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Abstract. In this paper we propose a new approach to code-based signatures that makes use
in particular of rank metric codes. When the classical approach consists in finding the unique
preimage of a syndrome through a decoding algorithm, we propose to introduce the notion of
mixed decoding of erasures and errors for building signature schemes. In that case the difficult
problem becomes, as is the case in lattice-based cryptography, finding a preimage of weight above
the Gilbert-Varshamov bound (case where many solutions occur) rather than finding a unique
preimage of weight below the Gilbert-Varshamov bound. The paper describes RankSign: a new
signature algorithm for the rank metric based on a new mixed algorithm for decoding erasures
and errors for the recently introduced Low Rank Parity Check (LRPC) codes. We explain how
it is possible (depending on choices of parameters) to obtain a full decoding algorithm which is
able to find a preimage of reasonable rank weight for any random syndrome with a very strong
probability. We study the semantic security of our signature algorithm and show how it is possible
to reduce the unforgeability to direct attacks on the public matrix, so that no information leaks
through signatures. Finally, we give several examples of parameters for our scheme, some of
which with public key of size 5760 bits and signature of size 1728 bits. Moreover the scheme can
be very fast for small base fields.
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1 Introduction

The problem of finding an efficient signature algorithm has been a major challenge for code-
based cryptography since its introduction in 1978 by McEliece. Signing with error-correcting
codes can be achieved in different ways: the CFS algorithm [7] considers extreme parameters
of Goppa codes to obtain a class of codes in which a non-negligeable part of random syndromes
are invertible. This scheme has a very small signature size, however it is rather slow and the
public key is very large. Another possibility is to use the Fiat-Shamir heuristic to turn a zero-
knowledge authentication scheme (like the Stern authentication scheme [28]) into a signature
scheme. This approach leads to very small public keys of a few hundred bits and is rather fast,
but the signature size in itself is large (about 100,000b), so that overall no wholly satisfying
scheme is known.

Besides classical code-based cryptography that relies on the Hamming distance, it is also pos-
sible to use another metric: the rank metric. This metric introduced in 1985 by Gabidulin [11]



is very different from the Hamming distance. The rank metric has received in recent years
very strong attention from the coding community for their application to network coding.
Moreover, this metric can also be used for cryptography. Indeed it is possible to construct
rank-analogues of Reed-Solomon codes: the Gabidulin codes. Gabidulin codes inspired early
cryptosystems, like the GPT cryposystem ([12]), but they turned out to be inherently vulnera-
ble because of the very strong structure of the underlying codes. More recently, by considering
an approach similar to NTRU [18](and also MDPC codes [24]) constructing a very efficient
cryptosystem based on weakly structured rank codes was shown to be possible [13]. How-
ever, in terms of signatures based on the rank metric, only systems that use Fiat-Shamir are
presently known [14].

An interesting point in code-based cryptography is that in general the security of the pro-
tocols relies on finding small weight vectors below the Gilbert-Varshamov bound (the typical
minimum weight of a random code). This is noticeably different from lattice based cryptog-
raphy for which it is very common for the security of a signature algorithm [17, 23] to rely
on the capacity to approximate a random vector far beyond its closest lattice vector element
(the Gap-CVP problem).

Traditionally, this approach was not developed for code-based cryptography since no decoding
algorithm is known that decodes beyond the Gilbert-Varshamov bound: in fact this problem is
somewhat marginal for the coding community since it implies many possibilities for decoding,
while the emphasis is almost always to find the most probable codeword or a short list of
most likely codewords.

Our contribution

The main contribution of this paper is the introduction of a new way of considering code-
based signatures, by introducing the idea that it is possible to invert a random syndrome
not below the Gilbert-Varshamov bound, but above it. The approach is similar in spirit to
what is done in lattice-based cryptography. We describe a new algorithm for LRPC codes,
a recently introduced class of rank codes, the new algorithm permits in practice decoding
both errors and (generalized) rank erasures. This new algorithm enables us to approximate a
syndrome beyond the Gilbert-Varshamov bound. The algorithm is a unique decoder (not a list
decoder) but can give different solutions depending on the choice of the erasure. We explain
precisely in which conditions one can obtain successful decoding for any given syndrome
and give the related probabilistic analysis. Based on this error/erasure algorithm we propose
a new signature scheme RankSign. We give conditions for which no information leakage is
possible from real signatures obtained through our scheme. This point is very important since
information leaking from real signatures was the weakness through which the NTRUSign
scheme came to be attacked [19, 6, 26]. Finally, we give examples of parameters: they are
rather versatile, and their size depends on a bound on the amount of potentially leaked
information. In some cases one obtains public keys of size 5700 bits with signatures of length
1728 bits, moreover the scheme is rather fast.

The paper is organized as follows: Section 2 recalls basic facts on the rank metric, Section
3 introduces LRPC codes and describes a new mixed algorithm for decoding (generalized)
erasures and errors, and studies its behaviour, Section 4 shows how to use them for cryptog-
raphy, and lastly, Section 5 and 6 consider security and parameters for these schemes. The
details of some proofs are also given in the appendix.
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2 Background on rank metric codes and cryptography

2.1 Definitions and notation

Notation : Let q be a power of a prime p, m an integer and let Vn be a n dimensional vector
space over the finite field GF(qm). Let β = (β1, . . . , βm) be a basis of GF (qm) over GF (q).
Let Fi be the map from GF (qm) to GF (q) where Fi(x) is the i-th coordinate of x in the basis
β.
To any v = (v1, . . . , vn) in Vn we associate the matrix v ∈Mm,n(Fq) in which vi,j = Fi(vj).
The rank weight of a vector v can be defined as the rank of the associated matrix v. If we
name this value rank(v) we can define a distance between two vectors x, y through the formula
dr(x, y) = rank(x− y). We refer to [21] for more details on codes for the rank distance.

A rank code C of length n and dimension k over GF (qm) is a subspace of dimension k of
GF (qm) viewed as a (rank) metric space. The minimum rank distance of the code C is the
minimum rank of non-zero vectors of the code. In the following, C is a rank metric code of
length n and dimension k over GF (qm). The matrix G denotes a k× n generator matrix of C
and H one of its parity check matrix.

Definition 1. Let x = (x1, x2, · · · , xn) ∈ GF (qm)n be a vector of rank r. We denote E the
GF (q)-sub vector space of GF (qm) generated by x1, x2, · · · , xn. The vector space E is called
the support of x.

Remark 1. The notion of support of a code word for the Hamming distance and for the the
one introduced in definition 1 are different but they share a common principle: in both cases,
suppose one is given a syndrome s and that there exists a low weight vector x such that
H.xt = s, then, if the support of x is known, it is possible to recover all the coordinates values
of x by solving a linear system.

Definition 2. Let e be an error vector of rank r and error support space E. We denote by
generalized erasure of dimension t of an error e, a subspace T of dimension t of its error
support E.

The notion of erasure for Hamming distance corresponds to knowing a particular position of
the error vector (hence some partial information on the support), in the rank distance case,
the support of the error being a subspace E, the equivalent notion of erasure (also denoted
generalized erasure) is therefore the knowledge of a subspace T of the error support E.

2.2 Bounds for rank metric codes

The classical bounds for the Hamming metric have straightforward rank metric analogues,
since two of them are of interest for the paper we recall them below.

Rank Gilbert-Varshamov bound [GVR] The number of elements S(m, q, t) of a sphere
of radius t in GF (qm)n, is equal to the number of m× n q-ary matrices of rank t. For t = 0
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S0 = 1, for t ≥ 1 we have (see [21]):

S(n,m, q, t) =
t−1∏
j=0

(qn − qj)(qm − qj)
qt − qj

From this we deduce the volume of a ball B(n,m, q, t) of radius t in GF (qm) to be:

B(n,m, q, t) =
t∑
i=0

S(n,m, q, i)

In the linear case the Rank Gilbert-Varshamov bound GV R(n, k,m, q) for a [n, k] linear code
over GF (qm) is then defined as the smallest integer t such that B(n,m, q, t) ≥ qm(n−k).

The Gilbert-Varshamov bound for a rank code C with dual matrix H, corresponds to the
smallest rank weight r for which, for any syndrome s, there exists on the average a word x of
rank weight r such that H.xt = s. To give an idea of the behaviour of this bound, it can be

shown that, asymptotically in the case m = n ([21]): GV R(n,k,m,q)
n ∼ 1−

√
k
n .

Singleton bound The classical Singleton bound for a linear [n, k] rank code of minimum
rank r over GF (qm) works in the same way as for linear codes (by finding an information
set) and reads r ≤ 1 + n − k: in the case when n > m this bound can be rewritten as

r ≤ 1 + b (n−k)mn c [21]. Codes achieving this bound are called Maximum Rank Distance codes
(MRD).

2.3 Cryptography and rank codes

The main use of rank codes in the cryptographic context is through the rank analogue of the
classical syndrome decoding problem.

Maximum Likelihood - Rank Syndrome Decoding problem (ML-RSD) Let H be a
(n − k) × n matrix over GF (qm) with k ≤ n, s ∈ GF (qm)n−k . The problem is to find the
smallest weight r such that rank(x) = r and Hxt = s.

In that case it is not proven that the problem is NP -hard, but this problem is very close to
the syndrome decoding problem which is NP-hard, moreover the problem can be seen as a
structured version of the MinRank problem which is also NP-hard (the RSD problem can be
attacked as a MinRank problem but in practice the attack does not work since there are too
many unknowns [8]). Moreover the problem has been studied for more than 20 years and the
best algorithms are exponential, so that the problem is generally believed to be hard.

There exist several types of generic attacks on the problem:

- combinatorial attacks: these attacks are usually the best ones for small values of q (typ-
ically q = 2) and when n and k are not too small (typically 30 and more), when q increases,
the combinatorial aspect makes them less efficient. The first non-trivial attack on the problem
was proposed by Chabaud and Stern [5] in 1996, then in 2002 Ourivski and Johannson [25]
improved the previous attack and proposed a new attack, meanwhile these two attacks did
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not take account of the value of n in the exponent. Very recently the two previous attacks

were generalized in [15] by Gaborit et al. in (n− k)3m3q(r−1)b
(k+1)m

n
c)) and take the value of

n into account and were used to break some repaired versions of the GPT cryposystem.

- algebraic attacks: the particular nature of the rank metric makes it a natural field for
algebraic attacks and solving by Groebner basis, since these attack are largely independent
of the value of q and in some cases may also be largely independent of m. These attacks are
usually the most efficient when q increases and when the parameters are not too high (say
less than 30). There exist different types of algebraic equations settings: the first one by Levy
and Perret [20] in 2006 considers a quadratic setting by taking as unknowns the support E
of the error and the error coordinates regarding E, there is also the Kernel attack by [8]
and the minor approach which consists in considering multivariate equations of degree r + 1
obtained from minors of matrices [9], and more recently the annulator setting by Gaborit et
al. in [15] (which is valid on certain type of parameters but may not be independent on m).
In our context for some of the parameters considered in the end of the paper, the Levy-Perret
attack is the most efficient one to consider. All the complexities for Grobner basis attacks are
estimated through the very nice program of L. Bettale [4].

The case of more than one solution: approximating beyond the GVR bound

In code based cryptography there is usually only one solution to the syndrome problem (for
instance for the McEliece scheme), now in this situation we are interested in the case when
there are a large number of solutions. This case is reminiscent of lattice-based cryptography
when one tries to approximate as much as possible a given syndrome by a word of weight as
low as possible.

This motivates us to introduce a new problem which corresponds to finding a solution to
the general decoding problem for the case when the weight of the word associated to the
syndrome is greater than the GVR bound, in that case there may be several solutions, and
hence the term decoding does not seem well chosen. Notice that in a lattice cryptography
context, it corresponds to the case of Gap-CVP, which does not make sense here, since it
implies a multiplicative gap.

Approximate - Rank Syndrome Decoding problem (App-RSD) Let H be a (n−k)×n
matrix over GF (qm) with k ≤ n, s ∈ GF (qm)n−k and let r be an integer. The problem is to
find a solution of rank r such that rank(x) = r and Hxt = s.

It is help to first consider the situation of a binary linear [n, k] Hamming metric code. Given
a random element of length n− k of the syndrome space, we know that with high probability
there exists word that has this particular syndrome and whose weight is on the GV bound.
This word is usually hard to find, however. Now what is the lowest minimum weight for which
it is easy to find such a word ? A simple approach consists in taking n− k random column of
the parity-check matrix (a potential support of the solution word) and inverting the associated
matrix, multiplying by the syndrome gives us a solution of weight (n − k)/2 on average. In
fact it is difficult to do better than this without a super-polynomial increase in complexity.

Now for the rank metric, one can apply the same approach: suppose one starts from a random
[n, k] code over GF (qm) and that one searches for a word of small rank weight r with a given
syndrome. One fixes (as in the Hamming case) a potential support for the word - here a
subspace of dimension r of GF (qm)- and one tries to find a solution. Let x = (x1, · · · , xn)
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be a solution vector, so that H.xt = s. If we consider the syndrome equations induced in
the small field GF (q), there are n.r unknowns and m.(n− k) equations. Hence it is possible
(with a good probability) to solve the system whenever nr ≥ m(n−k), therefore it is possible
to find in probabilistic polynomial time a solution to a typical instance of the RSD problem
whenever r ≥ m(n−k)

n = 1 + bm(n−k)
n c, which corresponds to the Singleton bound (except if

m(n−k)
n is an integer).

This proves the following proposition:

Proposition 1. There is a probabilistic polynomial time algorithm that solves random in-
stances of the App-RSD problem in polynomial time when r ≥ 1+bm(n−k)

n c or for r ≥ m(n−k)
n

if m(n−k)
n is an integer.

For a rank weight r below this bound, the best known attacks are, as in the Hamming distance
case, obtained by considering the cost of finding a word of rank r divided by the number of
potential solutions: B(n,k,m,q)

qm(n−k) . In practice the complexity we find is coherent with this.

3 Approximating a random syndrome beyond the GVR bound with
LRPC codes

3.1 Decoding algorithm in rank metric

The rank metric has received a lot of attention in the context of network coding [27]. There
exist very few algorithms, however, for decoding codes in the rank metric. The most well
known [n, k] codes which are decodable are the Gabidulin codes [11]. These codes can correct
up to n−k

2 errors, and have been proposed for encryption: but since they cannot decode up to
the GVR bound, they do not seem suitable for full decoding in the spirit of [7] for signature
algorithms. Another more recent family of decodable codes are the LRPC codes [13], these
codes are defined through a low rank matrix.

Definition 3. A Low Rank Parity Check (LRPC) code of rank d, length n and dimension k
over GF (qm) is a code defined by an (n − k) × n parity check matrix H = (hij), such that
all its coordinates hij belong to the same GF (q)-subspace F of dimension d of GF (qm). We
denote by {F1, F2, · · · , Fd} a basis of F .

These codes can decode with a good probability up to n−k
d errors, they can be used for

encryption [13], but since they can decode only up to n−k
2 errors at best, they also seems

unsuitable for signature algorithms.

3.2 Using LRPC codes to approximate a random syndrome beyond the GVR
bound

In this section we explain how LRPC codes can be used to approximate a random syndrome
beyond the GVR bound.
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High level overview The traditional approach for decoding random syndromes, that is used
by the CFS scheme for instance, consists in taking advantage of the decoding properties of a
code (e.g. a Goppa code) and considering parameters for which the proportion of decodable
vectors – the decodable density – is not too low. For the Hamming metric, this approach
leads to very flat dual matrices, ie, codes with high rate and very low Hamming distance.
In the rank metric case, this approach leads to very small decodable densities and does not
work in practice. However, it is possible to proceed otherwise. It turns out that the decoding
algorithm of LRPC codes can be adapted so that it is possible to decode not only errors
but also (generalized) erasures. This new decoding algorithm allows us to decode more rank
errors since the support is then partially known. In that case since the size of the balls depends
directly on the dimension of the support, it leads to a dramatic increase of the size of the
decodable balls. Semantically, what happens is that the signer can fix an erasure space, which
relaxes the condition for finding a preimage. This approach works because in the particular
case of our algorithm, it is possible to consider the erasure space at no cost in terms of error
correction: to put it differently, the situation for LRPC is different from traditional Hamming
metric codes for which “an error equals two erasures”.

In practice it is possible to find parameters (not flat at all) for which it is possible to decode a
random syndrome with the constraint that its support contains a fixed random subspace. Fix-
ing part of the rank-support of the error, (the generalized erasure) allows us more rank-errors.
For suitable parameters, the approach works then as follows: for a given random syndrome-
space element s, one chooses a random subspace T of fixed dimension t (a generalized erasure
of Definition 2), and the algorithm returns a small rank-weight word, whose rank-support E
contains T , and whose syndrome is the given element s. Of course, there is no unicity of the
error e since different choices of T lead to different errors e, which implies that the rank of
the returned error is above the GVR bound: it is however only just above the GVR bound
for the right choice of parameters.

LRPC decoding with errors and generalized erasures

Setting: Let an [n, k] LRPC code be defined by an (n− k)× n parity-check matrix H whose
entries lie in a space F ⊂ GF (qm) of small dimension d. Let t and r′ be two parameters such
that

r′ ≤ n− k
d

.

Set r = t+r′. Given an element of the syndrome space s, we will be looking for a rank r vector
e of GF (qm)n with syndrome s. We first look for an acceptable subspace E of dimension r of
GF (qm) and then solve the linear system H.et = s where e ∈ En. To this end we choose a
random subspace T of dimension t of GF (qm) and impose the condition T ⊂ E.

The subspace T being fixed, we now describe the set of decodable elements of the syndrome
space. We will then see how to decode them.

Definition 4. Let F1 and F2 be two fixed linearly independent elements of the space F . We
shall say that an element s ∈ GF (qm)n−k of the syndrome space is T -decodable if there exists
a rank r subspace E of GF (qm) satisfying the following conditions.

(i) dim〈FE〉 = dimF dimE,
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(ii) dim(F−11 〈FE〉 ∩ F
−1
2 〈FE〉) = dimE,

(iii) the coordinates of s all belong to the space 〈FE〉 and together with the elements of the
space 〈FT 〉 they generate the whole of 〈FE〉.

Decoding algorithm. We now argue that if a syndrome s is T -decodable, we can effectively
find e of rank r such that H.et = s. We first determine the required support space E. Since
the decoder knows the subspaces F and T , he has access to the product space 〈FT 〉. He can
then construct the subspace S generated by 〈FT 〉 and the coordinates of s. Condition (iii) of
T -decodability ensures that the subspace S is equal to 〈FE〉 for some E, and since

F−11 〈FE〉 ∩ F
−1
2 〈FE〉 ⊃ E,

condition (ii) implies that E is uniquely determined and that the decoder recovers E by
computing the intersection of subspaces F−11 S ∩ F−12 S.

It remains to justify that once the subspace E is found, we can always find e of support E
such that H.et = s. This will be the case if the mapping

En → 〈FE〉n−k (1)

e 7→ H.et

can be shown to be surjective. Extend {F1, F2} to a basis {F1, · · · , Fd} of F and let {E1, · · · , Er}
be a basis of E. Notice that the system H.et = s can be rewritten formally as a linear system
in the small field GF (q) where the coordinates of e and the elements of H are written in the
basis {E1, · · · , Er} and {F1, · · · , Fd} respectively, and where the syndrome coordinates are
written in the product basis {E1.F1, · · · , Er.Fd}. We therefore have a linear system with n.r
unknowns and (n− k).rd equations over GF (q) that is defined by an (n.r)× (n− k)rd formal
matrix Hf (say) whose coordinates are functions only of H (see [13] for more details on how
to obtain Hf from H).

We now see that the matrix H can be easily chosen so that the matrix Hf is of maximal rank
n.r, which makes the mapping (1) surjective, for any subspace E of dimension d satisfying
condition (i) of T -decodability.

Remarks:

1. For applications, we will consider only the case where nr = (n − k)rd, meaning that the
mapping (1) is always one-to-one.

2. The system H.et = s can be formally inverted and stored in a pre-processing phase, so
that the decoding complexity is only that of multiplication by a square matrix of length
nr, rather than a cubic inversion.

3. In principle, the decoder could derive the support E by computing

E = F−11 S ∩ · · · ∩ F−1d S (2)

rather than simply E = F−11 S ∩ F−12 S, and the procedure would work in the same way
in cases when (2) holds but not the simpler condition (ii). This potentially increases the
set of decodable syndromes, but the gain is somewhat marginal and condition (ii) makes
the forthcoming analysis simpler. For similar reasons, when conditions (i)–(iii) are not all
satisfied, we do not attempt to decode even if there are cases when it stays feasable.

Figure 1 summarizes the decoding algorithm. Note that the decoder can easily check conditions
(i)–(iii), and that a decoding failure is declared when they are not satisfied.
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Input: T = 〈T1, · · · , Tt〉 a subspace of GF (qm) of dimension t, H an (n−k)×n matrix
with elements in a subspace F = 〈F1, · · · , Fd〉 of dimension d, and s ∈ GF (qm)n−k.
Output: a vector e = (e1, . . . en) such that s = H.et, with ei ∈ E, E a subspace of
dimension dimE = r = t + n−k

d
satisfying T ⊂ E.

1. Syndrome computations
a) Compute a basis B = {F1T1, · · · , FdTt} of the product space 〈F.T 〉.
b) Compute the subspace S = 〈B ∪ {s1, · · · , sn−k}〉.

2. Recovering the support E of the error
Compute the support of the error E = F−1

1 S ∩ F−1
2 S, and compute a basis

{E1, E2, · · · , Er} of E.

3. Recovering the error vector e = (e1, . . . , en)
For 1 ≤ i ≤ n, write ei =

∑n
i=1 eijEj , solve the system H.et = s, where the

equations H.et and the syndrome coordinates si are written as elements of the
product space P = 〈E.F 〉 in the basis {F1E1, · · · , F1Er, · · · , FdE1, · · · , FdEr}.
The system has nr unknowns (the eij) in GF (q) and (n − k).rd equations from
the syndrome.

Fig. 1. Algorithm 1: a general errors/erasures decoding algorithm for LRPC codes

3.3 Proportion of decodable syndromes for unique decoding of LRPC codes

Signature algorithms based on codes all inject the message space in some way into the syn-
drome space and then decode them to form a signature. We should therefore estimate the
proportion of decodable syndromes. The classical decoding approach tells us to look for a
preimage by H that sits on the Gilbert-Varshamov bound: for typical random codes, a preim-
age typically exists and is (almost) unique. Computing such a preimage is a challenge, however.
In our case, we are looking for a preimage above the Gilbert-Varshamov bound, for which
many preimages exist, but for a fixed (erasure) subspace T , decoding becomes unique again.
In the following, we count the number of T -decodable syndromes and show that for some
adequate parameter choices, their proportion can be made to be close to 1.

It will be convenient to use the following notation.

Definition 5. For a subspace T of GF (qm) of dimension t, denote by E(T ) the number of
subspaces of dimension r = r′ + t that contain T .

Lemma 1. We have

E(T ) =
r′−1∏
i=0

(
qm−t−i − 1

qi+1 − 1

)

Proof. Consider the case where r = t+1, we need to construct distinct subspaces of dimension
t+1 containing T . This can be done by adjoining an element of GF (qm) modulo the subspace
T , which gives (qm − qt)/(qt+1 − qt) = (qm−t − 1)/(q − 1) possibilities. Now any subspace of
dimension t+ 1 contains qt+1 − 1 supspaces of dimension t containing T . A repetition of this
approach r′ − 1 times gives the formula. (see also [22] p.630). ut

Theorem 1. The number T (t, r, d,m) of T -decodable syndromes satisfies the upper bound:

T (t, r, d,m) ≤ E(T )qrd(n−k).
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Furthermore, under the conditions r(2d− 1) ≤ m and

dim〈FT 〉 = dimF dimT, (3)

dim(F−11 F + F−12 F ) = 2 dimF − 1 = 2d− 1, (4)

we also have the lower bound:(
1− 1

q − 1

)2

E(T )qrd(n−k) ≤ T (t, r, d,m).

Note that condition (4) depends only on the subspace F and can be ensured quite easily when
designing the matrix H. Random spaces F with random elements F1 and F2 will typically
have this property. Condition (3) depends on the choice of the subspace T : as will be apparent
from Lemma below, for a random subspace T condition (3) holds with probability very close
to 1.

To prove Theorem 1 we will rely on the following lemma, whose proof we relegate to the
Appendix.

Lemma 2. Let A be a fixed subspace of Fmq of dimension α and let T be a subspace of
dimension t (with possibly t = 0) such that dim〈AT 〉 = αt. Let B be a subspace generated by
T together with β random independent uniform vectors, with β satisfying α(t+β) ≤ m. Then

P (dim〈AB〉 < α(t+ β)) ≤ qα(t+β)

(q − 1)qm
.

Proof of Theorem 1. To obtain a T -decodable syndrome, we must choose n− k elements in a
space 〈FE〉 for a given space E that contains T . There are E(T ) ways of choosing E, and for
any given E there are at most qdimF dimE = qdr ways of choosing a syndrome coordinate in
〈FE〉. This gives the upper bound on T (t, r, d,m).

We proceed to prove the lower bound. First consider that Lemma 2 proves that, when we
randomly and uniformly choose a subspace E that contains T , then with probability at least
1− 1/(q − 1), we have:

dim〈(F−11 F + F−12 F )E〉 = dim(F−11 F + F−12 F ) dimE = (2d− 1)r

by property (4). This last fact implies, that

dim(F−11 〈FE〉+ F−12 〈FE〉) = 2dr − r (5)

since clearly

F−11 〈FE〉+ F−12 〈FE〉 = 〈(F−11 F + F−12 F )E〉.

Now, since we have E ⊂ F−11 F ∩F−12 F , applying the formula dim(A+B) = dimA+ dimB−
dimA ∩B to (5) gives us simultaneously that:

dim〈FE〉 = dr

F−11 F ∩ F−12 F = E.
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In other words, both conditions (i) and (ii) of T -decodability are satisfied. We have therefore
proved that the proportion of subspaces E containing T that satisfy conditions (i) and (ii) is
at least (1− 1/(q − 1)).

Now let E be a fixed subspace satisfying conditions (i) and (ii). Among all (n− k)-tuples of
elements of 〈FE〉, the proportion of those (n − k)-tuples that together with 〈FT 〉 generate
the whole of 〈FE〉 is at least(

1− 1

q

)(
1− 1

q2

)
. . .

(
1− 1

qi

)
. . . ≥ 1− 1

q − 1
. (6)

We have therefore just proved that given a subspace E satisfying conditions (i) and (ii), there
are at least (1− 1/q)(qrd)n−k (n− k)-tuples of 〈FE〉n−k satisfying condition (iii).

To conclude, notice that since a T -decodable syndrome entirely determines the associated
subspace E, the set of T -decodable syndromes can be partitioned into sets of (n − k)-tuples
of 〈FE〉n−k satisfying condition (iii) for all E satisfying conditions (i) and (ii). The two lower
bounds on the number of such E and the number of T -decodable syndromes inside a given
〈FE〉n−k give the global lower bound of the Theorem. ut

Remarks:

1. It can be shown with a finer analysis that the term (1− 1(q− 1))2 in the lower bound can
be improved to a quantity close to 1− 1(q − 1).

2. For large q, Theorem 1 shows that, for most choices of T , the density of T -decodable
syndromes essentially equals

E(T )qrd(n−k)

qm(n−k) ≈ q(r−t)(m−r)+(n−k)(rd−m). (7)

Remarkably, it is possible to choose sets of parameters (m, t, r, d), with (n − k) = d(r − t),
such that the exponent in (7) equals zero, which gives a density very close to 1.

Example of parameters with density almost 1: q = 2,m = 45, n = 40, k = 20, t = 5, r =
10, the algorithm decodes up to r = t + r′ = 15 for a fixed random partial support T of
dimension 5. The GVR bound for a random [40, 20] code with m = 45 is 13, the Singleton
bound is 20, we see that the decoding radius 15 is therefore just above the GVR bound at 13
and rather far from the Singleton bound at 20. Moreover one can notice that if parameters
(m, t, r, d) satisfy the two equations (r− t)(m−r)+(n−k)(rd−m) = 0 and (n−k) = d(r− t)
(the case for which the density is almost 1), then for any α integer greater than 1, the set
(αm,αt, αr, d) satisfy the same equations, and hence for a given d one obtains an infinite
family of parameters with density almost 1.

Decoding in practice. In practice it easy enough to find sets of parameters for which the
density of decodable syndromes is very close to 1, i.e. such that (r−t)(m−r)+(n−k)(rd−m) =
0. When q = 2, the formula (7) is only an approximation, and simulations give a density close
to 1/3 rather than 1.

4 RankSign : a rank-based signature scheme

We saw in the previous section how to construct a matrix H of an LRPC code, with a
unique support decoding, which opens the way for a signature algorithm. In practice the best
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decoding results are obtained for d = 2: the natural strategy is to define for the public key a
matrix H ′ = AHP , where A is a random (n− k)× (n− k) invertible matrix in the extension
field and P is an invertible n × n matrix in the small field. However, it is easily possible for
a cryptanalyst to recover the words of small weight d = 2 in H ′ and it is therefore necessary
to hide the matrix H in another way. In what follows we present a simple type of masking:
RankSign+ which consists in adding a few random columns to H, other more complex types
of masking are also possible: RankSign× (RankSign-multiply) and RankSign+×, which are
presented in Appendix C.

4.1 The RankSign+ scheme: augmented LRPC codes

Suppose one has a fixed support T of dimension t. We consider the public matrix H ′ =
A(R|H)P with R a random (n− k)× t′ matrix in GF (qm). We will typically take t′ = t but
one could envisage other values of t′. We denote by augmented LRPC codes such codes with
parity-check matrices H ′ = A(R|H)P .

Starting from a partial support T that has been randomly chosen and is then fixed, the
signature consists in decoding not a random s but the syndrome s′ = s − R.(e1, · · · , et)t for
ei random independent elements of T .

The overall rank of the solution vector e is still r = t + r′. the masking gives us that the
minimum rank-weight of the code generated by the rows of H ′ is t + d rather than purely
d: therefore recovering the hidden structure involves finding relatively large minimum weight
vectors in a code. In practice we consider d = 2 and H is a n/2×n matrix with all coordinates
in a space F of dimension 2. Moreover for {F1, F2} a basis of F , we choose the matrix H
such that when H is written in the basis {F1, F2}, one obtains a n × n invertible matrix (of
maximal rank) over GF (q). It can be done easily. Figure 2 describes the scheme, where ||
denotes concatenation.

1. Secret key: an augmented LRPC code over GF (qm) with parity-check matrix
(R|H) of size (n−k)×(n+t) which can decode r′ errors and t generalized erasures:
a randomly chosen (n − k) × (n − k) matrix A that is invertible in GF (qm) a
randomly chosen (n + t)× (n + t) matrix P invertible in GF (q).

2. Public key: the matrix H ′ = A(R|H)P , a small integer value l, a hash function
hash.

3. Signature of a message M :
a) initialization: seed ← {0, 1}l, pick t random independent elements (e1, · · · , et)
of GF (qm)
b) syndrome: s← hash(M ||seed) ∈ GF (qm)n−k

c) decode by the LRPC matrix H, the syndrome s′ = A−1.sT − R.(e1, · · · , et)T
with erasure space T = 〈e1, · · · , et〉 and r′ errors by Algorithm 1.
d) if the decoding algorithm works and returns a word (et+1, · · · , en+t) of weight
r = t + r′, signature=((e1, · · · , en+t).(PT )−1, seed), else return to a).

4. Verification: Verify that Rank(e) = r = t+ r′ and H ′.eT = s = hash(M ||seed).

Fig. 2. The RankSign+ signature algorithm

Parameters: Public key size: (k + t)(n− k)mLog2(q) Signature size: (m+ n+ t)rLog2(q).

12



The cost of the decoding algorithm is quadratic because of preprocessing of H−1f , hence the
major cost comes from the linear algebra over the large field GF (qm).

Signature complexity: (n − k) × (n + t) operations in GF (qm). Verification complexity: (n −
k)× (n+ t) operations in GF (qm).

The length l of the seed can be taken as 80
Log2(q)

for instance.

4.2 Optimized parameters: cyclic-RankSign

In order to decrease the size of the public key it is possible to use a quasi-cyclic structure.
Whenever all parameters n, k, t or/and l are divisible by a certain cyclicity order σ it is possible
to consider that all matrices consist of small cyclic σ × σ random matrices. This particular
type of structure divides the size of the public by a factor σ.

5 Security

5.1 A difficult problem

We now introduce a problem to which the security of our scheme can be reduced, we then
discuss the difficulty of the problem.

Approximate Syndrome Decoding Problem for augmented LRPC codes (App-
RSD-LRPC-Aug)

Given a masked parity-check matrix H ′ = A(R|H)P of an augmented LRPC codes as defined
in the previous section, and a random syndrome s, find a vector x of not too small rank d
(typically of rank (GVR + Singleton)/2 ) such that H ′.xt = s.

Assumption: The problem App-RSD-LRPC-Aug is difficult .

Discussion on the assumption: The family of augmented LRPC codes is not of course a family
of random codes, but they are weakly structured codes: the main point being that they have
a parity-check matrix one part of which consists only in low rank coordinates the other part
consisting in random entries. The attacker never has direct access to the LRPC matrix H,
which is hidden by the augmented part.

There are two different types of attacks on the problem: structural attacks in which the
attacker tries to recover the structure of the code, or the attacker can try to forge directly a
signature and try to find codewords of weight r = t + r′. We consider in the following these
two approaches and explain why it is difficult to attack this problem.

Remark There is a long history of broken cryptosystems related to hiding structured matri-
ces. One can though remark the following: 1) there are strongly structured families of hidden
codes like the Goppa-McEliece scheme which have not been attacked, 2) the families of hidden
structures which have been attacked rely usually on *very* strongly structured codes like the
Reed-Solomon codes or the Gabidulin codes [10], which are very difficult to hide. Moreover
there exist hidden families of codes or lattices with a low structure which have never been
really attacked like for instance the NTRU lattices or the double circulant codes. It seems
that the weak structure of the LRPC codes place them in this latter category.
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Structural attacks on the public key: trying to recover the secret key

Previously known structural attacks The main structural attack for the rank metric is the
Overbeck attack on the GPT cryptosystem, the attack consists in considering concatenated
public matrices Gq, Gq

2
, ..., Gq

n−k−
, in that case the particular structure of Gabidulin codes

enables one to find a concatenated matrix with a rank default; this is due to the particular
structure of the Gabidulin codes and the fact that for Gabidulin codes Gq

i
is very close to

Gq
i+1

. In the case of LRPC codes, since the rows are taken randomly in a small space, this
attack makes no sense, and cannot be generalized.

Attack on the parity-check matrix H ′: another approach consists in finding directly words of
small weight induced by the structure of the code, from which one can hope to recover the
global structure. For augmented LRPC codes, the rank of the minimum weight words is d+ t:
d for LRPC and t for the masking. This attack becomes very hard when t increases, even
for low t. For instance for t = 2 and d = 2 it gives a minimum weight of 4, which for most
parameters n and k is already out of reach of the best known attacks on the rank syndrome
decoding (see Section 2).

Attack on the isometry matrix P: The attacker can also try to guess the action of P on H,
since d is usually small negating this action may permit to attack directly a code of rank
d. Since d is small it is enough to guess the resulting action of P on n − k + 3 columns by
considering only the action of P coming from the first t columns of the matrix R - the only
columns which may increase the rank-, it means guessing (n− k + 3)× t elements of GF (q)
(since coordinates of P are in GF (q), hence a complexity of q(n−k+3)t. In general this attack
is not efficient, except in the case of quasi-cyclic matrices and small q, in which case the

complexity becomes q
(n−k+3)t

σ , for σ the index of quasi-cyclicity.

Direct attack on the syndrome In that case one has to find a word of weight between
the GVR bound and the Singleton bound, as discussed in Section 2 the best attack consists
in computing the complexity of finding a word of given weight divided by the number of
such words (the traditionnal approach for Hamming metric, which is also applicable here).
Parameters are chosen in order to resist this attack.

Information leakage. We considered in previous attacks the case where no additional in-
formation was known besides the public parameters. Often the most efficient attacks on sig-
natures is to recover the hidden structure of the public key by using information leaking from
real signatures. This for instance is what happened in the case of NTRUSign: the secret key is
not directly attacked, but the information leaked from real signatures enables one to recover
successfully the hidden structure. We show in the next section that with our masking scheme
no such phenomenon can occur, since we prove that, if an attacker can break the signature
scheme for public augmented matrices with the help of information leaking from a number
of (approximately) q real signatures, then he can also break the scheme just as efficiently
*without* any authentic signatures.
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5.2 Unforgeability

Theorem 2 below states the unforgeability of signatures. It essentially states that valid signa-
tures leak no information on the secret key. More precisely, under the random oracle model,
there exists a polynomial time algorithm that takes as input the public matrix H ′ and, pro-
duces couples (m,σ), where m is a message and σ a valid signature for m when one’s only
access to the hashing oracle is through the simulator, and this with the same probability dis-
tribution as those output by the authentic signature algorithm. Therefore whatever forgery
can be achieved from the knowledge of H ′ and a list of valid signed messages, can be simulated
and reproduced with the public matrix H ′ as only input.

Theorem 2. : For any algorithm A that leads to a forged signature using N ≤ q/2 authentic
signatures, there is an algorithm A′ with the same complexity that leads to a forgery using
only the public key as input and without any authentic signatures.

Proof. see Appendix B ut

Corollary 1. Let us take q > 2tsec, with tsec a security parameter polynomially equivalent
to n. If a polynomial time forger succeeds in forging the signature with some probability, he
can solve the difficult problem App-RSD-LRPC-Aug with the same complexity and the same
probability.

Proof. Theorem 2 tells us that either the forger used N > q/2 signatures, or he did not use
any. In the case when the forger did not use signatures, the problem of forging a new signature
is exactly the same as the problem App-RSD-LRPC-Aug. In the other case, the forger used
N > q/2 signatures and the forger could not run in polynomial time in the parameter n. ut

6 Practical security and parameters

6.1 Parameters

In the following we give some examples of parameters. The parameters are adjusted to resist
all previously known attacks. The security reduction holds for up to q/2 signatures, hence
if one considers q = 240 it means we are protected against leakage for up to 240 obtained
authentic signatures. such an amount of signatures is very difficult to obtain in real life,
moreover if one multiplies by the amount of time necessary to obtain a signature (about 230

for q = 240) we clearly see that obtaining such a number of authentic signatures is out of
reach, and it justifies our security reduction.

We also give parameters for q lower than 240: in that case the reduction is weaker in the
sense that it does not exclude a leaking attack for sufficiently many signatures. However,
such a leaking attack seems difficult to obtain anyway, and these parameters can be seen as
challenges for our system.

In the case of large q, the best attacks are structural attacks for recovering a vector of weight
t+d orthogonal to the matrix H ′. The best attacks are algebraic attacks from Levy-Perret: for
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example the case n = 16 gives 270 quadratic equations for 126 unknowns, with a theoretical
complexity of 2120 from [4]. For smaller q, the best attacks are combinatorial (Gaborit et al.).

• RankSign+

In that case the matrix H ′ is a (n− k)× (n+ t) matrix.

n n-k m q t r’ r GVR Singleton public key (bits) sign. size (bits) security

16 8 18 240 2 4 6 5 8 57600 8640 130

16 8 18 28 2 4 6 5 8 11520 1728 120

16 8 18 216 2 4 6 5 8 23040 3456 120

32 16 39 2 5 8 13 10 16 13104 988 80

40 20 45 2 5 10 15 12 20 22500 1350 110

• Cyclic−RankSign+

In that case the matrix H ′ is a (n− k)× (n+ t) quasi-cyclic matrix, and all matrices A,P,R
are formed with concatenation of σ × σ cyclic blocks. We consider solely the case σ = 2. The
complexity may be a little smaller than in the previous case since in that case attacks that
try to guess a part of P are more efficient because of the cyclicity.

n n-k m q t r’ r σ Singleton public key (bits) sign. size (bits) security

16 8 18 240 2 4 6 2 8 28300 8640 130

16 8 18 28 2 4 6 2 8 5760 1728 90

16 8 18 216 2 4 6 2 8 11520 3456 120

6.2 Implementation

We implemented our scheme in a non optimized way, the results we obtained showed that
for small q the scheme was very fast, when q increases, one has to consider the cost of
multiplication in GF (q), however for q = 28 or q = 216 some optimized implementation
may reduce this cost.

7 Conclusion

In this paper we introduced a new approach to devising signatures with coding theory and in
particular in the rank metric, by proposing to decode both erasures and errors rather than
simply errors. This approach enables one to return a small weight word beyond the Gilbert-
Varshamov bound rather than below. We proposed a new efficient algorithm for decoding
LRPC codes which makes this approach a realizable. We then proposed a signature scheme
based on this algorithm and the full decoding of a random syndrome beyond the Gilbert-
Varshamov bound. We also showed that it was possible to protect our system against leakage
from authentic signatures. Overall we propose different types of parameters, some of which
are rather small.
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A Typical dimensions for products of subspaces

We provide here a proof of Lemma 2 that we recall.

Lemma 2. Let A be a fixed subspace of Fmq of dimension α and let T be a subspace of
dimension t (with possibly t = 0) such that dim〈AT 〉 = αt. Let B be a subspace generated by
T together with β random independent uniform vectors, with β satisfying α(t+β) ≤ m. Then

P (dim〈AB〉 < α(t+ β)) ≤ qα(t+β)

(q − 1)qm
.

Proof. Suppose first that B = B′ + 〈b〉 where b is a uniformly chosen random element of Fmq
and where B′ ⊃ T is a fixed space such that dim〈AB′〉 = α(t+β− 1). Let AP be a projective
version of A, meaning that for every a 6= 0 in A, we have exactly one element of the set

{λa, λ ∈ F∗q}

in AP .

We have dim〈AB〉 < α(t+β−1)+α if and only if the subspace bA has a non-zero intersection
with 〈AB′〉, and also if and only if the set bAP has a non-zero intersection with 〈AB′〉. Now,

P
(
dim〈AB′〉 ∩Ab 6= {0}

)
≤

∑
a∈AP, a 6=0

P
(
ab ∈ 〈AB′〉

)
(8)

=
|A| − 1

q − 1

qα(t+β−1)

qm
(9)

=
qα(t+β)

(q − 1)qm
− qα(t+β−1)

(q − 1)qm
. (10)

since for any fixed a 6= 0, we have that ab is uniformly distributed in Fmq , and since the number

of elements in bAP equals (|A| − 1)/(q − 1).

Now write

B0 = T ⊂ B1 = T + 〈b1〉 ⊂ B2 = T + 〈b1, b2〉 ⊂ · · · ,⊂ Bi = T + 〈b1, . . . , bi〉 ⊂ · · · ⊂ B = Bβ

where b1 . . . , bβ are independent uniform vectors in Fmq . We have that the probability

P (dim〈AB〉 < dimAdimB)

that AB is not full-rank is not more than

β∑
i=1

P (dim〈ABi〉 < dimAdimBi | dim〈ABi−1〉 = dimAdimBi−1)

so that (10) gives:

P (dim〈AB〉 < dimAdimB) ≤ 1

q − 1

β−1∑
i=0

(
1

qm−(t+i+1)α
− 1

qm−(t+i)α

)
(11)

≤ 1

q − 1

(
1

qm−α(t+β)
− 1

qm−tα

)
≤ 1

(q − 1)qm−α(t+β)
. ut (12)
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B Proof of Theorem 2

Recall that a signature of a message M is a pair (x′, y′) where y′ is a hashed value of the
message M and y′ = H ′x′T and rank(x′) = r. If A is an algorithm that leads to a forgery
with the use of N authentic signatures, then the algorithm A′ consists of a simulated version
of A where authentic signatures (x′, y′) are replaced by couples (x′′, y′′) where x′′ is randomly
and uniformly chosen among vectors of rank-weight e, and y′′ = H ′x′′T is claimed to be the
hashed value of the message M output by a random oracle. In the random oracle model, the
algorithm A′ must behave exactly as algorithm A and give the same output whenever (x′′, y′′)
is statistically indistinguishable from (x′, y′).

We now compare the statistics of (x′, y′) and (x′′, y′′). We have H ′ = A(R|H)P and since the
transformation:

(x′, y′) 7→ (xa = Px′, ya = A−1y′) (13)

(x′′, y′′) 7→ (xs = Px′′, ys = A−1y′′) (14)

is one-to-one, comparing the statistics of (x′, y′) and (x′′, y′′) amounts to comparing the dis-
tributions of (xa, ya) (authentic) and (xs, ys) (simulated).

Now (xa, ya) is obtained in the following way: the signer chooses a subspace T of Fqm together
with a random vector τ ∈ T t of rank t and is given a vector u which is uniformly distributed
in the syndrome space Fn−kqm and is equal to A−1h(M) − RτT . Precisely, the signer chooses
a random vector τ of rank t, and sets T to be the subspace generated by its coordinates.
The signer then proceeds to try to decode u, meaning it looks for a subspace E of Fqm that
contains T and such that all coordinates of u fall into 〈FE〉, where F is the space generated
by the elements of the LRPC matrix H. He succeeds exactly when the syndrome vector u is
T -decodable in the sense of Definition 4: when this doesn’t occur, the decoder aborts.

When the syndrome u is T -decodable, the decoder proceeds to solve the equation

HxTH = u (15)

and then sets
xa = (τ, xH)

to create the couple (xa, ya = (R|H)(xa)T ) in (13). Recall from Remark 1 in Section 3.2 that
the matrix H has been chosen so that equation (15) (equivalently equation (1)) always has a
unique solution for every T -decodable u.

We may therefore speak about T -decodable couples (xH , u), where u uniquely determines xH
and xH uniquely determines u. Now, to re-cap, the authentic signer starts with uniformely
random u, and whenever u turns out to be non T -decodable, then we declare a decoding
failure and start the whole process again generating another τ , another random space T and
another u by another call to the random oracle h (meaning a counter appended to the message
M is incremented before applying the random hash again). This keeps happening until we hit
a T -decodable u. We see therefore that when it does hit a T -decodable u, the couple

(xH , u)

is uniformly distributed among all T -decodable couples.
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We now turn to the action of the simulator: what the simulator does is he tries to generate a
uniform T -decodable couple (xH , u) through xH rather than through u like the signer.

Specifically, the simulator starts with a random subspace E of Fqm of dimension r and an x′′

with coordinates independently and uniformly drawn from E. Since the transformation (14)
x′′ 7→ xs = Px′′ is rank-preserving, the simulator is implicitely creating a uniform vector xs

of En. Write

xs = (τ, xH).

With overwhelming probability (at least 1− 1/qr−t), the vector τ ∈ Et is of maximum rank-
weight t, since its coordinates are independently and uniformly chosen in E. The vector τ
generates the required random space T . Let u = HxTH : note that by construction, all its
coordinates must be in 〈FE〉. Consider the conditions (i),(ii),(iii) of Definition 4 for u to be
T -decodable.

Remember that the first two conditions (i) and (ii) are properties only of the subspace E.
When they are not satisfied, no choice of xH can yield a T -decodable couple (xH , u). When
conditions (i) and (ii) are satisfied we have that, since the mapping (15) xH 7→ u is invertible,
the vector u is a uniform random vector in 〈FE〉n−k. Since n− k+ dim〈FT 〉 = dim〈FE〉, the
probability that condition (iii) is not satisfied is governed by the probability than a random
vector falls into a given subspace of 〈FE〉 of co-dimension 1 and is of the order of 1/q: it is
also at most 1/(q− 1) according to computation (6). We also see that the number of xH that
satisfies condition (iii) is independent of the space E and is always the same for all E that
satisfy conditions (i) and (ii). This last fact implies that when

– A random uniform subspace E is chosen among all possible subspaces E of dimension r,

– a random xH is chosen in En,

then either (xH , u) is not T -decodable, or (xH , u) is T -decodable and is uniformly distributed
among all T -decodable couples.

The simulator has no oracle to tell him when he has produced a non T -decodable couple,
he can only hope this doesn’t occur. As long as he produces T -decodable couples (xH , u),
then they are distributed (uniformly) exactly as those that are produced by the authentic
signer and are undistinguishable from them. If we call π the probability that he produces a
non-decodable u, then he can reasonably expect to produce a list of approximately N = 1/π
signatures (x′′, y′′) that are undistiguishable from genuine signatures in the random oracle
model.

Consider now the probability π that the simulator produces a non-decodable u. It is at most
the sum of the probabilities that E does not satisfy (i) and (ii) and the probability ≤ 1/(q−1)
that (iii) is not satisfied. The probability that E does not satisfy (i) and (ii) is at most
the probability that the product space 〈(F−11 F + F−12 )E〉 does not have maximal dimension
(2d− 1)r, as argued in the proof of Theorem 1, and is at most 1/(q− 1). We obtain therefore
π ≤ 1/(q − 1) + 1/(q − 1) = 2/(q − 1) ≈ 2/q which concludes the proof.
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C Other types of masking

Besides the augmented LRPC simple masking of Section 4, it is also possible to consider
other types of masking, even if in that case there is no formal reduction, these masking have
independent interest.

C.1 The RankSign× scheme: multiplied LRPC codes

Let H be a parity-check matrix of an LRPC coder, for l a small fixed integer, we consider
now M a random invertible n× n matrix of the form:

M = (M1|M2)

with M1 a random n × l matrix over GF (qm) and M2 a random n × (n − l) matrix in the
base field GF (q). Now consider the matrix

H ′′ = H.(M−1)t

. We denote by multiplied LRPC codes, the codes with parity-check matrices of the form H ′′.
The matrix H ′′ enables one to approximate a syndrome to a rank r + t+ l rather than r + t
with uniquely H. Hence the masking increases the rank of the small vector (remember that
this rank has to be lower than the Singleton bound) but it considerably masks H. Indeed if
M has a regular form, the inverse matrix M−1 is rather tricky and considerably masks H.

In that case one takes as public key: H ′′ = AH.((MP )−1)t, suppose that for a given syndrome
s we want to solve H ′′.e′t = s, one proceeds as follows:

H ′′.e′
t

= s⇔ H.(e′(PM)−1)T = A−1s = s′

Rewriting the right handside as H.et = s′, we can decode s′ in e = e′(PM)−1 with rank(e) =
t+ r, and hence

e′ = eMP

now sinceM has the particular form previously described, the rank of e′ is rank(e)+l = t+r+l,
the invertible matrix M does not change the weight.

Unlike the previous masking, this masking increases the obtained rank of the signature, and
therefore makes the difference with the Singleton bound already big enough.

C.2 The RankSign+× scheme: augmented-multiplied LRPC codes

This last masking combines the two previous masking scheme, we consider codes with parity-
check matrices of the form:

H ′.(M−1)t

for H ′ an augmented matrix and M a matrix defined for multiplied LRPC, we denote these
codes by augmented-multiplied LRPC codes. In the RankSign× one starts from an augmented
matrix H ′ as in RankSign+ rather than an LRPC parity-check matrix H. The decoding
algorithm mixes in a straightforward way the two previous approaches.
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C.3 Parameters for RankSign×

• RankSign×

In that case the matrix H ′′ is a (n−k)× (n) matrix, and the rank of the signature is r+ t+ l.

n n-k m q t r r’ l Singleton public key sign. size security

40 20 39 2 3 10 13 2 19 15600 1185 100

• RankSign+×

In that case the matrix H ′′′ is a (n − k) × (n + t′) matrix (with t’=t), and the rank of the
signature is r + t+ l.

n n-k m q t r r’ l Singleton public key sign. size security

40 20 39 2 3 10 13 2 18 17940 1185 90

• Cyclic−RankSign+×

In that case the matrix H ′′′ is a (n−k)× (n+ t) quasi-cyclic matrix, the rank of the signature
is r+ t+ l, and all implied matrices (A,P,R,M) are formed with concatenation of σ×σ cyclic
blocks.

n n-k m q t r r’ l σ Singleton public key sign. size security

40 20 36 2 2 10 12 2 2 17 7920 1092 90
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