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Abstract. We explain the origins of Boolean feedback functions of nonlinear
feedback shift registers (NLFSRs) of fixed order n generating de Bruijn binary
sequences. They all come into existence by cross joining operations starting
from one maximum period feedback shift register, e.g., a linear one which
always exists for any order n. The result obtained yields some constructions
of NLFSRs generating maximum period 2n − 1 binary sequences.

1. Introduction

The task of this note is to get insight into construction of Boolean feedback
functions of NLFSRs generating maximum period binary sequences. At the Inter-
national Workshop on Coding and Cryptography 2013 in Bergen we discussed the
problem whether it was true or not that an arbitrary de Bruijn sequence could be
obtained by applying cross-join pair operations to a given one. It seems that this
has been a several decades old unsolved problem. In this note we solve this prob-
lem in the affirmative. In terms of Boolean feedback functions this result indicates
which algebraic operations must be applied to get all feedback functions generating
de Bruijn sequences starting from a given one. The same results are true when one
deals with modified de Bruijn sequences of period 2n − 1 and the corresponding
feedback functions.

Feedback shift registers (FSRs) are useful in generating periodic sequences, and
that is the task for which they are mostly used in communication and cryptographic
systems. Linear feedback shift registers (LFSRs) and NLFSRs are the main buiding
blocks of many stream ciphers. The LFSRs are well-understood mathematically.
The investigation of NLFSRs started in the pioneering book of Golomb [9] and has
continued for several decades. In cryptographic applications, NLFSRs generating
modified de Bruijn sequences are important since in special cases the algebraic
normal form (ANF ) of the corresponding Boolean feedback functions is simpler
than that of de Bruijn sequences (see, e.g., [16, 8]).

The operation of joining and disjoining cycles generated by nonsingular FSRs
was discussed in Golomb’s book [9]. After that the notion of cross-join pairs was
employed to construct new NLFSRs from given ones (see, e.g. [14, 7, 6, 17,

12, 20]). Helleseth and Kløve [11] proved an important result which gives the
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number of cross-join pairs for a binary m-sequence. In a recent paper of Dubrova
[4] cross-join pairs were used to construct Galois NLFSRs with maximum period.

Methods for finding NLFSRs with simple ANF of the feedback function were
presented in [8, 2, 19, 3]. Gong and Mandal [15] following Mykkeltveit et al. [18]
developed a recursive method for constructing maximum period NLFSRs. Chan,
Games and Rushanan [2] conjectured existence of quadratic m-sequences for each
order n. In [3] we have verified this conjecture experimentally up to order n = 29,
finding simple quadratic NLFSRs by searching methods. In the present note we
aim to relate the existence of NLFSRs generating quadratic m-sequences to the
construction of cross joining. We give an example for order n = 7 and formu-
late necessary conditions to be able to construct maximum period NLFSRs whose
feedback functions have some properties.

The paper is organized as follows. Section 2 recalls the known definitions and
theorems about de Bruijn sequences and nonlinear feedback shift registers. Section
3 contains our main theorem together with its proof. Quadratic m-sequences and
examples of NLFSRs of order 4 and 7 generating modified de Bruijn sequences are
presented in Section 4. In that section we relate the Chan, Games and Rushanan
conjecture [2] to existence of a suitable collection of cross-join pairs for a given
m-sequence.

2. Some definitions and known theorems

Let F2 = {0, 1} denote the binary field and F
n
2 the vector space of all binary

n-tuples. A binary feedback shift register (FSR) of order n is a mapping

F : Fn
2 −→ F

n
2

of the form

(2.1) F : (x0, x1, . . . , xn−1) 7−→ (x1, x2, . . . , xn−1, f(x0, x1, . . . , xn−1)),

where the feedback function f is a Boolean function of n variables. The FSR is
called non-singular if the mapping F is one-to-one, i.e., F is a bijection of Fn

2 . The
FSR is called linear (LFSR) if the feedback function f is linear, and nonlinear
(NLFSR) if f is nonlinear, i.e., f has higher degree terms in its algebraic normal
form (ANF ).

Definition 2.1. A de Bruijn sequence of order n is a sequence of length 2n of
elements of F2 in which all different n-tuples appear exactly once.

It was proved by Flye Sainte-Marie [5] in 1894 and independently by de Bruijn
[1] in 1946 that the number of cyclically non-equivalent sequences satisfying Defi-
nition 2.1 is equal to

(2.2) Bn = 22
n−1−n.

Definition 2.2. A modified de Bruijn sequence of order n is a sequence of
length 2n − 1 obtained from a de Bruijn sequence of order n by removing one zero
from the tuple of n consecutive zeros.

Let (st) = (s0, s1, · · · , s2n−1) be a de Bruijn sequence. For the purpose of
this note we put Si = (si, si+1, · · · , si+(n−2)), and write the de Bruijn sequence
as (St) = (S0, S1, · · · , S2n−1) (indexes are reduced mod 2n in such a way that
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0 ≤ t ≤ 2n − 1). In the latter representation each (n − 1)-vector occurs exactly
twice.

Two elements U, V ∈ F
n−1
2 constitute a cross-join pair for the sequence (st) if

one can shift (St) cyclically so that U, V occur in the order U, · · · , V, · · · , U, · · · , V .
It follows that for the pairs of states of a FSR generating the sequence (st):

α = (u, U), α̂ = (u, U) and β = (v, V ), β̂ = (v, V ), where u = u + 1 is the

negation of the bit u, they occur in the order α, β, α̂, β̂.

Theorem 2.3. Let (st) be a de Bruijn sequence of order n. Then there exists
a Boolean function F (x1, · · · , xn−1) such that

(2.3) st+n = st + F (st+1, · · · , st+n−1), t = 0, 1 · · · , 2n − n− 1.

Proof. See [9] where a more general result is given. �

This means that for the feedback function of (2.1) we have

(2.4) f(x0, x1, · · · , xn−1) = x0 + F (x1, · · · , xn−1)

and de Bruijn sequences are generated by some non-singular FSRs. The problem
mentioned in the Introduction can be formulated as follows: describe all feedback
functions of FSRs generating all de Bruijn sequences. As concerns applications in
cryptography we are interested in modified de Bruijn sequences since some feedback
functions of NLFSRs generating these sequences have simple ANF.

Theorem 2.4. Let (st) be a de Bruijn sequence satisfying (2.3). Let U, V be a
cross-join pair for (st) and let G(x1, · · · , xn−1) be obtained from F (x1, · · · , xn−1) by
the negation of F (U) and F (V ). Then G(x1, · · · , xn−1) also generates a de Bruijn
sequence (ut), say. We say that (ut) is obtained from (st) by the cross-join pair
operation.

Proof. The negation of F (U) will split the de Bruijn sequence into two se-
quences, and the negation of F (V ) will join these two sequences again (since U, V
is a cross-join pair). �

3. The main theorem

Theorem 3.1. Let (ut), (vt) be two de Bruijn sequences of order n. Then (vt)
can be obtained from (ut) by repeated application of the cross-join pair operation.

Proof. First, we observe that the cross-join pair operation leads to an equiva-
lence relation in the set of all de Bruijn sequences. We order the truth tables of the
functions F in (2.4) lexicographically and denote this ordered set by S. We choose
the ordering in such a way that F (0, 0, · · · , 0) is the most significant digit. Let T1

be the equivalence class containing the lexicographically largest de Bruijn sequence.
Suppose that the theorem is false. Then there must exist a nonempty equivalence
class T2 different from T1 and let H be the truth table for the lexicographically
largest de Bruijn sequence in T2. Then H has the following two properties:

1. It is not the lexicographically largest de Bruijn sequence.
2. Any cross-join pair operation which can be applied to H will result in a

truth table less than H .
Define:

S1 = {F ∈ S : F ≤ H}, S2 = {F ∈ S : F > H}.
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We are done if we can prove that H does not exist. Let K ∈ S2. Let
(z1, · · · , zn−1) be the smallest (n − 1)-vector such that H(z1, · · · , zn−1) is dif-
ferent from K(z1, · · · , zn−1). Since H < K we have H(z1, · · · , zn−1) = 0 and
K(z1, · · · , zn−1) = 1 and the choice of (z1, · · · , zn−1) implies that if

(u1, · · · , un−1) < (z1, · · · , zn−1)

then

H(u1, · · · , un−1) = K(u1, · · · , un−1).

Let H1 be obtained from H by putting H1(z1, · · · , zn−1) = 1 and keeping H1 =
H for all other function arguments. Clearly this change will split the de Bruijn
sequence so that H1 generates two sequences C1 and C2, say.

We have

(3.1) H1(z1, · · · , zn−1) = K(z1, · · · , zn−1),

which implies that (z0, z1, · · · , zn−1) and (z1, · · · , zn−1, z0 +K(z1, · · · , zn−1)) ei-
ther both belong to C1 or both belong to C2. It is no restriction to assume that
they both belong to C1.

Since K generates a de Bruijn sequence there exists an n-tuple (v0, · · · , vn−1)
such that

(v0, v1, · · · , vn−1) ∈ C1

and

(v1, · · · , vn−1, v0 +K(v1, · · · , vn−1) ∈ C2,

and since H1 generates C1 we have

(v1, · · · , vn−1, v0 +H1(v1, · · · , vn−1)) ∈ C1.

Since we have (3.1) and H1(v1, · · · , vn−1) 6= K(v1, · · · , vn−1) this implies that

(z1, · · · , zn−1) 6= (v1, · · · , vn−1),

and since (z1, · · · , zn−1) is the smallest (n − 1)-tuple (x1, · · · , xn−1) such that
H1(x1, · · · , xn−1) 6= K(x1, · · · , xn−1) we must have

(3.2) (z1, · · · , zn−1) < (v1, · · · , vn−1).

Let H2 be obtained from H1 by putting H2(v1, · · · , vn−1) = K(v1, · · · , vn−1)
and keeping H2 = H1 for all other function arguments. Then H2 will generate a
de Bruijn sequence since the latter operation (changing H1 to H2) corresponds to
joining C1 and C2. H < H2 as a consequence of (3.2), i.e. the de Bruijn sequence
generated by H2 is obtained from the one generated by H by the cross-join pair
operation. This means that H does not exist, since by definition it is impossible to
obtain a de Bruijn sequence greater than the one generated by H by the cross-join
pair operation (applied to the one generated by H). �
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Fig. 1. Subsets and equivalence classes in the proof of Theorem 3.1.

K,H,H1 and H2 are functions mapping F
n−1
2 to F2; T1, T2 are equivalence

classes of such functions. All functions in S1 are lexicographically smaller than
those in S2. We have K ∈ S2, but it is irrelevant for the proof whether K ∈ T1

or not. We have K /∈ T2 since S1 ∩ S2 = Ø. Moreover S1 ∪ S2 = S, the set of
all functions generating de Bruijn sequences of order n. A prori there can be many
equivalence classes of de Bruijn sequences, but we prove that there is only one.

Since there is a one-to-one correspondence between de Bruijn sequences of order
n, which have length 2n or period 2n when considered as periodic sequences, and
modified de Bruijn sequences of length (period) 2n−1, Theorem 3.1 is literally true
for modified de Bruijn sequences. As an immediate consequence of Theorem 3.1 we
also have the following:

Lemma 3.2. For every de Bruijn sequence (modified de Bruijn sequence) there
exist cross-join pairs.

According to Helleseth and Kløve [11] the number of different cross-join pairs
for an m-sequence of order n (modified de Bruijn sequence of maximum period
2n − 1 generated by the feedback function of LFSR) is equal to

(3.3) (2n−1 − 1)(2n−1 − 2)/6.

For modified de Bruijn sequences of order n generated by feedback functions of
NLFSRs we do not have explicit formulae for the number of cross-join pairs, but
our experiments show that for small orders n = 4, 5, 6 these numbers change with
NLFSRs of given order and are around the value (3.3). ANF of the feedback
function of a given de Bruijn sequence of order n is different from that of the
corresponding modified de Bruijn sequence of the same order (obtained by removing
one zero from the tuple of n consecutive zeros). If f(x0, x1, · · · , xn−1) is a Boolean
feedback function which generates a modified de Bruijn sequence of order n, then
the Boolean feedback function of the corresponding de Bruijn sequence is equal to

(3.4) f(x0, x1, · · · , xn−1) + x1x2 · · ·xn−1.

According to (3.4) a Boolean feedback function which generates a de Bruijn se-
quence contains the term x1 · · ·xn−1; it has algebraic degree n − 1. Boolean feed-
back functions generating modified de Bruijn sequences of order n have algebraic
degree at most n− 2; some of them have degree 1 (those corresponding to LFSRs
generating m-sequences) and there are some of low degrees n = 2, 3 or 4 and having
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a small number of terms in their ANF. In [8] Gammel et al. have found NLFSRs
up to order of n = 33, algebraic degree up to 5 and containing up to around 30
terms in their ANF. According to Theorem 3.1 we know that such simple feedback
functions of maximum period NLFSRs can be obtained by repeated application of
the cross-join operation to a feedback function of LFSR generating an m-sequence.
The problem is to find an effective algorithm to realize this task. The next section
presents our efforts in this direction.

4. Applications

In this section we will consider modified de Bruijn sequences and feedback func-
tions of NLFSRs generating these sequences. We use the cross-join pair operation
to construct new NLFSRs from a given one. Let f(x0, x1, · · · , xn−1) be a feedback
function generating a modified de Bruijn sequence. Let

α = (a0, a1, · · · , an−1), α̂ = (a0, a1, · · · , an−1),

β = (b0, b1, · · · , bn−1), β̂ = (b0, b1, · · · , bn−1)

be a cross-join pair for the sequence generated by the function f(x0, x1, · · · , xn−1).
Then the function

f(x0, x1, · · · , xn−1) + (x1 + a1) · · · (xn−1 + an−1) + (x1 + b1) · · · (xn−1 + bn−1)

is a feedback of a new modified de Bruijn sequence. When we apply the cross-join
operation several times to a maximum period LFSR it can happen that the resulting
higher degree terms cancel and we obtain a feedback function with a simple ANF.
In fact, we do not have strict control on the process of algebraic cancellation of
terms resulting from cross-join pairs, and finding NLFSRs with a simple ANF is a
random process.

4.1. NLFSRs of order 4. This example was a starting point for our investi-
gations. We give here a list of feedback functions generating all modified de Bruijn
sequences of order n = 4. Functions 1 and 2 represent primitive LFSRs of order 4.
Each of the sequences generated by them has seven cross-join pairs. Applying The-
orem 2.4 we get in total twelve new nonlinear feedback functions, since two of them
appear twice (the red lines in Figure 2). But these are not all existing nonlinear
feedback functions generating modified de Bruijn sequences. An application of two
additional cross-join operations gives two missing nonlinear feedback functions (the
edges (3,5) and (4,6) of the graph). One can see that any two vertices of the graph
can be connected by a path which results as an application of several cross-join
operations.

Now the problem arises whether one can implement an algorithm which takes
as input a feedback function of a primitive LFSR and constructs by repeated ap-
plication of the cross-join operation all feedback functions (linear and nonlinear) of
modified de Bruijn sequences. We have implemented such an algorithm. It works
for n = 4 (see Figure 3) and n = 5 giving all corresponding feedback functions. For
n = 5 we have 2048 feedback functions altogether, see (2.2). The algorithm works
for greater orders n too. For n = 6 we have 226 maximum period NLFSRs.

In our realization of the algorithm we have used the SAGE package [22], esspe-
cially the polybori module implementing operations on algebraic normal forms of
Boolean functions. All algorithm were implemented with the Python programming
language [21].
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Here is a list of all feedback functions (linear and nonlinear) generating 16
modified de Bruijn sequences of order 4. The NLFSRs are obtained by using the
cross-join operation.

(1) x0 + x1

(2) x0 + x3

(3) x0 + x1 + x1x2x3 + x1x2x3 = x0 + x1 + x2 + x1x2

(4) x0 + x3 + x1x2x3 + x1x2x3 = x0 + x2 + x3 + x1x2

(5) x0 + x1 + (x1x2x3 + x1x2x3) + (x1x2x3 + x1x2x3)
= x0 + x1 + x2 + x1x3

(6) x0 + x3 + (x1x2x3 + x1x2x3) + (x1x2x3 + x1x2x3)
= x0 + x2 + x3 + x1x3

(7) x0 + x3 + x1x2x3 + x1x2x3 = x0 + x2 + x1x2 + x1x3

(8) x0 + x1 + x1x2x3 + x1x2x3 = x0 + x1 + x2 + x3 + x1x2 + x1x3

(9) x0 + x1 + x1x2x3 + x1x2x3 = x0 + x1 + x2 + x2x3

(10) x0 + x3 + x1x2x3 + x1x2x3 = x0 + x2 + x3 + x2x3

(11) x0 + x1 + x1x2x3 + x1x2x2 = x0 + x1 + x1x2 + x2x3

(12) x0 + x1 + x1x2x3 + x1x2x3 = x0 + x3 + x1x2 + x2x3

(13) x0 + x1 + x1x2x3 + x1x2x3 = x0 + x2 + x1x3 + x2x3

(14) x0 + x3 + x1x2x3 + x1x2x3 = x0 + x1 + x2 + x3 + x1x3 + x2x3

(15) x0 + x1 + x1x2x3 + x1x2x3 = x0 + x1 + x2 + x1x2 + x1x3 + x2x3

(16) x0 + x3 + x1x2x3 + x1x2x3 = x0 + x2 + x3 + x1x2 + x1x3 + x2x3

We illustrate below the process of constructing NLFSRs of order 4 starting
from two LFSRs (Fig. 2) and starting from one LFSR (Fig. 3).

Fig. 2. The first graph of cross joining for NLFSRs of order 4.
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Fig. 3. The second graph of cross joining for NLFSRs of order 4.

4.2. Quadratic m-sequences. Chen, Games and Rushanan [2] have inves-
tigated the case when the feedback function (2.4) is a quadratic Boolean function
of n variables; i.e., has the following algebraic normal form:

(4.1) f(x0, x1, · · · , xn−1) =
∑

0≤i≤j≤n−1

aijxixj .

Let us note that x2
i = xi for all i ≥ 0, hence the coefficients aii correspond to the

linear terms of the function f . The recurrence (2.3) corresponding to the quadratic
function (4.1) has the form

(4.2) sn+k =
∑

0≤i≤j≤n−1

aijsi+ksj+k

for all k ≥ 0. The authors of [2] have introduced a notion of quadratic m-sequences
by analogy to the linear ones.

Definition 4.1. A binary sequence s is called a quadratic m-sequence of
order n (span n) if it satisfies the quadratic recurrence (4.2) and has period 2n− 1.

The authors of [2] have studied algorithmic generation of some quadratic m-
sequences and listed them up to order n = 12. Namely, they considered quadratic
Boolean functions of the form

(4.3) f(x0, x1, · · · , xn−1) = g(x0, x1, · · · , xn−1) + xi + xixj ,

where i 6= j, 1 ≤ i, j ≤ n− 1 and

g(x0, x1, · · · , xn−1) = x0 + c1x1 + · · ·+ cn−1xn−1
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is a linear function which generates an m-sequence, i.e., the corresponding polyno-
mial in the ring F2[x]

p(x) = xn + cn−1x
n−1 + · · ·+ c1x+ 1

is primitive. Primitive polynomials of degree n have their roots in the finite Galois
field F2n ; these roots are primitive elements (generators) of the multiplicative
group F

∗
2n . It is known that there is a one-to-one correspondence between linear

m-sequences of period 2n−1 and primitive polynomials of degree n. The number of
primitive polynomials of degree n is equal to ϕ(2n − 1)/n, where ϕ(.) is the Euler
function. The proofs of all these facts can be found in the books [9, 10, 13].

The quadratic recurrences corresponding to Boolean functions (4.3) are modi-
fications of the linear one. The term xi + xixj introduces a nonlinear perturbation
to the given m-sequence. The states of the LFSR for which the function xi + xixj

equals 1 break or join the corresponding cycles of the LFSR. The case when after
running over all states of the FSR we get only one cycle is the sought-for NLFSR.
In fact, this is a random phenomenon. The relevant discussion has been presented
in [2]. In practice, not all primitive polynomials and terms xi + xixj lead to a
suitable coincidence giving a quadratic m-sequence.

In [3] we continued the search for those NLFSRs generating quadratic m-
sequences up to order n = 29 and found the feedback Boolean function

f(x0, · · · , x28) = x0+x3+x5+x6+x11+x12+x16+x19+x22+x23+x27+x20x28

which generates a modified de Bruijn sequence of period 229− 1. Here the term x20

coming from a primitive polynomial of degree 29 cancels with such a term in the
expression x20 + x20x28.

4.3. A NLFSR of order 7. We take the primitive polynomial p(x) = x7 +
x + 1. The feedback function of the corresponding LFSR is x0 + x6. We start
from the initial state s0 = (x0, x1, . . . , x6) = (1, 0, . . . , 0) and generate all nonzero
states s1, . . . , s126 of the LFSR. Let us consider the states for which x2 = 1 and
x4 = 0; there are altogether 32 of them. We can find eight cross-join pairs having
no common states, which all cover the states with (x2, x4) = (1, 0). Here is a list of

those cross-join pairs (α, α̂;β, β̂) :

(10, 29; 17, 101), (20, 58; 21, 91), (25, 47; 32, 62), (37, 118; 113, 125),

(38, 107; 71, 119), (42, 55; 50, 94), (59, 82; 81, 90), (65, 97; 70, 106).

We now apply the cross-join operation to each cross-join pair to obtain

f = x0 + x6 + x1x2x3x4x5x6 + x1x2x3x4x5x6 + x1x2x3x4x5x6 + x1x2x3x4x5x6

+x1x2x3x4x5x6 + x1x2x3x4x5x6 + x1x2x3x4x5x6 + x1x2x3x4x5x6

+x1x2x3x4x5x6 + x1x2x3x4x5x6 + x1x2x3x4x5x6 + x1x2x3x4x5x6

+x1x2x3x4x5x6 + x1x2x3x4x5x6 + x1x2x3x4x5x6 + x1x2x3x4x5x6

= x0 + x6 + x2 + x2x4.

The last formula is a feedback function of NLFSR generating a modified de Bruijn
sequence of period 27 − 1 = 127.
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4.4. Necessary conditions. Let us consider a candidate for a feedback func-
tion of NLFSR of maximum period 2n − 1 which has the form

(4.4) f(x0, x1, · · · , xn−1) = g(x0, x1, · · · , xn−1) + h(x1, · · · , xn−1),

where g is a function as in (4.3) and h is a Boolean function of low algebraic degree
(say up to 5) and with the number of terms from 10 to 20. The number of all
terms in f must be even. In our construction we need to know the set S of states
(x0, x1, · · · , xn−1) for which

h(x1, · · · , xn−1) = 1,

and the number of states in S must be a multiple of 4. Now we find a set C of
cross-join pairs for the m-sequence generated by the feedback function g, but only
those whose states belong to S. Suppose the collection C of cross-join pairs has the
following properties:

(1) All cross-join pairs in C are disjoint; they do not contain common states
from S.

(2) All states in cross-join pairs of C exactly cover the set S.

Then conditions 1 and 2 are necessary for the function (4.4) to generate a sequence
of maximum period 2n − 1. An example of such a family of cross-join pairs is given
above in Section 4.3. We have verified experimentally this construction of maximum
period NLFSRs with feedback functions of the form (4.3) for orders up to n = 17.
Conditions 1 and 2 are not sufficient to guarantee the maximum period. When they
are satisfied one must check the period of the sequence generated by the feedback
function f.
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