
VMPC-R
Cryptographically Secure Pseudo-Random Number Generator

Alternative to RC4

Bartosz Zoltak

www.vmpcfunction.com
bzoltak@vmpcfunction.com

Abstract. We present a new Cryptographically Secure Pseudo-Random Number Generator. It
uses permutations as its internal state, similarly to the RC4 stream cipher. We describe a statistical
test which revealed non-random patterns in a sample of 216.6 outputs of a 3-bit RC4. Our new
algorithm produced 246.8 undistinguishable from random 3-bit outputs in the same test. We probed
251 outputs of the algorithm in different statistical tests with different word sizes and found no way
of distinguishing the keystream from a random source. The size of the algorithm’s internal state
is 23424 (for an 8-bit implementation). The algorithm is cryptographically secure to the extent we
were able to analyse it. Its design is simple and easy to implement. We present the generator along
with a key scheduling algorithm processing both keys and initialization vectors.

Keywords: PRNG; CSPRNG, RC4; stream cipher; distinguishing attack

1 Introduction

In this paper we analyse Pseudo-Random Number Generators (PRNG) which use permutation(s)
as their internal state. The predecessor of this approach, the RC4 algorithm by Ron Rivest, found
many software applications, however a significant number of attacks were found against it, many
of them distinguishing the produced output from random, e.g. [2], [11], [15], [16], [18].

In this paper we try to find out how complex an RC4-like PRNG would need to be to
actually produce pseudorandom output. Our objective is to find a Cryptographically Secure
Pseudo-Random Number Generator (CSPRNG) which and can be used both for pseudorandom
number generation as such and as a secure stream cipher, where encryption is performed by
xoring the consecutive outputs of the algorithm with the consecutive words of plaintext.

2 Design scope

In [1] Paul and Preneel generalized the RC4-like design scope as ”stream ciphers based on
arrays and modular addition”. These algorithms use one or more arrays and several additional
variables as their internal state. They usually perform memory access, modular addition and
cyclic rotation of bits. Apart from RC4 a significant number of algorithms following this design
principle were proposed like IA, IBAA, ISAAC, Py, Py6, PyPy, NGG, GGHN, HC-256, RC4A,
VMPC.

In [1] Paul and Preneel describe their successful distinguishing attacks against IA, ISAAC,
Py6, NGG and GGHN and point out several risk-factors of the array-based algorithms which can
lead to distinguishing attacks and which we used as indicators of what to avoid in the new design:



1. Their general attack framework for array-based ciphers originates in part from the use of
large array elements (16 or more bits) along with short array indices (8-bit). This is character-
istic of the high speed 16/32 bit ciphers. They also indicate that extremely high performance of
such a cipher could be a warning sign that the algorithm may be vulnerable to their attacks.

2. They mount their attacks based on the fact that arrays allow for easy fixing any amount
of bits. They investigate the consequences of fixing selected bits to reveal non-random behavior
of the cipher’s output.

3. In their attacks they exploit the fact that if the cyclic rotation of bits is determined by
array elements then fixing some bits of these elements could result in the rotation operation not
taking place thus simplifying the round function and opening more attack possibilities.

We chose to cut off any rotation operations and rely only on memory access to the internal
permutation(s) and on modular addition. Further in the paper we refer to this design scope
as plain-permutation-based (also used in RC4, RC4A and VMPC). Despite the performance
compromise (the assumptions actually forced the algorithm to operate on 8-bit words to remain
practical) this choice appears to provide some resistance to the above points.

Resistance to 1. In permutations array elements and array indices have the same length
(8 bits usually).

Resistance to 2. Fixing bits of a permutation cannot be done as freely because changing one
value forces another value to change (we can only swap elements of permutations).

Resistance to 3. With no cyclic rotations of bits there is no threat of neutralizing them.

3 Research procedure

We introduce a statistical test which can easily find non-random patterns in the output of RC4
and which can be applied to any keystream without investigating the details of the PRNG’s
algorithm. We then used the test to assess the candidates for the new design.

We took advantage of the fact that plain-permutation-based ciphers (lacking the bit rota-
tions) can be scaled down into smaller word-sizes. Analysing a scaled down variant magnifies
any non-random behavior the algorithm carries in its design. The approach to analyse RC4
operating on smaller word sizes was applied e.g. in [15], [18], [16].

After investigating over 250 candidate designs we found an algorithm a 3-bit variant of which
(operating on integers 0,...,7) was able to produce a stream of 246.8 (122 trillion) 3-bit outputs
which were undistinguishable from random in our test while a 3-bit variant of RC4 revealed
non-random patterns after just about 216.6 = 100,000 outputs in the same test.

We tested the final candidate in an extended battery of statistical tests for different word
sizes.

We analysed several other aspects of the algorithm’s cryptographic security which, to the
extent to which we were able to investigate, did not show any weaknesses in the design.

Along with the CSPRNG we propose its Key Scheduling Algorithm (KSA) digesting both
keys and initialization vectors. We describe some analysis of the KSA’s security and the results
of several statistical tests on it.

The algorithm we present in this paper is what we believe is the simplest plain-permutation-
based CSPRNG which produces pseudorandom output. It is more complex and slower than RC4
but we will argue that it still remains simple in design and easy to implement.



4 Our universal distant-equalities statistical test

Our objective was to devise a test which does not investigate any algorithm-specific
characteristics so that it can be quickly applied to verify any new candidate.

The test was inspired by the approach used by Fluhrer and McGrew in [15] to find anomalies
in digraph probabilities in RC4 and by Maximov [4] and [5] who found that two consecutive
outputs of VMPC are 0 when i = 0 with the biased probability of 2−16 · (1 − 2−7.98). Some
inspiration came also from Mantin’s analysis of RC4 in [11]. Our test measures the numbers of
occurrences of 8 different events in the algorithm’s output. Let zi denote the i-th output word
of the algorithm:

event k: zi = zi+k for k ∈ {1, 2, 3, ..., 8}

In a random keystream each event would occur with probability p = 1/N , where N is the al-
gorithm’s word size (the algorithm operates on integers 0, ..., N − 1). The expected number of
occurrences of each event in n samples (E = np) and the standard deviation (σ =

√
np(1− p))

are given by the binomial distribution. The test counts the numbers of occurrences of events
1,...,8 and compares them with the model E = np using σ as the measure of deviation (the
test calculates d = (f − E)/σ, where f is the measured number), which is a common sta-
tistical practice. For large samples the binomial distribution can be approximated with the
normal distribution, where e.g. the probability of exceeding the expected value by 3σ is 2−8.5,
by 5σ: 2−20.7, by 7σ: 2−38.5.

4.1 RC4 in the test

Table 1. RC4 algorithm

N : word size
S : N -element permutation of integers {0, ..., N − 1}
i, j : integer variables
Let + denote addition modulo N

repeat steps 1-4:
1. i = i + 1
2. j = j + S[i]
3. swap S[i] with S[j]
4. output S[S[i] + S[j]]

Table 2. RC4 test results

N Samples Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7 Event 8

16 229.9 +28.18 −44.98 +3.14 +8.95 +18.28 +5.90 +7.77 +0.74

Table 2 presents by how many standard deviations the measured numbers of events 1,...,8
were different from their expected values (d = (f − E)/σ) in a sample of 109 outputs.

We chose N = 16 (4-bit words) to present the results. Although for N = 8 (3-bit words) the
biases were revealed much earlier, tests for N = 8 were frequently interrupted by cycles. We can
see huge deviations of +28σ or −44σ for N = 16. For N = 8 RC4 needed only about 100,000
outputs to exceed −3σ for event 2 (zi = zi+2).



The objective of the test was not to find the lower bounds for the distinguishers’ requirements
but to reveal the biases with a universal test and to verify that the test can be used as an
assistance in our search for the new design.

5 Searching for the new design

As noted in Section 2 we were searching for a plain-permutation-based algorithm (not using bit
rotations). Our objective was to make the algorithm as simple as possible but complex enough
to produce pseudorandom output in our tests. Before reaching the final version we examined
over 250 candidates which all failed in our distant-equalities test. The variations we tested came
from combining the following factors:

1. The number of permutations and variables.

2. The way the variables were updated by the permutation.

3. The way the variables feedbacked each other.

4. The way the output word was computed from the variables and the permutation.

5. The way the variables controlled the swap operations on the permutations.

The purpose of this stage was to find one candidate to carry out the extended testing on. Each
version first underwent our test for small word sizes (3-bit) to expose non-random deviations
quicker. If the candidate failed the test at this stage it was rejected.

Initially we tested approximately 50 designs which used a single permutation and different
numbers of additional variables. Some versions used two swap operations controlled by different
combinations of variables. We observed huge gaps separating each of the candidates from the
random model in our test and we were finally unable to build a proper keystream generator
using a single permutation in our design scope.

We extended our search to algorithms using two permutations. For the sake of simplicity we
limited the search space to one swap operation per each permutation per one output. Adding
the second permutation significantly raised the complexity of the algorithm and broadened the
number of variations.

Adding the second permutation did not make the search an instant success. Instead it sig-
nificantly slowed it down due to the large number of candidates and the fact that they generally
performed better in the test and it took more time to find the deviations. The majority of our
two-permutation candidates used 5 variables. From over 160 different combinations of them none
could pass the test with significantly over 1 billion outputs.

As the final step we chose the combinations of factors 2 and 3 which appeared to work best
and analysed a 7-variable scheme in 36 configurations of different variables taking part in the
output computing step (factor 4) and in the two swap operations (factor 5). Out of them 20
quickly failed. Out of the remaining 16 we found a few which showed promising results. From
them we chose the one which performed best. In contrast to RC4, the 3-bit variant of which failed
the test with only about 100,000 outputs and with the majority of other candidates struggling
to pass the 1 billion outputs mark, the 3-bit variant of the final candidate passed the test with
over 122 trillion (246.8) undistinguishable from random outputs.

5.1 The final candidate

We named the new algorithm VMPC-R where VMPC stands for the name of the function
(summarized in Section 5.7) employed in the output computing step 7 and R stands for random.
Specification of the algorithm can be found in Table 3.



Table 3. VMPC-R CSPRNG

N : word size; for practical use N = 256
a, b, c, d, e, f, n : integer variables
P, S : N -element permutations of integers {0, ..., N − 1}
Let + denote addition moduloN

1. a = P [a + c + S[n]]
2. b = P [b + a]
3. c = P [c + b]
4. d = S[d + f + P [n]]
5. e = S[e + d]
6. f = S[f + e]

7. output S[S[S[c + d]] + 1]

8. swap P [n] with P [f ]
9. swap S[n] with S[a]
10. n = n + 1
11. go to step 1

5.2 The extended battery of tests

The final candidate underwent a series of additional statistical tests. Apart from our distant-
equalities test we measured several other parameters which were commonly exploited in
distinguishing attacks against similar ciphers. Let N denote the algorithm’s word size, zi the
i-th output word; n is the internal variable of VMPC-R. The battery included the following
measurements:

– 8 events in our universal test: zi = zi+k for k ∈ {1, 2, 3, ..., 8}
– N numbers of occurrences of each possible output value zi
– N2 numbers of occurrences of each possible pair [n, zi]

– N2 numbers of occurrences of each possible pair [zi, zi+1]

– N3 numbers of occurrences of each possible combination [n, zi, zi+1]

5.3 VMPC-R results

To probe the algorithm’s output we used over 100 computers and generated a total of over 2
quadrillion (1015.3 = 251) outputs. Table 4 presents the sample sizes we tested for different word
sizes. Table 5 shows the results of the distant-equalities test only. We do not quote the results
of the remaining tests from the battery due to their large capacity.

In the first test we forced the algorithm to work in a single-bit mode (N = 2). Even with
that extent of simplification the algorithm passed the tests. Here the algorithm’s state generated
twelve 42 output-long cycles. As an exception from the other word sizes (where the longest cycle
usually comprised the majority of the state space) for N = 2 we averaged the results for each
of the observed 12 cycles. The averages (found in the table) as well as the results for each cycle
separately were well within acceptable random deviations. This test comprised 98% of the state
space (504 of the 512 possible values of the state).

In the tests for N ∈ {3, 4, 5, 6} we limited the analyses to the size of the longest observed
cycle. This was equivalent to examining 62% 82%, 33% and 78% of the complete state space for
the respective word sizes. None of the measured probabilities showed any non-random behavior
in the tests. We also probed several of the remaining shorter cycles (not reported in the table)
and found no anomalies there, either.



Table 4. VMPC-R statistical tests sample sizes

Word size Number of output words tested

N=2 (1-bit) 504 = 102.7 = 29.0

N=3 48 687 = 104.7 = 215.6

N=4 (2-bit) 7.8 million = 106.9 = 222.9

N=5 365.8 million = 108.6 = 228.4

N=6 113.8 billion = 1011.1 = 236.7

N=7 1.9 trillion = 1012.3 = 240.8

N=8 (3-bit) 122 trillion = 1014.1 = 246.8

N=16 (4-bit) 103 trillion = 1014 = 246.5

N=32 (5-bit) 114 trillion = 1014.1 = 246.7

N=64 (6-bit) 121 trillion = 1014.1 = 246.8

N=128 (7-bit) 163 trillion = 1014.2 = 247.2

N=256 (8-bit) 1.5 quadrillion = 1015.2 = 250.4

Table 5. VMPC-R distant-equalities test results

N Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7 Event 8

2 0.00 −0.03 0.33 −0.03 −0.03 −0.48 0.10 −0.39

3 −0.28 0.05 0.52 0.47 −1.48 1.49 −0.30 −0.47

4 −0.10 −0.28 −0.03 −1.27 0.24 2.26 0.38 0.08

5 −0.69 1.33 −0.29 −1.18 −0.68 1.67 1.28 −1.01

6 0.72 −0.14 −0.80 −0.74 0.49 0.40 0.09 −0.73

7 0.27 0.34 −0.19 1.01 −0.62 0.44 2.01 0.46

8 −1.46 −0.27 −1.25 1.20 1.39 −0.65 0.56 −0.88

16 0.00 −1.99 0.82 0.46 −1.20 −0.79 −1.75 −1.06

32 1.64 −0.46 0.55 −1.18 −0.29 −0.31 −1.45 0.46

64 −0.66 0.25 0.88 −0.77 0.37 0.46 0.51 0.73

128 0.83 −1.22 0.15 0.33 0.70 −0.24 0.72 −0.07

256 0.00 −0.24 −0.78 1.34 1.47 −1.23 −0.14 0.24



For N = 7 with 1.9 trillion (240.8) outputs tested (about 10% of the state space) we did not
encounter a repeated cycle and we observed proper pseudorandom behavior in the tests.

N = 8 (3-bit words) was the first of the big size tests which required significant computational
power. It is the smallest size which offers state space large enough (1015.5) not to hamper the
scale of the test with cycles yet it is small enough to expose possible deviations vividly. We tested
over 122 trillion (246.8) outputs and they showed to be undistinguishable from the random model
in the tests.

We continued the test with over 100 trillion-word samples for N ∈ {16, 32, 64, 128} and did
not find any non-random anomalies in the algorithm’s output in the tests.

For N = 258 (8-bit) we increased the sample size to over 1.5 quadrillion outputs (250.4) as
N = 256 is the actual word size for possible practical applications. The results here in all the
tests were also well within the acceptable deviations from the random model.

Summarizing the experiments - we did not manage to find any non-random patterns in over 2
quadrillion outputs of VMPC-R in any of the statistical tests performed for any of the tested
word sizes. In the sections to follow we try to investigate some other aspects of the algorithm’s
cryptographic security.

5.4 Key/state recovery attacks against VMPC-R

Unlike in case of distinguishing attacks, array-based stream ciphers usually show high resistance
to key (or internal state) recovery attacks. For some time the fastest state recovery algorithm
for RC4 was by Mister and Tavares [13]. At CRYPTO 2008 [6] Maximov proposed an improved
attack against RC4 requiring about 2241 operations. One difficulty in mounting these attacks
against this family of ciphers is the fact that many secret words of the internal state are used to
produce a single word of output. In RC4 3 words of the internal permutation are used per one
output word. VMPC-R uses 11 words of its permutations to produce one output (4 elements
of P and 7 of S). We roughly estimate that the total number of possible values of the unique
elements of P and S used to produce 50 VMPC-R outputs would be greater than the total
keyspace of a 2048-bit (256-byte) secret key. We don’t expect the key/state recovery attacks to
be a significant threat to the security of the proposed cipher.

Another area where the algorithm’s complexity might strengthen its resistance is attacks
derived from fortuitous states introduced by Fluhrer and McGrew. In [15] they presented RC4
states in which only X elements of the permutation are involved in the computation of X
successive outputs. They showed how this fact can be used to determine some parts of the
permutation with nontrivial probability. Paul and Preneel note in [1] that their attack approach
has its origins in the fortuitous states. We believe that VMPC-R using 11 permutation elements
per round controlled by the set of 7 interdependent variables would make introducing fortuitous
states significantly harder, if possible.

We also expect the level of complexity of the round function to be a considerable obstacle in
mounting fault analysis attacks against VMPC-R as opposed to RC4 for which successful fault
attacks were published by Hoch and Shamir in 2004 [9] or Biham, Granboulan and Nguyen in
2005 [10].

5.5 Cycle lengths of VMPC-R

We assess the probability of VMPC-R repeating a cycle to be negligibly low for N = 256. The
size of the internal state is determined by the size of the P and S permutations and the 7
variables a, b, c, d, e, f, n to be N !2 ×N7. For N = 256 it is over 101030 or 23424 possible values.
Because the n variable is increased by 1 modulo N in each iteration the internal state would



be changed in N iterations before it could repeat. In these iterations P and S would undergo
N swap operations indexed by n, a and f while a, b, c, d, e, f would be updated N times. We
believe that the probability that the variables would repeat their values after these N iterations
should not be significantly different from N !−2 ×N−6 or 2−3416 for N = 256. In our statistical
tests for N = 8 (251.6 possible values of the internal state) we did not encounter a single case
of a repeated cycle in the sample of 246.8 outputs. In Table 6 we show three longest cycles we
observed for N ∈ {3, 4, 5, 6}.

Table 6. VMPC-R observed cycle lengths

Word size Total state space 3 longest cycles

N=3 78 732 48 687; 6 945; 6 126

N=4 9 437 184 7 766 992; 833 100; 369 056

N=5 1 125 000 000 365 826 825; 219 688 515; 155 601 705

N=6 145 118 822 400 113 795 459 358; 10 758 771 978; 9 768 433 476

5.6 First outputs of VMPC-R

Statistical properties of the first outputs of the cipher (generated directly after the key scheduling
algorithm) were targets of several distinguishing attacks. E.g. in [16] Mantin and Shamir found
that the second output of RC4 is equal 0 with twice the expected probability. In [2] Paul and
Preneel discovered a bias in the first two output bytes of the RC4 keystream. [17] and [12] added
to those.

Anomalies here can result from the flaws in either the keystream generator or the key setup
algorithm. Given the proper statistical behavior of VMPC-R output in our tests and given the
security features of the key scheduling algorithm discussed in Section 6 we do not expect the
cipher’s output to behave differently directly after the key setup than it did in our statistical
tests.

We additionally verified that fact by separate tests where only the first 8 outputs of the cipher
were analysed using the battery described in Section 5.2. We performed the tests both for the full
and for several reduced variants of the key scheduling algorithm, one of them performing only
about 30% of the operations of the full KSA. None of the tests showed any statistical anomalies
in the first outputs of VMPC-R.

5.7 VMPC one-way function. An additional layer of security

VMPC-R employs the VMPC one-way function in step 7. VMPC stands for Variably Modified
Permutation Composition. The function was proposed by Zoltak at FSE 2004 [7]. It naturally fits
the design of permutation-based ciphers. The function can be implemented with three elementary
mov processor instructions per word. It is defined as:

Q[x] = P [M1[P [M2[P [x]]]]]

where M1 and M2 are any non-secret permutations such that M1[x] 6= M2[x]. An example
VMPC function is Q[x] = P [P [P [x]] + 1], where + denotes addition modulo permutation size.

The Mi permutations corrupt the cycle structure of P in such a way that deriving any infor-
mation about P from Q requires guessing significant portions of P (e.g. 34 guessed elements is
the estimate for 256-element permutations). Any occurrence of M1[x] = M2[x] (against the def-
inition) would weaken the function’s one-way properties. A function Q[x] = P [M1[P [M1[P [x]]]]]



would be trivial to invert for any value of M1. The original estimate appears to still stand that
inverting the function for 256-element permutations requires an average effort of 2260.

In strict terms one-way functions have not been proved to exist. The existence of one would
imply P 6= NP . The VMPC function with no polynomial-time algorithm for inverting known
can be regarded as believed-to-be-one-way.

6 The key scheduling algorithm of VMPC-R

Specification of the algorithm can be found in Table 7.

Table 7. VMPC-R key scheduling algorithm

N,P, S, a, b, c, d, e, f, n: as in Table 3
K : key; array of k integers; k ∈ {1, ..., N}
V : initialization vector; array of v integers; v ∈ {1, ..., N}
R = dk2/(6N)e ·N
i : temporary integer variable
Let + denote addition modulo N

0. a = b = c = d = e = f = n = 0
P [i] = S[i] = i for i ∈ {0, 1, ..., N − 1}

1. KSARound(K, k)
2. KSARound(V, v)
3. KSARound(K, k)
4. n = S[S[S[c + d]] + 1]
5. generate N outputs with VMPC-R CSPRNG

Function KSARound(M,m) definition:
6. i = 0
7. repeat steps 8-18 R times:

8. a = P [a + f + M [i]] + i; i = (i + 1) mod m
9. b = S[b + a + M [i]] + i; i = (i + 1) mod m
10. c = P [c + b + M [i]] + i; i = (i + 1) mod m
11. d = S[d + c + M [i]] + i; i = (i + 1) mod m
12. e = P [e + d + M [i]] + i; i = (i + 1) mod m
13. f = S[f + e + M [i]] + i; i = (i + 1) mod m
14. swap P [n] with P [b]
15. swap S[n] with S[e]
16. swap P [d] with P [f ]
17. swap S[a] with S[c]
18. n = n + 1



6.1 Statistical properties of the KSA

We investigated the statistical properties of the KSA in two areas. One was whether the elements
of the generated permutations and the variables follow the uniform distribution. The second
was whether permutations and variables generated from different keys are uncorrelated. We
performed all the tests on the KSA only for the full N = 256 version.

To verify the results in the first area we measured the probabilities of occurrences of each
of the possible N values in all the N indices in both permutations (P and S) and in all the 7
variables (a, b, c, d, e, f, n) for different key sizes. All the 132864 measured probabilities stayed
well within acceptable random deviations from the expected 1/N which is in line with the
uniform distribution.

The second objective was to verify whether the slightest change in the input key would cause
the proper avalanche effect to hide any possible correlations between the generated permutations
and variables. We approached this test according to the strict avalanche criterion (SAC) defined
by Webster and Tavares in [20]. The criterion is satisfied when changing a single input bit changes
each output bit with probability 0.5. We measured the number of unchanged corresponding
elements of the permutations and the number of cases of unchanged variables generated with
two different keys.

We tested the consequences of a change of a single byte (this included flipping a single bit)
in a pseudorandom key and changing a byte in four different types of non-random keys. We
then repeated the tests with the operation of changing the byte substituted by an operation of
appending a new byte to the key.

To get the worst-case result we chose several scenarios which appeared to hinder the avalanche
effect the most. All the tested keys were of maximum length of k = 256 bytes (2048 bits) and
we changed the byte of the key which was the last to be input to the KSA. In any other case
(smaller keys or changing any other byte of the key) the avalanche effect would be more intensive
as the changes of the key would be digested by the algorithm more times or earlier. Additionally
we reduced the the number of rounds of the KSARound function from the original R = 11008
(for k = N = 256) to only R = 256. We chose the following pairs of keys for the test:

– K1: 256 random bytes; K2[i] = K1[i], i ∈ {0, ..., 254}; K2[255] 6= K1[255]

– K1: 255 random bytes; K2[i] = K1[i], i ∈ {0, ..., 254}; K2[255]=random

– K1[i] = i, i ∈ {0, ..., 255}; K2[i] = K1[i], i ∈ {0, ..., 254}; K2[255] 6= K1[255]

– K1[i] = i, i ∈ {0, ..., 254}; K2[i] = K1[i], i ∈ {0, ..., 254}; K2[255]=random

– K1[i] = 255− i, i ∈ {0, ..., 255}; K2[i] = K1[i], i ∈ {0, ..., 254}; K2[255] 6= K1[255]

– K1[i] = 255− i, i ∈ {0, ..., 254}; K2[i] = K1[i], i ∈ {0, ..., 254}; K2[255]=random

– j ∈ {0, ..., 255}: K1[i] = j, i ∈ {0, ..., 255}; K2[i] = K1[i], i ∈ {0, ..., 254}; K2[255] 6= K1[255]

– j ∈ {0, ..., 255}: K1[i] = j, i ∈ {0, ..., 254}; K2[i] = K1[i], i ∈ {0, ..., 254}; K2[255]=random

To obtain a significant security margin for the measured avalanche effect we performed the tests
both for the full version of the KSA and for the reduced version using only steps 1 and 5. In
the tests we compared the generated permutations and the 7 variables generated by the KSA
for K1 and K2 and found that in each test the numbers of unchanged elements in the resulting
permutations were well within acceptable random deviations from the expected 1 and that the
probability that any of the 7 variables remained unchanged was not significantly deviated from
the expected 1/N .

Step 1 alone almost provided the proper avalanche effect. The result we recorded for step-
1-only variant was about 1.3 unchanged corresponding elements of the generated permutations
rather than 1 we would expect. For shorter 128-byte (1024-bit) keys the tests for step-1-only



variant produced even better results at around 1.05 identical corresponding permutation ele-
ments (as expected, the shorter key with the other factors unchanged intensified the avalanche
effect).

The KSA limited only to steps 1 and 5 was enough to achieve 1 in all the tests. Steps 2 and
3 approximately double the amount of mixing performed by steps 1 and 5 this way intensifying
the avalanche effect.

Given the fact that the tests were successful even for the significantly reduced versions of
the KSA we believe that the analysed statistical properties of the algorithm are in line with the
random model and the algorithm’s avalanche effect is ensured with a significant security margin.

6.2 Some comments on the design

The number of rounds. The KSARound function performs R = dk2/(6N)e · N iterations.
This value ensures that each word of a k-word key updates the internal state at least k times. This
follows an intuition that the probability of deriving identical internal states from keys differing
in only one bit or one word should not be different from the probability N !−2×N−7 of deriving
identical internal states from two random keys. For N = 256 and key sizes k ∈ {1, 2, ..., 39}
(keys up to 312 bits) R = N . For N = 256 and key sizes k ∈ {40, 41, ..., 55} (keys from 320 to
440 bits) R = 2N . And so on.

Step 3 of the algorithm. Apart from intensifying the avalanche effect step 3 provides an
additional layer of security against key-recovery attacks.

Let’s consider a reduced version without step 3 and assume that a successful state recovery
attack has been accomplished. Since all the data steps 2-5 operate on is known by the adversary
it would be possible to revert these steps and obtain the value of the internal state after step 1.
This would enable to process steps 2-5 for any new message and decrypt it without finding the
actual secret key.

In the full KSA this attack would provide the internal state after step 3. However here
the adversary would face a hard problem of reverting step 3 which takes the secret key as a
parameter. As a result of the avalanche effect any new message encrypted with the same key
but different initialization vector would have the internal state uncorrelated with the one the
adversary holds which would give the adversary no advantage in decrypting any new message.

Step 5 of the algorithm. A number of approaches against array-based ciphers exploited
the internal state right after the key-setup to mount distinguishing attacks. Some were mentioned
in Section 5.6. One idea to improve the RC4 KSA was to drop several first outputs of the cipher.
Although we believe VMPC-R KSA provides proper statistical behavior, we propose to add
this step as an additional layer. A measurable benefit it provides is the intensification of the
avalanche effect.

No non-secret values. Our objective was to keep all the state variables secret. Leaving the
value of the counter variable (n in our algorithm) known raises unnecessary risk as the adversary
knows the indices to the arrays used by some parts of the cipher’s round function. In fact several
attacks mentioned in Section 5.6 exploit this situation. Although we don’t believe this to be a
significant security improvement, the effort required to ensure this property (setting variable n
to a secret value in step 4) is only symbolic.

No obvious equivalent keys. To make introducing different keys producing the same
internal state a harder task we use both the value of the word of the key (M [i]) and its index i
as input. Both are mixed non-linearly in the a = P [a+ f +M [i]] + i step 8 (and analogously in
steps 9-13).

Flexibility. The KSA’s compatibility with a natural in software applications 256-byte array
might open more doors to its possible alternative applications. Such arrays containing additional



information could be used to influence the internal state. Apart from the key and the initial-
ization vector, the algorithm could accept any amount of parameters like additional or session
keys, personal information or hardware ID by calling KSARound with these parameters after
step 2 and before step 3.

7 Performance and test values

We measured the performance of the CSPRNG and the KSA using a moderately optimized
assembler implementation on an Intel Pentium 4 processor clocked at 3.0 GHz. Performance
figures on a multi-core processor like Intel i7 (also clocked at 3.0 GHz) were very similar with
the algorithms running on a single core. Table 8 shows the results of the CSPRNG (Mbyte refers
to one million bytes (8-bit outputs) produced for N = 256). Table 9 presents the figures for the
full KSA digesting both the key and the IV. Performance results for 8,16,32,64,128 and 256-byte
keys (and IVs) are the same. Table 10 contains test output values of the algorithms.

Table 8. VMPC-R CSPRNG performance

Mbytes/s cycles/byte

54.4 55.1

Table 9. VMPC-R KSA performance

runs/s cycles/run

28686 104580

Table 10. Test-output of VMPC-R

input:

K; k = 9 {11, 22, 33, 144, 155, 166, 233, 244, 255}
V ; v = 8 {255, 250, 200, 150, 100, 50, 5, 1}

output of KSA:

P index 0 1 2 3 252 253 254 255

P value 97 218 106 125 139 86 36 126

S index 0 1 2 3 252 253 254 255

S value 152 143 19 154 92 25 24 157

output of CSPRNG:

output index 0 1 2 3 254 255 256 257

output value 49 161 79 69 85 237 96 243

output index 1000 1001 10000 10001 100000 100001 1000000 1000001

output value 181 184 136 99 67 27 253 231



Table 11. Test-output of VMPC-R

input:

K; k = 32 {104, 9, 46, 231, 132, 149, 234, 147, 224, 97, 230, 127, 124, 109, 34, 171,
88, 185, 158, 23, 116, 69, 90, 195, 208, 17, 86, 175, 108, 29, 146, 219}
(X=123; repeat 32 times:{X=X·134775813+1; output=X mod 256})

V ; v = 32 {149, 234, 147, 224, 97, 230, 127, 124, 109, 34, 171, 88, 185, 158, 23, 116,
69, 90, 195, 208, 17, 86, 175, 108, 29, 146, 219, 72, 105, 14, 71, 100}
(X=132; repeat 32 times:{X=X·134775813+1; output=X mod 256})

output of KSA:

P index 0 1 2 3 252 253 254 255

P value 76 44 167 7 250 147 240 51

S index 0 1 2 3 252 253 254 255

S value 239 59 110 207 98 23 178 227

output of CSPRNG:

output index 0 1 2 3 254 255 256 257

output value 219 178 157 119 2 155 62 20

output index 1000 1001 10000 10001 100000 100001 1000000 1000001

output value 3 239 236 81 195 11 186 127

Table 12. Test-output of VMPC-R

input:

K; k = 256 {147, 224, 97, 230, 127, 124, 109, 34, 171, 88, 185, 158, 23, 116, 69, 90,
195, 208, 17, 86, 175, 108, 29, 146, 219, 72, 105, 14, 71, 100, 245, 202,
243, 192, 193, 198, 223, 92, 205, 2, 11, 56, 25, 126, 119, 84, 165, 58,
35, 176, 113, 54, 15, 76, 125, 114, 59, 40, 201, 238, 167, 68, 85, 170,
83, 160, 33, 166, 63, 60, 45, 226, 107, 24, 121, 94, 215, 52, 5, 26,
131, 144, 209, 22, 111, 44, 221, 82, 155, 8, 41, 206, 7, 36, 181, 138,
179, 128, 129, 134, 159, 28, 141, 194, 203, 248, 217, 62, 55, 20, 101, 250,
227, 112, 49, 246, 207, 12, 61, 50, 251, 232, 137, 174, 103, 4, 21, 106,
19, 96, 225, 102, 255, 252, 237, 162, 43, 216, 57, 30, 151, 244, 197, 218,
67, 80, 145, 214, 47, 236, 157, 18, 91, 200, 233, 142, 199, 228, 117, 74,
115, 64, 65, 70, 95, 220, 77, 130, 139, 184, 153, 254, 247, 212, 37, 186,
163, 48, 241, 182, 143, 204, 253, 242, 187, 168, 73, 110, 39, 196, 213, 42,
211, 32, 161, 38, 191, 188, 173, 98, 235, 152, 249, 222, 87, 180, 133, 154,
3, 16, 81, 150, 239, 172, 93, 210, 27, 136, 169, 78, 135, 164, 53, 10,
51, 0, 1, 6, 31, 156, 13, 66, 75, 120, 89, 190, 183, 148, 229, 122,
99, 240, 177, 118, 79, 140, 189, 178, 123, 104, 9, 46, 231, 132, 149, 234}
(X=234; repeat 256 times:{X=X·134775813+1; output=X mod 256})

V ; v = 8 {255, 250, 200, 150, 100, 50, 5, 1}
output of KSA:

P index 0 1 2 3 252 253 254 255

P value 10 34 13 239 209 9 154 220

S index 0 1 2 3 252 253 254 255

S value 253 106 200 178 75 251 129 209

output of CSPRNG:

output index 0 1 2 3 254 255 256 257

output value 201 85 155 17 187 48 55 198

output index 1000 1001 10000 10001 100000 100001 1000000 1000001

output value 110 179 189 210 4 15 253 83



8 Conclusions

We presented a new Cryptographically Secure Pseudo-Random Number Generator, VMPC-R.
We devised a universal statistical test which we used to probe over 250 candidates before we
found an algorithm which according to the test produces pseudorandom output. In contrast to
the 16 or 32 bit array-based algorithms VMPC-R employs the original 8-bit RC4-like design to
which we referred to as plain-permutation-based. While it hampers the cipher’s performance,
applying permutations as the arrays (along with the 8-bit word size) and resigning from using
array-dependent cyclic rotation of bits operations appeared to resist several intrinsic weaknesses
of array-based ciphers outlined by Paul and Preneel. Our algorithm is more complex and slower
than RC4. The scale of the added complexity was the minimal we found indispensable to pass
our measures of statistical quality. We conclude that according to our analyses VMPC-R appears
to be the simplest RC4-like algorithm capable of producing pseudorandom output.

In the possible further research it might be worth verifying whether the algorithm indeed
generates as pseudorandom output and is as secure as we believe it is and whether it is indeed
impossible to find a simpler design in this scope which would match the results of VMPC-R.

References

1. On the (In)security of Stream Ciphers Based on Arrays and Modular Addition Souradyuti Paul and Bart
Preneel Proceedings of ASIACRYPT 2006, LNCS, vol. 4284, Springer-Verlag, 2006, pages 69-83.

2. Souradyuti Paul, Bart Preneel A New Weakness in the RC4 Keystream Generator and an Approach to
Improve the Security of the Cipher. Proceedings of FSE 2004, LNCS, vol. 3017, Springer-Verlag, 2004, pages
245-259.

3. Souradyuti Paul, Bart Preneel: Analysis of Non-fortuitous Predictive States of the RC4 Keystream Generator.
Proceedings of INDOCRYPT 2003, LNCS, vol. 2904, Springer-Verlag, 2003, pages 52-67.

4. Alexander Maximov: Two Linear Distinguishing Attacks on VMPC and RC4A and Weakness of RC4 Family
of Stream Ciphers. Proceedings of FSE 2005, LNCS, vol. 3557, Springer-Verlag, 2005, pages 342-358.

5. Alexander Maximov: Some Words on Cryptanalysis of Stream Ciphers. Ph.D. Thesis, Lund University 2006,
ISBN 91-7167-039-4

6. Alexander Maximov, Dmitry Khovratovich: New State Recovery Attack on RC4 Proceedings of CRYPTO
2008, LNCS, vol. 5157, Springer-Verlag, 2008, pages 297-316.

7. Bartosz Zoltak: VMPC One-Way Function and Stream Cipher Proceedings of FSE 2004, LNCS, vol. 3017,
Springer-Verlag, 2004, pages 210-225.

8. Kamil Kulesza: On inverting the VMPC one-way function. Department of Applied Mathematics and Theo-
retical Physics, University of Cambridge, http://talks.cam.ac.uk/talk/index/4950

9. Jonathan J. Hoch, Adi Shamir Fault Analysis of Stream Ciphers. Proceedings of CHES 2004, LNCS, vol.
3156, Springer-Verlag, 2004

10. Eli Biham, Louis Granboulan, Phong Q. Nguyen: Impossible Fault Analysis of RC4 and Differential Fault
Analysis of RC4. Proceedings of FSE 2005, LNCS, vol. 3557, Springer-Verlag, 2005, pages 359-367.

11. Itsik Mantin: Predicting and Distinguishing Attacks on RC4 Keystream Generator. Proceedings of Eurocrypt
2005, LNCS vol. 3494 of LNCS, Springer-Verlag, 2005, pages 491-506

12. Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Maki Shigeri, Tomoyasu Suzaki, Takeshi Kawabata: The Most
Efficient Distinguishing Attack on VMPC and RC4A ECRYPT Stream Cipher Project, Report 2005 / 037

13. Serge Mister, Stafford E. Tavares: Cryptanalysis of RC4-like Ciphers. Proceedings of SAC 1998, LNCS, vol.
1556, Springer-Verlag, 1999.

14. Lars R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen, Sven Verdoolaege: Analysis Methods for (Al-
leged) RC4. Proceedings of ASIACRYPT 1998, LNCS, vol. 1514, Springer-Verlag, 1998.

15. Scott R. Fluhrer, David A. McGrew: Statistical Analysis of the Alleged RC4 Keystream Generator. Proceed-
ings of FSE 2000, LNCS, vol. 1978, Springer-Verlag, 2001.

16. Itsik Mantin, Adi Shamir: A Practical Attack on Broadcast RC4. Proceedings of FSE 2001, LNCS, vol. 2355,
Springer-Verlag, 2002.

17. Scott Fluhrer, Itsik Mantin, Adi Shamir: Weaknesses in the key scheduling algorithm of RC4. Proceedings of
SAC 2001, LNCS, vol. 2259, Springer-Verlag 2001.

18. Jovan Dj. Golic: Linear Statistical Weakness of Alleged RC4 Keystream Generator. Proceedings of EURO-
CRYPT 1997, LNCS, vol. 1233, Springer-Verlag, 1997.



19. Alexander L. Grosul, Dan S. Wallach: A Related-Key Cryptanalysis of RC4. Technical Report TR-00-358,
Department of Computer Science, Rice University, 2000.

20. A. F. Webster; Stafford E. Tavares. On the design of S-boxes. Proceedings of CRYPTO 1985, LNCS, vol. 218,
Springer-Verlag, 1986.


