computational Assumptions . 4

2.1.1 Discrete Logarithmic Problem . 4
2.1.2 Decision Diffie-Hellman Problem . 4
2.1.3 Computational Diffie-Hellman Problem . 4

2.2 A Revocable Online-Offline Certificateles Signature Scheme 4
2.3 Security Models . 6

2.3.1 Type I adversary game . 6
2.3.2 Type II adversary game . 6
2.3.3 Type III adversary game . 7

2.4 Definition of Tight security . 7

3 Our Scheme 8

4 Security Proof 10
4.1 Proof for Type I Adversary . 10
4.2 Proof for Type II Adversary . 14
4.3 Proof for Type III Adversary . 18

5 Efficiency 22

6 Conclusion 23

2

1 Introduction

The traditional public key infrastructure(PKI) based systems use a certificate to bind a public key
with it’s user’s identity. The drawback is that we need a trusted third-party for the purpose of storing
and issuing certificates. The next paradigm introduced was identity based cryptography(IBC) by Adi
Shamir[13]. In this model, the user’s public key is generated using the user’s identity by a trusted
authority called the Private Key Generator(PKG). Though this helps in doing away with the need for a
trusted authority to issue certificates, the drawback is that a lot of power is vested upon the PKG, who
can impersonate any user. This is called the “Key-Escrow” problem.

Certificateless Cryptography
Certificateless public key cryptography(CLPKC) first proposed by Al Riyami and Patterson[1] tries to
resolve the key escrow problem while keeping the implicit certification property of IBC. The user first
gets a “partial public key” and a “partial private key” from a trusted authority called the Key Generating
Center(KGC). The user then adds some secret information on his own, to create his public and private
keys. The user’s public key is similar to the traditional PKI as it is generated by the user. However, it
does not need to be explicitly certified as it has been generated using some “partial private key” obtained
from the trusted authority. The KGC does not know the users’ private keys as they contain some secret
information, which are generated by the users themselves, thereby removing the Key-Escrow problem
in IBC. Therefore, CLPKC somewhat lies between PKI and IBC.

The notion of online/offline schemes was first introduced by Even, Goldrich and Micali[5]. These
schemes are relevant in the case of low-resource devices like mobile phones, which cannot perform heavy
computations. In such situations, the signature consists of two parts - an offline part and an online
part. The offline signature component involves heavy computations and is done on a powerful processor.
Several such tuples are created and stored securely. This is done without the knowledge of any message.
When a signature is to be generated on a low-resource device, an offline signature component is retrieved,
followed by inexpensive computation to generate the online part, thus forming the full signature. The
generation of the online component is done after the message is known. This widely used paradigm thus
requires a high level of security.

Currently, there are only four certificateless online-offline signature schemes in literature - namely
[16], [6] , [11] and [12]. The scheme in [16], which can naturally be converted into the online/offline
setting, has been proved insecure in [19]. The schemes in [6] and [11] are proved secure using the forking
lemma. One problem with such a proof is that it does not offer tight security and hence, for the scheme
to be truly effective, large keys have to be used which is not desirable. Though the scheme in [12] has a
tight security reduction, it involves pairing, which is computationally expensive, and hence not preferable.

The concept of revocability becomes a major issue when signature protocols are used in real life.
Sometimes, the private keys of users could get compromised or the user could misbehave and we should
have an efficient revocation mechanism to overcome that.

Initially, one solution to revocation in CLPKC([17], [9], [18]) was to introduce an online mediator
called the Security Mediator(SEM). Here, the user’s partial private key is split into two components; one
is given to the user and the other to the SEM. However, the requirement of the SEM for the creation
of each signature results in overburdening it. Also, the SEM has to maintain a large amount of keys,
giving more scope for an attacker to compromise a key.

Another way to tackle this issue is by having a time generated component in the partial key. A time
generated key is issued for a specific interval of time and generated at regular time periods ([1], [17]). To
revoke a user, the KGC stops giving the user the partial keys, thereby preventing the user from being
able to generate the full public key and the full private key for future time periods. For example, the
time period could be for a day. Hence, for the next day the user will be issued a new partial key. This
is similar to the daily token system available at amusement parks. It could be for other time periods
also. For example, applications like banking could require time periods of a few weeks too. Hence, for
a misbehaving user, the KGC can revoke it by not sending the partial keys for future intervals, thereby
preventing the user from signing further. In [1], formal proof of security for such a system isn’t stated.
In [17], the use of pairing operation makes it expensive.

3

A time-interval based certificateless revocable signature scheme has been proposed in [14]. There are
several limitations in their scheme. Firstly, there is no key sanity check for the partial keys got by the
user from the KGC. If the KGC sends the time-updated key over a public channel as stated in the paper,
it may be intercepted and modified by an adversary. The lack of a key sanity check prevents the user
from knowing whether it was sent by the KGC. Secondly, there is no key sanity check for each user’s
public key. Additionally, the size of the partial private keys are quite big as they are group elements.
Also, the use of pairing makes the computations very expensive.

1.1 Our Contribution

We propose a time-interval based revocable online-offline certificateless signature scheme that does not
use pairing. We prove our scheme secure using a tight security reduction to the Computational Diffie
Hellman problem in the random oracle model. In this scheme, we give key sanity checks for both user
verification and public verification. The size of our partial private keys are small as they are elements of
the field Zq. Unlike in [14], signatures can be generated at any time instant providing greater flexibility.
Our scheme has a tight security reduction and doesn’t make use of the pairing operation, thereby
distinguishing it from the other online-offline certificateles signature schemes in the literature.

2 Preliminaries

2.1 Computational Assumptions

2.1.1 Discrete Logarithmic Problem

Let P , aP ∈ G with generator P and a ∈ Z∗p, such that a is unknown. The Discrete Log Problem(DLP)
in G is to compute the value of a. The DLP is assumed to be a computationally hard problem for
certain groups G. This means that for any probabilistic polynomial time algorithm, the advantage of
the algorithm in computing a is negligibly small.

2.1.2 Decision Diffie-Hellman Problem

Let P , aP , bP , Q ∈ G with generator P and a, b ∈ Z∗p, such that a, b are unknowns. The Discrete
Diffie-Hellman(DDH) Problem in G is to decide if Q = abP . The DDH problem is assumed to be a
computationally hard problem for some groups G. This means that for any probabilistic polynomial
time algorithm, the advantage of the algorithm in deciding it is negligibly small.

2.1.3 Computational Diffie-Hellman Problem

Let P , aP , bP ∈ G with generator P and a, b ∈ Z∗p, such that a, b are unknowns. The Computational
Diffie-Hellman(CDH) Problem in G is to compute Q = abP . The CDH problem is assumed to be a
computationally hard problem for certain groups G. This means that for any probabilistic polynomial
time algorithm, the advantage of the algorithm in deciding it is negligibly small.

Note: Throughout this paper, wherever we refer to a group G, we refer to such a group in which
DLP, DDH and CDH are computationally hard.

2.2 A Revocable Online-Offline Certificateles Signature Scheme

A certificateless online/offline scheme1 will contain the following eight probabilistic polynomial time
algorithms - Setup, Partial Extract, Set Secret Value, Public Key Generation, Private Key Generation,
Offline Signature, Online Signature, Verification.
Here, a particular user is denoted as UA and his identity as IDA. Also, time keys are provided for a
fixed time quantum in the system. We denote this time quantum with the symbol α. Additionally, we
use the following naming scheme: UPK - User Public Key, FPK - Full Public Key, PPK - Partial Public
Key, USK - User Secret Key, FSK - Full Secret Key, PSK - Partial Secret Key.

1Definitions based on [11]

4

• Setup(K): This algorithm is run by the KGC. It generates the master secret key(MSK) first and
then the public parameters(params), given a security parameter K as the input. Along with the
other information, params additionally contains α. The KGC publishes params and keeps the
MSK secret.

• Partial Extract(params, IDA, t): This algorithm is run by the KGC. Given params, user
identity IDA and the start of the time interval under consideration t, this algorithm generates the
Partial Secret Key(PSK) and the Partial Public Key(PPK) of a user UA and sends them to the
user. This can be sent over a public or private channel.

• Set Secret Value(params, K, t): This algorithm is run by each user to generate his user secret
key. The input to this algorithm is params, the security parameter K and the start of the time
interval under consideration t. For a user UA, the user secret key is denoted by tA. This value is
not revealed to anyone.

• Public Key Generation(params, IDA, USK, PPK, t): This algorithm is performed by the
user. The input to this algorithm is params, the user identity IDA corresponding to the user UA,
his user secret key, his partial public key and the start of the time interval under consideration t.
The output of this algorithm is the user public key. This step is independent of the Private Key
Generation and hence it can be performed even before knowing the full secret key. The full public
key is the partial public key together with the user public key.

• Private Key Generation(params, IDA, PSK, USK, t): This algorithm is run by each user
to generate his full private key. The input to this algorithm is params, the user identity IDA

corresponding to user UA, his partial secret key, his user secret key and the start of the time
interval under consideration t. The output is his full secret key. This is kept secret by the user
and even KGC does not have full knowledge about it.

• Offline Signature(params, FSK, t): The signer generates the offline component φ using this
algorithm. He does not have any information about the message. The input to this algorithm
are params, the full secret key and the start of the time interval under consideration. The output
is the offline component of the signature. The offline signatures are usually pre-computed and a
large number of them are stored securely for later use in the online phase. In this case, for a time
interval under consideration, the offline signatures are pre-computed and stored in a secure and
trusted location.

• Online Signature(params, IDA, M, FSK, φ, t′): Given a message M, params, the user identity
IDA corresponding to the user UA, the full secret key, the offline component of the signature,
and the current time instant t′, the signer runs the algorithm in the online phase to generate
the certificateless signature σ. For each signature computation, a fresh offline signature must be
retrieved and used. Note that the time t′ is the current instant and not necessarily the start of the
time interval under consideration. It is part of σ.

• Verification(params, IDA, M, σ, FPK, t): This algorithm is run by a verifier to determine
whether the given signature is valid or not. The signature verification can be done by anyone
using params, the signer’s identity IDA, the message M, the signer’s public key, the start of the
time interval under consideration t, the signing timestamp t′ and FPK. (t′ is part of σ). First, the
verification algorithm is run to check if the signature is valid. After that, it is verified that t′ lies
in the interval (t, t+ α), where t is the beginning of the time interval under consideration. If both
the above conditions are satisfied, the algorithm outputs that the signature is valid. If either or
both of them fail, the algorithm outputs that the signature verification failed.

Key Sanity check:
Key sanity check is done at two different places

• User Verification: Whenever the KGC gives the user a PPK and PSK, he runs a key sanity
check to verify if the keys given by the KGC are of the correct mathematical form.

• Public Verification: A different user(6= UA), who intends to use the public key of user UA to
verify this user’s signatures must first ensure that the public key he receives is valid.

5

2.3 Security Models

For any certificateless crypto system2, there are two types of adversaries AI and AII . AI denotes a
dishonest user who can replace other users’ public keys but has no knowledge about the master secret
key. AII represents the malicious KGC who has knowledge of MSK but is trusted not to replace the
public keys. Additionally, for a revocable certificateless crypto system, there is a third kind of adversary
AIII . AIII represents a revoked user - i.e. a user whose partial public key and partial private key have
been revoked by the KGC. He cannot replace other users’ public keys too.

2.3.1 Type I adversary game

Setup: The challenger starts the game by setting the public parameters(params) and sends it across to
AI . The MSK is kept secret.
AI denotes a dishonest user who can replace other users’ public keys but has no knowledge about the
master secret key.
A type I adversary can perform the following operations

Training Phase:

• Hash queries: The adversary has access to all the hash oracles.

• Partial Extract queries: These can be made for all identities except for those in the set of target
identities. Also, the adversary cannot query the partial extract oracle for those identities for which
he has replaced the public key.

• Private Key Generation queries: These can be made for all identities except for those in
the set of target identities.. However, private key generation queries cannot be made on those
adversaries for which the public key replacement has been made.

• Public Key Generation queries: These can be made by the adversary for all identities.

• Public Key Replace: AI sends a new public key to replace the previous public key for some
identity. The challenger verifies that this public key is valid and then replaces it if so. All signing
and verification done after this will use the new public key.

• Signature queries: These can be made by AI for all identities. The output represents the full
signature after the online phase. We do not give a separate offline signature oracle, as the offline
signatures are assumed to be securely stored on a storage device and hence cannot be revealed to
the adversary.

Forgery: After the training phase, the adversary outputs a forgery for one of the target identities.
He wins the type I game if he outputs a valid forgery i.e. it passes the signature verification test and
wasn’t the output of a signature oracle query during the training phase.

2.3.2 Type II adversary game

Setup: The challenger starts the game by setting the public parameters(params) and sends it across to
AII . The MSK is also given in this case.
AII represents the malicious KGC who has knowledge of MSK but is trusted not to replace the public
keys.
A type II adversary can perform the following operations

Training Phase:

• Hash queries: The adversary has access to all the hash oracles.

• Partial Extract queries: These oracle is not provided since AII already has the MSK and he
can compute the PPK and PSK.

• Private Key Generation queries: These can made for all identities except for any identity in
the set of target identities.

• Public Key Generation queries: These can be made by the adversary for all identities.

2Security Game for Type 1 and Type 2 adversary based on [11].

6

• Signature queries: These can be made by AII for all identities. The output represents the full
signature after the online phase. We do not give a separate offline signature oracle as the offline
signatures are assumed to be securely stored on a storage device and hence cannot be revealed to
the adversary.

Forgery: After the training phase, the adversary outputs a forgery for one of the target identities. He
wins the type II game if he outputs a valid forgery i.e. it passes the signature verification test and wasn’t
the output of a signature oracle query during the training phase.

2.3.3 Type III adversary game

AIII denotes a revoked user, i.e. a user for which his partial private keys have been revoked. It represents
a user who earlier was functioning properly, but whose keys were revoked for whatever reasons. He
currently has no active keys(i.e. in the time period under consideration) and he acts as an adversary
in the system. In this game, we give the adversary training till the time he has been revoked. So, the
game goes as follows: The adversary gets training upto the beginning of an interval t#. This represents
the interval in which he gets revoked. In the training phase, he gets access to a lot of information which
is listed below. He cannot get keys for any identity for any time period after the time when he has
been revoked. After the training phase, he performs a forgery for one of the target identities(which are
randomly chosen by the challenger), for a time instant t

′∗ > t# (after he has been revoked). In the
revoked period, he has access to no new information(i.e. after the training).

Setup: The challenger starts the game by setting the public parameters(params) and sends it across
to AIII . The MSK is kept secret.

The things he has accesss to are listed below. A type III adversary can perform the following oper-
ations

Training Phase:

• Hash queries: The adversary has access to all the hash oracles. The inputs can contain a time
instant even after the beginning of the challenge time period.

• Partial Extract queries: These can be made for any identity, for any time period before the
challenge time period.

• Private Key Generation queries: These can be made for all identities before the challenge
time period.

• Public Key Generation queries: These can be made by the adversary for all identities before
the challenge time period.

• Signature queries: These can be made by AIII for all identities for any time instant before the
challenge time period. The output represents the full signature after the online phase. We do not
give a separate offline signature oracle, as the offline signatures are assumed to be securely stored
on a storage device and hence, cannot be revealed to the adversary.

Note: Except in the case of hash queries, none of the other queries can be made for a time instant
after the beginning of the challenge period.
Forgery:

After the training phase, the adversary outputs a forgery for one of the target identities for some
instant t

′∗ such that t
′∗ > t#. He wins the type III game if he outputs a valid forgery i.e. it passes the

signature verification test.

2.4 Definition of Tight security

The scheme is said to have a tight security reduction to an underlying hard problem if the advantage of
the challenger in breaking the hard problem is just negligibly smaller than the advantage of the adversary
in breaking the scheme. In the case of our scheme, we have a tight security reduction meaning that each
of the three games satisfy the above definition.

In our analysis, we have used the technique by Coron in [4]. We assign a probability of p to each
identity as being a target identity, and choose p suitably so that it maximises the value of the advantage
probability.

7

3 Our Scheme

• Setup(K): Given K as security parameter, the key generating center(KGC) chooses a group G
of order q and generator of this group P . Then x is chosen randomly from Z∗q . The KGC then
sets the master secret key(MSK) as x and sets P3 = xP . The KGC then chooses 7 hash functions
defined below:

– H1: {0, 1}∗ ×G× {0, 1}∗t → Z∗q
– H2: {0, 1}∗ ×G→ Z∗q
– H3: {0, 1}∗ ×G→ G
– Ĥ3: {0, 1}∗ ×G× {0, 1}∗t → G
– H4: G→ G
– H5: M × {0, 1}∗ ×G5 × {0, 1}∗t → Z∗q
– H6: G6 → Z∗q

The KGC also chooses the value of the time quantam α. The KGC keeps the MSK secret and

makes params public, where params = (K,P ,P3,H1,H2,H3, Ĥ3,H4,H5,H6, α).

Note: In the hash functions - {0, 1}∗t indicates the time.

• Partial Extract(params, IDA, t): Given an identity IDA and the start of a time interval t, the
KGC does the following to generate the partial public key(PPK) and the partial secret key(PSK).

– Choose randomly s ∈R Z∗q
– Compute P2 = sP

– Compute P̂2 = sĤ3(ID, P2, t)

– Compute dA = s+ xH1(ID, P2, t)

– Choose a random k1 ∈R Z∗q .

– Compute u = k1P and v = k1Ĥ3(ID, P2, t)

– Choose c1 as H6(u, v, P2, P̂2, P, Ĥ3(ID, P2, t))

– Compute s1 = k1 + c1s

– Return PSK = < dA, t > and (P2, P̂2, s1, c1, t) as the PPK.

Note: Here, t is also sent along with the keys to indicate to the user which time interval the keys
are for, thereby preventing confusion. It could be removed from the partial private key to make it
more efficient
Key Sanity Check For User Verification
Now, the user can verify whether the partial keys received were valid for the time interval under
consideration using the following check:

– Compute u = s1P − c1P2 and v = s1Ĥ3(ID, P2, t)− c1P̂2.

– Compute ĉ1 = H6(u, v, P2, P̂2, P, Ĥ3).

– Check if c1 = ĉ1.

– Check if dAP = P2 +H1(ID, P2, t)P3

– Deduce that it is valid if both the above conditions are true.
(i.e c1 = ĉ1 and dAP = P2 + P3H1(ID, P2, t))

This is a check done once in every new time interval.

• Set Secret Value(params, t): The user UA having an identity IDA performs the following oper-
ation to generate the User secret key(USK):

– Choose randomly tA ∈R Z∗q as the USK

• Public Key Generation(params, IDA, USK, PPK, t): The user UA perfoms the following
operation:

– Compute P1 = tAP .

– Compute P̂1 = tAH3(IDA, P1).

– Choose a random k2 ∈R Z∗q .

8

– Compute u = k2P and v = k2Ĥ3(ID, P1, t)

– Choose c2 as H6(u, v, P1, P̂1, P, Ĥ3(ID, P1, t))

– Compute s2 = k2 + c2tA
– The full public key FPK is (P1, P2, P̂1, P̂2, s1, c1, s2, c2, t).

Key Sanity Check For Public Verification

A different user, who intends to use this public key to verify this user’s(UA) signatures must first
ensure that the public key he receives are valid. This can be done by the following check:

– Compute u1 = s1P − c1P2 and v1 = s1Ĥ3(ID, P2, t)− c1P̂2.

– Compute ĉ1 = H6(u1, v1, P2, P̂2, P, Ĥ3).

Compute u2 = s2P − c2P1 and v2 = s2Ĥ3(ID, P1, t)− c2P̂1.

– Compute ĉ2 = H6(u2, v2, P1, P̂1, P, Ĥ3).

– Deduce that it is valid if and only if c1 = ĉ1 and c2 = ĉ2.

Note: In the full public key, only the components P1, P2 are used to verify signatures.
t is there for the receiver to know the time interval during which the public key he receives are to
be used,i.e they are valid for the interval from t to t+ α.
The other components are present for the verifier to check that the public key of the signer that he
received is valid, and is that of the intended user. This is just a one-time check. Rather, it needs
to be validated once every time-period when he receives a new public key for that time period.

• Private Key Generation(params, IDA, USK, PSK, t): The user UA perfoms the following
operation:

– Compute nA = dA + tAH2(ID, P1)

– The FSK is < nA, tA >.

– This value is kept secret.

• Offline Signature(params, FSK, t): The offline components of the signature are calculated as
below:

– Choose k ∈R Z∗q .

– Compute H = H4(kP).

– Compute Z1 = nAH,Z2 = kH,Z3 = kP .

– Return φ = < k,H,Z1, Z2, Z3, t > as the offline signature.

• Online Signature(params, IDA, M, FSK, φ, t’): To generate the full signature for a message M
at a time t′ a fresh offline signature tuple φ is taken. Then, the following operations are performed
as below:

– Compute c = H5(M, IDA, Z1, Z2, Z3, P1, P2, t
′)

– Compute v = k + cnA
– σ = < Z1, v, c, t

′ >.

Note: Each time an online signature has to be generated, a fresh offline signature tuple is retrieved.

• Signature Verification(params, IDA, M, σ, FPK): To verify the given signature a verifier does
the following:

– Compute NA = P2 + H1(ID, P2, t)P3 + H2(ID, P1)P1

– Compute Z3 = vP − cNA

– Compute H = H4(Z3)

– Compute Z2 = vH − cZ1 (v,c are part of σ)

– Verify that c = H5(M, IDA, Z1, Z2, Z3, P1, P2, t
′).

Here, t′ is the time instant at which the signature was generated. It is part of the signature. t is
the start of the time interval at which it was generated, i.e the start of the time interval during
which it is valid.

Even if the above verification holds, the verifier also checks that t′ lies in the interval t to t+ α.
I.e check that t <= t′ <= t+ α.

9

Only if this also holds, the signature can be verified to be a valid one.

Note: The verifier first verifies that the signer’s public keys are valid (using the key sanity check
for public verification). And this validation is a one-time process for each time interval.

4 Security Proof

In the following proofs,all the hash functions are modeled as random oracles.

4.1 Proof for Type I Adversary

Theorem 1: If there exists an adversary AI that can forge a signature for the above scheme with
probability ε in time tadv, then there exists a challenger C who can solve the CDH problem with
probability atleast ε′ in time tch , such that

ε′ ≥ ε

[
1

qfse + qpe + 1

[
qfse + qpe

qfse + qpe + 1

]qfse+qpe

.(1− 1

q
)

]

tch = S + tadv + (q1 + q2 + q3 + q̂3 + q4 + q5 + q6 + qpsq + qfsq + qfpq + qsq + qpkr)O(1). qid = number of
distinct identities queried by the adversary, q = is the order of the group, G in which the hard problem
can be solved by adversary to break the system, qpe = number of partial extract queried, qfse = number
of full secret key extracts.
qi = number of queries to the Hi hash oracle(where i = 1, 2..6), q̂3 = number of queries to the Ĥi, qpsq =
number of partial extract queries, qfsq = number of full secret key queries, qfpq = number of full public
key queries , qsq = number of signature queries, qpkr is the numbe of public key replacements made and
S represents the time taken for the calculations performed by the challenger after the adversary gives a
forgery.

Proof : Let C be given an instance of the CDH problem, (P, aP, bP). Suppose there exists a type
I adversary, who is capable of breaking the signature scheme above, then C’s aim is to find the value of
abP .

Setup: The challenger C must set up the system exactly as given in the scheme. C sets P3 = aP
implicitly setting MSK as a, where a is unknown to C. C then chooses seven hash functions, Hi,

where i = 1, 2..6, along with Ĥ3 and models them as random oracles. C chooses a random value
α and sets it as the time quantam.Also C maintains a list li for each hash function to maintain
consistency. C also maintains lid for storing all the keys. Each entry of the lid is of the form,
< ID,FPK,PSK,USK,FSK, t,Xi >, where the bit Xi is used to determine wheter the public key
has been replaced or not.

Training Phase: In this phase the adversary A1 makes use of all the oracles provided by C. The
system is simulated in such a way that A1 cannot differentiate between a real and a simulated system
that is provided by C.

Choosing the target identity: In the oracle OH1(IDi,(P2)j). The adversary asks qh1 queries and
expects a response from the challenger for each of them. Since the adversary can query on the same ID
and different (P2)j ’s, the number of distinct identities queried is different from qh1

. Let that number
be qid. 1 ≤ qid ≤ qh1

. The challenger uses a biased coin, with probability of heads as p. We define the
value of p later. For each identity queried, the challenger tosses a coin, and sets it as a target identity
if the outcome is a head. i.e each identity has a probabilitiy of p of being a target identity.

Let’s denote IDch to represent the set of target identities.
Oracle OH1

(IDi, (P2)i, t):
A list lh1

is maintained of the form < IDi, (P2)j , tj , Hj >. C responds as follows:

• If < IDi, (P2)j , tj > already exists in the list then respond with value hj from the list.

• Else, choose a hj ∈R Z∗q . Return hj and add the tuple, < IDi, (P2)j , tj , hj > to the list.

10

Oracle OH2
(IDi, (P1)j): A list lh2

is maintained of the form < IDi, (P1)j , Hj >. C responds as
follows:

• If < IDi, (P1)j > already exists in the list then respond with value hj from the list.

• Else, choose a hj ∈R Z∗q . Return hj and add the tuple, < IDi, (P1)j , hj > to the list.

Oracle OH3
(IDi, (P1)j): A list lh3

is maintained of the form < IDi, (P1)j , Hj , xj >. C responds as
follows:

• If < IDi, (P1)j > already exists in the list then respond with value hj from the list.

• Else,
If ID /∈ IDch ,choose a xj ∈R Z∗q . Compute hj = xjP . Return hj and add the tuple,
< IDi, (P1)j , hj , xj > to the list.

If ID ∈ IDch, choose a xj ∈R Z∗q . Compute hj = xjbP . Return hj and add the tuple,
< IDi, (P1)j , hj , xj > to the list.

Oracle OĤ3
(IDi, (P2)j , tj): A list l

ĥ3
is maintained of the form< IDi, (P2)j , Hj , tj , xj >. C responds

as follows:

• If < IDi, (P2)j , tj > already exists in the list then respond with value hj from the list.

• Else,
If ID /∈ IDch ,choose a xj ∈R Z∗q . Compute hj = xjP . Return hj and add the tuple,
< IDi, (P2)j , tj , hj , xj > to the list.

If ID ∈ IDch, choose a xj ∈R Z∗q . Compute hj = xjbP . Return hj and add the tuple,
< IDi, (P2)j , tj , hj , xj > to the list.

Oracle OH4
(kj): A list lh4

is maintained of the form < kj , hj , xj >. C responds as follows:

• If < kj > already exists in the list then respond with value hj from the list.

• Else,choose a xj ∈R Z∗q . Compute hj = xjbP . Return hj and add the tuple, < kj , hj , xj > to the
list.

Oracle OH5(Mj , IDi, (P1)j , (P2)j , Z1j , Z2j , Z3j , tj):
A list lh5

is maintained of the form < Mj , IDi, (P1)j , (P2)j , Z1j , Z2j , Z3j , tj , Hj >. C responds as follows:

• If < Mj , IDi, (P1)j , (P2)j , Z1j , Z2j , Z3j , tj > already exists in the list then respond with value hj
from the list.

• Else, choose a hj ∈R Z∗q . Return hj and add the tuple,
< Mj , IDi, (P1)j , (P2)j , Z1j , Z2j , Z3j , tj , hj > to the list.

Oracle OH6
(Aj , Bj , Cj , Dj , Ej , Fj): Here, Aj , Bj , ..Fj are some elements in G. A list lh6

is main-
tained of the form < Aj , Bj , Cj , Dj , Ej , Fj , hj >. C responds as follows:

• If < Aj , Bj , Cj , Dj , Ej , Fj > already exists in the list then respond with value hj from the list.

• Else, choose a hj ∈R Z∗q . Return hj and add the tuple,
< Aj , Bj , Cj , Dj , Ej , Fj , hj > to the list.

Oracle Partial Extract: C responds as follows:

• If values corresponding to IDi for the start of the time interval t already exists on the list lid, then
return (di, t) as PSK and (P2, P̂2, s1, c1, t) as PPK from the list

• Else,
If ID /∈ IDch

Choose di, qi ∈R Z∗q . Compute sP = diP − qiP3. Compute P2 = sP . Retrieve x̂j3 from ora-

cle corresponding to H3 and set P̂2 = x̂j3sP . Then set, H1(IDi, P2, t) = qi. Add these values

to lh1
. Choose a random k1 ∈R Z∗q . Compute u = k1P and v = k1Ĥ3(IDi, P2, t). Choose c1

as H6(u, v, P2, P̂2, P, Ĥ3(IDi, P2, t)). Compute s1 = k1 + c1s. Output (di, t) as the PSK and

11

(P2, P̂2, s1, c1, t) as PPK. Add these values to the list lid in the entry corresponding to IDi.

If ID ∈ IDch, abort.

Lemma 1: The above oracle outputs valid PSK and PPK

Proof : It can be observed that the outputs given by the oracle, satisfy the condition for a valid
PPK, PSK. (They satisfy the key sanity check for user verification given earlier)

Oracle Public Key Generation: Challenger responds as follows:

• If values corresponding to IDi for the start of the time interval t already exists on the list, then
return < P1, P2, P̂1, P̂2, s1, c1, s2, c2, t > from the list.

• Else,
If (P2, P̂2, s1, c1, t) are already in the list lid, in the entry corresponding to ID, retrieve them. Else
run the partial key extract oracle and retrieve those values.

Choose tA ∈R Z∗q . Set P1 = tAP . Query the oracle H3 on (ID, P1) and retrieve its value. Compute

P̂1 = tAH3. Choose a random k2 ∈R Z∗q .

Compute u = k2P and v = k2Ĥ3(IDi, P1, t).

Choose c2 as H6(u, v, P1, P̂1, P, Ĥ3(IDi, P1, t)).

Compute s2 = k2 + c2tA. Output (P1, P̂1, P2, P̂2, s1, c1, s2, c2, t) as the full public key. Add these
values and tA to the list lid in the entry corresponding to IDi and set xi = 0 .

Lemma 2: The above oracle for public key generation outputs a valid full public key.

Proof : It can be observed that the output generated by the oracle passes the key sanity check for
user verification mentioned in the scheme. Hence, the oracle generates valid public keys.

Oracle Full Private Key :Challenger responds as follows:

• If values corresponding to IDi for the start of the time interval t already exists on the list, then
return < nA, tA, t > from the list.

• Else,
If ID /∈ IDch

If dA is already in the list lid, in the entry corresponding to ID, retrieve them.
Else run the partial key extract oracle and retrieve that value.
If tA is already in the list lid, in the entry corresponding to ID, retrieve them.
Else run the public key generation oracle and retrieve that value.
Compute nA = dA + tAH2(ID, P1). Output < nA, tA, t > as the full private key and add them to
the list lid.

If ID ∈ IDch, abort.

Oracle Public Key Replace: The adversary sends the
value < ID,P1, P2, P̂1, P̂2, s1, c1, s2, c2, t > to the challenger C. The challenger runs the public key ver-
ification test. If the test succeds it adds these values to the list in the entry corresponding to ID and
sets xi = 1 to indicate that the public key has been replaced. Further signatures for this identity use
this value of the public key.

Oracle Signature: Given a value of M,ID and a time instant t′ ∈ (t, t + α) by the adversary, the
challenger does the following:

• Compute NA = P2 + H1(ID, P2, t)P3 + H2(ID, P1)P1.

• Choose c, v, α ∈R Z∗q .

• Compute Z3 = vP − cNA.

12

• Set αP = H4(Z3) and add < Z3, αP, α > to the list lh4

• Compute Z1 = αNA, Z2 = αZ3.

• Set c = H5(M, IDA, Z1, Z2, Z3, P1, P2, t
′) and add it to the list lh4

.

• Output < Z1, v, c, t
′ > as the signature

Lemma 3: The above signature oracle produces a valid signature for any valid public key.

Proof : It can be easily observed that the signature produced by the oracle passes the verification
given in the scheme.

Forgery: Suppose the adversary outputs a forgery σ∗ = (Z∗1 , v
∗, c∗, t

′∗).
Let t

′∗ belong to a time interval (t∗, t∗ + α).
The challenger aborts if the forgery is not for an identity that is within the set of target identities IDch.

The challenger first checks that the signature is a valid one and passes the verification test.

The challenger computes the solution to the hard problem as follows:

• Compute NA for the target identity;

NA = P2 + H1(ID, P2, t
∗)P3 + H2(ID, P1)P1

• Compute Z∗3 = v∗P − c∗NA

• Retrieve xj4 from the H4 oracle on input Z∗3

• Compute xj3 from the H3 oracle on input (ID∗, P ∗1)

• Compute x̂j3 from the Ĥ3 oracle on input (ID∗, P̂ ∗1 , t
∗)

• Retrieve h1 = H1(ID, P2, t
∗)

• Retrieve h2 = H2(ID, P1)

• Compute ∆ = h−11

(
x−1j4 Z

∗
1 − x−1j3 h2P̂1 − x̂j3−1P̂2

)
.

• C returns

ε′ ≥ ε
[

1

qfse

[
qfse − 1

qfse

]qfse
]

∆ as the solution to the hard problem.

Lemma 4: The value of ∆ computed above equals abP .

Proof :

• Z∗1 = xj4bP (s+ ah1 + tAh2)

• x−1j3 h2P̂1 = tAh2bP

• x̂j3−1P̂2 = sbP

Therefore, Z∗1 − x−1j3 h2P̂1 − x̂j3−1P̂2 = h1abP .

Hence, ∆ = abP .

Probability Analysis:

The challenger fails only if any of the following events occur:

• E1: The adversary returns a forgery for ID /∈ IDch.

• E2: An invalid public key replacement by the adversary was not detected.

• E3: The adversary queries partial key for an identity ID ∈ IDch.

13

• E4: The adversary queries full private key for an identity ID ∈ IDch.

Pr[E1] = (1− p)

Pr[E2] =
(

1
q

)
Pr[E3] = 1− (1− p)qpe

Pr[E4] = 1− (1− p)qfse

Therefore, the probability of the challenger being successful is atleast Pr[¬(E1∨E2∨E3∨E4)]. And
the advantage of the adversary is ε.

Thus,

ε′ ≥ ε{p.(1− p)qpe(1− p)qfse(1− 1

q
)}

Let X = p.(1− p)qfse+qpe . X attains maximum for pmax = 1
qfse+qpe+1 .

Therefore, the value of p chosen by the adversary is pmax = 1
qfse+qpe+1

And the advantage of the adversary is

ε′ ≥ ε

[
1

qfse + qpe + 1

[
qfse + qpe

qfse + qpe + 1

]qfse+qpe

.(1− 1

q
)

]

It can be observed that tch = S + tadv+(q1+q2+q3+q̂3+q4+q5+q6+qpsq+qfsq+qfpq+qsq+qpkr)O(1).
where O(1) captures the time taken for the scalar and group operations performed in the course of each
query, and the time taken for the calculations made after the forgery is captured in S.

4.2 Proof for Type II Adversary

Theorem 2: If there exists an adversary AII that can forge a signature for the above scheme with
probability ε in time tadv, then there exists a challenger C who can solve the CDH problem with
probability atleast ε′ in time tch , such that

ε′ ≥ ε
[

1

qfse + 1

[
qfse

qfse + 1

]qfse
]

tch = S + tadv + (q1 + q2 + q3 + q̂3 + q4 + q5 + q6 + qfsq + qfpq + qsq)O(1).
qid = number of distinct identities queried by the adversary, q = is the order of the group G in which
the hard problem can be solved by adversary to break the system, qfse = number of full secret key
extracts, qi = number of queries to the Hi hash oracle(where i = 1, 2..6), q̂3 = number of queries to the

Ĥi, qfsq = number of full secret key queries, qfpq = number of full public key queries , qsq = number of
signature queries and S represents the time taken for the calculations performed by the challenger after
the adversary gives a forgery.

Proof :
Let C be given an instance of the CDH problem, (P, aP, bP). Suppose there exists a type II adver-

sary, who is capable of breaking the signature scheme above, then C’s aim is to find the value of abP .

Setup: The challenger C must set up the system exactly as given in the scheme. C chooses a random

x ∈R Zq. C then chooses seven hash functions, Hi, where i = 1, 2..6, along with Ĥ3 and models them as
random oracles.C chooses a random value α and sets it as the time quantam. Also C maintains a list li
for each hash function to maintain consistency. C also maintains lid for storing all the keys. Each entry
of the lid is of the form, < ID,FPK,PSK,USK,FSK, t >.

Training Phase: In this phase the adversary AII , makes use of all the oracles provided by C. The
system is simulated in such a way that AII cannot differentiate between a real and a simulated system
that is provided by C.

14

Choosing the target identity: In the oracle OH1(IDi,(P2)j). The adversary asks qh1
queries and

expects a response from the challenger for each of them. Since the adversary can query on the same ID
and different (P2)j ’s, the number of distinct identities queried is different from qh1

. Let that number
be qid. 1 ≤ qid ≤ qh1

. The challenger uses a biased coin, with probability of heads as p. We define the
value of p later. For each identity queried, the challenger tosses a coin, and sets it as a target identity
if the outcome is a head. i.e each identity has a probabilitiy of p of being a target identity.

Let’s denote IDch to represent the set of target identities.

Oracle OH1(IDi, (P2)j , tj): A list lh1 is maintained of the form < IDi, (P2)j , tj , Hj >. C responds
as follows:

• If < IDi, (P2)j , tj > already exists in the list then respond with value hj from the list.

• Else, choose a hj ∈R Z∗q . Return hj and add the tuple, < IDi, (P2)j , tj , hj > to the list.

Oracle OH2(IDi, (P1)j): A list lh2 is maintained of the form < IDi, (P1)j , Hj >. C responds as
follows:

• If < IDi, (P1)j > already exists in the list then respond with value hj from the list.

• Else, choose a hj ∈R Z∗q . Return hj and add the tuple, < IDi, (P1)j , hj > to the list.

Oracle OH3(IDi, (P1)j): A list lh3 is maintained of the form < IDi, (P1)j , Hj , xj >. C responds as
follows:

• If < IDi, (P1)j > already exists in the list then respond with value hj from the list.

• Else,
Choose a xj ∈R Z∗q . Compute hj = xjP . Return hj and add the tuple, < IDi, (P1)j , hj , xj > to
the list.

Oracle OĤ3
(IDi, (P2)j , tj): A list l

ĥ3
is maintained of the form< IDi, (P2)j , tj , Hj , xj >. C responds

as follows:

• If < IDi, (P2)j , tj > already exists in the list then respond with value hj from the list.

• Else,
If ID /∈ IDch ,choose a xj ∈R Z∗q . Compute hj = xjP . Return hj and add the tuple,
< IDi, (P2)j , tj , hj , xj > to the list.

If ID ∈ IDch, choose a xj ∈R Z∗q . Compute hj = xjbP . Return hj and add the tuple,
< IDi, (P2)j , tj , hj , xj > to the list.

Oracle OH4(kj): A list lh4 is maintained of the form < kj , Hj , xj >. C responds as follows:

• If < kj > already exists in the list then respond with value hj from the list.

• Else, choose a xj ∈R Z∗q . Compute hj = xjbP . Return hj and add the tuple, < kj , hj , xj > to the
list.

Oracle OH5
(Mj , IDi, (P1)j , (P2)j , Z1j , Z2j , Z3j , tj):

A list lh5
is maintained of the form < Mj , IDi, (P1)j , (P2)j , Z1j , Z2j , Z3j , tj , Hj >. C responds as follows:

• If < Mj , IDi, (P1)j , (P2)j , Z1j , Z2j , Z3j , tj > already exists in the list then respond with value hj
from the list.

• Else, choose a hj ∈R Z∗q . Return hj and add the tuple,
< Mj , IDi, (P1)j , (P2)j , Z1j , Z2j , Z3j , tj , hj > to the list.

Oracle OH6
(Aj , Bj , Cj , Dj , Ej , Fj): Here, Aj , Bj , ..Fj are some elements in G. A list lh6

is main-
tained of the form < Aj , Bj , Cj , Dj , Ej , Fj , hj >. C responds as follows:

• If < Aj , Bj , Cj , Dj , Ej , Fj > already exists in the list then respond with value hj from the list.

• Else, choose a hj ∈R Z∗q . Return hj and add the tuple,
< Aj , Bj , Cj , Dj , Ej , Fj , hj > to the list.

15

Oracle Public Key Generation: Challenger responds as follows:

• If values corresponding to IDi for the start of the time interval t already exists on the list, then
return < P1, P2, P̂1, P̂2, s1, c1, s2, c2, t > from the list.

• If ID /∈ IDch

If (P2, P̂2, s1, c1, t) are already in the list lid, in the entry corresponding to ID, retrieve them. Else,
query the partial extract oracle and retrieve them. Choose tA ∈R Z∗q . Set P1 = tAP . Query the

oracle H3 on (ID, P1) and retrieve its value. Compute P̂1 = tAH3. Choose a random k2 ∈R Z∗q .

Compute u = k2P and v = k2Ĥ3(IDi, P1, t)

Choose c2 as H6(u, v, P1, P̂1, P, Ĥ3(IDi, P1, t))

Compute s2 = k2 + c2tA Output (P1, P̂1, P2, P̂2, s1, c1, s2, c2, t) as the full public key. Add these
values and tA to the list lid in the entry corresponding to IDi .

• If ID ∈ IDch

If (P2, P̂2, s1, c1, t) are already in the list lid, in the entry corresponding to ID, retrieve them. Else,
query the partial extract oracle and retrieve them.

Set P1 = aP . Retrieve x3j from the H3(ID, P1). Set P̂1 = x3jP1. Choose a random k2 ∈R Z∗q .

Compute u = k2P and v = k2Ĥ3(IDi, P1, t)

Choose c2 as H6(u, v, P1, P̂1, P, Ĥ3(IDi, P1, t))

Compute s2 = k2 + c2tA. Output < P1, P2, P̂1, P̂2, s1, c1, s2, c2, t > as the public key and add it to
the list lid.

Lemma 2: The above oracle for public key generation outputs a valid full public key.

Proof : It can be observed that the output generated by the oracle passes the key sanity check for
public verification mentioned in the scheme. Hence, the oracle generates valid public keys.

Oracle Full Private Key :Challenger responds as follows:

• If values corresponding to IDi for the start of the time interval t already exists on the list, then
return < nA, tA, t > from the list.

• Else,
If ID /∈ IDch

If dA is already in the list lid, in the entry corresponding to ID, retrieve them.
Else run the partial key extract oracle and retrieve that value.
If tA is already in the list lid, in the entry corresponding to ID, retrieve them.
Else run the public key generation oracle and retrieve that value.
Compute nA = dA + tAH2(ID, P1). Output < nA, tA, t > as the full private key and add them to
the list lid.

If ID ∈ IDch, abort.

Oracle Signature: Given a value of M,ID and a time instant t′ ∈ (t, t + α) by the adversary, the
challenger does the following:

• Compute NA = P2 + H1(ID, P2, t)P3 + H2(ID, P1)P1.

• Choose c, v, α ∈R Z∗q .

• Compute Z3 = vP − cNA.

• Set αP = H4(Z3) and add < Z3, αP, α > to the list lh4

• Compute Z1 = αNA, Z2 = αZ3.

• Set c = H5(M, IDA, Z1, Z2, Z3, P1, P2, t
′) and add it to the list lh4 .

• Output < Z1, v, c, t
′ > as the signature

16

Lemma 3: The above signature oracle produces a valid signature for any valid public key.

Proof : It can be easily observed that the signature produced by the oracle passes the verification
given in the scheme.

Forgery: Suppose the adversary outputs a forgery σ∗ = (Z∗1 , v
∗, c∗, t

′∗).
Let t

′
belong to a time interval (t, t+α). The challenger aborts if its not for one of the target identities

in the set IDch.

The challenger first checks that the signature is a valid one and passes the verification test.

The challenger computes the solution to the hard problem as follows:

• Compute NA for the target identity;

NA = P2 + H1(ID, P2, t
∗)P3 + H2(ID, P1)P1

• Compute Z∗3 = v∗P − c∗NA

• Retrieve xj4 from the H4 oracle on input Z∗3

• Compute x̂j3 from the Ĥ3 oracle on input (ID∗, P̂ ∗1 , t
∗)

• Retrieve h1 = H1(ID, P2, t
∗)

• Retrieve h2 = H2(ID, P1)

• Compute ∆ = h−12

(
x−1j4 Z

∗
1 − xh1bP − x̂j3

−1
P̂2

)
.

• C returns ∆ as the solution to the hard problem.

Lemma 4: The value of ∆ computed above equals abP .

Proof :

• Z∗1 = xj4bP (s+ ah2 + xh1)

• x̂j3−1P̂2 = sbP

Therefore, Z∗1 − xh1bP − x̂j3
−1
P̂2 = h2abP .

Hence, ∆ = abP .

Probability Analysis:

The challenger fails only if any of the following events occur:

• E1: The adversary returns a forgery for ID /∈ IDch.

• E2: The adversary queries full private key for an identity ID ∈ IDch.

Pr[E1] = (1− p)

Pr[E2] = 1− (1− p)qfse

Therefore, the probability of the challenger being successful is atleast Pr[¬(E1 ∨ E2)]. And the
advantage of the adversary is ε. Thus,

ε′ ≥ ε{p.(1− p)qfse}

Let X = p.(1− p)qfse . X attains maximum for pmax = 1
qfse+1 .

Therefore, the value of p chosen by the adversary is pmax = 1
qfse+1

And the advantage of the adversary is

ε′ ≥ ε
[

1

qfse + 1

[
qfse

qfse + 1

]qfse
]

17

It can be observed that tch = S + tadv + (q1 + q2 + q3 + q̂3 + q4 + q5 + q6 + qfsq + qfpq + qsq)O(1).
where O(1) captures the time taken for the scalar and group operations performed in the course of each
query, and the time taken for the calculations made after the forgery is captured in S.

4.3 Proof for Type III Adversary

Theorem 3: If there exists an adversary AIII that can forge a signature for the above scheme with
probability ε in time tadv, then there exists a challenger C who can solve the CDH problem with
probability atleast ε′ in time tch such that

ε′ ≥
[
1− 1

q

]
ε

tch = S + tadv + (q1 + q2 + q3 + q̂3 + q4 + q5 + q6 + qpsq + qfsq + qfpq + qsq)O(1).
qid = number of distinct identities queried by the adversary, q = is the order of the group G in which
the hard problem can be solved by adversary to break the system, qpe = number of partial extract
queried, qfse = number of full secret key extracts, qi = number of queries to the Hi hash oracle(where

i = 1, 2..6), q̂3 = number of queries to the Ĥi, qpsq = number of partial extract queries, qfsq = number
of full secret key queries, qfpq = number of full public key queries , qsq = number of signature queries
and S represents the time taken for the calculations performed by the challenger after the adversary
gives a forgery.

Proof : Let C be given an instance of the CDH problem, (P, aP, bP). Suppose there exists a type
III adversary, who is capable of breaking the signature scheme above, then C’s aim is to find the value
of abP .

Setup: The challenger C must set up the system exactly as given in the scheme. C sets P3 = aP
implicitly setting MSK is a, where a is unknown to C. C then chooses seven hash functions, Hi,

where i = 1, 2..6, along with Ĥ3 and models them as random oracles.C chooses a random value
α and sets it as the time quantam. Also C maintains a list li for each hash function to main-
tain consistency. C also maintains lid for storing all the keys. Each entry of the lid is of the form,
< ID,FPK,PSK,USK,FSK, t,Xi >, where the bit Xi is used to determine wheter the public key
has been replaced or not.
Let’s say that the adversary was revoked at the time interval beginning at t#

Training Phase: In this phase the adversary AIII , makes use of all the oracles provided by C. The
system is simulated in such a way that AIII cannot differentiate between a real and a simulated system
that is provided by C.

Note that Only for the hash oracles, the adversary has the right to query with time instants even
after the beginning of the time period when he was revoked(i.e greater than t#)

Choosing the target identity: In the oracle OH1(IDi,(P2)j). The adversary asks qh1
queries and

expects a response from the challenger for each of them. Since the adversary can query on the same ID
and different (P2)j ’s, the number of distinct identities queried is different from qh1

. Let that number
be qid. 1 ≤ qid ≤ qh1 . The challenger uses a biased coin, with probability of heads as p. We define the
value of p later. For each identity queried, the challenger tosses a coin, and sets it as a target identity
if the outcome is a head. i.e each identity has a probabilitiy of p of being a target identity.

Let’s denote IDch to represent the set of target identities.

Oracle OH1(IDi, (P2)i, t): A list lh1 is maintained of the form < IDi, (P2)j , tj , Hj >. C responds
as follows:

• If < IDi, (P2)j , tj > already exists in the list then respond with value hj from the list.

• Else, choose a hj ∈R Z∗q . Return hj and add the tuple, < IDi, (P2)j , tj , hj > to the list.

Oracle OH2
(IDi, (P1)j): A list lh2

is maintained of the form < IDi, (P1)j , Hj >. C responds as
follows:

• If < IDi, (P1)j > already exists in the list then respond with value hj from the list.

18

• Else, choose a hj ∈R Z∗q . Return hj and add the tuple, < IDi, (P1)j , hj > to the list.

Oracle OH3(IDi, (P1)j): A list lh3 is maintained of the form < IDi, (P1)j , Hj , xj >. C responds as
follows:

• If < IDi, (P1)j > already exists in the list then respond with value hj from the list.

• Else,
If ID /∈ IDch ,choose a xj ∈R Z∗q . Compute hj = xjP . Return hj and add the tuple,
< IDi, (P1)j , hj , xj > to the list.

If ID ∈ IDch, choose a xj ∈R Z∗q . Compute hj = xjbP . Return hj and add the tuple,
< IDi, (P1)j , hj , xj > to the list.

Oracle OĤ3
(IDi, (P2)j , tj): A list l

ĥ3
is maintained of the form< IDi, (P2)j , Hj , tj , xj >. C responds

as follows:

• If < IDi, (P2)j , tj > already exists in the list then respond with value hj from the list.

• Else,
If ID /∈ IDch ,choose a xj ∈R Z∗q . Compute hj = xjP . Return hj and add the tuple,
< IDi, (P2)j , tj , hj , xj > to the list.

If ID ∈ IDch and t < t# , choose a xj ∈R Z∗q . Compute hj = xjP . Return hj and add the tuple,
< IDi, (P2)j , tj , hj , xj > to the list.

If ID ∈ IDch and t >= t#, choose a xj ∈R Z∗q . Compute hj = xjbP . Return hj and add the
tuple, < IDi, (P2)j , tj , hj , xj > to the list.

Oracle OH4
(kj): A list lh4

is maintained of the form < kj , Hj , xj >. C responds as follows:

• If < kj > already exists in the list then respond with value hj from the list.

• Else,choose a xj ∈R Z∗q . Compute hj = xjbP . Return hj and add the tuple, < kj , hj , xj > to the
list.

Oracle OH5(Mj , IDi, (P1)j , (P2)j , Z1j , Z2j , Z3j , tj):
A list lh5

is maintained of the form < Mj , IDi, (P1)j , (P2)j , Z1j , Z2j , Z3j , tj , Hj >. C responds as follows:

• If < Mj , IDi, (P1)j , (P2)j , Z1j , Z2j , Z3j , tj > already exists in the list then respond with value hj
from the list.

• Else, choose a hj ∈R Z∗q . Return hj and add the tuple,
< Mj , IDi, (P1)j , (P2)j , Z1j , Z2j , Z3j , tj , hj > to the list.

Oracle OH6(Aj , Bj , Cj , Dj , Ej , Fj): Here, Aj , Bj , ..Fj are some elements in G. A list lh6 is main-
tained of the form < Aj , Bj , Cj , Dj , Ej , Fj , hj >. C responds as follows:

• If < Aj , Bj , Cj , Dj , Ej , Fj > already exists in the list then respond with value hj from the list.

• Else, choose a hj ∈R Z∗q . Return hj and add the tuple,
< Aj , Bj , Cj , Dj , Ej , Fj , hj > to the list.

Oracle Partial Extract: C responds as follows:

• If t >= t#, return “empty”.

• Else, if values corresponding to IDi for the start of the time interval t already exists on the list
lid, then return (di, t) as PSK and (P2, P̂2, s1, c1, t) as PPK from the list.

• Else,
If ID /∈ IDch

Choose di, qi ∈R Z∗q . Compute s = di − xqi. Compute P2 = sP and P̂2 = sĤ3(IDi, P2, t). Then
set, H1(IDi, P2, t) = qi. Add these values to lh1

. Choose a random k1 ∈R Z∗q . Compute u = k1P

and v = k1Ĥ3(IDi, P2, t). Choose c1 as H6(u, v, P2, P̂2, P, Ĥ3(IDi, P2, t)). Compute s1 = k1 + c1s.

Output (di, t) as the PSK and (P2, P̂2, s1, c1, t) as PPK. Add these values to the list lid in the entry

19

corresponding to IDi.

If ID ∈ IDch

Choose di, qi ∈R Z∗q . Compute sP = diP−qi(aP). Set P2 = sP and P̂2 = x̂j3P2, where Ĥ3 = x̂j3P .
Then set, H1(IDi, P2, t) = qi. Add these values to lh1

. Choose a random k1 ∈R Z∗q . Compute

u = k1P and v = k1Ĥ3(IDi, P2, t). Choose c1 as H6(u, v, P2, P̂2, P, Ĥ3(IDi, P2, t)). Compute

s1 = k1 + c1s. Output (di, t) as the PSK and (P2, P̂2, s1, c1, t) as PPK. Add these values to the list
lid in the entry corresponding to IDi.

Lemma 1: The above oracle outputs valid PSK and PPK

Proof : It can be observed that the outputs given by the oracle, satisfy the condition for a valid
PPK, PSK. (They satisfy the key sanity check for user verification given earlier)

Oracle Public Key Generation: Challenger responds as follows:

• If t >= t#, return “empty”.

• Else

– If values corresponding to IDi for the start of the time interval t already exists on the list,
then return < P1, P2, P̂1, P̂2, s1, c1, s2, c2, t > from the list.

– Else,
If (P2, P̂2, s1, c1, t) are already in the list lid, in the entry corresponding to ID, retrieve them.
Else run the partial key extract oracle and retrieve those two values.

Choose tA ∈R Z∗q . Set P1 = tAP . Query the oracle H3 on (ID, P1) and retrieve its value.

Compute P̂1 = tAH3. Choose a random k2 ∈R Z∗q .

Compute u = k2P and v = k2Ĥ3(IDi, P1, t).

Choose c2 as H6(u, v, P1, P̂1, P, Ĥ3(IDi, P1, t)).

Compute s2 = k2 + c2tA. Output (P1, P̂1, P2, P̂2, s1, c1, s2, c2, t) as the full public key. Add
these values and tA to the list lid in the entry corresponding to IDi and set xi = 0 .

Lemma 2: The above oracle for public key generation outputs a valid full public key.

Proof : It can be observed that the output generated by the oracle passes the key sanity check for
public verification mentioned in the scheme. Hence, the oracle generates valid public keys.

Oracle Full Private Key :Challenger responds as follows:

• If t >= t#, then return “empty”.

• Else, if values corresponding to IDi for the time interval beginning at t already exists on the list,
then return < nA, tA, t > from the list.

• Else,
If dA is already in the list lid, in the entry corresponding to ID, retrieve them.
Else run the partial key extract oracle and retrieve that value.
If tA is already in the list lid, in the entry corresponding to ID, retrieve them.
Else run the public key generation oracle and retrieve that value.
Compute nA = dA + tAH2(ID, P1). Output < nA, tA, t > as the full private key and add them to
the list lid.

Oracle Signature: Given a value of M,ID and a time instant t′ ∈ (t, t + α) by the adversary, the
challenger does the following:

• If t >= t#, then return “empty”.

20

• Else,

– Compute NA = P2 + H1(ID, P2, t)P3 + H2(ID, P1)P1.

– Choose c, v, α ∈R Z∗q .

– Compute Z3 = vP − cNA.

– Set αP = H4(Z3) and add < Z3, αP, α > to the list lh4

– Compute Z1 = αNA, Z2 = αZ3.

– Set c = H5(M, IDA, Z1, Z2, Z3, P1, P2, t
′) and add it to the list lh4

.

– Output < Z1, v, c, t
′ > as the signature

Lemma 3: The above signature oracle produces a valid signature for any valid public key.

Proof : It can be easily observed that the signature produced by the oracle passes the verification
given in the scheme.

Forgery: Suppose the adversary outputs a forgery σ∗ = (Z∗1 , v
∗, c∗, t

′∗).
The challenger aborts if it’s not for an identity that is within the set of target identities IDch or if
t
′∗ < t#.

Let the time t
′∗ ∈ (t∗, t∗ + α).

The challenger first checks that the signature is a valid one and passes the verification test.
The challenger computes the solution to the hard problem as follows:

• Compute NA for the target identity;

NA = P2 + H1(ID, P2, t
∗)P3 + H2(ID, P1)P1

• Compute Z∗3 = v∗P − c∗NA

• Retrieve xj4 from the H4 oracle on input Z∗3

• Compute xj3 from the H3 oracle on input (ID∗, P ∗1)

• Compute x̂j3 from the Ĥ3 oracle on input (ID∗, P̂ ∗1 , t
∗)

• Retrieve h1 = H1(ID, P2, t
∗)

• Retrieve h2 = H2(ID, P1)

• Compute ∆ = h−11

(
x−1j4 Z

∗
1 − x−1j3 h2P̂1 − x̂j3−1P̂2

)
.

• C returns ∆ as the solution to the hard problem.

Lemma 4: The value of ∆ computed above equals abP .

Proof :

• Z∗1 = xj4bP (s+ ah1 + tAh2)

• x−1j3 h2P̂1 = tAh2bP

• x̂j3−1P̂2 = sbP

Therefore, Z∗1 − x−1j3 h2P̂1 − x̂j3−1P̂2 = h1abP .

Hence, ∆ = abP .

Probability Analysis:

The challenger fails only if any of the following events occur:

• E1: The adversary returns a forgery for ID /∈ IDch.

• E2: An invalid public key replacement by the adversary was not detected.

• E3: The adversary returns a forgery for t
′∗ < t#.

21

Since the adversary knows when he was revoked, making queries to the key oracles after getting
revoked makes the challenger just return “empty” rather than aborting, as it will be treated as an
inappropriate request by the adversary.

Pr[E1] = 1− p

Pr[E2] =
(

1
q

)
Pr[E3] =

(
t#

T

)
Where, T denotes the total possible time, and assuming that the time begins at 0.
Now,the total possible time T is close to infinity. Therefore,Pr[E3] is close to 0 and so,we can safely

assume that ¬Pr[E3] = 1.
Alternately, as the adversary knows when he was revoked, we can also argue that according to the game,
he shouldn’t produce a forgery for a time t

′∗ < t# so that way also we can rule out event E3.
Therefore, the probability of the challenger being successful is atleast Pr[¬(E1 ∨E2 ∨E3)]. And the

advantage of the adversary is ε.

ε′ ≥
[
p

(
1− 1

q

)]
ε

Let X =
[
p
(

1− 1
q

)]
. X attains maximum for pmax = 1.

Therefore, the value of p chosen by the adversary is pmax = 1
And the advantage of the adversary is

ε′ ≥
[
1− 1

q

]
ε

It can be observed that tch = S + tadv +(q1 +q2 +q3 + q̂3 +q4 +q5 +q6 +qpsq +qfsq +qfpq +qsq)O(1).
where O(1) captures the time taken for the scalar and group operations performed in the course of each
query, and the time taken for the calculations made after the forgery is captured in S.

5 Efficiency

We make a comparison of the size of the ciphertext, the computational cost for signing and verification
of our scheme with the scheme proposed in [14].

Table 1: Comparison

Scheme Ciphertext Size Cost of signing Cost of verification

Scheme in [14] 2|G| 2sa + 2H + 3gm 4P + 2H + ga
Our scheme |G|+ 2|F | 2sa + 2H + 3gm 5ga + 4H

Where :
|G| represents size of one group element, |F | represents an element of the field Zq, sa denotes a scalar
addition, H denotes a hash computation, gm denotes a group exponentation, P denotes a pairing oper-
ation and ga denotes a group addition.

Additionally, along with both the ciphertexts, the time of signing must also be transmitted.

Ciphertext size: The size of an element in the field Zq is much smaller than the size of an element of
the groups under consideration, therefore the size of the ciphertext in our scheme is smaller.
Cost of signing: Equal in both the schemes.
Cost of verification: The pairing operation being highly expensive, outweighs all the other operations.
Therefore, our scheme has a lesser cost of verification.
The above results indicate that the proposed scheme is more efficient than the scheme in [14].

22

6 Conclusion

In this paper, we have presented a revocable certificateless online-offline signature scheme which does
not use pairing and proved its secure in the random oracle model using a tight security reduction to
the computational Diffie-Hellman problem. Revocability is a very important property which is relevant
in real life. Expiry of cheques is a simple example, where keys need to be expired after a specific time
interval. This is the time period in which a particular cheque can be encashed. Due to its relevance in
the practical world and the limited availability of such schemes in the literature, the proposed scheme is
an important research advancement. We have discussed the limitations of the only previously existing
time-interval based revocable certificateless signature scheme[14]. We have come up with our own model
of a time-interval based revocable certificateless signature scheme. Our scheme also has the added
advantage over the previous scheme in the sense that signatures can be produced at any time instant,
and we have also given key sanity checks for user verification and public verification. Our scheme is
also computationally extremely efficient, and does not use the costly mathematical pairing operation.
In addition, it has the property of being an online/offline signature scheme. Online/offline signature
schemes are practically very important in the case of low resource devices. Our scheme is more secure
and efficient than previously existing online/offline certificateless signature schemes in the literature.

23

References

[1] Al-Riyami, S. S., and Paterson, K. G. Certificateless public key cryptography. In ASIACRYPT
(2003), pp. 452–473.

[2] Baek, J., Safavi-Naini, R., and Susilo, W. Certificateless public key encryption without pair-
ing. In Proceedings of the 8th international conference on Information Security (Berlin, Heidelberg,
2005), ISC’05, Springer-Verlag, pp. 134–148.

[3] Chevallier-mames, B., Group, C. S., Vigie, L., Jujubier, A. D., Iv, Z. A., and École
Normale Supérieure. An efficient cdh-based signature scheme with a tight security reduction. In
Advances in Cryptology CRYPTO 2005, to appear in Lecture Notes in Computer Science (2005),
SpringerVerlag, pp. 511–526.

[4] Coron, J.-S. On the exact security of full domain hash. In CRYPTO (2000), M. Bellare, Ed.,
vol. 1880 of Lecture Notes in Computer Science, Springer, pp. 229–235.

[5] Even, S., Goldreich, O., and Micali, S. On-line/off-line digital signatures. J. Cryptology 9,
1 (1996), 35–67.

[6] Ge, A., Chen, S., and Huang, X. A concrete certificateless signature scheme without pairings.
In Proceedings of the 2009 International Conference on Multimedia Information Networking and
Security - Volume 02 (Washington, DC, USA, 2009), MINES ’09, IEEE Computer Society, pp. 374–
377.

[7] Goh, E.-J., and Jarecki, S. A signature scheme as secure as the diffie-hellman problem. In
EUROCRYPT (2003), pp. 401–415.

[8] Hu, B. C., Wong, D. S., Zhang, Z., and Deng, X. Certificateless signature: a new security
model and an improved generic construction. Des. Codes Cryptography 42, 2 (2007), 109–126.

[9] Ju, H. S., Kim, D. Y., Lee, D. H., Lim, J., and Chun, K. Efficient revocation of security capa-
bility in certificateless public key cryptography. In Proceedings of the 9th international conference
on Knowledge-Based Intelligent Information and Engineering Systems - Volume Part II (Berlin,
Heidelberg, 2005), KES’05, Springer-Verlag, pp. 453–459.

[10] Micali, S., and Reyzin, L. Improving the exact security of digital signature schemes. J. Cryp-
tology 15 (2002), 1–18.

[11] S. Sharmila Deva Selvi, S. Sree Vivek, V. K. P., and Rangan, C. P. Efficient certificateless
online/offline signature. Journal of Internet Services and Information Security (JISIS) 2, 3/4 (11
2012), 77–92.

[12] Selvi, S. S. D., Vivek, S. S., Pradhan, V. K., and Rangan, C. P. Efficient Certificateless
Online/Offline Signature with tight security. Journal of Internet Services and Information Security
(JISIS) 3, 1/2 (February 2013), 115–137.

[13] Shamir, A. Identity-based cryptosystems and signature schemes. In Proceedings of CRYPTO 84
on Advances in cryptology (New York, NY, USA, 1985), Springer-Verlag New York, Inc., pp. 47–53.

[14] Sun, Y., Zhang, F., Shen, L., and Deng, R. H. A revocable certificateless signature scheme.
Cryptology ePrint Archive, Report 2013/053, 2013. http://eprint.iacr.org/.

[15] Vivek, S. S., Selvi, S. S. D., and Rangan, C. P. Compact stateful encryption schemes with
ciphertext verifiability. In IWSEC (2012), pp. 87–104.

[16] Xu, Z., Liu, X., Zhang, G., He, W., Dai, G., and Shu, W. A certificateless signature scheme
for mobile wireless cyber-physical systems. In Proceedings of the 2008 The 28th International
Conference on Distributed Computing Systems Workshops (Washington, DC, USA, 2008), ICDCSW
’08, IEEE Computer Society, pp. 489–494.

[17] Yap, W.-S., Chow, S. S., Heng, S.-H., and Goi, B.-M. Security mediated certificateless
signatures. In Proceedings of the 5th international conference on Applied Cryptography and Network
Security (Berlin, Heidelberg, 2007), ACNS ’07, Springer-Verlag, pp. 459–477.

[18] Yap, W.-S., Heng, S.-H., and Goi, B.-M. An efficient certificateless signature scheme. In Pro-
ceedings of the 2006 international conference on Emerging Directions in Embedded and Ubiquitous
Computing (Berlin, Heidelberg, 2006), EUC’06, Springer-Verlag, pp. 322–331.

24

[19] Zhang, F., Li, S., Miao, S., Mu, Y., Susilo, W., and Huang, X. Cryptanalysis on two cer-
tificateless signature schemes. In International Journal of Computers Communications and Control
(2010).

25

