
Kurosawa-Desmedt Key Encapsulation Mechanism,
Revisited and More?

Kaoru Kurosawa1 and Le Trieu Phong2

1 Ibaraki University, Japan
kurosawa@mx.ibaraki.ac.jp

2 NICT, Japan
phong@nict.go.jp

Abstract. While the hybrid public key encryption scheme of Kurosawa and Desmedt (CRYPTO
2004) is provably secure against chosen ciphertext attacks (namely, IND-CCA-secure), its associated
key encapsulation mechanism (KEM) is widely known as not IND-CCA-secure. In this paper, we present
a direct proof of IND-CCA security thanks to a simple twist on the Kurosawa-Desmedt KEM. Our
KEM beats the standardized version of Cramer-Shoup KEM in ISO/IEC 18033-2 by margins of

• at least 20% in encapsulation speed, and
• up to 60% in decapsulation speed,

which are verified by both theoretical comparison and experimental results. The efficiency of decapsu-
lation can be even

• about 40% better than the decapsulation of the PSEC-KEM in ISO/IEC 18033-2
• only slightly worse than the decapsulation of the ECIES-KEM in ISO/IEC 18033-2

which is of independent interest since the security of both PSEC-KEM and ECIES-KEM are argued
using the controversial random oracle heuristic in contrast to ours.
We then generalize the technique into hash proof systems, proposing several KEM schemes with IND-
CCA security under decision linear and decisional composite residuosity assumptions respectively. All
the KEMs are in the standard model, and use standard, computationally secure symmetric building
blocks.
We finally show that, with additional simple yet innovative twists, the KEMs can be proved resilient
to certain amount of leakage on the secret key. Specifically with the DDH-based scheme, a fraction of
1/4− o(1) of the secret key can be leaked, and when conditioned on a fixed leakage rate, we obtain the
most efficient leakage-resilient KEMs regarding computation and storage.

Keywords: Kurosawa-Desmedt KEM, IND-CCA security, hash proof systems, standard model, leakage
resilience.

1 Introduction

1.1 Background

Key Encapsulation Mechanism (KEM) is an asymmetric encryption technique allows generating
simultaneously a random key Ks together with its encryption C, termed encapsulation. The key
Ks then will be used for long data encryption, while the encapsulation C is used for sharing Ks.
In other words, KEM serves as a delivery of secret keys used in symmetric encryption.

Key encapsulation mechanism is perhaps a modern way to position public-key encryption thanks
to its flexibility. First, since the symmetric key Ks is returned as a result of encapsulation, there
is no need for ad-hoc padding to map bit strings into algebraic message space as in traditional

? Full version of a paper accepted to the 7th International Conference on Cryptology in Africa (AFRICACRYPT
2014), with major extensions described in Section 1.5.

public-key encryption (PKE). Such padding is hard-to-be-done-right, and may lead to devastating
attack [9]. Second, after the key Ks is conveyed, encrypted data under that symmetric key can come
in stream, and there is completely unnecessary to buffer the whole ciphertext before decryption.

KEM implies PKE. Indeed, it can be used to construct hybrid PKE, namely PKE with un-
restricted message space, when combining with a data encapsulation mechanism (DEM) [13]. In
practice, since the DEM part is already highly efficient, one usually concerns about the performance
of the KEM part. Specific constructions of KEM are incorporated in the standards ISO/IEC 18033-
2 [1], ANSI X9.44 [5], and can be considered for e-Government usage in the future [2]. KEM is widely
yet implicitly used in the TLS Handshake Protocol [26].

In 2004, Kurosawa and Desmedt [27], improved upon the seminal work of Cramer and Shoup
[12], published an efficient hybrid PKE, whose security proof was refined in [15], resisting cho-
sen ciphetext attacks (IND-CCA) under the decisional Diffie-Hellman (DDH) assumption. Unlike
Cramer-Shoup scheme, the KEM part of the Kurosawa-Desmedt scheme is not IND-CCA secure,
as shown in 2006 in [11, 21]. In 2007, by creatively switching elements in the Kurosawa-Desmedt
KEM, Kiltz [24] presented an IND-CCA-secure KEM, and yet under the less standard Gap Hashed
Diffie-Hellman (GHDH) assumption. On the other hand, sticking to the DDH assumption, Abe,
Gennaro, Kurosawa [4], and Hofheinz, Kiltz [22] showed the Kurosawa-Desmedt KEM only meets
weakened notions of CCA security.

While weakened IND-CCA security as defined in [4,22] can be converted into IND-CCA security
(see Section 1.4), there is still no direct security proof for any variant of the Kurosawa-Desmedt
KEM. A summarization of these discussions is in Table 1.

Table 1. Classification of Kurosawa-Desmedt (KD) KEM and its variants.

Security (↓) Assumption (→) GHDH DDH

Weakened IND-CCA – [4], [22] (KD KEM)

IND-CCA [24] (dual KD KEM) This paper (with direct proof)

1.2 Our contributions

We provide a direct proof of IND-CCA security for a modified version of Kurosawa-Desmedt KEM.
We then implement our KEM to highlight its efficiency over previous constructions. We generalize
the mechanism to other cryptographic assumptions via hash proof systems. Finally, we show some
simple twists turning our schemes leakage-resilient while maintaining the same efficiency. Details
are given below.

Theoretical contribution. We show a slight twist on the insecure Kurosawa-Desmedt KEM
turning it into an IND-CCA-secure one. Formally, we propose a variant of the Kurosawa-Desmedt
KEM which can be proved IND-CCA-secure under the DDH assumption. That is, we fulfill Table
1 with the most “desirable” KEM in terms of security assumption (namely, DDH) and security
notion (namely, IND-CCA).

The twist is simple. Details are discussed at length at the beginning of Section 3.1, but a high
view is as follows. In the original Kurosawa-Desmedt KEM, the encapsulation of a symmetric key
v consists of group elements (u1, u2). In our proposal, we do not return the whole v as the shared

symmetric key, but split it into two independent keys ks and ka. The key ks is then returned as
the shared key, while the key ka is internally used to authenticate the encapsulation (u1, u2). This
authentication step is important as it protects the KEM against adversarial decapsulation queries,
and is novel to this work in the sense that, with the twist, previous security proof for hybrid PKE
in [15] can be as is reused for the KEM case, without any loss factor to the main complexity
assumption.

Practical impacts. The result is not only of theoretical interest. Indeed, compared to the existing
practice [1], namely the standardized ACE-KEM basing on the same assumption in the standard
model, we achieve

• more than 20% improvement over encapsulation speed, and at least 20% improvement over
decapsulation speed in general, and

• for specific choices of the base group such as prime-field NIST elliptic curves, the speed im-
provement on decapsulation can go up to 60%.

These theoretical estimations are checked by experimental results in Section 3.2. These improve-
ments are significant, as frequently there are large amounts of asymmetric encryption and decryp-
tion works, e.g., in SSL/TLS servers. Indeed, due to these practicalities, we think that our variants
of the Kurosawa-Desmedt KEM deserve direct and dedicated proofs of security.

In sizes, the public and secret keys in our schemes are one group element, or at least 160-bit,
smaller than those of the ACE-KEM. The encapsulation length is also slightly shorter. See Table
2 in Section 3.2 for details.

DLIN-based and DCR-based extensions. Our method can be extended to hash proofs sys-
tems. When coupling with known constructions of hash proof systems in the literature, we obtain
KEMs under the decision linear (DLIN) and decisional composite residuosity (DCR) assumptions,
respectively. See Section 4.

Leakage-resilient extensions. Above KEMs have their leakage-resilient variants, described in
Section 6. In particular, keeping the same speed improvements as above, we present a DDH-based
KEM secure even if 18.85% amount of secret key’s information is leaked when the KEM operates
over NIST’s elliptic curve P-521. The rate goes up to 21.87% when considering group Z∗p where p
is of 1024 bit length. While these cannot reach beyond rate 1/4 as in [32], conditioned on the same
(or approximate) leakage rates, our proposal outperforms the scheme in [32]. See Section 6.4.

1.3 Other usage of KEM beyond hybrid encryption

While original application of KEM is hybrid PKE, the ability to output a shared symmetric key
allows KEM to have other applications as well. For example, KEM can be used to build schemes
for identification [6] and authenticated key exchange (AKE) [10, 17, 34]. In particular, Boyd et
al. [10] showed that a one-round AKE protocol can be constructed from IND-CCA secure KEM,
and Fujioka et al. [17] showed that a two-pass AKE protocol with weak perfect forward secrecy can
be constructed from IND-CCA secure KEM. This additionally illustrates why KEM is preferable
over PKE alone.

1.4 More related works

The proof given in [27] depends on some information theoretically secure components, which affects
the efficiency of the hybrid PKE scheme. The refined proof in [15] weakens the components to
computationally secure ones.

Already in [11,21], it was remarked that, if one models the key derivation function as a random
oracle and is content with a much stronger assumption than DDH, the Kurosawa-Desmedt KEM
can be proved IND-CCA-secure.

Using essentially the same idea with this work, Baek et al. [7] showed that constrained IND-
CCA (CCCA) security [22] can be converted into standard IND-CCA security. The transformation,
while generic and applied to the original Kurosawa-Desmedt KEM, however has a loss factor of 4
in the security reduction. Our approach in this paper puts aside constrained IND-CCA definition,
giving a direct proof for the KEM and related schemes from hash proof systems and yielding a
theoretically better loss factor of 1 to the main complexity assumptions (namely DDH, DLIN, and
DCR).

In addition, we remark that Hanaoka and Kurosawa [20] showed a MAC-free conversion from
CCCA to CCA security. While going through CCCA security as in [20] has benefits such as yielding
new constructions with ciphertext size improvements, we think that a straight proof of security
without any redundant loss factor is more intuitive and easier to follow.

In the same vein, LCCA-secure KEM as defined in [4] can be converted to IND-CCA-secure
Tag-KEM [4, Theorem 3] which in turn yields hybrid PKE. The conversion again has a loss factor of
2 to the main complexity assumption. The application of Tag-KEM beyond hybrid PKE is arguably
less clear than KEM.

The conversions from CCCA or LCCA security to CCA security, while being generic, are of
theoretical interests, since proving that a concrete scheme is CCCA-secure or LCCA-secure is
apparently not easier than directly showing that scheme is IND-CCA-secure.

1.5 Additional content over the conference version

A short version of this paper is in [29]. Newly added materials are mainly in Sections 5 and 6
showing how to simplify the KEMs in previous sections, and make them leakage-resilient.

2 Preliminaries

2.1 Key encapsulation mechanisms

KEM. A KEM consists of key generation KG, encapsulation Encap, and decapsulation Decap algo-
rithms. KG(1κ) with security parameter κ outputs public key pk and secret key sk. The algorithm
Encap(pk) returns a pair (C,K). Correctness holds if Decap(sk, C) = K.

IND-CCA security of KEM. To define the security, consider the following game with adversary
A. First, (pk, sk) ← KG(1κ) and pk is given to A. In the so-called find stage, A can query any C
of its choice to oracle Decap(sk, ·).

Then A invokes a challenge oracle who computes (C∗,K∗)←Encap(pk), then takes K∗ randomly

satisfying |K∗| = |K∗|, and chooses b
$←{0, 1}. The oracle returns challenge pair (C∗,K(b)) in which

K(0) = K∗ and K(1) = K∗.

After that, in the guess stage, A can again access to the oracle Decap(sk, ·), but is not allowed
to query C∗ to the decapsulation oracle. Finally, A returns b′ as a guess of the hidden b.

The KEM is IND-CCA-secure if the advantage

Advind−cca
A (κ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
is negligible in κ for all poly-time adversary A.

Leakage-resilient IND-CCA security of KEM. The definition is the same as above, except
that in the find stage, the adversary A can additionally submit any circuit f to receive the leakage
f(sk) on the secret key. The leakage queries can be adaptive, and yet the total leakage length in
bits must be bounded by a number L. The leakage rate is defined as the fraction L/|sk| where |sk|
is the length of the secret key.

It is worth noting that leakage queries are not allowed after the challenge phase. The reason is,
suppose such query is permitted, the adversary can take f = last bit of Decapsk(·) to receive f(C∗)
and then compare with the last bits of K(b). Therefore, even one-bit leakage resilience is impossible
in this case.

2.2 Symmetric building blocks

Taking an element a randomly from a set A is notationally expressed by a
$←A. Let κ be the security

parameter. We requires following building blocks. Concrete schemes can be found in [1, Section 6].

TCR. A target collision resistant hash function TCR : E(κ) → R(κ) is defined as follows. Given

a target x∗
$←E(κ), it is hard for all poly-time adversary A to find x ∈ E(κ) satisfying TCR(x) =

TCR(x∗). Formally, the advantage

AdvTCR
A (κ) = Pr[x← A(x∗) : x 6= x∗ ∧ TCR(x) = TCR(x∗)]

is negligible for all poly-time adversary A.

KDF. We assume that there exists a key derivation function KDF : K(κ) → {0, 1}2n(κ) such that
KDF(v) for random v ∈ K(κ) is computationally random over {0, 1}2n(κ). Formally, the advantage

AdvKDF
D (κ) =

∣∣∣∣∣ Pr
v

$←K(κ)

[D(KDF(v)) = 1]− Pr
(k,k′)

$←{0,1}2n(κ)
[D(k, k′) = 1]

∣∣∣∣∣
is negligible for all poly-time distinguishers D.

MAC. A message authentication code MAC : {0, 1}n(κ) × E(κ) → {0, 1}τ(κ) takes inputs k ∈
{0, 1}n(κ) and x ∈ E(κ) to compute tag t = MACk(x). For random key k

$←{0, 1}n(κ), the adversary
A is given at most one pair (x∗, t∗ = MACk(x

∗)) where x∗ is of A’s own choice. The adversary A
then returns a pair (x, t). It is required that the following advantage

AdvMAC
A (κ) = Pr[x 6= x∗ ∧ t = MACk(x)]

is negligible for all poly-time distinguishers A.
Note that the definition treats MAC as a function where E(κ) contains both messages and

randomness (if any), the security notion already captures strong unforgeability against chosen-
message attacks.

Fig. 1. Our IND-CCA-secure KEM under the DDH assumption.
KG(1κ) : Encap(pk) : Decap(sk, C) :

g1, g2
$←G r

$← Zq Parse C = (u1, u2, t)

(x1, x2, y1, y2)
$← Z4

q u1 ← gr1 , u2 ← gr2 α← TCR(u1, u2)

c← gx11 gx22 α← TCR(u1, u2) v ← ux1+αy11 ux2+αy22

d← gy11 gy22 v ← crdrα (ks, ka)← KDF(v)
pk ← (g1, g2, c, d) (ks, ka)← KDF(v) If t = MACka(u1, u2)
sk ← (x1, x2, y1, y2) t← MACka(u1, u2) return ks
Return (pk, sk) Return C = (u1, u2, t) and K = ks Else return ⊥

3 Kurosawa-Desmedt KEM, revisited

Let G = 〈g〉 be a group, generated by g, of prime public order 2κ < q < 2κ+1 for security parameter
κ.

The DDH assumption on G asserts that, for all poly-time distinguishers D, non-unit random

elements g1, g2
$←G, and r 6= s

$← Zq, the advantage

Advddh
D (κ) =

∣∣∣Pr[D(g1, g2, g
r
1, g

r
2) = 1]− Pr[D(g1, g2, g

r
1, g

s
2) = 1]

∣∣∣
is negligible on parameter κ.

3.1 Our proposed KEM under DDH

The construction is depicted in Figure 1. In the construction, keys ks and ka are of n-bit length.
In Decap, if u1 6∈ G or u2 6∈ G then ⊥ is returned immediately at the beginning. The description of
symmetric building blocks TCR, KDF, and MAC are in Section 2.2.

The main difference with the Kurosawa-Desmedt KEM is, in Encap(pk), the element v is spitted
in two keys (ks, ka) by KDF. Then, the key ka is used to authenticate elements (u1, u2) inside
Encap(pk), while the key ks is returned as the shared symmetric key. The crucial point here is the
authentication of (u1, u2) by the MAC, which helps proving IND-CCA security of our proposal.
This technique, while simple, has been neglected in the literature.

Perhaps it is illustrative to see how our KEM resists against the chosen ciphertext attack
in [11, 21] that breaks the Kurosawa-Desmedt KEM. Recall that, in the attack, the adversary
first obtains the challenge encapsulation consisting of (u∗1, u

∗
2). The adversary then queries the

decapsulation oracle with query of form ((u∗1)r, (u∗2)r) where r ∈ Zq is random of its own choice.
In [11, 21], it is showed that, by only two such queries, the encapsulated symmetric key can be
computed with overwhelming probability. In comparison, in our KEM, the tag t is effective as a
hedge against such malformed queries. When the adversary submits (u1, u2, t) = ((u∗1)r, (u∗2)r, t),
the corresponding v can be proved randomly distributed under the DDH assumption (in the proof,
see Game4). This means corresponding keys (ks, ka) = KDF(v) are randomly distributed. For
the decapsulation not returning ⊥, the adversary had to come up with the tag t satisfying t =
MACka((u∗1)r, (u∗2)r), which is computationally hard since ka is random and MAC is assumed secure.

Our use of MAC is different from the counterpart in the hybrid PKE [15] in its input. In [15],
MAC is used to authenticate a symmetrically encrypted plaintext e. Namely, using our notations,
in [15], e ← SymmetricEncryptionks(plaintext) and then t ← MACka(e). In contrast, in Figure 1,

Table 2. Comparison of KEMs in standard model based on the DDH assumption. Abbreviations in the table: me =
multi-exponentiation, se = single-exponentiation, gmc = group membership check, el = group element. The (∼ gmc)
indicates that group membership checks may be very efficient compared to exponentiation.

Scheme Assumption Encap [Encap]; [Decap] [pk, sk] size
length main costs of computation

ACE-KEM [1] DDH 3|q| [1 me + 3 se]; [0 me + 3 se + (1 gmc)] [5 el, 4 el]

Ours, Figure 1 DDH 2|q|+ |t| [1 me + 2 se]; [1 me + 0 se + (2 gmc)] [4 el, 4 el]

we take “early” MAC on (u1, u2). Nevertheless, the resemblance between our KEM and the hybrid
PKE allows us to re-utilize the proof in the hybrid encryption case.

3.2 Comparison with ACE-KEM

Base group. There are primarily two choices for the group G so that DDH assumption is believed
holds true. The first choice is to take G as the order q, multiplicative subgroup of Z∗p in which
p = 1 (mod q) is a prime. The elements in G are thus represented modulo p, and hence of |p| = 1024
bits (for 80-bit security) or |p| = 3072 bits (for 128-bit security). See [13] for more details.

The second choice of G is to take elliptic curve groups of order q. This choice reduces the length
of element representation, since the length of q in bits can be |q| = 160 (for 80-bit security), or
|q| = 256 (for 128-bit security). See [30] for specific curves.

Theoretical comparison In Table 2, we compare our KEMs with the ACE-KEM in ISO/IEC
18033-2 [1], which refined the schemes in [12,13]. Both enjoys a tight security reduction to the DDH
assumption. Since the tag size |t| can be 128 in our KEMs, our encapsulation size is slightly shorter
than ACE-KEM. The public key in our KEMs is one group element shorter.

To compare computation costs, we consider ACE-KEM implemented a group of prime or-
der q. We use the result that one multi-exponentiation in that group can be carried out in
(1 + 2/ log2 log2 q) log2 q multiplications [8], therefore can be counted as approximately 1.2 single
exponentiation, which also is supported by experimental results in Section A.

First, in groups where group membership checks are trivial, our KEM in Figure 1 needs just
one multi-exponentiation, thus beating the ACE-KEM at dramatic margin of 60% (computed by
(1−1.2/3) ·100%) in decapsulation speed. Examples of the groups include NIST elliptic curves [30]
defined over prime fields (P-192, P-224, P-256, P-384, P-521) and binary fields (B-163, B-233,
B-283, B-409, B-571).

Now assume that a group membership check is costly as one single exponentiation, while more
efficient methods (e.g., using the Legendre symbol) may be available depending on the base group
[13, Section 4.2]. Using abbreviations in Table 2, we count: 1 me = 1.2 se, 1 gmc = 1 se.

Thus our encapsulation needs 3.2 (se), while that for ACE-KEM is 4.2 (se), meaning more than
20% improvement in speed. For decapsulation, our schemes in Figure 1 require 3.2 (se), while that
of ACE-KEM is 4 (se), yielding at least (1− 3.2/4) · 100% = 20% improvement.

3.3 Comparison with random oracle model’s KEMs

Table 3 compares our DDH-based KEMs with other standardized schemes whose security were
examined in the random oracle model. Remarkably, the decapsulation cost in our KEMs is compa-
rable, or even lesser, those in the KEMs.

Table 3. Comparison between our KEMs, ECIES-KEM, PSEC-KEM. Abbreviations: rom = random oracle model,
std = standard model, others are identical to Table 2.

Scheme Assumption Encap [Encap]; [Decap] [pk, sk] size
and Model length main costs of computation

ECIES-KEM gapCDH, rom |q| [0 me + 2 se]; [0 me + 1 se + (1 gmc)] [1 el, 1 el]
PSEC-KEM CDH, rom |q|+ |seed| [0 me + 2 se]; [0 me + 2 se + (1 gmc)] [1 el, 1 el]

Figure 1 DDH, std 2|q|+ |t| [1 me + 2 se]; [1 me + 0 se + (2 gmc)] [4 el, 4 el]

ECIES-KEM. The scheme was originally developed by Abdalla, Bellare, and Rogaway [3]. Other
names are DHES and as DHAES. Versions of the scheme are in ISO 18033-2 [1], IEEE 1363a [23],
and SECG/SEC1 [33]. For comparison in Table 3, we use the version in [1].

PSEC-KEM. The scheme [31] was originally developed at Nippon Telegraph and Telephone cor-
poration based on the work of Fujisaki and Okamoto [18] (refined in [19]). The KEM appears in
ISO/IEC 18033 [1], and in the Candidate Recommended Ciphers List of CRYPTREC [2]. The one
we use for comparison on Table 3 is described in [1].

Comments on Table 3. On decapsulation efficiency, ignoring group membership checks, then
ECIES-KEM is the fastest with 1 (se), next comes ours in Figure 1 with 1 (me) counted as 1.2 (se),
then PSEC-KEM with 2 (se). Therefore, the decapsulation of our proposal is (1−1.2/2)·100% = 40%
faster than that of PSEC-KEM, while a little slower than ECIES-KEM.

Concerning security assumption, one has to make choices between the computational Diffie-
Hellman assumption (CDH) in PSEC-KEM, gap CDH in ECIES-KEM (both in the random oracle
model), or DDH in standard model in ours.

The seed length |seed| must be set up so that Q/2|seed| is negligible where Q is the number of
decapsulation queries, so that roughly the encapsulation in PSEC-KEM is |q| bits lesser than ours.

Our encapsulation is a bit less efficient than both ECIES-KEM and PSEC-KEM by 1 multi-
exponentiation.

3.4 Experimental comparison

ISO/IEC 18033-2 comes with a reference implementation, written by Anshuman Rawat and Victor
Shoup (see website of [1]). The implementation, among others, includes ACE-KEM, PSEC-KEM,
and ECIES-KEM. We add an implementation of our proposed KEM based on that library. Timings
of encryption and decryption are reported in Figure 2, in which our scheme in Figure 1 is named
“newkd”. The codes in [1] neither speed up multi-exponentiation nor use Legendre symbol for group
membership check. Our code elaborates on these aspects by

– employing a square-and-multiply algorithm for multi-exponentiation (see Section A for details),
and

Fig. 2. Average timings, taken over 10000 executions, over different base groups. Experiment is done over a laptop
(Intel 2.0GHz CPU, 8GB RAM) running Ubuntu 12.04 LTS. The C compiler is g++ 4.6.3 using NTL 6.0.0 and GMP
5.1.1 libraries.

7.5

5.6

3.7 3.6

5.3

2.1

3.7

1.8

0

1

2

3

4

5

6

7

8

ace newkd psec ecies

m
ill

is
e

co
n

d
s

Timings over elliptic curve P-192

enc

dec

12.2

9.2

6.1 5.9

8.9

3.4

6.1

3

0

2

4

6

8

10

12

14

ace newkd psec ecies

m
ill

is
e

co
n

d
s

Timings over elliptic curve B-163

enc

dec

35.4

26.2

16.4 16.8

25.1

9.9

16.1

8.3

0

5

10

15

20

25

30

35

40

ace newkd psec ecies

m
ill

is
e

co
n

d
s

Timings over modulo p group
(p is a safe prime)

enc

dec

5.5

4.1

2.9
2.7

5.1

4.3

2.6 2.6

0

1

2

3

4

5

6

ace newkd psec ecies

m
ill

is
e

co
n

d
s

Timings over modulo p group
(p is not a safe prime)

enc

dec

– using Legendre symbol for group membership check in G ⊂ Z∗p where p is a “safe” prime, namely
p = 2q + 1 for a prime q (Sophie Germain prime).

Over all groups, one can confirm by Figure 2 that our proposed “newkd” is more efficient
than ACE-KEM in both encapsulation and decapsulation. The bar charts also fit above theoretical
comparisons.

Whenever above speedup tricks are applicable, namely over NIST’s elliptic curves or over G ⊂ Z∗p
with safe prime p, one can confirm that our proposal’s decapsulation is faster than PSEC-KEM,
and is even comparable to ECIES-KEM.

Over a subgroup G ⊂ Z∗p where p is not a safe prime, the decapsulation speed of “newkd”
decreases. Here, two group membership checks, performed by two exponentiations, must be done
since the Legendre symbol trick cannot be applied.

3.5 Security proof

This subsection is devoted to prove the following theorem.

Theorem 1 The KEM in Figure 1 is IND-CCA-secure under the DDH assumption. A quantitative
reduction is given in eq.(11) in the following proof.

The following proof is similar to [15], adjusted for our KEM.

Proof. We will proceed in games, each of which is a modification of the previous one. Below,
Pr[Xi] = Pr[b′ = b in Gamei].

Game0: This game is the IND-CCA attack game with an adversary A. Recall that κ is the security
parameter, and Advind−cca

A (κ) = |Pr[b′ = b]− 1
2 |.

The challenge is (C∗,K(b)) where C∗ = (u∗1, u
∗
2, t
∗). We denote by r∗, α∗, v∗, k∗s , k

∗
a the corre-

sponding intermediate quantities. The key K(b) is (k∗s , k
∗
a) or random depending on the bit b.

Game1: The challenge oracle uses secrets (x1, y1, x2, y2) to compute v∗. Namely,

v∗ = (u∗1)x1+α∗y1(u∗2)x2+α∗y2

where u∗1 = gr
∗

1 , u
∗
2 = gr

∗
2 and α∗ = TCR(u∗1, u

∗
2).

Moreover, for any query (u1, u2, t) with (u1, u2) 6= (u∗1, u
∗
2) and TCR(u1, u2) = TCR(u∗1, u

∗
2), the

decapsulation oracle returns ⊥.
Then there exists a poly-time adversary A1 such that

|Pr[X0]− Pr[X1]| ≤AdvTCR
A1

(κ) (1)

since the first change is notational, and the second one is based on the security of TCR. More
formally, A1 gets inputs (u∗1, u

∗
2), and simulates the environment for A by generating the public

and secret keys. A1 gives A the public key, and answers A’s decapsulation queries using the secret
key. In any decapsulation query (u1, u2, t), if (u1, u2) 6= (u∗1, u

∗
2) and TCR(u1, u2) = TCR(u∗1, u

∗
2),

then A1 stops the simulation and returns the pair (u1, u2) as its output. The running time of A1

in the worst case is that of A plus time for doing arithmetic computations in G and time for some
symmetric operations, so is of polynomial time.

Game2: In this game, elements u∗1 and u∗2 are computed as follows: r∗1
$← Zq, u∗1 ← g

r∗1
1 , and

r∗2
$← Zq \ {r∗1}, u∗2 ← g

r∗2
2 . Then there is a poly-time adversary A2 such that

|Pr[X1]− Pr[X2]| = Advddh
A2

(κ). (2)

The description of A2 is as follows. Its input is a tuple (g1, g2, u
∗
1, u
∗
2). A2 itself generates the secret

key, and then coupling with generators g1, g2 of G, it computes the public key. Since A2 holds the
secret key, it can answer all decapsulation queries from A. The adversary A2 controls the hidden
bit b, so that it can compare that bit with A’s output bit b. In case b′ = b, A2 returns 1; otherwise
it returns 0. Any difference on the output b′ of A depending on tuple (g1, g2, u

∗
1, u
∗
2) directly yields a

difference on the probability A2 outputting 1, so that above equation claim is justified. The running
time of A2 in the worst case is that of A plus time for doing arithmetic computations in G and
time for some symmetric operations, so is of polynomial time.

Game3: This game makes use of ω ∈ Z∗q satisfying g2 = gω1 . With ω, we can check in poly-time
whether logg1 u1 = logg2 u2 by simply verifying uω1 = u2. Denote V = {(u1, u2) ∈ G2 : uω1 = u2}. In
this game, any decapsulation query (u1, u2, t) with (u1, u2) 6∈ V is rejected. The initialization and
decapsulation oracle in this game are depicted in Figure 3.

Let Fi (i ≥ 3) be the event that a query is rejected at line 13 of the decapsulation oracle in
Gamei. Let Q be the bound on the total number of decapsulation queries A makes, we have

|Pr[X2]− Pr[X3]| ≤ QPr[F3]. (3)

Game4: In this game, take v∗
$←G (at line I4) and v

$←G (at line 10 in the decapsulation). This
is because

Fig. 3. Oracles in Game3 for the proof of Theorem 1.
Initialization of the game Decapsulation of adversarial query C = (u1, u2, t)

I1: ω
$← Z∗q , g2 ← gω1

I2: (x1, x2, y1, y2)
$← Z4

q

c← gx11 gx22 , d← gy11 gy22
I3: r∗1

$← Zq, u∗1 ← g
r∗1
1

r∗2
$← Zq \ {r∗1}, u∗2 ← g

r∗2
2

I4: α∗ ← TCR(u∗1, u
∗
2)

v∗ ← (u∗1)x1+α
∗y1(u∗2)x2+α

∗y2

I5: (k∗s , k
∗
a)← KDF(v∗)

1: α = TCR(u1, u2)
2: if (u1, u2) 6= (u∗1, u

∗
2) and α = α∗ then

3: return ⊥
4: end if
5: if (u1, u2) = (u∗1, u

∗
2) then

6: if t 6= MACk∗a(u∗1, u
∗
2) then return ⊥

7: else return k∗s
8: else if (u1, u2) 6∈ V then
9: α← TCR(u1, u2)

10: v ← ux1+αy11 ux2+αy22

11: (ks, ka)← KDF(v)
12: if t 6= MACka(u1, u2) then return ⊥
13: else return ⊥ {Rejection rule in Game3}
14: else
15: α← TCR(u1, u2)
16: v ← ux1+αy11 ux2+αy22

17: (ks, ka)← KDF(v)
18: if t 6= MACka(u1, u2) then return ⊥
19: else return ks
20: end if


logg1 c

logg1 d

logg1 v
∗

logg1 v

 =


1 0 ω 0
0 1 0 ω
r∗1 r

∗
1α
∗ r∗2ω r

∗
2ωα

∗

r1 r1α r2ω r2ωα


︸ ︷︷ ︸

M


x1

y1

x2

y2



and determinant det(M) = ω2(r∗2 − r∗1)(r2 − r1)(α − α∗) 6= 0 shows that (c, d, v∗, v) are uniformly
distributed as (x1, y1, x2, y2) are. We have

Pr[X3] = Pr[X4] (4)

Pr[F3] = Pr[F4]. (5)

Game5: At line I5, take (k∗s , k
∗
a)

$←{0, 1}2n. This is because v∗ is taken randomly in the previous
game. Then there exists an adversary A5 against KDF such that

|Pr[X4]− Pr[X5]| ≤AdvKDF
A5

(κ). (6)

The description of A5 is as follows. Its input is a string in {0, 1}2n. It uses the input for the
keys (k∗s , k

∗
a) at line I5, while generating the secret key and public key and others as in lines I1

to I4. Since A2 holds the trapdoor for membership testing ω and the secret key, it can handle
decapsulation queries as in Figure 3. When A returns b′, the adversary A5 checks whether b′ equals
its chosen bit b. If b′ = b, A5 returns 1. The running time of A5 in the worst case is that of A

plus time for doing arithmetic computations in G and time for some symmetric operations, so is of
polynomial time.

Game6: At line 7 in the decapsulation, return ⊥. This is because (u1, u2) = (u∗1, u
∗
2) with probability

1
q2

before the challenge phase. Moreover, after the challenge phase when (u∗1, u
∗
2, t
∗) was already

announced, querying (u∗1, u
∗
2, t) with t = MACk∗a(u∗1, u

∗
2) and t 6= t∗ to the oracle means the adversary

can break the MAC. We have

|Pr[X5]− Pr[X6]| ≤ Q
(

1

q2
+ AdvMAC

A6
(κ)

)
and Pr[X6] =

1

2
(7)

since (k∗s , k
∗
a) are perfectly random in this game.

The description of A6 is as follows. Its input is (u∗1, u
∗
2, t
∗) where t∗ = MACk∗a(u∗1, u

∗
2) for random

key k∗a. It generates the secret key and then simulates the environment for A. Whenever A queries
(u1, u2, t) for decapsulation in which t 6= t∗ and t = MACk∗a(u∗1, u

∗
2), the adversary A6 halts the

simulation and returns (u∗1, u
∗
2, t). The running time of A6 in the worst case is that of A plus time

for doing arithmetic computations in G and time for some symmetric operations, so is of polynomial
time.

Game5′ : Now we move back to consider Game4 again. This game is the same as Game4, except

that, (ks, ka)
$←{0, 1}2n at line 11. We have

|Pr[F4]− Pr[F5′]| ≤ AdvKDF
A′5

(κ). (8)

Since the MAC key has been turned random,

Pr[F5′] ≤ AdvMAC
A′′5

(κ) (9)

in which, as a recall, F5′ is the event that a query is rejected at line 13 of the decapsulation oracle
in this game. The descriptions of adversaries A′5 against KDF and A′′5 against MAC are similar to
those in Game5 and Game6.

By (5), (8), (9), we have

Pr[F3] = Pr[F4] ≤ Pr[F5′] + AdvKDF
A′5

(κ) ≤ AdvMAC
A′′5

(κ) + AdvKDF
A′5

(κ) (10)

and by (1), (2), (3), (4), (6), (7), and the bound (10),

Advind−cca
A (κ) ≤ AdvTCR

A1
(κ) + Advddh

A2
(κ) +Q

(
AdvMAC

A′′5
(κ) + AdvKDF

A′5
(κ)
)

+AdvKDF
A5

(κ) +Q

(
1

q2
+ AdvMAC

A6
(κ)

)
(11)

ending the proof. ut

4 Generalization to universal hash proof system

4.1 Hash proof system

The notion of hash proof systems was introduced by Cramer and Shoup [14]. Let SK,PK, and K be
sets of secret keys, public keys, and encapsulated symmetric keys. Let E be the set of all “valid” and

“invalid” encapsulation, and V ⊂ E be the set of all “valid” ones. To illustrate the above notation,
in the DDH-based scheme, SK = G4, PK = G2, E = G2, K = G, V = {(gr1, gr2) : r ∈ Zq}.

The subset membership assumption says that V is indistinguishable from E . If V = {(gr1, gr2) :
r ∈ Zq} and E = G2 as above, this is exactly the DDH assumption. Formally, the advantage

Advsm
D (κ) =

∣∣∣∣∣ Pr
U

$←E
[D(U) = 1]− Pr

U
$←V

[D(U) = 1]

∣∣∣∣∣
is negligible for all poly-time distinguishers D.

A function Λsk : E × Seed→ K is projective if there exists a projection µ : SK → PK such that
pk = µ(sk) defines Λsk restricted on subset V × Seed of E × Seed. Namely, for every E ∈ V and
sd ∈ Seed, the value K = Λsk(E, sd) is uniquely determined by pk = µ(sk) and E, sd. Note that

• Before Section 6, the set Seed is empty. As an example, in our scheme of Section 3, Λsk
(
E =

(u1, u2)
)

= ux1+αy1
1 ux2+αy2

2 where α = TCR(E). This is the original definition of hash proof
system in [14].

• In Section 6, Seed is a set of bit strings of fixed length. As an example, in our scheme of Section
6.2, Λsk

(
E = (u1, u2), sd

)
= ux1+αy1

1 ux2+αy2
2 where α = TCR(E, sd) for sd ∈ Seed. This is an

extension of hash proof system, first explicitly given in [28].

Experiment Expcu2
A (κ):

Run Param(1κ) to generate(
group,SK,PK,K, E ,V,Λ(·)(·), µ,Seed

)
sk

$←SK, pk ← µ(sk), E′
$←E \ V

sd′
$← Seed,K ′ ← Λsk(E

′, sd′)

(E, sd, st)← AEvalsk(·,·)
find (pk,E′, sd′,K ′)

where (E, sd) 6= (E′, sd′) and E ∈ E \ V
b

$←{0, 1},K(0)← Λsk(E, sd),K(1)
$←SK

b′ ← Aguess(st,K(b))

If b′ = b then return 1 else return 0

A projective function Λsk is called computa-
tionally universal-2 [22] if for all E,E′ 6∈ V with
(E, sd) 6= (E′, sd′), the tuples(

pk,Λsk(E
′, sd′),Λsk(E, sd)

)
, and(

pk,Λsk(E
′, sd′),K

)
are computationally indistinguishable, where

sk
$←SK and K

$←K. Formally, consider an
adversary A = (Afind,Aguess) in the follow-
ing experiment Expcu2

A (κ), in which the ora-
cle Evalsk(F, s) returns Λsk(F, s) if F ∈ V and
s ∈ Seed; and ⊥ otherwise. Computational uni-
versality requires that

Advcu2
A (κ) = Pr[Expcu2

A (κ) = 1]

is negligible for all poly-time A.

Hash proof system. A hash proof systemHPS consists of algorithms (Param,Pub,Priv) described
as follows. Algorithm Param(1κ) first generates the description of group, SK, PK, K, E , V, Λ(·)(·),
and µ : SK → PK. Algorithm Pub(pk,E, r) returns K = Λsk(E) for E ∈ V, where the computation
does not use sk but makes use of r, a witness of the fact that E ∈ V. Algorithm Priv(sk,E) returns
Λsk(E).

4.2 IND-CCA-secure KEM from hash proof systems

The KEM is depicted in Figure 4. The descriptions of symmetric building blocks KDF and MAC
are in Section 2.2.

Fig. 4. Our generic KEM from hash proof system (Param,Pub,Priv).

KG(1κ) : Encap(pk) : Decap(sk, C) :

Run Param to define Take random witness r Parse C = (E, t)(
group,SK,PK,K, E = E(r)

$←V v ← Priv(sk,E)
E ,V,Λ(·)(·), µ

)
v ← Pub(pk,E, r) (ks, ka)← KDF(v)

sk
$←SK (ks, ka)← KDF(v) If t = MACka(E)

pk ← µ(sk) t← MACka(E) return ks
Return (pk, sk) Return C = (E, t) and K = ks Else return ⊥

Theorem 2 The generic construction of KEM in Figure 4 is IND-CCA-secure. A quantitative
reduction is given in eq.(21) in the following proof.

Proof. We proceed in games as follows.

Game0: This game is the IND-CCA attack game with leakage. Without loss of generality, assume
that E∗, r∗ are generated at the beginning of the game.

Game1: Compute Pub(pk,E∗, r∗) in the challenge encapsulation as Priv(sk,E∗). This change is
only notational since Priv(sk,E∗) = Pub(pk,E∗, r∗) = Λsk(E

∗) so that Pr[X0] = Pr[X1].

Game2: Take E∗
$←C \ V. We have

|Pr[X1]− Pr[X2]| ≤ Advsm
A2

(κ) (12)

thanked to the subset membership problem. The running time of A2 in the worst case is that of
A plus time for doing some computations in the hash proof systems and time for some symmetric
operations, so is of polynomial time.

Game3: Any decapsulation query (E, t) with E 6= E∗ and E 6∈ V is answered by ⊥. Let Q be the
total number of decapsulation queries, we have

|Pr[X2]− Pr[X3]| ≤ QPr[F3] (13)

where F3 is the event that a query is rejected by the above rule. The initialization and the decap-
sulation oracle are depicted in Figure 5, in which F3 happens whenever line 8 of decapsulation is
reached.

Game4: In this game, take v∗
$←K (at line I4) and v

$←K (at line 5 in the decapsulation). We have

|Pr[X3]− Pr[X4]| ≤Advcu2
A4

(κ) (14)

|Pr[F3]− Pr[F4]| ≤Advcu2
A′4

(κ) (15)

where event F4 happens whenever line 8 of decapsulation is reached in this game. The reasons
are that v = Λsk(E) is computationally random conditioned on pk, v∗ = Λsk(E

∗); and that v∗ =
Λsk(E

∗) is computationally random conditioned on pk, v thanks to the computational universality
of the hash proof system.

Game5: At line I5, take (k∗s , k
∗
a)

$←{0, 1}2n. This is because v∗ is taken randomly in the previous
game. Then there exists an adversary A5 against KDF such that

|Pr[X4]− Pr[X5]| ≤AdvKDF
A5

(κ). (16)

Fig. 5. Oracles in Game3 for the proof of Theorem 2.
Initialization of the game Decapsulation of adversarial query C = (E, t)

I1: ω
$← Trapdoors

I2: sk
$←SK, pk ← µ(sk)

I3: E∗
$←C \ V

I4: v∗ ← Priv(sk,E∗)
I5: (k∗s , k

∗
a)← KDF(v∗)

1: if E = E∗ then
2: if t 6= MACk∗a(E∗) then return ⊥
3: else return k∗s
4: else if E 6∈ V then
5: v ← Priv(sk,E)
6: (ks, ka)← KDF(v)
7: if t 6= MACka(E) then return ⊥
8: else return ⊥
9: else

10: v ← Priv(sk,E)
11: (ks, ka)← KDF(v)
12: if t 6= MACka(E) then return ⊥
13: else return ks
14: end if

The description of A5 is the same as its counterpart in the proof of Theorem 1.

Game6: At line 3 in the decapsulation, return ⊥. This is because E = E∗ with probability 1
|E| before

the challenge phase. Moreover, after the challenge phase when (E∗, t∗) was already announced,
querying (E∗, t) with t = MACk∗a(E∗) and t 6= t∗ to the oracle means the adversary can break the
MAC. We have

|Pr[X5]− Pr[X6]| ≤ Q
(

1

|E|
+ AdvMAC

A6
(κ)

)
and Pr[X6] =

1

2
(17)

since (k∗s , k
∗
a) are perfectly random in this game.

The description of A6 is as follows. Its input is (E∗, t∗) where t∗= MACk∗a(E∗) for random key
k∗a. It generates the secret key and then simulates the environment for A. Whenever A queries
(E, t) for decapsulation in which t 6= t∗ and t = MACk∗a(E∗), the adversary A6 halts the simulation
and returns (E∗, t).

Game5′ : Now we move back to consider Game4 again. This game is the same as Game4, except

that, (ks, ka)
$←{0, 1}2n at line 6. We have

|Pr[F4]− Pr[F5′]| ≤ AdvKDF
A′5

(κ). (18)

The description of A5 is the same as its counterpart in the proof of Theorem 1. Since the MAC key
ka has been turned random,

Pr[F5′] ≤ AdvMAC
A′′5

(κ) (19)

in which, as a recall, F5′ is the event that a query is rejected at line 8 of the decapsulation oracle
in this game. The descriptions of adversaries A′5 against KDF and A′′5 against MAC are similar to
those in Game5 and Game6.

By (15), (18), and (19),

Pr[F3] ≤ Advcu2
A′4

(κ) + AdvKDF
A′5

(κ) + AdvMAC
A′′5

(κ) (20)

Summing up (12), (13), (14), (16), (17), and (20),

Advind−cca
A (κ) ≤ Advsm

A2
(κ) +Q

(
Advcu2

A′4
(κ) + AdvKDF

A′5
(κ) + AdvMAC

A′′5
(κ)
)

+Advcu2
A4

(κ) + AdvKDF
A5

(κ) +Q

(
1

|E|
+ AdvMAC

A6
(κ)

)
(21)

ending the proof. ut

4.3 Instantiation under the DLIN assumption

We use the HPS based on the decisional linear assumption (DLIN) given by [22]. In this HPS,
SK = Z6

q , PK = G4, K = G. Also E = G3 and V = {(gr11 , g
r2
2 , h

r1+r2) : r1, r2 ∈ Zq}, where
g1, g2, h ∈ G. The DLIN assumption asserts that E and V are indistinguishable. The projective
function is

Λsk(u1, u2, u3) = ux1+αy1
1 ux2+αy2

2 uz+αz
′

3 ⇐⇒ Λsk(u1, u2, u3) = (c1d
α
1)r1(c2d

α
2)r2

using the same notations as in Figure 6. To check E ∈ E \V in Figure 5, use trapdoors logg1 h ∈ Zq
and logg2 h ∈ Zq.

Fig. 6. Our DLIN-based KEM (above) and DCR-based KEM (below).

KG(1κ) : Encap(pk) : Decap(sk, C) :

g1, g2, h
$←G r1, r2

$← Zq Parse C = (u1, u2, u3, t)

(x1, x2, y1, y2)
$← Z4

q u1 ← gr11 , u2 ← gr22 α← TCR(u1, u2, u3)

(z, z′)
$← Z2

q u3 ← hr1+r2 v ← ux1+αy11 ux2+αy22 uz+αz
′

3

c1 ← gx11 hz, c2 ← gx22 hz α← TCR(u1, u2, u3) (ks, ka)← KDF(v)

d1 ← gy11 hz
′
, d2 ← gy22 hz

′
v ← (c1d

α
1)r1(c2d

α
2)r2 If t = MACka(u1, u2, u3)

pk ← (g1, g2, h, (ks, ka)← KDF(v) return ks
c1, d1, c2, d2) t← MACka(u1, u2, u3) Else

sk ← (x1, x2, y1, y2, z, z
′) Return C = (u1, u2, u3, t) return ⊥

Return (pk, sk) and K = ks

KG(1κ) : Encap(pk) : Decap(sk, C) :

g
$←G, g2 ← gN1 r

$←{0, . . . , N1/4} Parse C = (u, t)

(x, y)
$←SK u← gr2 mod N2

1 α← TCR(u)
c← gx2 mod N2

1 α← TCR(u) v ← ux+yα mod N1

d = gy2 mod N2
1 v ← (cdα)r mod N1 (ks, ka)← KDF(v)

pk = (N1, g2, c, d) (ks, ka)← KDF(v) If t = MACka(u)
sk ← (x, y) t← MACka(u) return ks
Return (pk, sk) Return C = (u, t) and K = ks Else return ⊥

Lemma 1 (Lemma 6.3 in [22]). The above hash proof system is computationally universal-2 if
TCR is target collision resistant.

Our DLIN-based KEM appears in Figure 6. The symmetric building blocks are TCR : G3 → Zq,
KDF : G→ {0, 1}2n, and MAC : {0, 1}n ×G3 → {0, 1}τ . Security requirements are given in Section
2.2.

Theorem 3 The construction of KEM in Figure 6 is IND-CCA-secure under the DLIN assump-
tion.

Proof. Directly from Lemma 1 and Theorem 2. ut

4.4 Instantiation under the DCR assumption

We use the HPS based on the decisional composite residuosity assumption (DCR) given in [22].
Let p1 = 2p2 + 1 and q1 = 2q2 + 1 be primes, where p2 and q2 are also primes. Let N1 = p1q1 and
N2 = p2q2. Let G be the subgroup of Z∗

N2
1

with order N1N2. Note that G is written as G = GN1 ·GN2

where GNi denotes a cyclic group of order Ni. Let g be a generator of G, so that g1 = gN2 is a
generator of GN1 and g2 = gN1 is a generator of GN2 .

In this HPS, SK = {0, . . . , bN2
1 /2c}2, PK = G2

N2
, K = ZN1 . Also E = G and V = {gr2 mod N2

1 :
r ∈ {0, . . . , N1/4}}. The DCR assumption says that E and V are indistinguishable. To check
E ∈ E \ V in Figure 5, use trapdoor N2.

The projection function is, using the same notation as in Figure 6,

Λsk(u) = ux+yα mod N1 ⇐⇒ Λsk(u = gr2 mod N2
1) = (cdα)r mod N1.

Lemma 2 (By [14, 22]). The above hash proof system is computationally universal 2 if TCR is
target collision resistant.

Our DLIN-based KEM appears in Figure 6, which uses symmetric building blocks TCR : ZN2
1
→

ZbN2
1 /2c, and KDF : ZN1 → {0, 1}2n, and MAC : {0, 1}n × ZN2

1
→ {0, 1}τ .

Theorem 4 The construction of KEM in Figure 6 is IND-CCA-secure under the DCR assumption.

Proof. Directly from Lemma 2 and Theorem 2.

5 How to remove the MAC

As a MAC is a symmetric primitive, its costs including size and computation are already modest
compared to exponentiations, so why we bother removing it from the proposed schemes? The
reasons are as follows: by removing MAC,

• We rely on less computational assumptions for security.

• While not much, we still gain some efficiency regarding size and computation.

• The MAC-free schemes can be used as a starting point for leakage-resilient variants.

As also discussed in Section 1.4, the MAC-free conversion from CCCA to CCA security has
appeared in [20] by a different method from ours. The work [20] did not move further to leakage
resilient variants of the MAC-free schemes.

Fig. 7. Our IND-CCA-secure KEM under the DDH assumption, without MAC.
KG(1κ) : Encap(pk) : Decap(sk, C) :

g1, g2
$←G r

$← Zq Parse C = (u1, u2, t)

(x1, x2, y1, y2)
$← Z4

q u1 ← gr1 , u2 ← gr2 α← TCR(u1, u2)

c← gx11 gx22 α← TCR(u1, u2) v ← ux1+αy11 ux2+αy22

d← gy11 gy22 v ← crdrα (ks, ka)← KDF(v)

pk ← (g1, g2, c, d) (ks, ka)← KDF(v) If t = ka

sk ← (x1, x2, y1, y2) t← ka return ks
Return (pk, sk) Return C = (u1, u2, t) and K = ks Else return ⊥

5.1 DDH-based KEM without MAC

The DDH-based KEM without MAC is given in Figure 7. The difference with the scheme in Figure
1 is given in the boxes.

Removing MAC. A careful examination on the proof of Theorem 1 crystallizes the idea, and let
us paraphrase it:

referring to Figure 7, instead of MACka(u1, u2), just returning ka for authentication!

In other words, the string t = ka servers as an authenticator for each (u1, u2). The replacement
works well because the string ka is computationally random and hence unique for each encapsula-
tion (u1, u2), as shown in the proof of Theorem 1 (Game5 and Game5′ , specifically). This is an
additional merit of the direct proof.

We have the following theorem, which directly proves the security of the KEM. The proof is
almost the same as that for Theorem 1, with necessary modifications related to the MAC part.

Theorem 5 The KEM in Figure 7 is IND-CCA-secure under the DDH assumption. A quantitative
reduction is given in eq.(22) in the following proof.

Proof. The proof goes along the lines with that of Theorem 1, so we only specify the differences.

• Tags MACka(·) in lines 6, 12, 18 of Figure 3 are plainly replaced by ka in the decapsulation
oracle.

• In Game6, at line 7 in the decapsulation, return ⊥. This is because (u1, u2) = (u∗1, u
∗
2) with

probability 1
q2

before the challenge phase. Moreover, after the challenge phase when (u∗1, u
∗
2, k
∗
a)

was already announced, querying (u∗1, u
∗
2, t) with t = k∗a is forbidden. We have

∣∣Pr[X5]− Pr[X6]
∣∣ ≤ Q

q2
and Pr[X6] =

1

2
.

• In Game5′

Pr[F5′] ≤ 2−|ka|

where |ka| is the length of ka in bits, and F5′ is the event that a decryption query is rejected at
line 13 of the decapsulation oracle in this game.

Fig. 8. Our generic KEM from hash proof system (Param,Pub,Priv) without MAC.

KG(1κ) : Encap(pk) : Decap(sk, C) :

Run Param to define Take random witness r Parse C = (E, t)(
group,SK,PK,K, E = E(r)

$←V v ← Priv(sk,E)
E ,V,Λ(·)(·), µ

)
v ← Pub(pk,E, r) (ks, ka)← KDF(v)

sk
$←SK (ks, ka)← KDF(v) If t = ka

pk ← µ(sk) t← ka return ks
Return (pk, sk) Return C = (E, t) and K = ks Else return ⊥

• Having the above changes, the final quantitative reduction becomes

Advind−cca
A (κ) ≤ AdvTCR

A1
(κ) + Advddh

A2
(κ) +Q

(
2−|ka| + AdvKDF

A′5
(κ)
)

+AdvKDF
A5

(κ) +
Q

q2
, (22)

ending the proof. ut

5.2 Generalization: HPS-based KEM without MAC

The extension basing on hash proof system is given in Figure 8, in which the boxes show the differ-
ence with the MAC-based version previously given in Figure 4. Again, one-time secure MACka(·) is
simply replaced by ka, which is pseudo-random and tied to each E in the encapsulation (E, t = ka).
We have the following theorem.

Theorem 6 The generic construction of KEM in Figure 8 is IND-CCA-secure. A quantitative
reduction is given in eq.(25) in the following proof.

Proof. The proof is similar to that of Theorem 2, so let us only show the differences.

• In Game3, MACka(·) in Figure 5 is replaced by ka. Particularly, lines 2, 7, 12 are changed.
• In Game6, (17) is turned to

|Pr[X5]− Pr[X6]| ≤ Q

|E|
and Pr[X6] =

1

2
(23)

in which 1
|E| is the probability E = E∗ before the challenge phase and Q is the number of

decryption queries.
• In Game5′ , (19) is changed to

Pr[F5′] ≤ 2−|ka| (24)

where |ka| is the length of ka, and F5′ is the event that line 8 in the modified Figure 5 is
executed, namely the adversary can come up with a tag satisfying t = ka where E 6∈ V.
• The final reduction becomes

Advind−cca
A (κ) ≤ Advsm

A2
(κ) +Q

(
Advcu2

A′4
(κ) + AdvKDF

A′5
(κ) + 2−|ka|

)
+Advcu2

A4
(κ) + AdvKDF

A5
(κ) +

Q

|E|
(25)

ending the proof. ut

6 Leakage-resilient extensions

The simplicity in authentication of schemes in Section 5 gives raise to leakage resilience of secret
keys. In this section, we provide leakage-resilient variants of the schemes in Section 5, basing on
following properties.

• Exactly, unpredictability is the requirement on the authenticator ka in the proofs of Theorems
5 and 2. As ka is psuedo-random as seen in Section 5, it becomes unpredictable in the presense
of some leakage.
• By leakage, the symmetric key ks becomes unpredictable as well, but we can fix that by using

a cryptographic extractor converting unpredictable to uniformly random sources.
• In the proofs in Section 5, the simulator owns the secret key, which makes the simulation of

leakage queries possible.

Note that the first property does not hold for the schemes in Sections 3 and 4, as the MAC’s key
must be random to claim its security.

6.1 Additional preliminaries: entropy and extractors

The statistical distance of random variables X,Y over a finite domain Ω is

SD(X;Y) =
1

2

∑
a∈Ω

∣∣Pr[X = a]− Pr[Y = a]
∣∣.

The min-entropy of X is H∞(X) = − log2(maxx Pr[X = x]). Thus

Pr[X = x] ≤ max
x

Pr[X = x] = 2−H∞(X).

The average min-entropy of X conditioned on Y is

H̃∞(X|Y) = − log2

(
Ey←Y

[
2−H∞(X|Y=y)

])
,

as defined in [16], which also proved the following result.

Lemma 3 (Lemma 2.2 in [16]). If Y has 2λ possible values and Z is any random variable, then

H̃∞(X|Y, Z) ≥ H̃∞(X,Y |Z)− λ ≥ H̃∞(X|Z)− λ ≥ H∞(X,Z)− λ.

When applying the lemma in our context, Y stands for the leakage on secret key X, while Z is
another information on X such as given by the public key. The lemma then says that, given a
leakage amount of λ bits, the secret key’s entropy is decreased by λ. Hereafter, when referring to
entropy, we mean average min-entropy unless otherwise stated.

A function Ext : {0, 1}ns × Seed → {0, 1}l is called a (netp, εExt)-randomness extractor if for all
pairs of random variables (X, I) such that X is an ns-bit string satisfying H̃∞(X|I) ≥ netp,

SD
(

(Ext(X, sd), sd, I); (rand, sd, I)
)
≤ εExt,

where sd
$← Seed and rand

$←{0, 1}`. In other words, Ext(X, sd) is nearly random given sd and I
(when εExt is small enough). Randomness extractors can be efficiently realized via pairwise indepen-
dent hash functions.

6.2 Leakage-resilient DDH-based scheme

The scheme is given in Figure 9, in which Seed is a set of seeds used in an extractor Ext : {0, 1}ns ×
Seed→ {0, 1}` where ns and ` are integers.

Fig. 9. Our leakage-resilient IND-CCA-secure KEM under the DDH assumption.
KG(1κ) : Encap(pk) : Decap(sk, C) :

g1, g2
$←G r

$← Zq, sd
$← Seed Parse C = (u1, u2, t, sd)

(x1, x2, y1, y2)
$← Z4

q u1 ← gr1 , u2 ← gr2 α← TCR(u1, u2, sd)

c← gx11 gx22 α← TCR(u1, u2, sd) v ← ux1+αy11 ux2+αy22

d← gy11 gy22 v ← crdrα (ks, ka)← KDF(v)
pk ← (g1, g2, c, d) (ks, ka)← KDF(v) If t = ka
sk ← (x1, x2, y1, y2) Return C = (u1, u2, ka, sd) Return Ext(ks, sd)
Return (pk, sk) and K = Ext(ks, sd) Else return ⊥

Theorem 7 The KEM in Figure 9 is IND-lrCCA-secure under the DDH assumption with leakage
rate 1

4 − o(1). A quantitative reduction is given in eq.(27) in the following proof.

Proof. The proof differs with that of Theorem 5 at the following points:

• In all games, every leakage query with an arbitrary function f is answered by f(sk) in which
sk = (x1, x2, y1, y2) is the secret key held by the simulator.

• We assume that KDF(v) has the same entropy as v for all v ∈ G, which can be fulfilled if KDF
is injective as in that case Pr[KDF(v) = KDF(w)] = Pr[v = w] ∀v, w ∈ G. Concrete descriptions
of KDF are in Section 6.4.
• In Game5′ , with adversarial t and simulator’s generated ka,

Pr[F5′] = Pr[t = ka] ≤ 2−H̃∞(ka|leakage so far) ≤ 2−(|ka|−L) (26)

where |ka| is the length of ka in bits, and F5′ is the event that a decryption query is rejected at
line 13 of the decapsulation oracle in this game (see Figure 10). The last inequality comes by
applying Lemma 3

H̃∞(ka|leakage so far) ≥ H̃∞(ka)− H̃∞(leakage so far) ≥ |ka| − L

as ka is random of |ka| bit length and L is the bound on leakage in bits.
• Having the above changes, the quantitative reduction becomes

Advind−cca
A (κ) ≤ AdvTCR

A1
(κ) + Advddh

A2
(κ) +Q

(
2−|ka|+L + AdvKDF

A′5
(κ)
)

+AdvKDF
A5

(κ) +
Q

q2
. (27)

We now examine the leakage rate. Seeing (27), we set −|ka|+L = −128 or equivalently |ka|−128 =
L. Since |ka| ≈ log2 q − |ks| where q is the order of the DDH group, we have

log2 q − |ks| − 128 ≈ L.

Fig. 10. Oracles in Game3 for the proof of Theorem 7.
Initialization of the game Decapsulation of query C = (u1, u2, t, sd)

I1: ω
$← Z∗q , g2 ← gω1

I2: (x1, x2, y1, y2)
$← Z4

q

c← gx11 gx22 , d← gy11 gy22
I3: r∗1

$← Zq, u∗1 ← g
r∗1
1

r∗2
$← Zq \ {r∗1}, u∗2 ← g

r∗2
2

I4: α∗ ← TCR(u∗1, u
∗
2)

v∗ ← (u∗1)x1+α
∗y1(u∗2)x2+α

∗y2

I5: (k∗s , k
∗
a)← KDF(v∗)

I6: sd∗ ← Seed
I7: K∗ ← Ext(k∗s , sd

∗)

1: α = TCR(u1, u2, sd)
2: if (u1, u2, sd) 6= (u∗1, u

∗
2, sd

∗) and α = α∗ then
3: return ⊥
4: end if
5: if (u1, u2, sd) = (u∗1, u

∗
2, sd

∗) then
6: if t 6= k∗a then return ⊥
7: else return K∗

8: else if (u1, u2) 6∈ V then
9: α← TCR(u1, u2, sd)

10: v ← ux1+αy11 ux2+αy22

11: (ks, ka)← KDF(v)
12: if t 6= ka then return ⊥
13: else return ⊥ {Rejection rule in Game3}
14: else
15: α← TCR(u1, u2, sd)
16: v ← ux1+αy11 ux2+αy22

17: (ks, ka)← KDF(v)
18: if t 6= ka then return ⊥
19: else return Ext(ks, sd)
20: end if

The leakage rate is

L

|sk|
≈ L

4 log2 q
≈ log2 q − |ks| − 128

4 log2 q
=

1

4
− |ks|+ 128

4 log2 q
(28)

converging to 1
4 when log2 q of the DDH group becomes sufficiently large. ut

6.3 Discussions

What if taking t = ka ⊕ ks? For a random variable k ∈ {0, 1}|ks|, let E be the event k = ks, (26)
becomes

Pr[F5′] = Pr[t = ka ⊕ ks] = Pr[t = ka ⊕ k|E] · Pr[E]

≤ 2−H̃∞(ka|leakage in ka) · 2−H̃∞(ks|leakage in ks)

≤ 2−(|ka|−La) · 2−(|ks|−Ls) = 2−|ka|−|ks|+L,

where L = La + Ls, so that the reduction in (27) becomes

Advind−cca
A (κ) ≤ AdvTCR

A1
(κ) + Advddh

A2
(κ) +Q

(
2−|ka|−|ks|+L + AdvKDF

A′5
(κ)
)

+AdvKDF
A5

(κ) +
Q

q2
,

so that we can set −|ka|−|ks|+L = −128, or equivalently L ≈ log2 q−128 since |ka|+ |ks| ≈ log2 q.
The new leakage rate is

L

|sk|
≈ L

4 log2 q
≈ log2 q − 128

4 log2 q
=

1

4
− 32

log2 q
=

1

4
− o(1) (29)

which is a little better, yet still in the same order of previous rate given in (28).

Optimal leakage rate. The rate 1
4−o(1) is seemingly optimal for the scheme for following reason.

Suppose that the rate could be 1
4 . Given the challenge ciphertext C = (u1, u2, t, sd), the adversary

asks for leakage f(sk) = ux1+αy1
1 ux2+αy2

2 , which is v exactly in the scheme in Figure 9. Then the
adversary can compute keys ks and finally get the encapsulated key K = Ext(ks, sd). The word
“seemingly” was used due to the fact that the attack is in fact out of the security model, as leakage
query is not allowed after the challenge phase.

6.4 Leakage rates on concrete groups

NIST’s curves. Let us first consider P-521. The group contains points (x, y) ∈ Z2
p521 for p521 =

2521 − 1 satisfying following equation for a constant b

y2 = x3 − 3x+ b (mod p521).

It has order q of 521-bit length, so log2 q ≈ 521. Plugging this value into (29), we have the leakage
rate

(over P-521)
1

4
− 32

log2 q
≈ 1

4
− 32

521
≈ 18.85%.

The injective KDF(v) for v = (vx, vy) ∈ Z2
p521 is defined as KDF(v) = vx ∈ Zp521 represented as a

bit string of 521 bits.

The computations work with other NIST’s curves over prime fields. For example,

(over P-192)
1

4
− 32

log2 q
≈ 1

4
− 32

192
≈ 8.33%.

Subgroup of Z∗p. Take DDH group G = (Z∗p)2 where p = 2q + 1, so that G is of order q. If
log2 p ≈ 1024, then log2 q ≈ 1023. Using this value in (29), we have the leakage rate

1

4
− 32

log2 q
≈ 1

4
− 32

1023
≈ 21.87%.

The injective KDF : G→ {0, 1}1023 can be defined as in [28]

KDF(v) =

{
v if 0 < v < p

2
p− v if p

2 < v < p

where v and p− v in the left is interpreted as bit strings of 1023 bits.

Comparison. At Asiacrypt 2013, a DDH-based leakage resilient PKE scheme was presented [32].
Since the PKE scheme has message space of bit strings, it can be easily modified into a KEM. The
scheme in [32] is characterized by a number n = d5/(2−4δ)e for leakage rate δ ∈ [0, 1/2). The main
merit of [32] over ours is that the rate δ can be set larger than 1/4. The other merit is that the
group can be fixed (say P-192) while n gets large to obtain good rate (say 29.16%). Nevertheless,
sine n ≥ 3 at the bottom line, conditioned on the same 0 ≤ δ < 1/4 and the same DDH group, our
scheme performs better regarding computation and sizes, as illustrated in Table 4.

Table 4. Comparison of leakage-resilient KEMs in standard model based on the DDH assumption. Abbreviations in
the table: me = multi-exponentiation, se = single-exponentiation, el = group element.

Scheme Leakage rate Encap [Encap]; [Decap] [pk, sk] size
δ length main costs of computation

0% ∼ 8.33% (n = 3)
Qin-Liu [32] 18.75% ∼ 24.99% (n = 5) (n + 2)|q| + small [(2n + 2) se]; [n me + n se] [(n2 + n + 2) el, 2n el]

25.11% ∼ 29.16% (n = 6)

8.33% over P-192
Ours, Figure 9 18.85% over P-521 2|q| + small [1 me + 2 se]; [1 me + 0 se] [4 el, 4 el]

21.87% over G = (Z∗p)2

Fig. 11. Our generic leakage-resilient KEM from hash proof system (Param,Pub,Priv).

KG(1κ) : Encap(pk) : Decap(sk, C) :

Run Param to define Take random witness r Parse C = (E, t, sd)(
group,SK,PK,K, E = E(r)

$←V, sd
$← Seed v ← Priv(sk,E, sd)

E ,V,Λ(·)(·), µ
)

v ← Pub(pk,E, r, sd) (ks, ka)← KDF(v)

sk
$←SK (ks, ka)← KDF(v) If t = ka

pk ← µ(sk) t← ka, K ← Ext(ks, sd) return Ext(ks, sd)
Return (pk, sk) Return C = (E, t, sd) and K Else return ⊥

6.5 Generalization: leakage-resilient KEM from HPS

The scheme is given in Figure 11. The Pub and Priv algorithms of the hash proof system need an
additional input sd, which is also the seed of the randomness extractor.

Theorem 8 The generic construction of KEM in Figure 11 is IND-CCA-secure. A quantitative
reduction is given in eq.(31) in the following proof.

Proof. The proof differs with that of Theorem 6 at the following points:

• In all games, every leakage query with an arbitrary function f is answered by f(sk) in which
sk is the secret key held by the simulator.
• We assume that KDF(v) has the same entropy as v for all v ∈ G, which can be fulfilled if KDF

is injective as in that case Pr[KDF(v) = KDF(w)] = Pr[v = w] ∀v, w ∈ G.
• In Game3, the initialization and decryption oracle are depicted in Figure 12.
• In Game5′ , (24) is changed to

Pr[F5′] ≤ 2−|ka|+L (30)

where |ka| is the length of ka, and F5′ is the event that line 8 in the modified Figure 12 is
executed, namely the adversary can come up with a tag satisfying t = ka where E 6∈ V.
• The final reduction becomes

Advind−cca
A (κ) ≤ Advsm

A2
(κ) +Q

(
Advcu2

A′4
(κ) + AdvKDF

A′5
(κ) + 2−|ka|+L

)
+Advcu2

A4
(κ) + AdvKDF

A5
(κ) +

Q

|E|
(31)

ending the proof. ut

Fig. 12. Oracles in Game3 for the proof of Theorem 8.
Initialization of the game Decapsulation of adversarial query C = (E, t, sd)

I1: ω
$← Trapdoors, sd∗ ← Seed

I2: sk
$←SK, pk ← µ(sk)

I3: E∗
$←C \ V

I4: v∗ ← Priv(sk,E∗, sd∗)
I5: (k∗s , k

∗
a)← KDF(v∗)

I6: K∗ ← Ext(k∗s , sd
∗)

1: if (E, sd) = (E∗, sd∗) then
2: if t 6= k∗a then return ⊥
3: else return K∗

4: else if E 6∈ V then
5: v ← Priv(sk,E, sd)
6: (ks, ka)← KDF(v)
7: if t 6= ka then return ⊥
8: else return ⊥
9: else

10: v ← Priv(sk,E, sd)
11: (ks, ka)← KDF(v)
12: if t 6= ka then return ⊥
13: else return Ext(ks, sd)
14: end if

Instantiation under the DLIN assumption. Using the same notation as in Section 4.3 with

α = TCR(u1, u2, u3, sd), and Λsk(u1, u2, u3, sd) = ux1+αy1
1 ux2+αy2

2 uz+αz
′

3 .

Since the secret key contains 6 elements in Zq, the leakage rate becomes 1/6− o(1).

Instantiation under the DCR assumption. Using the same notation as in Section 4.4 with

α = TCR(u, sd), and Λsk(u, sd) = ux+yα mod N1.

Since the secret key sk ∈ SK = {0, . . . , bN2
1 /2c}2, and hence |sk| ≈ 4|N1|, while |ka|+ |ks| ≈ |N1|,

the leakage rate becomes 1/4− o(1).

7 Conclusion

While the Kurosawa-Desmedt KEM has the reputation that it is not IND-CCA-secure, we show
simple modifications that make the scheme achieve the security. Our variant can be implemented
on top of ISO/IEC 18033-2 since the underlying base group and symmetric building blocks are
identical.

We also prepare alternatives IND-CCA-secure under the DLIN assumption, and the DCR as-
sumption, in any setting the DDH assumption cannot be used. We also achieve leakage-resilient yet
highly efficient variants by modest changes on the KEMs.

Acknowledgment

We are grateful to Takahiro Matsuda for informing us about reference [7]. We also thank Qiong
Huang and the anonymous reviewers for comments that help refining this manuscript. Yoshinori
Aono is also thanked for his help in debugging the C code of [1].

References

1. International Organization for Standardization, Genève, Switzerland. ISO/IEC 18033-2:2006, Information tech-
nology — Security techniques — Encryption Algorithms — Part 2: Asymmetric Ciphers, 2006. Final Committee
Draft available at http://shoup.net/iso/.

2. Cryptography Research and Evaluation Committees (CRYPTREC). Specifications of ciphers in the Candidate
Recommended Ciphers List, March, 2013. http://www.cryptrec.go.jp/english/method.html.

3. M. Abdalla, M. Bellare, and P. Rogaway. DHIES: An encryption scheme based on the Diffie-Hellman problem,
2001. http://cseweb.ucsd.edu/~mihir/papers/dhies.html.

4. M. Abe, R. Gennaro, and K. Kurosawa. Tag-KEM/DEM: A new framework for hybrid encryption. J. Cryptology,
21(1):97–130, 2008.

5. American National Standards Institute. ANSI X9.44-2007: Key Establishment Using Integer Factorization Cryp-
tography, 2007.

6. H. Anada and S. Arita. Identification schemes from key encapsulation mechanisms. IEICE Transactions, 95-
A(7):1136–1155, 2012.

7. J. Baek, D. Galindo, W. Susilo, and J. Zhou. Constructing strong KEM from weak KEM (or how to revive the
KEM/DEM framework). In R. Ostrovsky, R. D. Prisco, and I. Visconti, editors, SCN, volume 5229 of Lecture
Notes in Computer Science, pages 358–374. Springer, 2008.

8. D. J. Bernstein. Pippenger’s exponentiation algorithm, 2002. http://cr.yp.to/papers/pippenger.pdf.
9. D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the rsa encryption standard pkcs #1.

In Krawczyk [25], pages 1–12.
10. C. Boyd, Y. Cliff, J. M. G. Nieto, and K. G. Paterson. One-round key exchange in the standard model. IJACT,

1(3):181–199, 2009.
11. S. G. Choi, J. Herranz, D. Hofheinz, J. Y. Hwang, E. Kiltz, D. H. Lee, and M. Yung. The Kurosawa-Desmedt

key encapsulation is not chosen-ciphertext secure. Inf. Process. Lett., 109(16):897–901, 2009.
12. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext

attack. In Krawczyk [25], pages 13–25.
13. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive

chosen ciphertext attack. SIAM Journal on Computing, 33:167–226, 2001.
14. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key

encryption. In L. R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages
45–64. Springer, 2002.

15. Y. Desmedt, R. Gennaro, K. Kurosawa, and V. Shoup. A new and improved paradigm for hybrid encryption
secure against chosen-ciphertext attack. J. Cryptology, 23(1):91–120, 2010.

16. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys from biometrics
and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

17. A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama. Strongly secure authenticated key exchange from factoring,
codes, and lattices. In M. Fischlin, J. Buchmann, and M. Manulis, editors, Public Key Cryptography, volume
7293 of Lecture Notes in Computer Science, pages 467–484. Springer, 2012.

18. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In M. J.
Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 537–554. Springer, 1999.

19. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes. J. Cryptology,
26(1):80–101, 2013.

20. G. Hanaoka and K. Kurosawa. Between hashed DH and computational DH: Compact encryption from weaker
assumption. IEICE Transactions, 93-A(11):1994–2006, 2010.

21. J. Herranz, D. Hofheinz, and E. Kiltz. The Kurosawa-Desmedt key encapsulation is not chosen-ciphertext secure.
IACR Cryptology ePrint Archive, 2006:207, 2006.

22. D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsulation. Cryptology ePrint Archive,
Report 2007/288, 2007. http://eprint.iacr.org/. Full version of a paper at CRYPTO 2007.

23. IEEE P1363a Committee. IEEE 1363a-2004: Standard Specifications For Public Key Cryptography – Amendment
1: Additional Techniques, 2004. http://grouper.ieee.org/groups/1363/P1363a/.

24. E. Kiltz. Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-Hellman. In T. Okamoto and
X. Wang, editors, Public Key Cryptography, volume 4450 of Lecture Notes in Computer Science, pages 282–297.
Springer, 2007.

25. H. Krawczyk, editor. Advances in Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 23-27, 1998, Proceedings, volume 1462 of Lecture Notes in Computer
Science. Springer, 1998.

26. H. Krawczyk, K. G. Paterson, and H. Wee. On the security of the TLS protocol: A systematic analysis. In
R. Canetti and J. A. Garay, editors, CRYPTO (1), volume 8042 of Lecture Notes in Computer Science, pages
429–448. Springer, 2013.

27. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In M. K. Franklin, editor, CRYPTO,
volume 3152 of Lecture Notes in Computer Science, pages 426–442. Springer, 2004.

28. K. Kurosawa, R. Nojima, and L. T. Phong. New leakage-resilient CCA-secure public key encryption. J. Mathe-
matical Cryptology, 7(4):297–312, 2013.

29. K. Kurosawa and L. T. Phong. Kurosawa-Desmedt key encapsulation mechanism, revisited. In the 7th Interna-
tional Conference on Cryptology in Africa - Morocco (Africacrypt 2014), 2014. To appear.

30. National Institute of Standards and Technology. Recommended elliptic curves for federal government use, 1999.
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf.

31. PSEC-KEM website. http://info.isl.ntt.co.jp/crypt/eng/psec/contents.html.

32. B. Qin and S. Liu. Leakage-resilient chosen-ciphertext secure public-key encryption from hash proof system and
one-time lossy filter. In K. Sako and P. Sarkar, editors, ASIACRYPT (2), volume 8270 of Lecture Notes in
Computer Science, pages 381–400. Springer, 2013.

33. The Standards for Efficient Cryptography Group. SEC 1: Elliptic Curve Cryptography, 2000. http://www.secg.
org/secg_docs.htm.

34. K. Yoneyama. Compact authenticated key exchange from bounded CCA-secure KEM. In G. Paul and S. Vau-
denay, editors, INDOCRYPT, volume 8250 of Lecture Notes in Computer Science, pages 161–178. Springer,
2013.

A A speedup algorithm for multi-exponentiation

Algorithm 1 is what we use for computing multi-exponentiation in our implementation, which is
a special case of the Straus’s algorithm [8, Section 3]. Experimental results are depicted in Figure
13, in which “speedup” uses Algorithm 1, while “trivial” means computing Ux and V y separately
and then multiplying them together. For comparison purpose, timings for a single exponentiation
are also drawn in “single-exp”.

Algorithm 1 Multi-Exp(U, x, V, y) computes Z = UxV y over group G
Require: U, V ∈ G and positive integers x, y ∈ Z
Require: Binary representations x = xn · · ·x1 and y = yn · · · y1
1: W ← UV
2: Z ← 1
3: for i from n to 1 step −1
4: Z ← Z2

5: if (xi = 1 and yi = 0), Z ← Z · U
6: if (xi = 0 and yi = 1), Z ← Z · V
7: if (xi = 1 and yi = 1), Z ← Z ·W
8: Return Z

In Figure 13, perhaps it it worth noting that exponentiations in group G = (Z∗p)2 ⊂ Z∗p where
p = 2q+ 1 is a safe prime is relatively expensive. The reason is that G’s order is q, which is as large
as p, so that the exponents x, y can be of the same magnitude of 1024 bits in length.

In contrast, when p = νq + 1 for ν > 2 and q is of 160 bits, exponents x, y are of at most 160
bits in length, so that the computation becomes more efficient.

16.38

2.63
3.68

5.93

9.65

1.56 2.14
3.5

8.17

1.31 1.83
2.96

0

2

4

6

8

10

12

14

16

18

modp, safe prime modp, not safe prime P-192 B-163

m
ill

is
e

co
n

d
s

Timings of exponentiations

trivial multi-exp

speedup multi-exp

single-exp

Fig. 13. Average timings of trivial and speedup computation of exponentiations, taken over 10000 executions, over
various base groups. Experiment is done over a laptop (Intel 2.0GHz CPU, 8GB RAM) running Ubuntu 12.04 LTS.
The C compiler is g++ 4.6.3 using NTL 6.0.0 and GMP 5.1.1 libraries.

B A variant of our DDH-based KEM

Here we describe a variant of the KEM in Figure 1. The encapsulation is the same, while key
generation and decapsulation are different. More specifically, the algorithms KG and Decap are

changed accordingly by setting g2 ← gω1 in which ω
$← Z∗q . The secret is made one element shorter.

In decapsulation, one needs one group membership check that u1 ∈ G, which in turn ensures
that u2 ∈ G and v ∈ G. Therefore, decapsulation can be slightly faster in the cases where group
membership checks are costly (namely, in a subgroup of Z∗p where p is not a safe prime). See Table
3 in Section 3.3 for a comparison with other schemes.

Fig. 14. A variant of the KEM in Figure 1.
KG(1κ) : Encap(pk) : Decap(sk, C) :

g1
$←G r

$← Zq Parse C = (u1, u2, t)

(x, y, ω)
$← Z3

q u1 ← gr1 , u2 ← gr2 If u2 6= uω1 : return ⊥
g2 ← gω1 α← TCR(u1, u2) α← TCR(u1, u2)

c← gx1 v ← crdrα v ← ux+αy1

d← gy1 (ks, ka)← KDF(v) (ks, ka)← KDF(v)
pk ← (g1, g2, c, d) t← MACka(u1, u2) If t = MACka(u1, u2)
sk ← (x, y, ω) Return C = (u1, u2, t) return ks
Return (pk, sk) and K = ks Else return ⊥

