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Abstract

Functional encryption (FE) is a powerful primitive enabling fine-grained access to encrypted data.
In an FE scheme, secret keys (“tokens”) correspond to functions; a user in possession of a ciphertext
ct = Enc(x) and a token TKf for the function f can compute f(x) but learn nothing else about x. An
active area of research over the past few years has focused on the development of ever more expressive
FE schemes.

In this work we introduce the notion of multi-input functional encryption. Here, informally, a user
in possession of a token TKf for an n-ary function f and multiple ciphertexts ct1 = Enc(x1), . . . ,
ctn = Enc(xn) can compute f(x1, . . . , xn) but nothing else about the {xi}. Besides introducing the
notion, we explore the feasibility of multi-input FE in the public-key and symmetric-key settings, with
respect to both indistinguishability-based and simulation-based definitions of security.
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1 Introduction

Traditional encryption schemes provide rather coarse-grained access to encrypted data: given a ciphertext
ct = Enc(x), a user in possession of the appropriate secret key is authorized to learn x in its entirety,
whereas a user who does not hold the secret key learns nothing about the underlying data x. Functional
encryption [10, 21, 17], which extends the earlier notion of predicate encryption (aka, attribute-based en-
cryption) [25, 11, 6, 27], offers much more fine-grained control. In a functional encryption (FE) scheme,
secret keys—which we will refer to as “tokens”—are associated with functions; roughly speaking, a user
who holds a token TKf associated with the function f and a ciphertext ct = Enc(x) can learn f(x) but
nothing else about x. (Predicate encryption corresponds to the special case in which a user learns all of x
if and only if f(x) = 1.) The past few years have seen steady progress toward constructing predicate en-
cryption schemes [24, 19, 18, 20] and FE schemes [31, 23, 21, 20] with greater expressiveness and collusion
resistance, culminating in the recent work of Garg et al. [17] showing an FE scheme for arbitrary functions
with security against an attacker who obtains an unbounded number of tokens.

Functional encryption applies to unary functions taking a single input. Here, we introduce the notion
of multi-input functional encryption, a generalization to the case of n-ary functions. Informally, a token
TKf for the n-ary function f allows a user who obtains ciphertexts ct1 = Enc(x1), . . . , ctn = Enc(xn) to
compute f(x1, . . . , xn) while learning nothing else about the underlying data x1, . . . , xn

1. Beyond serving
as a natural extension of FE, multi-input FE also has several important applications that we discuss below.

The usual setting for functional encryption is the public-key one, in which anyone (including the adver-
sary) can generate ciphertexts. While multi-input FE can be defined in such a setting, it is not hard to see
that the security that can be obtained in this case is relatively weak. Specifically (simplifying to the case of a
two-input function f ), an attacker who holds TKf and Enc(x1) for some unknown x1 can always generate,
on its own, ciphertexts ct

(1)
2 = Enc(x

(1)
2 ), . . . , ct(`)2 = Enc(x

(`)
2 ) for known x(1)

2 , . . . , x(`)
2 , and then use

TKf to learn f(x1, x
(1)
2 ), . . . , f(x1, x

(`)
2 ). In general, this can reveal a significant amount of information

about x1.
On the other hand, multi-key FE can be very useful in the symmetric-key setting where a user holding a

token may not be able to encrypt new messages and so the above attack no longer applies. In this setting, we
can hope to achieve a notion of security which is the natural counterpart of what can be achieved in the unary
case [32]: possession of tokens TKf1 , . . . ,TKf` corresponding to the functions f1, . . . , f` allows a user
who obtains ciphertexts ct1 = Enc(x1), . . . , ctn = Enc(xn) to learn f1(x1, . . . , xn), . . . , f`(x1, . . . , xn)
but nothing else about the {xi} (but see footnote 1). In the symmetric-key setting we actually consider two
variant models: a “basic” setting in which there is a single encryption key, and a “multi-client” setting in
which there are n secret keys usk1, . . . , uskn and the token TKf can only be used to compute f(x1, . . . , xn)
when given n ciphertexts ct1, . . . , ctn such that cti = Encuski(xi). The second notion is natural in a setting
in which there are multiple senders; by enforcing an ordering among the inputs {xi}, it also addresses the
issue raised in footnote 1.

1.1 Our Results

Besides introducing the notion of multi-input FE, we initiate a comprehensive study of its feasibility. We
consider both the public-key and private-key settings. Although, as discussed above, the public-key set-
ting appears rather limited, we include a consideration of this setting both for completeness and because it
provides a useful stepping stone to our results in the symmetric-key case.

As in the case of standard FE [10], we consider both indistinguishability-based and simulation-based
1For the purposes of the present discussion, we assume f is symmetric so the order of its inputs does not matter. In the general

case we allow the user to learn f(xi1 , . . . , xin) for every permutation of the inputs.
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notions of security. With respect to the indistinguishability-based definition, we show constructions of
multi-input FE for arbitrary functions (in both the public-key and symmetric-key settings) based on any
indistinguishability obfuscator iO as defined in [3, 22] and constructed in [17]. With regard to simulation-
based security in the public-key setting, we are already faced with impossibility results [10, 1, 5] for realizing
general functions even in the unary case. We extend these results to show that if a function family supports
simulation-based security for multi-input FE in the public-key setting, then the functions are “learnable”
in a sense we define. We also demonstrate that this is tight, providing a construction for “learnable” func-
tion families achieving simulation-based security in the public key setting. This construction can also be
extended to the symmetric key setting, in this case supporting arbitrary functions. Our constructions are
based on virtual black-box (VBB) obfuscation. Although VBB obfuscation for all functions is impossible in
the standard model [3], it was recently shown to be possible in a strengthened version of the generic-group
model [13, 4]. Our results are subject to the same caveats as theirs, and we view our constructions as initial
feasibility results that can be viewed as secure against “generic” attacks. On a more positive note, we also
show that we can use the compiler of Caro et al. [14] to avoid the assumption of VBB obfuscation, though
at the expense of only achieving bounded-message/bounded-key security.

In the indistinguishability-based setting, we note that our construction from iO has succinct ciphertexts,
but the runtime of the encryption and decryption protocols grow with the number of challenge plaintexts.
This is because the crs in our public parameters is forced to grow with the number of simulated proofs. How-
ever, if the underlying obfuscation protocol has differing-input security [3, 2, 12], we can achieve runtime
that is fully independent of the number of ciphertexts. Interestingly, even with this stronger assumption, we
only know how to achieve selective security. We introduce a new notion of indistinguishability-obfuscation
that we call strong differing-inputs obfuscation, and prove that this assumption suffices for achieving the
desired efficiency together with adaptive security. See Remark 2.5 and Appendix D for more details.

1.2 Applications of Multi-Input FE

We briefly mention some applications of multi-input FE, focusing on the symmetric-key setting. We de-
scribe these applications informally as motivation for the notion of multi-input FE, and omit any formal
consideration of these applications.

Order-preserving and property-preserving encryption. Multi-input symmetric-key FE can be used for
searching over encrypted data, where it can function in the same role as order-preserving encryption (OPE)
[8, 9] or, more generally, property-preserving encryption [28]. Specifically, consider a setting in which a
client uploads several encrypted data items ct1 = Enc(x1), . . . , ctn = Enc(xn) to a server. If, at some
later point in time, the client wants to retrieve all data items less than some value t, the client can send
ct∗ = Enc(t) along with a token TKf for the (binary) comparison function. This allows the server to identify
exactly which data items are less than the desired threshold t (and send the corresponding ciphertexts back to
the client), without learning anything beyond the relative ordering of the data items. The search query itself
remains hidden as well. A direct application of our construction yields the first OPE scheme to satisfy the
indistinguishability notion of security proposed by Boldyreva et al. [8], resolving the primary open question
in that line of research.

In fact, we can hide even more information than OPE: if the client tags every data item with a ‘0’ (i.e.,
uploads cti = Enc(0‖xi)) and tags the search term with a ‘1’ (i.e., sends ct∗ = Enc(1‖t)), then the client
can send TKf for the function

f(b‖x, b′‖t) =

{
x < t b = 0, b′ = 1

0 otherwise
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Thus, TKf allows comparisons only between the data items and the threshold, but not between the data items
themselves. More generally, the same approach can be used to enable arbitrary searches over encrypted
data while revealing only a minimal amount of information. In this sense, our results generalize property-
preserving encryption [28] to arbitrary functions.

Streaming verifiable computation. We can also apply multi-input symmetric-key FE to verifiable com-
putation, using the ideas of [29]. Let f be a predicate that a client wishes to outsource, and define a function
f∗ such that f∗(r1‖ind1‖x1, . . . , rn‖indn‖xn) outputs r1 if (1) r1 = · · · = rn, (2) indi = i for all i,
and (3) f(x1, . . . , xn) = 1 (and ⊥ otherwise). The client can compute and send TKf∗ to the server in
a pre-processing phase. Then, to evaluate f(x1, . . . , xn) the client chooses a random nonce r and sends
Enc(r‖i‖xi) for i = 1, . . . , n; the server returns r iff f(x1, . . . , xn) = 1. (As in [29], the scheme can be run
a second time using the negation of f so the client can verify when the result is 0.) Although, as described,
this could be achieved with unary FE (by simply having the client send Enc(x1‖ · · · ‖xn)), an advantage of
multi-input FE is that it applies naturally to a streaming setting where the client may never hold all the {xi}
at any one time. We remark also that by using a multi-client scheme we can achieve multi-client verifiable
computation [15] with security against malicious clients.

Multi-client data aggregation. Consider a setting in which n senders (e.g., sensors or network monitors)
collect data and report it to a central server. The data from the various senders is encrypted, yet the server
should be able to compute some function of the reported results. An additional challenge here is that a subset
of the senders may be compromised, possibly colluding with the server, yet the corrupted parties should still
learn nothing about the data reported by any honest senders (other than the allowed function computed over
all the results). Our notion of multi-client, symmetric-key FE (MC-FE) can be used in exactly this scenario.
(A similar notion was proposed by Shi et al. [33], and several potential applications are discussed there.)

1.3 Informal Overview of Our Constructions

Intuition. Our construction is inspired by the technique used by Garg et al. [17] for constructing (unary)
FE from iO. We focus on achieving binary FE for concreteness. In our construction, plaintexts are encrypted
using a standard public-key encryption scheme. The token for a function f consists of an indistinguishability
obfuscation of a function that decrypts two ciphertexts using the master secret key, evaluates f on the
resulting plaintexts, and outputs the result. Unfortunately, as described, this scheme is insecure since iO
does not guarantee the secrecy of the decryption key that is hard-coded in the iO.

We modify the above by encrypting each plaintext twice, and adding a statistically simulation-sound
NIZK (SSS-NIZK) proof that the two ciphertexts encrypt the same plaintext x. While real-world ciphertexts
encrypt consistent copies of the same plaintext (x, x), in the proof of security we use a hybrid experiment
in which ciphertexts instead consist of encryptions of two different messages (x, y) and a simulated NIZK
proof of consistency. The main difficulty is to argue that, even given these “simulated” ciphertexts, an iO
that uses the 1st decryption key to decrypt is indistinguishable from an iO that uses the 2nd decryption key
to decrypt. To make this argument, we need to show that these two iOs are functionally equivalent, i.e.,
they always agree on the output for any input. As we will see, in the public-key setting this argument is
quite straightforward. Counter-intuitively, it is the private key setting (both the basic setting, and the multi-
client setting) that is more challenging, requiring several changes to the construction just described. We will
summarize these below, after providing intuition for the proof in the simpler public-key setting.

The public-key setting. Fix a (two-input) function f and challenge plaintext pairs x1, x2 and y1, y2 with
f(x1, ·) = f(y1, ·), and f(·, x2) = f(·, y2). (This restriction is inherent for any meaningful definition of
security in the public-key setting.) The adversary is given TKf and either ct1 = (Enc(x1),Enc(x1), π1)
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and ct2 = (Enc(x2),Enc(x2), π2), or ct1 = (Enc(y1),Enc(y1), π1) and ct2 = (Enc(y2),Enc(y2), π2). The
token TKf is an iO of a circuit that takes two FE ciphertexts (each consisting of a pair of ciphertexts plus
an NIZK proof), verifies the NIZK proofs, decrypts the first ciphertext in each FE ciphertext, and computes
f on the resulting plaintexts. In a hybrid experiment, we modify TKf to a TK′f that decrypts and uses the
second ciphertext in each of the FE ciphertexts. As part of arguing that this hybrid world is indistinguishable
from the real experiment, we have to argue that TKf and TK′f have identical input/output behavior. If we
restrict ourselves to well-formed inputs, the claim is trivial. To handle adversarially generated ciphertexts,
we rely on the properties of SSS-NIZK to ensure that the only existing “ill-formed” ciphertexts with valid
proofs are precisely the challenge ciphertexts themselves. Since f(x1, ·) = f(y1, ·), and f(·, x2) = f(·, y2),
it holds that the outputs of TKf and TK′f are equivalent for all inputs.

The symmetric-key setting. Counter-intuitively, the public-key setting turns out to be easier precisely
because of the limitation that f(x1, ·) = f(y1, ·) and f(·, x2) = f(·, y2) for the challenge plaintext pairs,
which is not present in the symmetric-key setting. In the symmetric key setting, in contrast, we only require
that f(x1, x2) = f(y1, y2). However, now when we consider the ill-formed ciphertext from the hybrid
world, say ct1 = (Enc(x1),Enc(y1), π′), we can no longer claim that TKf and TK′f output the same value
on all inputs. In fact, there likely exists some msg such that f(x1,msg) 6= f(y1,msg). We therefore modify
the construction as follows. We place a statistically binding commitment to some random value α in the
public parameters. We modify the encryption algorithm to include α, along with a NIZK proof that this is
the value in the commitment. Then, during decryption, the iO circuit in TKf checks the proof, and checks
that the value α is consistent across both ciphertexts. As before, if the two inputs are well-formed, it is
trivial to see that TKf and TK′f have the same input/output behavior. When one (or both) ciphertexts are
ill-formed, we again turn to the SSS property of the NIZK, and the constraint described above. Using the
SSS property, we ensure that the only ill-formed ciphertexts with accepting NIZKs are precisely those that
we need in our hybrid proof, all of which will use some fixed α′ 6= α, along with a simulated proof of
consistency with the committed value. Now, consider the outputs of TKf and TK′f when (at least) one
input is an ill-formed ciphertext from the hybrid game, say ct1 = (Enc(x1),Enc(y1), π′1, α

′). If the second
ciphertext is well-formed, both circuits will output ⊥ because of the failed check of whether α′ = α. If the
second ciphertext is also from the hybrid world, say of the form ct2 = (Enc(x2),Enc(y2), π′2, α

′), then both
ciphertexts use α′ and both TKf and TK′f will proceed to compute f . TKf will output f(x1, x2) while TK′f
will output f(y1, y2), but now we can rely on the constraint that these values are equal for all legitimate
challenge plaintexts.

The multi-client symmetric-key setting. In this setting, the adversary is allowed to corrupt some set Ḡ.
Our restriction on the adversary is that for challenge vectors ~xG and ~yG, f(~xG, · · · ) = f(~yG, · · · ), where ~xG
and ~yG correspond to the plaintexts by the uncorrupted parties, and · · · denotes the plaintexts corresponding
to the corrupted parties.

Recall that in the aforementioned single-client, symmetric-key setting, the sender must have a secret
value α to encrypt. However, here we cannot give a single α to each party since the adversary can corrupt a
subset of the parties. Instead, we would like to give each party their own αi.

As before, there is a hybrid world in which the challenger must encrypt as (Enc(~xG),Enc(~yG)) in the two
parallel encryptions. Later, in order for us to switch the decryption key in the iO from sk to sk′, the two iO’s
(using sk and sk′ respectively) must be functionally equivalent. To achieve this functional equivalence, we
must prevent mix-and-match of simulated and honest ciphertexts. In the earlier single-client, symmetric-key
setting, this is achieved by using a fake α value in the simulation, and verifying that all ciphertexts input into
the iO must have the same α value. In the multi-client setting, a simple equality check no longer suffices,
so we need another way to prevent mix-and-match of hybrid ciphertexts with well-formed ciphertexts. We
do this by choosing a random vector ~βG such that 〈~βG, ~αG〉 = 0. We hard-code ~βG in the iO, and if the ~αG
values in the ciphertexts are not orthogonal to ~βG, the iO will simply output ⊥.
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In the hybrid world, instead of using the honest vector ~αG, the simulator uses another random ~α′G
orthogonal to ~βG, and simulates the NIZKs. In this way, a mixture of honest and simulated ciphertexts for
the set G will cause the iO to simply output ⊥, since mixing the coordinates of ~αG and ~α′G will result in
a vector not orthogonal to ~βG (except with negligible probability over the choice of these vectors). In this
way, except with negligible probability over the choice of these vectors, using either sk or sk′ to decrypt in
the iO will result in exactly the same input and output behavior.

Finally, in order for us to obtain faster encryption and decryption time, instead of encoding ~αG directly
in the ciphertexts, we use a generator for a group that supports the Diffie-Hellman assumption and encode
g~αG instead. As we will show later, this enables the simulator to simulate fewer NIZKs. In fact, with this
trick, the simulator only needs to simulate NIZKs for the challenge time step alone. Therefore, the CRS
and the time to compute ciphertexts will be independent of the number of time steps. The details appear in
Section 2.3.

2 Indistinguishability-Based Security

In this section we present indistinguishability-based (IND-security) definitions and constructions for the
public key, symmetric key, and multi-client settings. For simplicity, we focus on the binary-input setting in
both the public key and symmetric key settings. However, we remark that our construction extend naturally
to the multi-input setting. The only modification is to make the iO circuit accept more ciphertexts as inputs,
and compute the function f over all decrypted values. The proof follows in a straightforward manner.

2.1 The Public-Key Setting

2.1.1 Definitions

Let F = {Fκ}κ>0 be a collection of function families, where every f ∈ Fκ is a polynomial time function
f :Mκ×Mκ →M′κ, whereMκ = {0, 1}µ(κ),M′κ = {0, 1}µ

′(κ), and µ, µ′ are polynomial. A public-key
binary FE scheme supporting F is a collection of algorithms: (Setup,KeyGen,Enc,Eval). The first three
algorithms are probabilistic, and Eval is deterministic. They have the following semantics:

Setup: (msk, param)← Setup(1κ)

KeyGen: for any f ∈ Fκ, TKf ← KeyGen(msk, f)

Enc: ct← Enc(param,msg)

Eval: ans← Eval(param,TKf , ct1, ct2)

Correctness. The correctness property states that with overwhelming probability over the randomness
used in Setup, KeyGen, and Enc, for all f ∈ F and all messages x, y ∈M,

Eval(param,KeyGen(msk, f),Enc(param, x),Enc(param, y)) = f(x, y).

Adaptive security. Here we define the full IND-security notion, referred to as adaptive security, for the
public key setting. We say that a binary FE scheme is adaptively, multi-message (resp. single-message),
IND-secure if for all PPT, non-trivial, stateful adversaries A, for a uniformly chosen b ← {0, 1}, Pr[b′ =
b] ≤ 1

2 +negl(κ) for some negligible function negl(·) in the following multi-message (resp. single-message)
experiment:
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adaptive IND-security:

1. (msk, param)← Setup(1κ)

2. b← {0, 1}
3. (x1, y1)← AKeyGen(·)(param, 1κ).
4. For i = 1 to m:

• if b = 0: cti ← Enc(param, xi),
else: cti ← Enc(param, yi).

• (xi+1, yi+1)← AKeyGen(·)(cti).

5. b′ ← AKeyGen(·)

adaptive single-message IND-security:

1. (msk, param)← Setup(1κ)

2. b← {0, 1}
3. (x, y)← AKeyGen(·)(param, 1κ).
4. if b = 0: ct← Enc(param, x),

else: ct← Enc(param, y).
5. b′ ← AKeyGen(·)(ct)

An adversary is considered non-trivial if for every query f made to the KeyGen(·) oracle, for any polynomial
m and for all i ∈ [m], and for all msg ∈ M, it holds that f(xi,msg) = f(yi,msg), and f(msg, xi) =
f(msg, yi). For simplicity we often use the following notation to denote this requirement:

f(xi, ·) = f(yi, ·), f(·, xi) = f(·, yi)

Lemma 2.1 The above adaptive, multi-message indistuiguishability security is equivalent to adaptive, single-
message indistinguishability security.

Proof: (sketch.) We show that if a public-key binary FE scheme is single-message secure, then it is multi-
message secure. This can be achieved through a sequence of hybrid games. For i ∈ {1, 2, . . . ,m}, define
Hybrid i where the simulator encrypts (y1, y2, . . . , yi, xi+1, . . . , xm). What we would like to show is that
Hybrid 0 (encrypting all xi values) is indistinguishable from Hybrid m (encrypting all yi values). To show
this, we just need to show that each adjacent pairs of hybrids are indistinguishable — and this can be easily
reduced to the single-message security.

We stress that while in the public-key setting, multi-message and single-message security are equivalent,
this is not true in the symmetric-key setting mentioned later.

Selective security. Our iO-based construction below only achieves selective security. Next we define se-
lective secure indistinguishability-based security for binary FE. but we note that we can achieve the stronger
definitions through standard complexity-leveraging techniques.

Note that similar to the adaptive setting, in the selective model, single-message and multi-message
security are equivalent. We therefore only define single-message security for simplicity.

We say that a binary FE scheme is selectively, single-message, IND-secure if for all PPT, non-trivial,
stateful adversaries A, for a uniformly chosen b ← {0, 1}, Pr[b′ = b] ≤ 1

2 + negl(κ) in the following
experiment:

selective single-message IND-security:

1. (x, y)← A(1κ)

2. (msk, param)← Setup(1κ)

3. b← {0, 1}
4. If b = 0: ct← Enc(param, x), else: ct← Enc(param, y)

5. b′ ← AKeyGen(·)(param, ct)

Here A is non-trivial if f(x, ·) = f(y, ·) and f(·, x) = f(·, y) for every query f made to KeyGen oracle.
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Internal (hardcoded) state: param = (crs, pk, pk′), sk, f

On input: ct0, ct1
– Unpack (c0, c

′
0, π0) ← ct0 and (c1, c

′
1, π1) ← ct1. Let stmt0 := (c0, c

′
0), and stmt1 := (c1, c

′
1) be

statements for the NP-language Lpk,pk′ .
– If NIZK.Verify(crs, π0, stmt0) = NIZK.Verify(crs, π1, stmt1) = 1

then, compute x = E .Dec(sk, c0) and y = E .Dec(sk, c1), and output f(x, y).
– Else, output ⊥.

Figure 1: Public-key IND-secure binary FE: Program P

2.1.2 Construction based on Indistinguishability Obfuscation

Scheme description. Our construction uses a SSS-NIZK scheme NIZK := (Setup,Prove,Verify) and a
best possible obfuscation scheme iO, both of which are defined in Appendix A. We also use a semantically
secure public-key encryption scheme E := (Gen,Enc,Dec). We assume the encryption scheme has perfect
correctness. The detailed construction is described below.

Setup(1κ) :

1. crs← NIZK.Setup(1κ)

2. (pk, sk)← E .Gen(1κ), (pk′, sk′)← E .Gen(1κ)

3. Output param := (crs, pk, pk′), msk := (param, sk)

KeyGen(msk, f):

1. Parse msk into (param, sk) where param = (crs, pk, pk′). Construct a circuit Cf for the program P
described in Figure 2.

2. Define TKf := iO(Cf ), and output TKf .

Enc(param, x):

1. Unpack (crs, pk, pk′)← param.
2. Compute c = E .Enc(pk, x; ρ) and c′ = E .Enc(pk′, x; ρ′) for randomly chosen ρ and ρ′ needed for the

randomized encryption algorithm.
3. Create a NIZK π = NIZK.Prove(crs, (c, c′), (ρ, ρ′, x)) for the following language Lpk,pk′ : for any

statement stmt := (c, c′), stmt ∈ Lpk,pk′ if and only if

∃(ρ, ρ′, x) s.t. (c = E .Enc(pk, x; ρ)) ∧
(
c′ = E .Enc(pk′, x; ρ′)

)
.

4. Output ct := (c, c′, π)

Eval(param,TKf , ct0, ct1):

1. Interpret TKf as an obfuscated program. Compute TKf (ct0, ct1) and output the result.

In Appendix B.1 we prove the following theorem.

Theorem 2.2 (Public-key IND-secure binary-FE from iO.) If iO is an indistinguishability obfuscator,
NIZK is statistically simulation sound NIZK, and the encryption scheme is semantically secure and per-
fectly correct, then the above construction is selectively, IND-secure, as defined in Section 2.1.1. Further,
using standard complexity leveraging techniques, we can achieve adaptive IND-security.
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Instantiation and efficiency. Suppose we instantiate our scheme with the iO construction by Garg et
al. [17], and the SSS-NIZK constructions described in Appendix A.2. With this instantiation, the public
parameter size, encryption time, decryption time, ciphertext length are all poly(κ) (i.e., depend only on the
security parameter). The size of the token and time to generate the token is O(|f |) · poly(κ).

2.2 The Symmetric-Key Setting

2.2.1 Definitions

Let F = {Fκ}κ>0 be a collection of function families, where every f ∈ Fκ is a polynomial time function
f : Mκ ×Mκ → M′κ. A symmetric-key binary FE scheme supporting F is a collection of algorithms:
(Setup,KeyGen,Enc,Eval). The first three algorithms are probabilistic, and Eval is deterministic. They
have the following semantics, if we leave the randomness implicit:

Setup: (msk, param)← Setup(1κ)

KeyGen: for any f ∈ Fκ, TKf ← KeyGen(msk, f)

Enc: ct← Enc(msk,msg)

Eval: ans← Eval(param,TKf , ct1, ct2)

In comparison with the public-key setting, here the encryptor must have a secret key msk to perform
encryption.

Correctness. As usual, we must define the desired correctness and security properties. The correctness
property states that, given (msk, param)← Setup(1κ), with overwhelming probability over the randomness
used in Setup, KeyGen and Enc, it holds that Eval(KeyGen(msk, f), param,Enc(msk, x),Enc(msk, y)) =
f(x, y).

Adaptive security. We now define security for IND-secure symmetric-key binary FE. Similarly as before,
we first define adaptive security, then we define the selective security relaxation. Unlike in the public key
setting, here single-message security does not imply multi-message security, so we cannot prove a parallel
to Lemma 2.1. A similar observation was made by Pandey and Rouselakis [28]. Therefore we only define
the stronger multi-message security notion.

An Ind-Secure scheme is said to be adaptively Ind-Secure if for all PPT, non-trivial adversary A, its
probability of winning the following game is Pr[b = b′] < 1

2 + negl(κ).

Ind-Secure-adaptive:
1. (msk, param)← Setup(1κ)

2. b $← {0, 1}
3. (x1, y1)← AKeyGen(·)(param, 1κ).
4. For i = 1 to m:

• if b = 0: cti ← Enc(msk, xi), else: cti ← Enc(msk, yi).

• (xi+1, yi+1)← AKeyGen(·)(cti).

5. b′ ← AKeyGen(·)

An adversary is considered non-trivial if for every query f made to the KeyGen(·) oracle, and for any
polynomial m, for all i, j ∈ [m], it holds that f(xi, xj) = f(yi, yj).
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Internal (hardcoded) state: param = (crs, pk, pk′, com), sk, f

On input: ct0, ct1
– Parse ct0 as (c0, c

′
0, α0, π0) and ct1 as (c1, c

′
1, α1, π1). Let stmt0 := (c0, c

′
0, α0), and stmt1 :=

(c1, c
′
1, α1). Verify that α0 = α1 and NIZK.Verify(crs, stmt0, π0) = NIZK.Verify(crs, stmt1, π1) = 1. If

fails, output ⊥.
– Compute x0 = E .Dec(sk, c0) and x1 = E .Dec(sk, c1) output f(x0, x1).

Figure 2: Symmetric-key IND-secure binary FE: Program P

Selective security. Our main construction (based on iO) below only achieves selective security, but we
note that we can achieve adaptive security through standard complexity-leveraging techniques.

An Ind-Secure scheme is said to be selectively IND-secure if for all PPT, non-trivial adversary A, its
probability of winning the following game is Pr[b = b′] < 1

2 + negl(κ).

Ind-Secure-selective:
1. {(x1, . . . , xm), (y1, . . . , ym)} ← A(1κ)

2. (msk, param)← Setup(1κ)

3. b← {0, 1}
4. if b = 0: ∀i ∈ [m] : cti ← Enc(msk, xi), else: ∀i ∈ [m] : cti ← Enc(msk, yi).
5. b′ ← AKeyGen(·)(param, ct1, . . . , ctm)

An adversary is considered non-trivial if for every query f made to the KeyGen(·) oracle, and for all i, j ∈
[m] where m = poly(κ), it holds that f(xi, xj) = f(yi, yj). We note that this is a much weaker restriction
on the adversary than the one used in the public key setting, which makes symmetric key schemes more
difficult to construct.

2.2.2 Construction based on Indistinguishability Obfuscation

Scheme description. Our construction uses a SSS-NIZK scheme NIZK := (Setup,Prove,Verify) that is
statistically simulation sound for multiple simulated statements, an indistinguishable obfuscation scheme
iO, and a perfectly binding commitment scheme (commit, open), all of which are defined in Appendix A.
We also use a CPA-secure public-key encryption scheme E := (Gen,Enc,Dec) with perfect correctness.
Our construction is as follows:

Setup(1κ) :

1. crs← NIZK.Setup(1κ,m) where m is an upper-bound on the number of ciphertexts.
2. α, r ← {0, 1}κ; com = commit(α; r)

3. (pk, sk)← E .Gen(1κ), (pk′, sk′)← E .Gen(1κ)

4. Output param := (crs, pk, pk′, com), msk := (param, sk, sk′, α, r)

KeyGen(msk, f)

1. Using msk = (sk, sk′, α, r), construct a circuit Cf that computes program P as described in Figure 2.
2. Define TKf := iO(Cf ), and output TKf .

Enc(msk, x):
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1. Parse msk as (param, sk, sk′, α, r), where param := (crs, pk, pk′, com).
2. Compute c = E .Enc(pk, x; ρ) and c′ = E .Enc(pk′, x; ρ′) for random strings ρ and ρ′ consumed by the

encryption algorithm.
3. Output ct := (c, c′, α, π) where π := NIZK.Prove(crs, (c, c′, α), (r, ρ, ρ′, x)) is a NIZK for the lan-

guage Lpk,pk′,com: for any statement stmt := (c, c′, α), stmt ∈ Lpk,pk′,com if and only if

∃(r, ρ, ρ′, x) s.t. (c = E .Enc(pk, x; ρ)) ∧
(
c′ = E .Enc(pk′, x; ρ′)

)
∧ (com = commit(α; r)) . (1)

Eval(param,TKf , ct0, ct1):

1. Interpret TKf as an obfuscated circuit. Compute TKf (ct0, ct1) and output the result.

In Appendix B.2 we provide a proof of the following theorem.

Theorem 2.3 (Symmetric-key IND-secure binary-FE from iO.) If iO is an indistinguishability obfusca-
tor, NIZK is a statistically simulation sound NIZK scheme, the commitment is perfectly binding and com-
putationally hiding, and the encryption scheme is semantically secure and perfectly correct, then the above
construction is selectively IND-secure, as defined in Section 2.2.1. Using standard complexity leveraging
techniques, we can further achieve adaptive IND-security.

Instantiation and efficiency. We can instantiate our scheme with the SSS-NIZK scheme outlined in Ap-
pendix A.2 and with the iO construction by Garg et al. [17]. The ciphertext is succinct, and is poly(κ)
in size. For a scheme tolerant up to m ciphertext queries, the public parameter size, encryption time is
O(m)poly(κ), decryption time is O(m + |f |)poly(κ). The reason for the dependence on m is due to the
simulator’s need to simultaneously simulate O(m) SSS-NIZKs in the simulation, which increases the size
of the crs to O(m)poly(κ). Removing the dependence on m for encryption and decyrption remains an
important open problem (unless we assume non-falsifiable assumptions such as diO, as we will see next).

2.2.3 Construction based on Differing-inputs Obfuscation

We can make the encryption and decryption time more succinct if we assume a stronger assumption, namely,
differing input obfuscation. To do this, we can make the following modifications to our construction: we
replace the indistinguishability obfuscation iO with a differing-inputs obfuscation diO, and replace statisti-
cally simulation-sound NIZK (SSS-NIZK) scheme with an simulation sound NIZK.

Efficiency. Using diO, the public parameter size and ciphertext size are poly(κ); encryption time is
poly(κ); and decryption time is O(|f |)poly(κ). This assumes that a diO scheme exists whose obfuscated
program is of sizeO(|f |)poly(κ) for an original program f of sizeO(|f |+κ). The improvement stems from
the fact that the crs no longer has to grow to accommodate every simulated (false) NIZK proof required in
our hybrid games. This is because false proofs are hard for an adversary to find without the trapdoor, which
is sufficient for leveraging the security properties of diO obfuscation. We do not prove the next theorem, as
Theorem 2.11 is very similar and is proven in Section B.3.

Theorem 2.4 (Symmetric-key IND-secure binary FE from diO.) If diO is a differing-input obfuscater,
NIZK is an adaptive simulation sound NIZK scheme, the commitment is perfectly binding and computa-
tionally hiding, and the encryption scheme is semantically secure and perfectly correct, then the above
construction is selectively, IND-secure, as defined in Section 2.2.1.Further, we can obtain adaptive IND-
security through standard complexity leveraging techniques.
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Remark 2.5 We note that even with the stronger diO assumption, we can still only achieve selective security
(unless we use complexity leveraging techniques). Intuitively, in order to reduce to the security of the diO
construction, we have to argue that it is hard to find inputs on which the two circuits to be obfuscated differ.
This property stems from the fact that the NIZK trapdoor is kept from the reduction adversary. On the other
hand, without this trapdoor, it is hard for the reduction adversary to create the false proof that is needed to
simulate the challenge ciphertexts. In the selective-security model, the reduction adversary can simple get
the challenge ciphertext from the auxiliary output of the sampling algorithm in the diO construction.

In Appendix D we define a new, interactive notion of diO that addresses this problem (Definition D.2).
In the multi-client setting, we demonstrate that this assumption suffices for achieving adaptive security
(Appendix D). The same is true with the construction just presented. We omit the proof as it is essentially
the same as the one in Appendix D.

2.3 The Symmetric-Key, Multi-Client Setting

2.3.1 Definitions

Let F = {Fκ}κ>0 be a collection of function families, where every f ∈ Fκ is a polynomial time function
f :Mκ× · · ·×Mκ →M′κ. A multi-client functional encryption scheme (MC-FE) supporting n users and
function family Fκ is a collection of the following algorithms:

Setup : (msk, {uski}i∈[n])← Setup(1κ, n). Here uski is a user secret key for user i ∈ [n].

Enc : ct← Enc(uski, x, t). Here t represents the current time step t ∈ N.

KeyGen : TKf ← KeyGen(msk, f).

Dec : ans← Dec(TKf , {ct1, ct2, . . . , ctn}).

Correctness. We say that an MC-FE scheme is correct, if given (msk, {uski}i∈[n])← Setup(1κ, n), given
some t ∈ N, except with negligible probability over randomness used in Setup, Enc, KeyGen, and Dec, it
holds that Dec(KeyGen(msk, f),Enc(usk1, x1, t), . . . ,Enc(uskn, xn, t)) = f(x1, x2, . . . , xn).

2.3.2 Security Definitions

Our definitions assume a static corruption model where the corrupted parties are specified at the beginning
of the security game. How to support adaptive corruption is an interesting direction for future work.

Notations. We often use a shorthand ~x to denote a vector ~x := (x1, x2, . . . , xn). Let disjoint sets G,G
denote the set of uncorrupted and corrupted parties respectively. G ∪G = [n]. We use the short-hand −→varG
to denote the vector {vari}i∈G for a variable var. Similarly, we use the short-hand ~ctG ← Enc( ~uskG, ~xG, t)

to denote the following: ∀i ∈ G : cti ← Enc(uski, xi, t). We use the shorthand f(~xG, ·) :M|G| → M′ to
denote a function restricted to a subset G on inputs denoted ~xG ∈M|G|.

Define short-hand K(·) := KeyGen(msk, ·) to be an oracle to the KeyGen function. Define EG(·) to
be a stateful encryption oracle for the uncorrupted set G. Its initial state is the intial time step counter
t := 0. Upon each invocation EG(~xG), the oracle increments the current time step t ← t + 1, and returns
Enc( ~uskG, ~xG, t).

Adaptive security. Now, define the following adaptive, IND-security experiment for a stateful adversary
A. For simplicity, we will omit writing the adversary A’s state explicitly.

1. G,G← A
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2. b $← {0, 1}
3. (msk, {uski}i∈[n])← Setup(1κ, n)

4. (~x0
G, ~y

0
G)← AK(·)( ~uskG)

For j = 0, 1, . . . ,poly(κ):

If b = 0: ~ctjG ← EG(~xjG). Else: ~ctjG ← EG(~yjG)

(~xj+1
G , ~yj+1

G )← AK(·)(~ct
j
G)

5. b′ ← AK(·).

We say that an adversary A is non-trivial if for all j in the above game, the ~xjG and ~yjG submitted by A
satisfies the following property: for any function f queried to the KeyGen(msk, ·) oracle,

f(~xjG, ·) = f(~yjG, ·)

Definition 2.6 (Adaptive, IND-security of MC-FE) We say that an MC-FE scheme is indistinguishably
secure, if for any polynomial-time, non-trivial adversary A in the above game,∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≤ negl(κ).

Single-challenge security. We define a single-challenge version of the adaptive security game — it turns
out that single-challenge, adaptive security is equivalent to full adaptive security by Lemma 2.8. Single-
challenge security can typically be easier to work with in proofs. Intuitively, single-challenge security is
when there is a single challenge time step, in the following game.

1. G,G← A
2. b $← {0, 1}
3. (msk, {uski}i∈[n])← Setup(1κ, n)

4. (~x∗G, ~y
∗
G)← AK(·),EG(·)( ~uskG)

5. If b = 0: ~ct∗G ← EG(~x∗G). Else: ~ct∗G ← EG(~y∗G).

6. b′ ← AK(·),EG(·)(~ct
∗
G).

We say that an adversary A is non-trivial, if the following condition holds: For any function f queried
to the KeyGen(msk, ·) oracle,

f(~x∗G, ·) = f(~y∗G, ·)

Definition 2.7 (Single-challenge, adaptive, IND-security of MC-FE) We say that an MC-FE scheme is
single-challenge, indistinguishably secure, if for any polynomial-time, non-trivial adversary A in the above
game,

∣∣Pr[b′ = b]− 1
2

∣∣ ≤ negl(κ).

We show in the following lemma that single-challenge security and multi-challenge security are equiv-
alent.

Lemma 2.8 For MC-FE, single-challenge, adaptive IND-security (Definition 2.6) is equivalent to multi-
challenge, adaptive IND-security (Definition 2.7).
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Proof: It is trivial to see that Definition 2.6 implies Definition 2.7.
The other direction, that single-challenge, adaptive, IND-based security implies adaptive, IND-based

security, may be proven through a simple hybrid argument. Suppose we have an adversary A that can break
the full IND-security of Definition 2.6, we show how to construct an adversary B that can break the single-
challenge security of Definition 2.7. Define a sequence of hybrid games. Let Hybrid X be the game where
for each time step, the challenger always encrypts ~xG. Let Hybrid Y be the game where for each time step,
the challenger always encrypts ~yG. Suppose A queries ciphertexts for T time steps. Define Hybrid i, where
0 ≤ i ≤ T as below: In Hybrid i, for the first i time steps, the challenger encrypts ~xG, and for the remaining
time steps, it encrypts ~yG. Obviously, Hybrid 0 is the same as Hybrid X, and Hybrid T is the same as Hybrid
Y. Now, since A has non-negligible advantage of distinguishing Hybrid 0 and Hybrid T , due to the hybrid
argument, there must exist 0 ≤ i < T , such thatA can distinguish Hybrid i and i+1 — note that this means
that A can break single-challenge security.

Selective security. Our construction below is based on iO which achieves a relaxed notion of security,
i.e., selective security. But we note that we can lift the scheme to have adaptive security through standard
complexity-leveraging techniques.

Define the following single-challenge, selective experiment for a stateful adversary A. For simplicity,
we will omit writing the adversary A’s state explicitly. Define short-hand K(·) := KeyGen(msk, ·) to be an
oracle to the KeyGen function. Define EG(·) to be a stateful encryption oracle for the uncorrupted set G. Its
initial state is the intial time step counter t := 0. Upon each invocation EG(~xG), the oracle increments the
current time step t← t+ 1, and returns Enc( ~uskG, ~xG, t).

1. G,G, (~x∗G, ~y
∗
G)← A.

2. b $← {0, 1}, (msk, {uski}i∈[n])← Setup(1κ, n)

3. “challenge”← AK(·),EG(·)( ~uskG).

4. If b = 0: ~ct∗G ← EG(~x∗G). Else: ~ct∗G ← EG(~y∗G).

5. b′ ← AK(·),EG(·)(~ct
∗
G).

We say A is non-trivial, if for any function f queried to the KeyGen(msk, ·) oracle, f(~x∗G, ·) = f(~y∗G, ·).

Definition 2.9 (Selective IND-security of MC-FE) We say that an MC-FE scheme is selectively indistin-
guishably secure, if for any PPT, non-trivial adversaryA in the above selective security game,

∣∣Pr[b′ = b]− 1
2

∣∣ ≤
negl(κ).

2.3.3 Construction based on Indistinguishability Obfuscation

As mentioned in the introduction, the challenge here is that a subset of the parties may be corrupted. Our
idea is to give to each party a different αi which they must rely on during encryption. In the simulation, the
αi’s in the challenge-time step will be simulated, and we embed an orthogonal test in the iO to prevent the
mix-and-match of simulated ciphertexts and honest ones for the honest set of parties G. We rely on a DDH
assumption to separate out the challenge time step from the non-challenge time steps, such that the simulator
only needs to use fake α values for the challenge time steps, and the NIZK proofs for the non-challenge time
steps need not be simulated.

We first describe a version of our scheme with a random oracle. However, later, we point out that
the random oracle can easily be removed at the cost of expanding the public parameters by an additive
O(T )poly(κ) factor.
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Let G denote a group of prime order p > 2n · 2κ in which Decisional Diffie-Hellman is hard. Let
H : N → G denote a hash function modelled as a random oracle. Let E := (Gen,Enc,Dec) denote a
public-key encryption scheme.

• Setup(1κ, n): Compute (pk, sk)← E .Gen(1κ), and (pk′, sk′)← E .Gen(1κ). Run crs := NIZK.Setup(1κ, n),

where n is the number of clients. Choose a random generator g $← G. Choose random α1, α2, . . . , αn ∈
Zp. For i ∈ [n], let gi := gαi . Set param := (crs, pk, pk′, g, {gi}i∈[n]). The secret keys for each user
are: uski := (αi, param) The master secret key is: msk := ({αi}i∈[n], sk, sk

′).

• Enc(uski, x, t): For user i to encrypt a message x for time step t, it computes the following. Let ht :=
H(t). Choose random ρ and ρ′ as the random bits needed for the public-key encryption scheme. Let c :=
E .Enc(pk, x; ρ) and c′ := E .Enc(pk′, x; ρ′). Let d = hαit , Let statement stmt := (t, i, c, c′, d); let witness
w := (ρ, ρ′, x, αi). Let the NP language be defined as in Figure 3. Let π := NIZK.Prove(crs, stmt, w).
Informally, this proves that 1) the two ciphertexts c and c′ encrypt consistent plaintexts using pk and pk′

respectively; and 2) (ht, gi, d) is a true Diffie-Hellman tuple.

The ciphertext is defined as:ct := (t, i, c, c′, d, π).

Our NP language Lpk,pk′,g,{gi}i∈[n]
is parameterized by (pk, pk′, g, {gi}i∈[n]) output by the Setup algorithm

as part of the public parameters. A statement of this language is is of the format stmt := (t, i, c, c′, d), and
a witness is of the format w := (ρ, ρ′, x, ω). A statement stmt := (t, i, c, c′, d) ∈ Lpk,pk′,g,{gi}i∈[n]

, iff

∃ x, (ρ, ρ′), ω s.t. DH(ht, gi, d, ω) ∧ (c = E .Enc(pk, x; ρ)) ∧
(
c′ = E .Enc(pk′, x; ρ′)

)
where ht = H(t) for the t defined by ct; gi := gαi is included in the public parameters; (ρ, ρ′) are
the random strings used for the encryptions; and DH(A,B,C, ω) is defined as the following relation that
checks that (A,B,C) is a Diffie-Hellman tuple with the witness ω:

DH(A,B,C, ω) := ((A = gω) ∧ (C = Bω)) ∨ ((B = gω) ∧ (C = Aω))

Figure 3: NP language Lpk,pk′,g,{gi}i∈[n]
.

Note that the NIZK π ties together the ciphertexts (c, c′) with the term d = H(t)αi . This intuitively ties
(c, c′) with the time step t, such that it cannot be mix-and-matched with other time steps.

• KeyGen(msk, f): To generate a server token for a function f over n parties’ inputs compute token
TKf := iO(P ) for a Program P defined as in Figure 4:

• Dec(TKf , ct1, . . . , ctn): Interpret TKf as an obfuscated program. Output TKf (ct1, ct2, . . . , ctn).

In Appendix B.3 we provide a proof of the following theorem.

Theorem 2.10 Let G be a group for which the Diffie-Hellman assumption holds, and let H be a random
oracle. If the iO is secure, the NIZK is statistically simulation sound, and the encryption scheme is seman-
tically secure and perfectly correct, then the above construction is selectively, IND-secure, as defined in
Section 2.3.1.

Removing the random oracle. It is trivial to remove the random oracle if we choose h1, h2, . . . , hT at
random in the setup algorithm, and give them to each user as part of their secret keys (i.e., equivalent to
embedding them in the public parameters). This makes the user key O(n + T )poly(κ) in size, where n
denotes the number of parties, and T denotes an upper bound on the number of time steps.
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Program P (ct1, ct2, . . . , ctn):

Internal hard-coded state: param = (crs, pk, pk′, g, {gi}i∈[n]), sk, f

1. For i ∈ [n], unpack (ti, ji, ci, c
′
i, di, πi) ← cti. Check that t1 = t2 = . . . = tn, and that ji = i. Let

stmti := (ti, ji, ci, c
′
i, di).

2. For i ∈ [n], check that NIZK.Verify(crs, πi, stmti) = 1.

3. If any of these above checks fail, output ⊥.

Else: for i ∈ [n], let xi ← E .Dec(sk, ci). Output f(x1, x2, . . . , xn).

Figure 4: MC-FE: Program P .

Instantiation and efficiency. We can instantiate our scheme using the SSS-NIZK construction described
in Appendix A.2, and the iO construction described by Garg et. al [17]. In this way, our ciphertext is
succinct, and is only poly(κ) in size. Letting n denote the number of parties, the encryption time is
O(n)poly(κ), and the decryption time is O(n + |f |) · poly(κ). The dependence on n arises due to the
need for the simulator to simulate O(n) SSS-NIZKs. Each user’s secret key is of size is O(n)poly(κ) for
the version with the random oracle, and is O(n+ T )poly(κ) for the version of the scheme without the ran-
dom oracle. Note that due to our use of the Diffie-Hellman assumption, we have removed the dependence
on T for encryption/decryption time in a non-trivial manner.

2.3.4 Construction based on Differing-inputs Obfuscation

Using a stronger assumption, i.e., differing input obfuscation, we can further compress the encryption and
decryption time, as well as public parameter size. The diO-based construction is the same as our construction
described in Section 2.3.3, except that we now replace the iO with diO, and SSS-NIZK with adaptive
simulation-sound NIZK,

Theorem 2.11 If diO is differing-inputs obfuscation, NIZK is adaptive simulation sound NIZK, and the
encryption scheme is semantically secure and perfectly correct, and that the hash function H is a random
oracle2, then the above construction is selectively IND-secure as defined in Section 2.3.1.

In Appendix B.3 we provide a proof of the above theorem.

Efficiency. Using diO, the public parameter size, and the ciphertext size are poly(κ). Encryption time is
poly(κ), and decryption time is O(|f |)poly(κ). This assumes that the underlying diO produces an obfus-
cated program of size O(|f |)poly(κ) to obfuscate a function of size O(|f |+ κ).

3 Simulation-Based Security

In this section, we present the simulation-based (SIM-security) definition and investigate its feasibility and
impossibility. Note that known impossibility results for unary FE can be easily extended to the binary FE
setting. But in Section 3.1 we show a stronger impossibility result for public-key binary FE; we define a
class of learnable functions, and then prove that SIM-secure public key binary-FE schemes exist only for
learnable functions.

2As mentioned earlier, the random oracle can be removed by simply including the terms {ht} in param.
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Then in Section 3.1.2, we show that the above result is tight, demonstrating a construction of SIM-
secure binary-FE for any learnable function class from a construction of Virtual Black Box obfuscation for
polynomial-time functions. We further in Section 3.1.3 we show a construction of SIM-secure public-key
binary FE for any learnable function class from any public IND-secure binary-FE, which can be constructed
from indistinguishable obfuscation as shown in Section 2.1.1. The resulting construction only supports post-
challenge key queries (i.e. queries made after the challenge plaintext has been specified.). We note that this
is somewhat stronger than selective security, as we still allow the challenge message to depend on the public
parameters.

Finally, in Section 3.2, we show a symmetric-key analogue of the same construction; this construction
supports some bounded number of pre-challenge key queries, a bounded number of challenge plaintexts,
and an unbounded number of post-challenge queries. Both of these constructions follow along the lines of
the compiler from Caro et al. [14], extended in a natural way to the multi-input setting.

3.1 The Public-Key Setting

In Section 2.1.1, we considered the IND-security for public-key binary-FE. In this section, we study the
SIM-security in the public key setting. By extending the SIM-security for unary FE, we can define the
SIM-security as follows. As mentioned in the Introduction, the impossibility result of SIM-secure unary FE
can be extended to binary FE in a straightforward way. Here we intend to show stronger impossibility result
in the binary FE setting, and we consider binary FE with specific plaintext form. That is, we include a tag
tag ∈ {“1”,“2”} in plaintext, which indicates the position of the input to the function.

3.1.1 Definition and a Stronger Impossibility Result

Let F = {Fκ}κ>0 be a collection of function families, where every f ∈ Fκ is a polynomial time function
f : Mκ × Mκ → M′κ. A public-key binary FE scheme supporting F is a collection of algorithms:
(Setup,KeyGen,Enc,Eval). The first three algorithms are probabilistic, and Eval is deterministic. They
have the following semantics:

Setup: (msk, param)← Setup(1κ)

KeyGen: for any f ∈ Fκ, TKf ← KeyGen(msk, f)

Enc: ct← Enc(param,msg, tag) where tag ∈ {“1”,“2”}
Eval: ans← Eval(param,TKf , ct1, ct2)

Correctness. The correctness property states that with overwhelming probability over the randomness
used in Setup, KeyGen, and Enc, for all f ∈ F and all messages x, y ∈M,

Eval(param,KeyGen(msk, f),Enc(param, x, “1”),Enc(param, y, “2”)) = f(x, y).

Definition 3.1 (Simulation security of binary FE) Let FE = {Setup,KeyGen,Enc,Dec} be a binary func-
tional encryption scheme for a family of functions F . Then for polynomials q1(·), `(·), q2(·), a PPT adver-
sary A = (A1,A2), and a stateful simulator S, consider the following experiments:

RealA,q1(κ),`(κ),q2(κ)(1
κ) :

(param,msk)← FE.Setup(1κ)

((x1, y1), . . . , (x`, y`), st)← A
FE.KeyGen(msk,·)
1 (param)

for i ∈ [`], ctxi ← FE.Enc(param, xi, “1”), ctyi ← FE.Enc(param, yi, “2”)

α← AFE.KeyGen(msk,·)
2 ((ctx1 , cty1), . . . , (ctx` , cty`), st)

Output ((x1, y1), . . . , (x`, y`), α)
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IdealA,S,q1(κ),`(κ),q2(κ)(1
κ) :

param← S(1κ)

((x1, y1), . . . , (x`, y`), st)← A
S(·)
1 (param)

(ctx1 , cty1), . . . , (ctx` , cty`)← S
O′x1,y1,...,x`,y`

(·)(1|x1|, 1|y1|, . . . , 1|x`|, 1|y`|)

α← AO
′′(·)

2 ((ctx1 , cty1), . . . , (ctx` , cty`), st)
Output ((x1, y1), . . . , (x`, y`), α)

The oracle O′x1,y1,...,x`,y`
(·) has three modes: the first mode takes inputs a function f , two indices (i, j) and

returns f(xi, yj). The second mode takes inputs a function f , an index i, a string z and outputs f(xi, z).
The third mode is similar to the second except it outputs f(z, yi). The oracle O′′ = SO

′
x1,y1,...,x`,y` . In the

experiments, A1 and A2 make at most q1(κ), q2(κ) key queries respectively.
We say a stateful S is an admissible simulator if for every f that S queries to its oracle, the adversary

A queries the same f to its (simulated) KeyGen oracle.
We say the scheme is (q1, `, q2)-simulation secure if there exists a stateful admissible simulator S such

that for all PPT adversariesA, the experiments {RealA,q1(κ),`(κ),q2(κ)(1
κ)}κ∈N and {IdealA,S,q1(κ),`(κ),q2(κ)(1

κ)}κ∈N
are indistinguishable.

Definition 3.2 (Learnable binary functions) Let F = {Fk}κ∈N be a class of binary functions and Fκ
contains some binary functions

{
f : {0, 1}µ(κ) × {0, 1}µ(κ) → {0, 1}µ

′(κ)
}

, for some polynomials µ, µ′.
We say the class F is learnable if there exist learners L1, L2 such that for every κ, every partial input
x ∈ {0, 1}µ(κ), every function f ∈ Fκ, and every polynomial sized distinguisher D, there exists a negligible
function negl(·) such that

∣∣∣Pr[f ′ ← L
f(x,·)
1 (1κ, f) : Df ′(·)(1κ) = 1]− Pr[Df(x,·)(1κ) = 1]

∣∣∣ < negl(κ), and

similarly
∣∣∣Pr[f ′ ← L

f(·,x)
2 (1κ, f) : Df ′(·)(1κ) = 1]− Pr[Df(·,x)(1κ) = 1]

∣∣∣ < negl(κ).

We prove the following theorem, which says that SIM-secure public key binary-FE schemes exist only
for learnable functions.

Theorem 3.3 Let FE be a public-key binary functional encryption scheme for a class of binary functions
F = {Fκ}. Assume FE is either (1, 1, 0) or (0, 1, 1)-simulation secure, then then the class F is learnable.

3.1.2 Constructing SIM-secure Public Key FE from Virtual Black Box Obfuscation

Next we show a construction of a binary FE scheme for learnable functions, assuming the existence of a
CCA encryption scheme, a strongly unforgeable signature scheme, and a VBB obfuscator [3].

Let vO be a VBB obfuscator, E = {KeyGen,Enc,Dec} be a CCA-secure encryption scheme, E′ =
{KeyGen,Enc,Dec} be any semantically secure encryption scheme, and Σ = {KeyGen,Sign,Ver} be
a strongly unforgeable signature scheme. Let Fκ = {f : Mκ × Mκ → M′κ} be a binary function
that is learnable by some p(κ)-time algorithm for some polynomial p(·), where Mκ = {0, 1}µ(κ) and
M′κ = {0, 1}µ

′(κ). Consider the following algorithms FE.{Setup,KeyGen,Enc,Dec} parameterized by
q1(κ), `(κ), q2(κ). Let L be the maximum length of the class Fκ, and K be the length of the ciphertexts in
E. Then we consider the following algorithms:

• FE.Setup(1κ): sample keys (ek, dk)← E.KeyGen(1κ), (ek′, dk′)← E′.KeyGen(1κ), and (vk, sk)←
Σ.KeyGen(1κ). Then sample D̂dk,dk′,vk ← vO(Ddk,dk′,vk), where Ddk,,dk′vk is a circuit that does the
following: on input ciphertexts ctx, cty, ctf̄ and a signature σ,

– If Σ.Ver(vk, ctf̄ , σ) = 0, output ⊥.
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– Compute f ||0t = E′.Dec(dk′, ctf̄ ) for some t = κ + 2` · (K + p) + `2 · µ′. Compute
(x, tagx, Zx, fx, bx) = E.Dec(dk, ctx) and (y, tagy, Zy, fy, by) = E.Dec(dk, cty), where tagx, tagy ∈
{“1”, “2”}, Zx, Zy ∈ {0, 1}µ

′·q1·`, fx, fy ∈ {0, 1}p, bx, by ∈ {0, 1}κ. If any of the ciphertexts is
not of the correct form, then output ⊥.

– If (tagx, tagy) 6= (“1”,“2”), output ⊥.

– Otherwise, output f(x, y).

Finally, set param := (ek, ek′, vk, D̂dk,dk′,vk), msk := (dk, dk′, sk).
(We note that fx, fy, Zx, Zy, bx, by will only be used in the simulated param.)

• FE.Enc(param, x, tag): on inputs a message x and a tag tag ∈ {“1”,“2”},
output ct← E.Enc(ek, (x, tag, 0µ

′·q1 , 0p, 0κ)).

• FE.KeyGen(msk, f): first compute an encryption of the padded function f ||0t for some t = κ+ 2` ·
(K + p) + `2 · µ′, i.e. ctf̄ ← E′.Enc(ek′, f ||0t). Then generate a signature σ ← Σ.Sign(sk, ctf̄ ).
Output skf := (ctf̄ , σ).

Note: the extra 0’s will only be used in the simulation.

• FE.Dec(skf , ctx, cty): run Eval(D̂dk,vk, ctx, cty, ctf̄ , σ), where skf can be parsed as (ctf̄ , σ).

Then we establish the following theorem:

Theorem 3.4 Assume vO is a VBB obfuscator for general functions, E is a CCA secure encryption scheme,
E′ is semantically secure, Σ is a strongly unforgeable signature scheme. Then for any polynomial q1, `, q2,
the above public-key binary FE scheme is (q1, `, q2)-simulation secure.

3.1.3 Constructing SIM-secure Public Key FE from IND-secure Public Key FE

In this section we show how to lift IND-secure public key binary FE to SIM-secure public key binary FE.
The compiler is generic, and is a natural extension of the compiler described in Caro et al. [14], applied to
the binary FE setting.

Let FEind be a binary, indistinguishability secure, public key FE scheme, let commit be a statistically
binding commitment scheme, and let E be a semantically secure symmetric key encryption scheme. Let
Fκ = {f :Mκ×Mκ →M′κ} be a binary function that is learnable by some p(κ)-time algorithm for some
polynomial p(·), whereMκ = {0, 1}µ(κ) andM′κ = {0, 1}µ

′(κ). Let L be the maximum length of the class
Fκ. Consider the following algorithms FE.{Setup,KeyGen,Enc,Dec} parameterized by q1(κ), `(κ), q2(κ).

• FE.Setup(1κ): Choose a random r ← {0, 1}κ and compute com = commit(0κ; r).
Run (paramind,mskind)← FEind.Setup(1κ).
Set the public parameters to be param = (paramind, com) and msk = (mskind, r).

• FE.Enc(param, x, tag): on inputs a message x and a tag tag ∈ {“1”,“2”}, sample
ct← FEind.Enc(paramind, (x, tag, 0

κ, 0κ, 0)).

• FE.KeyGen(msk, f): sample τ ← E.KeyGen(1κ). Let c1, c2 ← E.Enc(τ, 0p+µ
′
).

Output FEind.KeyGen(msk, f̂c1,c2), where, for any c̄1, c̄2 in the ciphertext space of E, f̂c̄1,c̄2(x′, y′) is
defined as follows.

– Parse x′ = (x, tagx, τx, rx, bx) and y′ = (y, tagy, τy, ry, by). If (tagx, tagy) 6= (“1”, “2”)
output ⊥.
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– If (bx, by) = (0, 0), then output f(x, y).

– If (bx, by) = (0, 1), then, if com = commit(τy; ry), compute (fy, Zy) = E.Dec(τy, c̄2), and
output fy(x), where the string fy ∈ {0, 1}p is interpreted as a function. Otherwise output ⊥.

– If (bx, by) = (1, 0), then, if com = commit(τx, rx), compute (fx, Zx) = E.Dec(τx, c̄1) and
output fx(y). Otherwise output ⊥.

– If (bx, by) = (1, 1), then if com = commit(τx; rx) and τx = τy, compute (fx, Zx) = E.Dec(τx, c̄1),
and output Zx. Otherwise output ⊥.

• FE.Dec(skf , ctx, cty): run FEind(skf , ctx, cty).

Then we establish the following theorem:

Theorem 3.5 Assume FEind is an IND-secure public-key binary functional encryption scheme, commit is a
statistically binding commitment scheme, and E is a semantically secure symmetric key encryption scheme.
Then the above scheme is (0, 1, poly) simulation-secure.

Remark 3.6 As presented above, we handle an unlimited number of post-challenge key queries. We note
that this does not violate the lower bound of Agrawal et al. [1], which only applies to pre-challenge queries.
We can extend this to handle multiple challenge plaintexts in a natural way: in each simulated key token,
we simply need to embed fx and Zx for every x in the challenge list. We then also add an additional slot in
the plaintext that remains 0 in the real world, but allows the simulator to indicate the index of the challenge
in the list. For ` challenge plaintexts, then, the function f̂c1,...,c` would recover the index of the challenge,
decrypt the corresponding ci, and use the function description recovered from ci exactly as described above.
Now the key size would grow with the number of challenges, which matches the lower bounds proven by
Boneh et al. [10] and by Bellare and O’Neill [5].

3.2 The Symmetric-Key Setting

In this section we show how to lift IND-secure symmetric key binary-FE to SIM-secure symmetric key
binary-FE. The compiler is generic, and is a natural extension of the compiler described in Caro et al. [14],
applied to the binary FE setting. The syntax and security definition is very similar to that described in
Section 3.1.1, except that now, instead of using param, the encryptor will use msk to encrypt plaintexts.

Let F = {Fκ}κ>0 be a collection of function families, where every f ∈ Fκ is a polynomial time
function f : Mκ ×Mκ → M′κ, whereMκ = {0, 1}µ(κ) andM′κ = {0, 1}µ

′(κ). Let FEind be an IND-
secure, symmetric key binary-FE scheme supporting F , and let E be a semantically secure symmetric key
encryption scheme. Consider the following algorithms FE.{Setup,KeyGen,Enc,Dec}.

• FE.Setup(1κ): Choose a random τ ← E.KeyGen(1κ). Run (paramind,mskind) ← FEind.Setup(1κ).
Set the public parameters to be param = paramind and msk = (mskind, τ).

• FE.Enc(msk, x, tag): on inputs a message x and a tag tag ∈ {“1”,“2”}, sample
ct← FEind.Enc(mskind, (x, tag, 0

κ, 0µ
′
, 0κ, 0)).

• FE.KeyGen(msk, f): Sample c ← E.Enc(τ, 0µ
′
). Choose a random idxf ← {0, 1}κ. Output

FEind.KeyGen(msk, f̂c,idxf ), where, for any c̄ in the ciphertext space of E, and idxf ∈ {0, 1}κ,
f̂c̄,idxf (x′, y′) is defined as follows.

– Parse x′ = (x, tagx, (idxx, Zx), τx, bx) and y′ = (y, tagy, (idxy, Zy), τy, by). If (tagx, tagy) 6=
(“1”, “2”) output ⊥.
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– If (bx, by) = (0, 0), then output f(x, y).

– If by = 1,

∗ if idxf = idxy, output Zy.
∗ Otherwise, output E.Dec(τy, c̄).

– If bx = 1,

∗ if idxf = idxx, output Zx.
∗ Otherwise, output E.Dec(τx, c̄).

• FE.Dec(skf , ctx, cty): run FEind(skf , ctx, cty).

Then we establish the following theorem:

Theorem 3.7 Assume FEind is an IND-secure binary functional encryption scheme for functionality F , and
that E is a semantically secure symmetric key encryption scheme. Then the above scheme is a (1, 1, 1)-
simulation-secure symmetric-key binary FE scheme for functionality F .

Remark 3.8 As presented above, we handle only a single pre-challenge key query, a single post-challenge
key query and a single challenge plaintext pair. It is quite straightforward to extend the ideas above to
achieve q1(κ), `(κ), q2(κ) security, as in the work of Caro et al.[14]. To handle q1(κ) pre-challenge queries,
f1, . . . , fq1(κ), we simply embed (idxfi , fi(x, y)) in each simulated ciphertext for each i ∈ [poly(κ)]. To
handle `(κ) challenge plaintext pairs, (x1, y1), . . . , (x`(κ), y`(κ)), to encrypt, say xj , we include (idxfi , fi(xj , xk))
in the ciphertext for every i ∈ [poly(κ)], k ∈ [`(κ)]. Finally, to support q2(κ) post-challenge queries,
(f1, . . . , fq2(κ)), in the key for fi, we embed an encryption of fi(xj , xk) for every j, k ∈ [q2(κ)]. We note
that the key size would grow quadratically in `(κ) (i.e. in the number of challenge plaintexts), and the cipher-
text size would grow as the product of q1(κ) · `(κ). We can support an unbounded number of post-challenge
queries in this manner.
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A Preliminaries

A.1 Statistical Simulation-Sound NIZKs for Multiple Simulated Statements

Let R be a polynomial-time computable binary relation. For (stmt, w) ∈ R, we call stmt the statement, and
w the witness . Let L be the language consisting of all statements in R.

A Non-Interactive Zero-knowledge Proof system (NIZK) [7, 16] is a collection of three algorithms
NIZK = (Setup,Prove,Verify). Let m be a parameter for the maximum number of false statements to be
simulated m in the system. Consider the following three algorithms:

• crs ← Setup(1κ,m) : Takes in the security parameter κ, and generates a common reference string
crs.

• π ← Prove(crs, stmt, w) : Takes in crs, a statement stmt, and a witness w such that (stmt, w) ∈ L,
outputs a proof π.

• b ← Verify(crs, stmt, π): Takes in the crs, a statement stmt, and a proof π, and outputs 0 or 1,
denoting rejection or acceptance. stmt, and a witness w,

Perfect completeness. A NIZK system is said to be perfectly complete, if an honest prover with a valid
witness can always convince an honest verifier. More formally, for any (stmt, w) ∈ R, we have

Pr [crs← Setup(1κ,m), π ← Prove(crs, stmt, w) : Verify(crs, stmt, π) = 1] = 1

Statistical soundness. A NIZK system is said to be statistically sound, if there does not exist a valid proof
for any no false statement. More formally,

Pr [crs← Setup(1κ,m), ∃(stmt, π): (stmt /∈ L) ∧ (Verify(crs, stmt, π) = 1)] = negl(κ)

Computational zero-knowlege. Informally, a NIZK system is computationally zero-knowledge, if the
proof does not reveal any information about the witness to any polynomial-time adversary. More formally, a
NIZK system is said to computationally zero-knowledge, if there exists a simulator S = (SimSetup,SimProve),
such that for all non-uniform polynomial-time adversaryA, for m = poly(κ), for any {stmti, wi}i∈[m] such
that (stmti, wi) ∈ R for all i ∈ [m], it holds that

∣∣∣∣∣∣ Pr

 crs← Setup(1κ,m),
∀i ∈ [m] : πi ← Prove(crs, stmti, wi) :
A(crs, {stmti, πi}i∈[m]) = 1

 − Pr

 (c̃rs, trap)← SimSetup(1κ, {stmti}i∈[m]),
∀i ∈ [m] : πi ← SimProve(crs, stmti, trap) :
A(c̃rs, {stmti, πi}i∈[m]) = 1

∣∣∣∣∣∣ = negl(κ)

Statistical simulation soundness [17]. Informally, a NIZK system is statistically simulation sound, if
under a simulated c̃rs, no proof for a false statement exists, except for the simulated proofs for statements
fed into the SimSetup algorithm to generate c̃rs. More formally, a NIZK system is said to be statistically
simulation sound, if for m = poly(κ),

Pr

[
(c̃rs, trap)← SimSetup(1κ, {stmti}i∈[m]), ∀i ∈ [m] : πi ← SimProve(crs, stmti, trap) :

∃(stmt′, π′) s.t. (stmt′ /∈ {stmti}i∈[m]) ∧ (Verify(c̃rs, stmt′, π′) = 1)

]
= negl(κ).
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A.2 SSS-NIZK Construction for Multiple Simulated Statements

Garg et al. [17] showed how to construct an SSS-NIZK where the simulator can simulate a single false
statement (specified in the simulated setup). We can easily extend their construction to allow to allow
simulation of a multiple number of false statements. We state the construction in the following:

Let Π = (Setup,Prove,Verify) be a statistically sound NIZK, and Com be a perfectly binding commit-
ment scheme. Then consider the following NIZK system Π′ = (Setup′,Prove′,Verify′):

• Setup′(1κ,m): generate σ ← Setup(1κ), and c1 ← Com(0`; r1), . . . , cm ← Com(0`; rm). Output
crs = (σ, c1, . . . , cm).

• Prove′(crs, x, w): generate a proof π using Prove(σ, x′, w) where x′ is the following statement:

∃(w, i, r) s.t. ((x,w) ∈ R)
∨

(ci = Com(x; r)) .

• Verify′(crs, x, π): output Verify(σ, x′, π), where x′ is the above statement.

Since the above construction extends the construction by Garg et al. in a strait forward way, we omit the
proof and refer curious readers to the paper [17].

In the above construction, the common reference string blows up by a factor of m, so does the prover
and verifier’s running times. However, the length of proofs does not need to blow up with m. We observe
that we can use a trick by Groth [26], to create a statistically sound NIZK whose proof length is linear in the
length of the witness. Since the witness of the statement (i.e. (w, i, r)) does not grow with m, neither does
the length of the proof for the Π′.

A.3 (Computationally) Simulation Sound NIZK

We state the (unbounded) simulation soundness as defined by Sahai [30].
A non-interactive zero-knowledge proof system is said to be (computationally) simulation sound for

unbounded statements if for all non-uniform PPT adversaryA,A wins the following game with a negligible
probability.

The game begins with an execution of the simulator of the NIZK proof system who generates a CRS
together with a trapdoor. Then A is given oracle access to a simulator who has the trapdoor and produces
simulated proofs (which is accepted by the verifier) of any statements (either true or false) A queries. The
queries of statements can be adaptive. The game ends with A outputting (x, π). He wins if x is a false
statement, π is accepted by the verifier, and (x, π) is not in the query list.

A.4 Indistinguishability Obfuscation

A uniform PPT machine iO is called an indistinguishable obfucastor [22, 17], for a circuit family {Cκ}, if
the following conditions hold:

• Correctness. For all κ ∈ N, for all C ∈ Cκ, for all inputs x, we have

Pr
[
C ′ ← iO(κ,C) : C ′(x) = C(x)

]
= 1

• For any uniform or non-uniform PPT distinguisher D, for all security parameter κ ∈ N, for all pairs
of circuits C0, C1 ∈ Cκ such that C0(x) = C1(x) for all inputs x, then

|Pr [D(iO(κ,C0)) = 1]− Pr [D(iO(κ,C1)) = 1]| ≤ negl(κ)
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For simplicity, when the security parameter κ is clear, we write iO(C) in short.

Remark A.1 We observe that for the construction of [17], the size of the obfuscated circuit has only linear
blowup, i.e. |iO(C)| = |C| · poly(κ). In the construction, in order to obfuscate any poly-sized C, they
consider another NC1 program P that checks the trace of the computation of the FHE evaluation, and then
decrypts. Essentially P is an “and” of |C| local verifications (each of which has size poly(κ)), and then
a decryption, which has size poly(κ). We observe that each local verification can be written as a constant
width, poly(κ) length branching program by the Barrington’s theorem; also it takes an additive linear blow
up to “AND” multiple branching programs. Thus, P can be transformed to a branching program of size
O(|C|) · poly(κ). Then the construction of [17] blows up the branching program by poly(κ). Thus, the
obfuscated circuit has size O(|C|) · poly(κ).

A.5 Differing-inputs Obfuscation for Circuits

Barak et al. [3] defined the notion of differing-inputs obfuscation. We present the notion of differing-inputs
circuit family as the formulation in the works of Ananth et al. and Boyle et. al [2, 12]

Definition A.2 ([3, 2, 12]) A circuit family C associated with a sampler Sampler is said to be a differing-
inputs circuit family if for every PPT adversary A there exists a negligible function negl such that

Pr[C0(x) 6= C1(x) : (C0, C1, aux)← Sampler(1κ), x← A(1κ, C0, C1, aux)] ≤ negl(κ).

We now define the notion of differing-inputs obfuscation for a differing-inputs circuit family.

Definition A.3 (Differing-inputs Obfuscators for circuits) A uniform PPT machine diO is called a Differing-
inputs Obfuscator for a differing-inputs circuit family C = {Cκ} if the following conditions are satisfied:

• (Correctness): For all security parameter κ, all C ∈ C, all inputs x, we have

Pr[C ′(x) = C(x) : C ′ ← diO(κ,C)] = 1.

• (Polynomial slowdown): There exists a universal polynomial p such that for any circuit C, we have
|C ′| ≤ p(|C|) for all C ′ = diO(κ,C) under all random coins.

• (Differing-inputs): For any (not necessarily uniform) PPT distinguisher D, there exists a negligi-
ble function negl such that the following holds: for all security parameters κ, for (C0, C1, aux) ←
Sampler(1κ), we have that

|Pr[D(diO(κ,C0, aux)) = 1]− Pr[D(diO(κ,C1, aux)) = 1]| ≤ negl(κ).

B IND-Security: Proofs

B.1 IND-secure Public Key Binary FE from iO

In this section we prove Theorem 2.2:

Theorem B.1 (Theorem 2.2) If iO is indistinguishability obfuscation, NIZK is statistically simulation sound
NIZK, and the encryption scheme is semantically secure and perfectly correct, then the above construction
is selectively, IND-secure, as defined in Section 2.1.1.
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We define the following hybrid games, and then prove that each successive game is indistinguishable
from its predecessor.

Hybrid X: This game is simply the IND-Secure defined above with b = 0. In other words, the challenger
will encrypt x (in both copies of the ciphertexts c and c′) and return them to the adversary.

Hybrid 1: In this game, the crs generation is simulated, and the proof π used during encryption is simulated.
We note that here we are relying on the fact that IND-Secure is only selectively secure, which allows the
challenger to construct statements stmt in Step 4 before constructing the simulated c̃rs. More specifically,
the game becomes the following (changes from Hybrid X are in red):

1. (x, y)← A(1κ)

2. Setup(1κ)

– (pk, sk)← E .Gen(1κ), (pk′, sk′)← E .Gen(1κ)
– msk = (sk, sk′)

3. c← E .Enc(pk, x) and c′ ← E .Enc(pk′, x).
Let stmt := (c, c′) be a statement of the language Lpk,pk′ .
(c̃rs, trap)← NIZK.SimSetup(1κ, stmt).
param = (c̃rs, pk, pk′).
π = NIZK.SimProve(c̃rs, stmt, trap).

4. b′ ← AK̃eyGen(·)(param, (c, c′, π))

The simulated c̃rs is also used in constructing responses to K̃eyGen queries in Step 5. K̃eyGen is the same
as KeyGen other than using the simulated c̃rs instead.

Claim B.2 If the NIZK is computationally zero knowledge, then Hybrid X and Hybrid 1 are indistinguish-
able.

Proof: Let A be an adversary that distinguishes the two hybrids with advantage δ. We construct an
adversary B that attacks the zero knowledge property of the NIZK system with the same advantage. After
receiving (x, y) from A, B runs Step 2 of Hybrid 1 honestly. He uses the resulting values to construct
statement stmt, as done in Step 4 (of both hybrid games). He then submits stmt to a NIZK challenger, and
receives (crs, π) in response. He uses these values to complete Step 4 of Hybrid 1. Specifically, he uses crs to
complete the construction of param and to answer any queries to KeyGen that might be made in Step 5. He
uses π to complete the construction of the challenge ciphertexts. If the NIZK challenger faithfully generated
crs← NIZK.Setup(1κ) and NIZK.Prove(crs, stmt), then the view ofA is drawn from the same distribution
as in Hybrid X. If the NIZK challenger generated simulated (crs, trap) ← NIZK.SimSetup(1κ, stmt) and
NIZK.SimProve(crs, stmt, trap), then A’s view is drawn from the same distribution as in Hybrid 1.

Hybrid 2: In Hybrid 2, the simulator will encrypt x in the first ciphertext copy c, and encrypt y for the
second ciphertext copy c′. Intuitively, because the iO does not include sk′, Hybrid 2 is computationally
indistinguishable form Hybrid 1 due to the semantic security of the encryption scheme.

More formally, the new Hybrid 2 game is described as follows.

1. (x, y)← A(1κ)

2. Setup(1κ)

– (pk, sk)← E .Gen(1κ), (pk′, sk′)← E .Gen(1κ)
– msk = (sk, sk′)

26



Internal (hardcoded) state: param = (crs, pk, pk′), sk′, f

On input: ct0, ct1
– Unpack (c0, c

′
0, π0)← ct0 and (c1, c

′
1, π1)← ct1. Let stmt0 := (c0, c

′
0), and stmt1 := (c1, c

′
1) be

statements for the NP-language Lpk,pk′ .
– If NIZK.Verify(crs, π0, stmt0) = NIZK.Verify(crs, π1, stmt1) = 1

then, compute x = E .Dec(sk′, c′0) and y = E .Dec(sk′, c′1), and output f(x, y).
– Else, output ⊥.

Figure 5: Public-key IND-secure binary FE: Program P ′

3. c← E .Enc(pk, x) and c′ ← E .Enc(pk′, y).
Let stmt := (c, c′) be a false statement.
(c̃rs, trap)← NIZK.SimSetup(1κ, stmt).
param = (c̃rs, pk, pk′).
π = NIZK.SimProve(c̃rs, stmt, trap).

4. b′ ← AK̃eyGen(·)(param, (c, c′, π))

Claim B.3 Assume that the encryptions scheme E is semantically secure, then Hybrid 2 is computationally
indistinguishable from Hybrid 1.

Proof: Observe that the iO does not embed sk′. Therefore, this claim follows from a trivial reduction.

Hybrid 3. In Hybrid 3, the simulator will now use sk′ in the iO for any KeyGen query. The modified
program P ′ is described in Figure 5, with modifications highlighted in red.

Claim B.4 If the iO is secure, the NIZK is statistically simulation sound, and the encryption scheme E is
perfectly correct, then Hybrid 2 is computationally indistinguishable from Hybrid 3.

Proof: By the security of iO, it suffices to show that Program P and Program P ′ are functionally equiv-
alent, i.e., agree on the outputs for all possible inputs. The inputs to both programs P and P ′ are two
ciphertexts ct0 and ct1. We do a case-by-case analysis.

• Case 1: There exists a bad ciphertext. If at least one of ct0 or ct1 causes the NIZK verification to fail,
then both P and P ′ output ⊥. Henceforth for Cases 2 and 3, we assume that both ct0 and ct1 carry a
valid NIZK proof.

• Case 2: At least one of the inputs is a simulated ciphertext. Suppose the NIZKs on both ct0 and ct1
verify. Further, one of them (without loss of generality, assuming ct0) is a ciphertext given to the
adversary by the simulator, while the other (i.e, ct1) is not. Due to the statistical simulation soundness
of the NIZK and the perfect correctness of the encryption scheme, ct1 := (c1, c

′
1) must decrypt to

the same value m no matter whether sk or sk′ is used to decrypt. Due to the perfect correctness of
the encryption scheme, ct0 will decrypt to x or y depending on whether sk or sk′ is used. Due to the
condition that f(x, ·) = f(y, ·) and f(·, x) = f(·, y), we know that the outcomes of P and P ′ must
agree.
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• Case 3: Neither input is a simulated ciphertext. For both input ciphertexts: due to the statistical
simulation soundness of the NIZK and the perfect correctness of encryption, using either key sk or sk′

to decrypt must result in the same plaintext. Therefore, the outcomes of P and P ′ must agree.

Hybrid Y’. Hybrid Y’ is almost the same as the real-world with b = 1, where the challenger encrypts the
challenge plaintexts in y (in both ciphertext copies). The only exception is that the challenger uses sk′ in the
iO’s.

Claim B.5 Suppose that the iO is secure, and that the encryption scheme is semantically secure and per-
fectly correct, and that the NIZK is statistical simulation sound and computationally zero-knowledge, then
Hybrid Y’ is computationally indistinguishable from Hybrid 3.

Proof: By a symmetric argument as the proofs for Hybrid X through Hybrid 3.

Hybrid Y. Hybrid Y is the same as the real-world with b = 1, where the challenger encrypts the challenge
plaintexts in y (in both ciphertext copies). The challenger uses sk in the iO’s.

Claim B.6 Suppose that the NIZK is statistically sound, the encryption scheme is perfectly correct, and that
the iO is secure, then Hybrid Y is computationally indistuinguishable from Hybrid Y’.

Proof: By the statistical soundness of the NIZK, any ciphertext ct which has a valid NIZK must encrypt
consistent plaintexts on both copies c and c′. Due to the perfect correctness of encryption, the two ciphertext
copies must decrypt to the same plaintexts regardless of whether sk is used to decrypt c, or sk′ is used to
decrypt c′. Therefore, the two iOs, using sk or sk′ are functionally equivalent. By the security of iO, Hybrid
Y’ is computationally indistinguishable from Hybrid Y.

B.2 IND-secure Symmetric Key Binary FE from iO

In this section we prove Theorem 2.3.

Theorem B.7 (Theorem 2.3) If the iO is secure, the NIZK is statistically simulation sound, the commitment
is perfectly binding and computationally hiding, and the encryption scheme is semantically secure and
perfectly correct, then the above construction is selectively IND-secure, as defined in Section 2.2.1

We define the following hybrid games, and then prove that each successive game is indistinguishable
from its predecessor.

Hybrid X: This game is simply the Ind-Secure defined above with b = 0. The simulator honestly encrypts
xi in both copies of the ciphertext ci and c′i.

Hybrid 1: In this game, the crs generation is simulated, and the proof π used during encryption is simulated.
We note that here we are relying on the fact that Ind-Secure is only selectively secure, which allows the
challenger to construct statement s in Step 4 before constructing the simulated crs. More specifically, the
game becomes the following (changes from Hybrid X are in red):

1. {(x1, . . . , xm), (y1, . . . , ym)} ← A(1κ)

2. Setup(1κ)

– α, r ← {0, 1}κ; com← commit(α; r)
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– (pk, sk)← E .Gen(1κ), (pk′, sk′)← E .Gen(1κ)
– msk = (sk, sk′, α, r)

3. For i ∈ [m]: ci ← E .Enc(pk, xi) and c′i ← E .Enc(pk
′, xi).

Let stmti be the statement for the i-th ciphertext cti:

∃(r, ρ, ρ′), x, s.t.: (ci = E .Enc(pk;x; ρ)) ∧
(
c′i = E .Enc(pk′;x; ρ′)

)
∧ (com = commit(α; r))

(c̃rs, trap)← NIZK.SimSetup(1κ, {stmti}i∈[m]).
param = (c̃rs, com).
πi = NIZK.SimProve(c̃rs, stmti, trap).

4. b′ ← AK̃eyGen(·)(param, {cti}i∈[m]) where cti := (ci, c
′
i, α, πi)

The simulated c̃rs is also used in constructing responses to K̃eyGen queries in Step 5.

Claim B.8 If the NIZK system is zero knowledge, then Hybrid 1 and Hybrid X are computationally indis-
tinguishable.

Proof: Let A be an adversary that distinguishes the two hybrids with advantage δ. We construct an adver-
sary B that attacks the zero knowledge property of the NIZK system with the same advantage. After receiv-
ing {(x1, . . . , xm), (y1, . . . , ym)} fromA, B runs Step 2 of Hybrid 1 honestly. He uses the resulting values to
construct statements {stmti}i∈[m], as done in Step 4 (of both hybrid games). He then submits {stmti}i∈[m]

to his NIZK challenger, and receives (crs, {πi}i∈[m]) in response. He uses these values to complete Step 4
of Hybrid 1. Specifically, he uses crs to complete the construction of param and to simulate any queries to
KeyGen that might be made in Step 5. He uses π to complete the construction of the challenge ciphertexts.
If his own challenge was generated using crs ← NIZK.Setup(1κ) and NIZK.Prove(crs, stmti) for i ∈ [m],
then the view ofA is drawn from the same distribution as it is drawn from in Hybrid X. If his challenge was
generated using (c̃rs, trap) ← NIZK.SimSetup(1κ, {stmti}i∈[m]) and NIZK.SimProve(c̃rs, stmti, trap) for
i ∈ [m], then A’s view is drawn from the same distribution as it is drawn from in Hybrid 1.

Hybrid 2: In this game, Step 4 of Hybrid 1 is modified in the following way. A random α̃ ← {0, 1}κ is
chosen and for i ∈ [m], and used in the challenge ciphertexts {cti}. The NIZK is now simulating false
statements.

1. {(x1, . . . , xm), (y1, . . . , ym)} ← A(1κ)

2. Setup(1κ)

– α, r ← {0, 1}κ; com← commit(α; r)
– (pk, sk)← E .Gen(1κ), (pk′, sk′)← E .Gen(1κ)
– msk = (sk, sk′, α, r)

3. For i ∈ [m]: ci ← E .Enc(pk, xi) and c′i ← E .Enc(pk
′, xi).

Choose α̃← {0, 1}κ.

Let stmti be the false statement for the i-th ciphertext cti:

∃(r, ρ, ρ′), x, s.t.: (ci = E .Enc(pk, x; ρ)) ∧
(
c′i = E .Enc(pk′, x; ρ′)

)
∧ (com = commit(α̃; r))

(c̃rs, trap)← NIZK.SimSetup(1κ, {stmti}i∈[m]).
param = (c̃rs, com).
πi = NIZK.SimProve(c̃rs, stmti, trap).

4. b′ ← AK̃eyGen(·)(param, {cti}i∈[m]) where cti := (ci, c
′
i, α̃, πi)
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We note that the statement s is now false with probability 1 − 2κ, since the challenge ciphertexts {cti}
now include α̃ in place of the α that was chosen during the construction of com (and Pr[α̃ 6= α] = 1− 2κ).

Claim B.9 If the commitment scheme commit is computationally hiding, then Hybrid 1 is computationally
indistinguishable from Hybrid 2.

Proof: Let A be an adversary that distinguishes the two hybrids with advantage δ. We construct an
adversary B that attacks commit with the same advantage. B begins by randomly choosing α, α̃← {0, 1}κ.
He submits these two strings to his challenger, and receives a commitment, c, to one of the two. When
simulating Setup, he uses the received challenge c in place of com; the remainder of the simulation is done
honestly, exactly as written in Hybrid 2. If B’s challenge contains a commitment to α̃, then the view of
A is drawn from the same distribution as it is drawn from in Hybrid 1. On the other hand, if B receives a
commitment to α, then the view of A is drawn from the same distribution as it is drawn from in Hybrid 2.

Hybrid 3: In this game, Step 4 of Hybrid 2 is modified in the following way. For i ∈ [m]: ci ←
E .Enc(sk, xi) and c′i ← Enc(sk′, yi). Everything else remains the same as in Hybrid 2. Note that now
the two copies of ciphertexts ci and c′i do not encrypt consistent messages. However, since we are in a world
with a simulated NIZK-CRS, the NIZKs can be simulated.

For Hybrids 2 and 3 to be computationally indistinguishable, it is important to observe that at this point,
the iO only embeds secret key sk. A formal proof is presented below.

Claim B.10 If the encryption scheme E is semantically secure, Hybrid 2 is computationally indistinguish-
able from Hybrid 3.

Proof: Let A be an adversary that distinguishes the two hybrids with non-negligible probability. We
construct an adversary B that attacks the CPA-security of E with non-negligible advantage. After receiving
{(x1, . . . , xm), (y1, . . . , ym)} from A, B chooses α, r ← {0, 1}κ and computes com = commit(α; r). B
then obtains pk from the CPA challenger. To simulate Step 4, B forwards {(x1, . . . , xm), (y1, . . . , ym)}
to the CPA challenger. He receives challenge (c′1, c

′
2, . . . , c

′
m) in response. For i ∈ [m], he computes

ci ← E .Enc(pk, xi), and he sets cti = (ci, c
′
i). He continues the remainder of the simulation in the obvious

way. Depending on the challenger’s random coin, the adversary A’s view is either the same distribution
as Hybrid 2 or Hybrid 3. Therefore, if A could distinguish Hybrid 2 and Hybrid 3 with non-negligible
probability, the simulator B could break semantic security of the underlying encryption scheme.

Hybrid 4: Hybrid 4 is the same as Hybrid 3, except that the responses to all KeyGen queries in Step 5
are modified to use Program P ′, as defined in Figure 6, in place of Program P . The difference between
Program P ′ and Program P is that Program P uses the first secret key sk to decrypt, while Program P ′ uses
the second secret key sk′ to decrypt.

Claim B.11 If the NIZK scheme is statistically simulation sound (SSS-NIZK), the commitment scheme is
perfectly binding, the encryption scheme E is perfectly correct, and the iO scheme is secure, then, Hybrid 4
and Hybrid 3 are computationally indistinguishable.

Proof: By the security of iO, it suffices to show that Program P and Program P ′ are functionally equivalent
(i.e., agree on all inputs). To prove that this is the case, we begin by defining three different types of possible
input, and claim that all inputs fall into one of these three types. We assume (without loss of generality) that
all inputs are of the form ct = (c, c′, α̂, π).

1. A bad ciphertext ct, where NIZK.Verify(c̃rs, stmt, π) = 0.

30



Internal (hardcoded) state: param = (crs, pk, pk′, com), sk′

On input: ct0, ct1
– Parse ct0 as (c0, c

′
0, α0, π0) and ct1 as (c1, c

′
1, α1, π1). Let stmt0 := (c0, c

′
0, α0), and stmt1 :=

(c1, c
′
1, α1).

– Verify that α0 = α1 and NIZK.Verify(crs, stmt0, π0) = NIZK.Verify(crs, stmt1, π1) = 1. If
verification fails, output ⊥.

– Compute x0 = E .Dec(sk′, c′0) and x1 = E .Dec(sk′, c′1) output f(x0, x1).

Figure 6: Program P ′

2. A simulated ciphertexts ct, i.e., those returned by the simulator to the adversary during the simulation.
In this case, NIZK.Verify(c̃rs, ct, π) = 1, however, α̃ 6= α where α is committed to in the public
parameters. Furthermore, if x = E .Dec(sk, c) and y = E .Dec(sk′, c′), then x = xi and y = yi for
some i ∈ [m], where xi and yi are the challenge plaintexts selected by the adversary.

3. An honest ciphertext ct, where NIZK.Verify(c̃rs, ct, π) = 1. However, ct is not equal to any ciphertext
returned by the simulator to the adversary. Due to the statistical simulation soundness of the NIZK
and the perfect binding property of the commitment, it must hold that α̃ = α. Further, due to the
statistical simulation soundness of the NIZK and the perfect correctness of the encryption scheme, if
x := E .Dec(sk, c) and x′ := E .Dec(sk′, c′), then x = x′.

It is not hard to see that all ciphertexts must fall into one of these three types (except with negligible
probability over the choice of c̃rs). We can now prove that Program P and Program P ′ are indistinguishable
through a case by case analysis:

• At least one of ct0 and ct1 is bad. Both Program P and Program P ′ return ⊥.

• Honest + Honest. If both ct0 and ct1 are honest ciphertext, then obviously Program P and Program
P ′ give the same output.

• Simulated+ Simulated. If both ct0 and ct1 are simulated ciphertext, then due to the non-trivial
adversary condition specified in the security definition: for every query F made to the KeyGen(·)
oracle, and for all i, j ∈ [m], it holds that f(xi, xj) = f(yi, yj). We can conclude that Program P
and Program P ′ give the same output. Note also that all simulated ciphertexts use the same α̃ value,
so the α value consistency check in Programs P and P ′ will always pass in this case.

• Simulated + Honest. If one of c and c′ is simulated and the other is honest, the α value consistency
check (i.e., the α0 = α1 check) will fail. Hence, both Program P and Program P ′ will output ⊥.

We conclude that the programs are functionally equivalent. It is now straightforward to reduce the distin-
guishability of the two hybrid games to the security of the iO scheme. This is done in the same manner as
was done in Claim B.8, and we omit the rest of the proof.

Remark B.12 Note that it is actually computationally infeasible for the adversary to generate any honest
ciphertexts in a simulation where only simulated ciphertexts are returned to the adversary. In fact, if the
adversary could generate an honest ciphertext, it would be able to guess the α value in the commitment,
which breaks the computational hiding property of the commitment scheme. However, our proof must still
consider honest ciphertexts, since iO requires the two functions to agree on all possible inputs, including
the ones that are computationally infeasible for the adversary to compute.
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Hybrid Y’. Hybrid Y’ is almost the same as the real-world game with b = 1, where the simulator encrypts
yi in both copies of the challenge ciphertexts ci and c′i — the only exception is that the simulator uses sk′ in
the iO as the decryption key.

Claim B.13 Assume that the iO is secure, the NIZK is computationally hiding and statistical simulation
sound, the encryption scheme E is semantically secure and perfectly correct, and that the commitment
scheme is perfectly binding and computationally hiding, then Hybrid Y’ is computationally indistinguishable
from Hybrid 4.

Proof: The proof is completely symmetric to the proofs of Hybrid 1 through Hybrid 4.

Hybrid Y. Hybrid Y is the same as the real-world game with b = 1, where the simulator encrypts yi in
both copies of the challenge ciphertexts ci and c′i. The simulator also uses sk in the iO as the decryption
key.

Claim B.14 Assume that the iO is secure, the NIZK is statistically sound, the encryption scheme is perfectly
correct, Hybrid Y’ is computationally indistinguishable from Hybrid Y.

Proof: It is not hard to see that if the NIZK is statistically sound, and that the encryption scheme is
perfectly correct, then decrypting either copy will always give the same plaintext. Therefore, using either
key sk or sk′ to decrypt in the iO is functionally equivalent. Now, due to the security of the iO, Hybrid Y’
is computationally indistinguishable from Hybrid Y.

B.3 IND-secure Multi-Client FE from iO

In this section we prove Theorem 2.10 as described in Section 2.3.3.

Theorem B.15 (Theorem 2.10) Let G be a group for which the Diffie-Hellman assumption holds, and let
H be a random oracle. If the iO is secure, the NIZK is statistically simulation sound, and the encryption
scheme is semantically secure and perfectly correct, then the above construction is selectively, IND-secure,
as defined in Section 2.3.1.

Without loss of generality, assume that the uncorrupted set G = {1, 2, . . . , |G|}.

Hybrid X. Same as the real-world with b = 0, where the challenger encrypts ~x∗G in both copies ci and c′i
of the challenge ciphertexts.

Hybrid 1. For the uncorrupted set G, pick random ~βG := (β1, β2, . . . , β|G|), such that 〈~βG, ~αG〉 = 0. For
any token on function f queried, compute and return an iO for the modified program P1 as in Figure 7.

Claim B.16 Assuming that the iO is secure, the NIZK scheme is statistically sound, and the encryption
scheme E is perfectly correct. Then, Hybrid 1 is computationally indistinguishable from Hybrid X.

Proof: By the security of iO, it suffices to show that the modified program P1 is input/output equivalent to
the original program P . To show this, it suffices to show that the added “orthogonal check” will never fail (if
program execution reached the orthogonal check). If the program execution reached the orthogonal check
without returning ⊥, then ∀i ∈ [n]: NIZK.Verify(crs, πi, stmti) = 1. Since the NIZK scheme is statistically
simulation sound, write cti := (t, i, ci, c

′
i, di, πi), it holds that

For i ∈ [n] : ∃ x, (ρ, ρ′), ω s.t.
DH(ht, gi, di, ω) ∧ (ci = E .Enc(pk, x; ρ)) ∧

(
c′i = E .Enc(pk′, x; ρ′)

)
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Program P1(ct1, ct2, . . . , ctn):

Internal hard-coded state: param, ~βG, sk, f .

1. For i ∈ [n], unpack (ti, ji, ci, c
′
i, di, πi) ← cti. Check that t1 = t2 = . . . = tn, and that ji = i. Let

stmti := (ti, ji, ci, c
′
i, di).

2. For i ∈ [n], check that NIZK.Verify(crs, πi, stmti) = 1.

3. Orthogonal check: check that the {di}i∈G satisfy:
∏
i∈G d

βi
i = 1.

4. If any of these above checks fail, output ⊥.

Else, for i ∈ [n], let xi ← E .Dec(sk, ci). Output f(x1, x2, . . . , xn).

Figure 7: MC-FE: Program P1.

We can conclude that in step 3 of the modified program P1, the di’s must satisfy: di = hαit , Because ~βG
is chosen such that 〈~βG, ~αG〉 = 0, it must hold that

∏
i∈G d

βi
i = 1.

Hybrid 2. In this game, the crs generation is simulated, and the proof π used during encryption is simu-
lated. We note that here we are relying on the fact that our MC-FE scheme is only selectively secure, which
allows the challenger to construct the statement s to simulate before constructing the simulated crs. More
specifically, the game now becomes the following (with changes from the previous Hybrid 1 highlighted in
red).

Let K̃(·) denote the modified key generation oracle as specified by Hybrid 1, which on query f , gen-
erates a token for the modified program P1 which includes the orthogonoal check. Note that K̃ uses the
simulated param which includes the simulated c̃rs.

1. G,G, (~x∗G, ~y
∗
G)← A.

2. b $← {0, 1}.

Generate random α1, . . . , αn
$← Zp and let gi := gαi . Run (pk, sk) ← E .Gen(1κ), (pk′, sk′) ←

E .Gen(1κ),

Let T denote the total number of time steps the adversary will query the oracle EG.

Guess t∗ $← [T ]. If the guess turns out to be wrong later, abort. This only loses a polynomial factor in
the security reduction.

The simulator now precomputes the ciphertexts for the set G for the guessed challenge time step t∗,
and runs NIZK.SimSetup accordingly so the proofs for the ciphertexts ctG in t∗ can be simulated:

For i ∈ G, let ci := E .Enc(pk, x∗i ; ρi) and c′i := E .Enc(pk′, x∗i ; ρ′i), for random ρi and ρ′i. Let
di := hαit∗ , where ht∗ := H(t∗). For i ∈ G, let si be the statement that

∃ x, (ρ, ρ′), ω s.t. DH(ht∗ , gi, di, ω) ∧ (ci = E .Enc(pk, x; ρ)) ∧
(
c′i = E .Enc(pk′, x; ρ′)

)
(c̃rs, trap)← NIZK.SimSetup(1κ, {si}i∈G).

Let param := (c̃rs, pk, pk′, g, {gi}i∈[n]). For i ∈ [n], let uski := [αi, param].
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3. “challenge”← AK̃(·),EG(·)( ~uskG).

4. If the current time step is not the guessed t∗, abort.

For i ∈ G: πi ← NIZK.SimProve(c̃rs, si, trap). ~ct∗i ← (t∗, i, ci, c
′
i, di, πi).

5. b′ ← AK̃(·),EG(·)(~ct
∗
G).

Claim B.17 Assuming that the NIZK is computational zero-knowledge, then Hybrid 2 is computationally
indistinguishable from Hybrid 1.

Proof: By a trivial reduction.

Hybrid 3.

1. G,G, (~x∗G, ~y
∗
G)← A.

2. b $← {0, 1}.

α1, . . . , αn
$← Zp. Run (pk, sk)← E .Gen(1κ), (pk′, sk′)← E .Gen(1κ),

Let T denote the total number of time steps the adversary will query the oracle EG.

Guess t∗ $← [T ]. If the guess turns out to be wrong later, abort. This only loses a polynomial factor in
the security reduction.

For i ∈ G, let ci := E .Enc(pk, x∗i ; ρi), and c′i := E .Enc(pk′, x∗i ; ρ′i) for random ρi and ρ′i. Pick

random µ
$← Zp. Let di := hµαit∗ where ht∗ := H(t∗). Let si be the false statement that

∃ x, (ρ, ρ′), ω s.t. DH(ht∗ , gi, di, ω) ∧ (ci = E .Enc(pk, x; ρ)) ∧
(
c′i = E .Enc(pk′, x; ρ′)

)
Compute (c̃rs, trap)← NIZK.SimSetup(1κ, {si}i∈G).

Let param := (c̃rs, pk, pk′, g, {gi}i∈[n]). For i ∈ [n], let uski := [αi, param].

3. “challenge”← AK̃(·),EG(·)( ~uskG).

4. If the current time step is not the guessed t∗, abort.

For i ∈ G: πi ← NIZK.SimProve(c̃rs, si, trap). ~ct∗i ← (t∗, i, ci, c
′
i, di, πi).

5. b′ ← AK̃(·),EG(·)(~ct
∗
G).

Claim B.18 Assuming that Decisional Diffie-Hellman (DDH) is hard in the group G, H is a random oracle,
and that the NIZK is computationally zero-knowledge, then Hybrid 3 is computationally indistinguishable
from Hybrid 2.

Proof: We will construct a simulation as below, where a simulator obtains a DDH instance (gA, gB, R)
from a DDH challenger, where either R = gAB or R is a random group element. The simulator also
simulates answers to the random oracle H .

We will craft the simulation such that the following holds: In the former case where the DDH instance
is a true DH tuple, the simulation will be computationally indistinguishable from Hybrid 2 if the NIZK is
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computationally zero-knowledge. Otherwise, the simulation will be indistinguishable from Hybrid 3 if the
NIZK is computationally zero-knowledge.

The simulator will guess t∗ upfront as mentioned earlier, and simply aborts if the guess is wrong. Upon
random oracle query on H(t∗), the simulator will return ht∗ := gB . For all other time steps t 6= t∗, on
random oracle query H(t), the simulator picks ht := gηt where ηt is picked at random and known by the
simulator. When constructing param, for the honest set i ∈ G, the simulator will choose random νi ∈ Zp,
and compute gi := (gA)νi . Implicitly, the simulator sets αi := Aνi without knowing the value of the αi’s.
Note that even though the simulator does not know αi for i ∈ G, the simulator can compute the NIZKs for
all non-challenge time steps t 6= t∗, since the simulator knows the alternative witnesses ηt to the DH relation
where ht := gηt . Due to the computational zero-knowledge property of the NIZK, the adversary cannot tell
that an alternative witness is used in constructing the NIZK. In addition, the simulator can still generate ~βG
used in the modified program P1, by choosing random ~βG such that 〈~βG, ~νG〉 = 0.

For the challenge time step t∗, the simulator also chooses di := Rνi , such that if (gA, gB, R) is a real
DH tuple, then di has identical distribution as in Hybrid 2 — and since the NIZK is computationally zero-
knowledge, in this case the game will be computationally indistinguishable from Hybrid 2. Otherwise, ifR is
chosen at random, then di has identical distribution as in Hybrid 3 — and since the NIZK is computationally
zero-knowledge, in this case the game will be computationally indistinguishable from Hybrid 3.

Hybrid 4. For the challenge time step t∗, the simulator will replace the second copy of the ciphertext to
encryptions of y∗G, as elaborated below:

1. G,G, (~x∗G, ~y
∗
G)← A.

2. b $← {0, 1}.

α1, . . . , αn
$← Zp. Run (pk, sk)← E .Gen(1κ), (pk′, sk′)← E .Gen(1κ),

Let T denote the total number of time steps the adversary will query the oracle EG.

Guess t∗ $← [T ]. If the guess turns out to be wrong later, abort. This only loses a polynomial factor in
the security reduction.

For i ∈ G, let ci := E .Enc(pk;x∗i ; ρi) c
′
i := E .Enc(pk′; y∗i ; ρ′i) for random ρi and ρ′i. Pick random

µ
$← Zp. Let di := hµαit∗ where ht∗ := H(t∗). Let si be the false statement that

∃m, (ρ, ρ′), ω s.t. DH(ht∗ , gi, di, ω) ∧ (ci = E .Enc(pk;m; ρ)) ∧
(
c′i = E .Enc(pk′;m; ρ′)

)
Compute (c̃rs, trap)← NIZK.SimSetup(1κ, {si}i∈G).

Let param := (g, c̃rs, {pk, pk′, gi}i∈[n]). For i ∈ [n], let uski := αi.

3. “challenge”← AK̃(·),EG(·)(param, ~uskG).

4. If the current time step is not the guessed t∗, abort.

For i ∈ G: πi ← NIZK.SimProve(c̃rs, si, trap). ~ct∗i ← (t∗, i, ci, c
′
i, di, πi).

5. b′ ← AK̃(·),EG(·)(~ct
∗
G).
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Program P2(ct1, ct2, . . . , ctn):

Internal hard-coded state: param, ~βG, sk′, f .

1. For i ∈ [n], unpack (ti, ji, ci, c
′
i, di, πi) ← cti. Check that t1 = t2 = . . . = tn, and that ji = i. Let

stmti := (ti, ji, ci, c
′
i, di).

2. For i ∈ [n], check that NIZK.Verify(c̃rs, πi, stmti) = 1.

3. Orthogonal check: check that the {di}i∈G satisfy:
∏
i∈G d

βi
i = 1.

4. If any of these above checks fail, output ⊥.

Else, for i ∈ [n], let xi ← E .Dec(sk′; c′i). Output f(x1, x2, . . . , xn).

Figure 8: MC-FE: Program P2.

Claim B.19 Assuming that the encryption scheme E is semantically secure, Hybrid 4 is computationally
indistinguishable from Hybrid 3.

Proof: By a trivial reduction. Observe that the KeyGen algorithm produces an iO that embeds only the
first (unprimed) copy of secret key, i.e., sk.

Hybrid 5. The simulator will now use sk′ instead of the sk in the iO, as shown in Figure 8:

Claim B.20 Assuming that the iO is secure, and that the NIZK is statistically simulation sound, and that the
encryption scheme E is perfectly correct, then Hybrid 5 is computationally indistinguishable from Hybrid 4.

Proof: By the security of the iO, it suffices to prove that except with some negligible probability of some
bad event happening, the program P2 in Hybrid 5 is input-output equivalent (on all inputs) to the program
P1 used in Hybrids 1 to 4. We stress that this is different from two programs that agree on most inputs, but
differ on a negligible fraction of inputs. In our case, except with negligible probability over parameters
chosen by the simulator, the two programs P2 and P1 agree on all inputs — that is why we can apply iO to
switch the programs.

If the inputs to the programs P2 or P1 do not contain any ciphertexts from the challenge time step t∗,
then by the statistical simulation soundness of the NIZK, if all NIZKs on the ciphertexts verify, then all
ciphertexts must be truthfully formed. This means that the two copies of the encryptions ci and c′i must
encrypt the same plaintext. Further, due to the perfect correctness of the encryption scheme E , it is not hard
to see that the programs P2 and P1 are input-output equivalent under this case.

Now, consider the case when the inputs to the programs P2 or P1 contain the challenge time step t∗.
Due to the checks performed in Steps 1 and 2 of both programs P2 and P1, for either program not to return
⊥: 1) all input ciphertexts must correspond to the same time step t∗; further, must be tagged with indices
1, 2, 3, . . . , n in this order; and 2) the NIZKs must all verify on all ciphertexts.

Assume that this is indeed the case and the Steps 1 and 2 pass the checks. Now, consider the ciphertexts
~ctG corresponding to the good parties. There are the following cases:

• All simulated. Suppose all ~ctG input to the programs are generated by the the simulator when an-
swering the challenge phase.

By perfect security of the encryption scheme, in the programs, the decrypted ciphertext in Step 5 of
either program, the decrypted values must be the same as the challenge plaintexts selected by the
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adversary, denoted ~x∗G and ~y∗G. Further, by definition of the security game, f(~x∗G, ·) = f(~y∗G, ·). Now,
due to the statistical simulation soundness of the NIZK, if the NIZKs verify, then the ciphertexts ~ctG
corresponding to the compromised set must encrypt consistent plaintexts in the two copies ci and c′i.
Due to the perfect correctness of the encryption scheme E , it follows that decrypting either copy ci or
c′i will result in the same plaintexts for the G parties.

Now, due to the fact that f(~x∗G, ·) = f(~y∗G, ·), it is not hard to see that P1 and P2 are input-output
equivalent under this case.

• All honest. Suppose all ~ctG ciphertexts input to the programs are honestly generated ciphertexts by
following the Enc algorithm of the MC-FE scheme.

Due to the statistical simulation soundness of the NIZK scheme, all ciphertexts cti must encrypt two
consistent plaintext for the ci copy and the c′i copy. Due to the perfect correctness of the encryption
scheme E , the decrypted values must be those that are encrypted. Therefore, regardless of which
decryption key sk or sk′ is used, the decrypted values will be the same. We can conclude that P1 and
P2 are input-output equivalent in this case.

Remark. One interesting is the following: when interacting with the simulation, it is actually not
computationally feasible for the adversary to generate any honest ciphertexts for the good parties inG
on its own (except with negligible probability) — otherwise, the adversary must be able to compute
an honestly formed di, and it would then be able to break Computational Diffie-Hellman. The reason
why we still need to cover this case is that the security of iO requires the two programs to be input-
output equivalent on all possible inputs, regardless of whether it might be computationally feasible
for the adversary to generate those inputs.

• Mixing honest and simulated. The most interesting case is when a subset of the input ciphertexts in
ctG are honestly generated by following the Enc algorithm of the MC-FE scheme, while the remaining
subset is simulated, i.e., generated by the simulator when answering the adversary in the challenge
phase. This is when the added orthogonal check will be useful.

We argue that under this case, except with negligible probability over choices made by the simulator,
the orthogonal check will fail on all possible inputs that mix honest and simulated ciphertexts (assum-
ing that they pass the checks in Step 1 and Step 2), and hence both programs will return⊥. The reason
is as follows: for a honestly generated ciphertext cti, due to the statistical simulation soundness of the
NIZK, the di terms in the ciphertext cti must satisfy di := hαit∗ . However, for a simulated ciphertext
cti, di := hµαit∗ , for the random µ ∈ Zp chosen by the simulator. By construction, 〈~βG, ~αG〉 = 0.
Now that a subset of G is scaled by a random µ ∈ Zp, it is not hard to see that for a fixed Γ ∪ Γ = G,
where Γ represents the honestly generated set of ciphertexts, and Γ represents the simulated set: the
orthogonal check will fail except with 1

p probability, where the probability is taken over the choice of
~βG, ~αG, and µ.

By a union bound, the probability that there exists some non-empty proper subset Γ ⊂ G such that
the orthogonal check fails is 2|G|

p . For this to be a negligible failure probability, we just have to set
p > 2n · 2κ.

Hybrid Y’. Almost the same as a real-world simulation, where the challenger encrypts ~y∗G in both copies
of the challenge ciphertexts. The only exception is that the challenger uses sk′ instead of sk for constructing
the iO in the token queries.

Claim B.21 Assuming that the iO scheme is secure, the NIZK is statistically simulation sound and compu-
tationally zero-knowledge, the encryption scheme E is semantically secure and perfectly correct, and that
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H is a random oracle, then Hybrid Y’ is computationally indistinguishable from Hybrid 5.

Proof: By a symmetric argument as in Hybrid X through Hybrid 4, we can conclude that Hybrid Y’ is
computationally indistinguishable from Hybrid 5.

Hybrid Y. Same as a real-world simulation, where the challenger encrypts ~y∗G in both copies of the chal-
lenge ciphertexts. Further, the challenger uses sk for constructing the iO in the token queries.

Claim B.22 Assuming that the iO is secure, that the NIZK is statistically sound, and that the encryption
scheme is perfectly correct, Hybrid Y’ and Hybrid Y are computationally indistinguishable.

Proof: By the security of iO, it suffices to show that using sk or sk′ in the iO program result in exactly the
same input-output behavior. It is not hard to see that if the NIZK is statistically sound and the encryption
scheme is perfectly correct, this must be the case.

Removing random oracle. As mentioned earlier, the random oracle can be removed by embedding the
terms ht’s in the public parameters. The proof would basically remain the same, except that now for the
indistinguishability between Hybrids 2 and 3, the simulator embeds the DDH instance obtained from a DDH
challenger directly in the public parameters, instead of in answering a random oracle query.

B.4 IND-secure Multi-Client FE from diO

In this section we prove Theorem 2.11 in Section 2.3.4. To proof the security, we will show Hybrid X and
Hybrid Y (defined in the following) are indistinguishable by a series of hybrids. Given any G, Ḡ, we define
the following experiments.

Hybrid X: This game is simply the defined above with b = 0. In other words, the challenger will encrypt
~x∗G (in both copies of the ciphertexts c and c′) and return them to the adversary.

Hybrid 1: In this hybrid, when the challenger answers an adversary’s query, the crs generation is sim-
ulated, allowing the simulator to obtain a simulated c̃rs and a trapdoor trap for simulating fake proofs.
Further, the NIZK proofs for the challenge time-step will now be simulated. For the non-challenge time
steps, the proofs are generated honestly.

Hybrid 2: In this hybrid, instead of using the true {hαit∗ }i in the challenge time step, the simulator will
pick a random µ, and use hµαit∗ for i ∈ G. This has the effect of scaling the ~αG vector by a constant without
changing its angle. The NIZK proofs for the honest set G for the challenge time steps are simulated.

Hybrid 3: In the challenge time step, we will switch the challenge ciphertexts to E .Enc(pk, xi; ρ), E .Enc(pk, yi; ρ′)
for all i ∈ G, where t is the time step of the challenge. The NIZK proofs for the honest set G for the chal-
lenge ciphertexts are simulated.

Hybrid 4: In this hybrid, we will switch the obfuscated program to diO(P ′), where P ′ is similar to P
except it is hardwired sk′, and it decrypts the second copies of the ciphertexts and computes accordingly.
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Hybrid Y’: In this hybrid, the challenger encrypts ~yG in both copies of the challenge ciphertexts. diO(P ′)
is given to the adversary which uses sk′ to decrypt.

Hybrid Y: This game is simply the defined above with b = 1. In other words, the challenger will encrypt
~y∗G (in both copies of the ciphertexts c and c′) and return them to the adversary. diO(P ) is given to the
adversary which uses sk to decrypt.

Then we show the indistinguishability of the hybrids by the following claims:

Claim B.23 If the NIZK is computationally zero knowledge, then Hybrid X and Hybrid 1 are computation-
ally indistinguishable.

Proof: By a trivial reduction.

Claim B.24 If the DDH assumption holds in the group G, H is a random oracle3, and that the NIZK is
computationally zero-knowledge, then Hybrid 1 and Hybrid 2 are computationally indistinguishable.

Proof: The proof follows in a similar way as the proof of Claim B.18.

Claim B.25 If the encryption scheme E is semantically secure, Hybrid 2 and Hybrid 3 are computationally
indistinguishable.

Proof: By a trivial reduction.

Claim B.26 If the security of the obfuscation diO and the simulation soundness of the NIZK hold, then
Hybrid 3 and Hybrid 4 are computationally indistinguishable.

Define Sampler to be the following algorithm: First, run the Setup algorithm of the MC-FE scheme,
with the following exception: given t∗ and the challenge plaintexts, Sampler runs the simulated (instead of
real) setup algorithm of the simulation-sound NIZK4. Sampler then includes the msk, all the {uski}, as well
as the simulated NIZKs for the challenge time step in aux. Sampler also outputs the programs P and P ′.

Assuming that the NIZK is simulation sound, it is not hard to see that no polynomial-time adversary,
when given aux, can find an input where P and P ′ differ – since to cause P and P ′ to output different
answers, the adversary must have forged a NIZK for a false statement different from the fake NIZKs of the
challenge time step.

Now suppose B is given aux and one of diO(P ) or diO(P ′). B can interact with the adversary A who
is trying to distinguish Hybrid 3 and Hybrid 4. It is not hard to see that B can simulate answers to all the
queries asked by the adversary A. Further, if A can distinguish which world it is in with non-negligible
probability, then B has a non-negligible advantage in distinguishing diO(P ) and diO(P ′). This contradicts
the assumption that diO is secure.

Claim B.27 Assuming that NIZK is computationally zero-knowledge and simulation sound, the DDH as-
sumption holds in the group G, H is a random oracle, the encryption scheme is semantically secure, and that
diO is secure, then Hybrid 4 and Hybrid Y’ are computationally indistinguishable.

Proof: The proof is completely symmetric to the proof why Hybrid X through Hybrid 4 are computationally
indistinguishable.

3As mentioned earlier, the random oracle assumption can be removed by choosing the terms {ht}t during setup and including
them in each user’s secret key.

4Note that this requires selective security
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Claim B.28 Assuming that diO is secure, and that NIZK is computationally sound, and that the encryption
scheme is perfectly correct, then Hybrid Y is computationally indistiguishable from Hybrid Y’.

Proof: Consider a Sampler algorithm that runs the real setup algorithm of the MC-FE scheme, and outputs
msk, and all {uski}i as aux. Further, Sampler outputs two programs P and P ′ whose only difference is
whether sk or sk′ is used in decryption.

It is not hard to see that no polynimial-time adversary can find an input that cause P and P ′ to give dif-
ferent outputs, assuming that the NIZK is computationally sound and that the encryption scheme is perfectly
correct. Since to cause the two programs to give different outputs, it is necessary for an adversary to forge a
proof (under a real CRS) for a false statement.

Now, by the security of diO, Hybrid Y and Hybrid Y’ are computationally indistinguishable.

C SIM-Security: Proofs

Theorem C.1 (Theorem 3.3) Let FE be a binary functional encryption scheme for a class of binary func-
tions F = {Fκ}. Assume FE is either (1, 1, 0) or (0, 1, 1)-simulation secure, then the class F is learnable.

Proof: We consider the case of (1, 1, 0)-simulation secure, and remark that the other case is similar. Our
goal is to construct a learner L1 for f(x, ·), for every κ, every function f ∈ Fκ, every input x, and similarly
for another learner L2. By symmetry, we only describe the construction and analysis of L1. The same
arguments carry for L2.

By the security of the binary FE scheme, we know that there exists a simulator S such that for any
adversary, the real experiment is indistinguishable from the ideal one. Now we define a (partial) selective
adversaryA1 parameterized by κ, f, xwhere f ∈ Fκ as follows: In the first place,A1 first asks for challenge
message (x, 0) and the key query f(·, ·). Then he will receive a token skf . Then A1 outputs the token as its
state.

Then we define a learner L1 on input 1κ and a function f runs the following procedure that simulates
the ideal experiment.

• param← S(1κ).

• st := s̃kf ← SO
′
x,0(·)(1κ). (Recall that in the selective security, the simulator gets oracle access to

O′x,0 here.)

• Run SO
′
x,0(·)(1|x|, 1|0|). At the end, the S outputs simulated ciphertexts c̃tx and c̃t0.

• Finally, the learner outputs ( ˜param, s̃kf , c̃tx) as a representation of the function f(x, ·). More for-
mally, define f ′

( ˜param,s̃kf ,c̃tx)
(y) as the following procedure:

1. Sample cty ← FE.Enc(param, y).
2. Output FE.Eval( ˜param, s̃kf , c̃tx, cty).

We note that the oracle O′x,0(·) can be perfectly simulated via oracle access to f(x, ·). (Obviously, L1

can simulate f(·, 0).)
Then we show that L1 is a good learner by the following claim:

Claim C.2 For every input x, and every polynomial sized distinguisher D, according to the following ex-
periment, we have

|Pr[Df ′(·)(1κ) = 1]− Pr[Df(x,·)(1κ) = 1]| < negl(κ),

for some negligible function negl(·).
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We show the claim by contradiction. Suppose there exist an input x, a polynomial sized distinguisher D and
a non-negligible ε, such that Pr[Df ′(·)(1κ) = 1] − Pr[Df(x,·)(1κ) = 1]| > ε, then we are going to show
that there exists an adversaryA′ that breaks the binary functional encryption scheme FE (with respect to the
simulator S from the premise that FE is a secure scheme).

We define define A′ = (A′1,A′2) as the following: A′1 follows exactly the same as A1. A′2 on inputs
˜param, c̃tx, c̃t0, s̃kf simulates an oracle g(·) that on input y samples cty ← FE.Enc( ˜param, y) and outputs

FE.Eval( ˜param, s̃kf , c̃tx, cty). Then A′2 outputs Dg(·)(1κ). It is not hard to see that if ˜param, s̃kf , c̃tx, cty,

come from the real experiment, then g()̇ behaves statistically close to f(x, ·); if they are from the simu-
lator, then g(·) behaves according to f ′(·). Thus, the real experiment RealA′,1(1κ) outputs (x, 0, 1) with
probability Pr[Df(x,·)(1κ) = 1], and the ideal experiment IdealA′,S,1(1κ) outputs (x, 0, 1) with probability
Pr[Df ′(·)(1κ) = 1]. Thus, they are distinguishable, and this completes the proof.

Theorem C.3 (Theorem 3.4) Assume vO is a VBB obfuscator for general functions, E is a CCA secure
encryption scheme, E′ is semantically secure, Σ is a strongly unforgeable signature scheme. Then for any
polynomial q1, `, q2, the above public-key binary FE scheme is (q1, `, q2)-simulation secure.

Proof: To prove the theorem, we need to construct a simulator S such that for all adversariesA = (A1,A2),
the real experiment is indistinguishable from the ideal one. Consider the following simulation algorithms:

• S(1κ) generates a public parameter param and a secret key msk as the following: sample keys
(ek, dk) ← E.KeyGen(1κ), (ek′, dk′) ← E′.KeyGen(1κ), and (vk, sk) ← Σ.KeyGen(1κ). Then
sample a random string τ ← {0, 1}κ, and D̂′

dk,dk′,vk,τ
← vO(D′dk,κ′,vk,τ ), where D′dk,vk,τ is a circuit

that does the following: on input ciphertexts ctx, cty, ctf̄ and a signature σ,

– If Σ.Ver(vk, ctf̄ , σ) = 0, output ⊥.

– Compute f ||i||(Lx, Ly, Q) = E′.Dec(dk′, ctf̄ ), where Lx, Ly are two lists of size `, and each
entry is of the form (ct′, f ′) for some ciphertext ct′ (of the scheme E) and some partial function
f ′ (of length at most p(κ)); Q is an `× ` matrix where each entry is an µ′-bit string.

– Compute (x, tagx, Zx, fx, bx) = E.Dec(dk, ctx) and (y, ty, Zy, fy, by) = E.Dec(dk, cty), where
tagx, tagy ∈ {“1”, “2”}, Zx, Zy ∈ {0, 1}µ

′·q1·`, fx, fy ∈ {0, 1}p, bx, by ∈ {0, 1}κ.

– If (tagx, tagy) 6= (“1”,“2”), output ⊥. Otherwise we consider the following cases:

– If (bx, by) = (τ, τ), then check if (Lx, Ly, Q) is the all zero string.

∗ if no, then Q[j][k] where j, k are the indices of the positions ctx, cty in Lx, Ly.
∗ otherwise, interpret Zx and Zy as two q1 × ` matrices, where each entry is an µ′-bit string.

Check whether zx[i][y] = zy[i][x]. If not output ⊥, otherwise zx[i][y].

– If (bx, by) = (τ, 6= τ), then check if (Lx, Ly, Q) is the all zero string.

∗ if no, then output f ′(y), where the j-th entry of Lx is (ctx, f
′).

∗ otherwise, interpret fx as a function and output fx(y).

– If (bx, by) = (6= τ, τ), then check then check if (Lx, Ly, Q) is the all zero string.

∗ if no, then output f ′(x), where the j-th entry of Ly is (cty, f
′).

∗ otherwise, interpret fy as a function and output fy(x).

– If none of the above is true, output f(x, y).

Finally, set param := (ek, ek′, vk, D̂dk,dk′,vk,τ ), msk := (dk, sk).
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• Upon a pre-challenge key query f from the adversary, S generates the secret key in the following way.
Let f be the i-th function that the adversary queries. (Since the simulator is stateful, he can record
this information). The simulator computes ctf̄ ← E′.Enc(ek′, f ||i||02`·(K+p)+`2·µ′). Then generate a
signature σ ← Σ.Sign(sk, ctf̄ ). Output skf := (ctf̄ , σ).

• Now S, given oracle access to O′x1,y1,...,x`,y`
(·), generates ciphertexts (ctx1 , cty1), . . . , (ctx` , cty`) in

the following way:

– By the learnability of f (j)
xi (·), f (j)

yi (·) (for all i ∈ [`], j ∈ [q1]), the simulator uses the learners and
oracle access to O′(), to find descriptions of the functions: say f (j)

xi , f
(j)
yi for i ∈ [`], j ∈ [q1].

We note that their lengths can be bounded by p(κ). (Recall that we assume the learners’ running
time is bounded by p(κ)). The simulator is clearly admissible since he only needs to query the
oracle with the functions that the adversary queried in the previous step.

– Then for all i ∈ [`], S sets zxi as a q1 × ` array where the entry zxi [j][k] = f (j)(xi, yk)
for j ∈ [q1] and k ∈ [`]; similarly, he sets zyi as a q1 × ` array where the entry zyi [j][k] =
f (j)(xk, yi). This can be done by querying the oracle with input (f (j), i, k) using the second
mode, or (f (j), k, i) using the third mode.

– Finally S outputs ctxi = E.Enc(pk, (i, “1”, zxi , fxi , τ)), and ctyi = E.Enc(pk, (i, “2”, zyi , fyi , τ))
for all i ∈ [`].

• On a post-challenge key query f , S first learns fxk(·), fyk(·) for k ∈ [`] via oracle queries to O′. De-
note these as strings ((fx1 , fy1), . . . , (fx` , fy`)). S sets Lx as a list {(ctx1 , fx1), . . . , (ctx` , fx`)}, and
similarly Ly = {(cty1 , fy1), . . . , (cty` , fy`)}. Recall the ciphertexts were generated in the previous
step by the simulator. Then S sets Q to be an ` × ` matrix where Q[i][j] = f(xi, yj). This can be
computed via oracle access to O′.

Finally, S computes ctf̄ = E′.Enc(ek′, f ||0κ||(Lx, Ly, Q)), and a signature σ ← Σ.Sign(sk, ctf̄ ).
Then he outputs skf := (ctf̄ , σ).

Next, we want to show that the simulation produces an indistinguishable ideal view. We will show a
stronger statement in the following claim, which implies that the simulator produces indistinguishable views
for all adversaries A = (A1,A2). This would complete the proof of the theorem.

Claim C.4 For any functions f1, . . . , fq1 ∈ Fκ as pre-challenge queries, g1, g2, . . . , gq2 ∈ Fκ as post-
challenge queries, and any messages (x1, y1), · · · , (x`, y`), the distributions are indistinguishable:

DistReal = (param, skf1 , . . . , skfq1 , (ctx1 , cty1), . . . , (ctx` , cty`), sk
′
g1
, . . . , sk′gq2 ) ≈c

DistIdeal = ( ˜param, s̃kf1 , · · · , s̃kfq1 , (c̃tx1 , c̃ty1), . . . , (c̃tx` , c̃ty`), s̃k
′
g1
, . . . , s̃k

′
gq2

),

where tilde denotes the strings generated by the simulator.

To show the claim, we consider the following experiments. Let B be any distinguisher, and DistReal1 is
identical to DistReal except it does not contain the obfuscated circuit. (Instead we will give the distinguisher
oracle access to the circuit). Similar we define DistIdeal1 :

DistReal1 = (ek, ek′, vk, skf1 , . . . , skfq1 , (ctx1 , cty1), . . . , (ctx` , cty`), sk
′
g1
, . . . , sk′gq2 ),

DistIdeal1 = (ek, ek′, vk, s̃kf1 , · · · , s̃kfq1 , (c̃tx1 , c̃ty1), . . . , (c̃tx` , c̃ty`), s̃k
′
g1
, . . . , s̃k

′
gq2

),
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Claim C.5 Assume the security of the VBB obfuscator. Then for any functions in Fκ as key queries and
messages as the challenge, suppose there exists a poly-sized distinguisher B and some non-negligible ε such
that Pr[B(DistReal) = 1] − Pr[B(DistIdeal) = 1] > ε, then there exists another poly-sized distinguisher B′
such that Pr[B′Ddk,dk′,vk,τ (DistReal1) = 1]− Pr[B′Ddk,dk′,vk,τ (DistIdeal1) = 1] > ε− negl(κ).

We show that there exists another distinguisherB′ who gets oracle access to the functionalitiesDdk,dk′,vk,τ

can still distinguish the modified real from the modified ideal. Intuitively, this follows from the VBB prop-
erty.

More precisely, define B
ek,ek′,vk,~sk,~ct be an adversary (in the VBB security sense), who is parameterized

by ek, ek′, vk, ~sk, ~ct for some fixed keys and ciphertexts. For any such fixed parameters, B
ek,ek′,vk,~sk,~ct on in-

put an obfuscated circuit Ĉ runs B(ek, ek′, vk, ~sk, ~ct, Ĉ). Then by the VBB property, there exists a simulator
SimB,ek,ek′,vk,~sk,~ct who gets oracle access to C such that the probabilities they output 1 are negligibly close.

Then we look at the oracle C = Ddk,dk′,vk in the real world. It is not hard to see:

Pr[B(DistReal)] = Pr
[
B
ek,ek′,vk,~sk,~ct(Ĉ) = 1

]
≈ Pr

[
Sim

C(·)
B,ek,ek′,vk,~sk,~ct

(1κ) = 1
]

Then we consider the experiment that SimB,ek,ek′,vk,~sk,~ct gets oracle access to C ′ = D′
dk,dk′,vk,τ

for a
randomly chosen τ . It it not hard to see:

Pr
[
Sim

C(·)
B,ek,ek′,vk,~sk,~ct

(1κ) = 1
]
≈ Pr

τ←{0,1}κ

[
Sim

C′(·)
B,ek,ek′,vk,~sk,~ct

(1κ) = 1
]
,

since for any set of queries, the two oracle behaves identically with overwhelming probability over the ran-
dom choice of τ . Recall thatDek,ek′,vk,τ deviates only when any of the inputs has τ . Since τ is independently
and randomly chosen and hidden in the oracle, any polynomial-size queries will not hit τ with overwhelming
probability.

Then we look at the ideal experiment. It is not hard to see:

Pr[B(DistIdeal)] = Pr
[
B
ek,ek′,vk,~sk,~ct(Ĉ

′) = 1
]
≈ Pr

τ←{0,1}κ

[
Sim

C′(·)
B,ek,ek′,vk,~sk,~ct

(1κ) = 1
]
.

Now we define B′ as a distinguisher that on input (ek, ek′, vk, ~sk, ~ct) and oracle access to C ′(·) outputs
Sim

C′(·)
B,ek,ek′,vk,~sk,~ct

(1κ). From the above calculations, we have

Pr[B′C′(·)(DistReal1) = 1]− Pr[B′C′(·)(DistIdeal1) = 1] > ε− negl(κ),

which completes the proof of the claim.
Then we consider two modified experiments: Real2 and Ideal2, where in the two experiments, the

key generation algorithm outputs skf = E′.Enc(0) along with a signature σ to the adversary. Also similarly,
change skg to E′.Enc(0) along with a signature σ. Then we consider a modified oracleC ′′, who is hardcoded
with all the functions f ’s (or g’s) associated with the skf ’s, so that when the adversary queries with the
ciphertext, the oracle evaluates it in the same way as Real1 and Ideal1.

It is not hard to see that Real1 (with the oracle C ′) and Real2 (with the oracle C ′′) are identical if the
adversary only queries the skf ’s that have been generated in the key generation algorithms. From the security
of the signature scheme, no adversary can query any valid skg (with overwhelming probability) such that g
was not queried in the key generation phase. (Otherwise, there is a forge of the signature). Similarly, we can
argue that Ideal1 (with oracle C ′) and Ideal2 (with the oracle C ′′) are indistinguishable.

In the rest, we are going to show that Real2 is indistinguishable from Ideal2 in the following claim.
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Claim C.6 Assume the encryption scheme E is CCA secure. Then no adversary, with oracle access to C ′′,
can distinguish Real2 from Ideal2.

We prove this by contradiction. Assume there exist messages (x1, y1, . . . , x`, y`), functions in F and
an adversary D that can distinguish the two distributions. Then we will construct a reduction that breaks
the CCA security of E. Then the reduction on receiving pk from the CCA challenger chooses a random τ ,
and sets the challenge ciphertexts to be either M0 = {(xi, “1”, 0µ

′q+p+κ), (yi, “2”, 0µ
′q+p+κ)}i∈[`], M1 =

{(i, “1”, zxi , fxi , τ), (i, “2”, zyi , fyi , τ)}i∈[`], as the challenge ciphertexts in the Real2 and Ideal2. Then the
reduction simulates the distinguisher D and the oracle in the following way. The reduction sets up the
parameter param by sampling (ek′, dk′) ← E′.KeyGen(1κ), (vk, sk) ← Σ.KeyGen, and embedding the pk
from the CCA challenger. Then the reduction generates skf ’s (as encryptions of the zero strings, with a
signature). Then he simulate an oracle for the distinguisher D: if D submits a ciphertext that is not equal
to the challenge ciphertexts, then the reduction asks the CCA oracle to decrypt and then he can simulate the
oracle computation faithfully. If D sends one of the challenge ciphertexts, then the reduction already knows
the answer, so he can reply the query faithfully. Thus, it is not hard to see the distinguisher can distinguish
encryptions of M0 from M1, as D distinguishes Real2 from Ideal2.

Putting things together, we can show that Claim C.4 follows from Claims C.5 and C.6. This completes
the proof of the theorem.

Theorem C.7 (Theorem 3.5) Assume FEind is an IND-secure public-key binary functional encryption scheme,
commit is a statistically binding commitment scheme, and E is a semantically secure symmetric key encryp-
tion scheme. Then the above scheme is (0, 1,poly) simulation-secure.

Proof: We begin by describing the ideal world simulator, S(1κ). Recall that when the adversary queries
f1, . . . , f`, for each i ∈ [`] the simulator is given fi(x, y), as well as oracle access to the partial functions
fi(x, ·) and fi(·, y). By our hypothesis, these partial functions are learnable; S can run the code of the
learner L, forwarding oracle queries to his own oracle. Below we let fx denote the output of the learner L
when given oracle access to f(x, ·), and similarly for fy and f(·, y). The full description of our simulator is
as follows.

• Setup: S runs (paramind,mskind) ← FEind.Setup(1κ). He chooses a random r ← {0, 1}κ, τ ←
E.KeyGen(1κ) and computes com = commit(τ ; r). He outputs param = (paramind, com) and msk =
(mskind, r, τ).

• Enc: For the challenge plaintext with tag “1”, S samples FEind.Enc(mskind, (0
|x|, “1”, r, τ, 1)), where

r and τ are the values stored in msk. For the challenge with tag “2” he samples FEind.Enc(mskind, (0
|y|,

“2”, r, τ, 1))

• KeyGen: For each key query f , S computes fx using his oracle f(x, ·). He samples c1 = E.Enc(τ, (fx, Zx))
and c2 = E.Enc(τ, (fy, Zy)) (recall, Zx = Zy = f(x, y) and is given to him by his oracle). He con-
structs a circuit computing f̂c1,c2 as described previously, and outputs FEind.KeyGen(mskind, f̂c1,c2).
Note that because we assume selective-security, he can handle both adaptive and non-adaptive key
queries in this way.

We wish to demonstrate that for any adversary challenge pair x, y, and for any set of function queries
f1, . . . , f`, the following two distributions are indistinguishable:

{ctx, cty, param, skf1 , . . . , skf`}
c
≈ {c̃tx, c̃ty, p̃aram, s̃kf1 , . . . , s̃kf`}
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where the second distribution is output by the simulator as previously described, and both distributions are
taken over the randomness used to construct each value (the randomness is left implicit). We proceed to
prove that this through a sequence of hybrid distributions.

Hybrid 0: This is the first ditribution described above. I.e. it is the output distribution of the real world.

Hybrid 1: In this distribution, we generate param and the ciphertexts as in the real world, but we generate
the decryption keys as in the ideal world. Namely, we consider the distribution {ctx, cty, param, s̃kf1 , . . . , s̃kf`}.
Recall that the difference between simulated decryption keys and real decryption keys lies in the values c1, c2

that are used in the description of the function f̂c1,c2 . In the real world, c1, c2 ← E.Enc(τ, 0p+µ
′
), while in

the ideal world, c1 = E.Enc(τ, (fx, Zx)) and c2 = E.Enc(τ, (fy, Zy)).

Claim C.8 If there exists an adversary A that can distinguish Hybrid 0 and Hybrid 1 with advantage ε,
then there exists an adversaryR attacking the semantic security of E with the same advantage.

Proof: Let x, y be the challenge pair for whichA gains his advantage. R begins by running the Setup pro-
cedure as in the real world protocol, but he skips the step where he would generate τ ← E.KeyGen(1κ). He
outputs param. He uses these parameters to encrypt x and y as in the real world: ctx = FE.Enc(param, (x, “1”,
0κ, 0κ, 0)) and cty = FE.Enc(param, (y, “2”, 0κ, 0κ, 0)). To create skf̂c̄1,c̄2

, R creates challenge plaintext

vectors ((x, 0κ, 0κ), (y, 0κ, 0κ)) and ((0|x|, fx, Zx), (0|y|, fy, Zy)) and passes them to his challenger in the
CPA game. He receives back challenge ciphertexts (c̄1, c̄2) and uses them to complete key generation. If the
challenge bit in the CPA game is 0, the simulation is drawn from the same distribution as Hybrid 0, while if
it is 1, the simulation is drawn from the same distribution of Hybrid 1.

Hybrid 2: In this distribution, we replace param with simulated parameters p̃aram. Namely, we consider
the distribution {ctx, cty, p̃aram, s̃kf1 , . . . , s̃kf`}. Recall that in the real parameters, there is a commitment
com = commit(0κ; r), while in the simulated parameters, com = commit(τ ; r) where τ ← E.KeyGen(1κ).

Claim C.9 If there exists an adversary A the can distinguish Hybrid 1 from Hybrid 2 with advantage ε,
then there exists an adversaryR attacking the hiding property of commit with the same advantage.

Proof: R runs τ ← E.KeyGen(1κ) and submits challenge (0κ, τ) to his challenger. He receives a com-
mitment com and uses this in his simulation of param. Note that if his challenge is a commitment to 0κ,
param are the public parameters from Hybrid 1, and otherwise they are the public parameters from Hybrid
2. We note that R does not now know the value r used in com, but this is not needed for the remainder of
the simulation, since ctx and cty encrypt 0κ instead of r ← {0, 1}κ.

Hybrid 3: In this distribution, we replace ctx, cty with simulated ciphertexts c̃tx, c̃ty, resulting in the ideal
world distribution.

Claim C.10 If there exists an adversary A the can distinguish Hybrid 2 from Hybrid 3 on some inputs x, y
with advantage ε, then there exists a non-trivial adversary R attacking selective security of FEind with the
same advantage.

Proof: R samples τ ← E.KeyGen(1κ) and r ← {0, 1}κ, and computes com = commit(r; τ). He con-
structs the following two challenge plaintext pairs, and submits them to his challenger: ((x, “1”, 0κ, 0κ, 0),
(y, “2”, 0κ, 0κ, 0)) and ((0|x|, “1”, r, τ, 1), (0|y|, “2”, r, τ, 1)). He receives paramind and (ct∗x, ct

∗
y) in re-

sponse, sets p̃aram = (paramind, com) and forwards this and the challenge ciphertexts to A. He then
uses r and τ to answer key queries as follows. On query f , he computes c1 = E.Enc(τ, (fx, Zx)), c2 =
E.Enc(τ, (fy, Zy)), and requests a key for f̂c1,c2 from his own challenger. He forwards the response to A.
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If the challenge bit in the FEind game is 0, the view of A is distributed just as in Hybrid 2. Otherwise, it is
distributed as in Hybrid 3.

To show that R is non-trivial, we consider inputs x1 = (x, “1”, 0κ, 0κ, 0) and x2 = (0|x|, “1”, r, τ, 1),
as well as the function f̂c1,c2 . Recall that c1 = E.Enc(τ, (fx, Zx)) and c2 = E.Enc(τ, (fy, Zy)). We must
show that for every input ȳ, f̂c1,c2(x1, ȳ) = f̂c1,c2(x2, ȳ).

• If the last bit of ȳ is 0, then it follows from the function description that f̂c1,c2(x1, ȳ) = f(x, ȳ), and
f̂c1,c2(x2, ȳ) = fx(ȳ). Since R has correctly learned f(x, ·), fx correctly compute f(x, ·) and these
two outputs are equivalent.

• If the last bit of ȳ is 1, parse ȳ as (0|y|, tagȳ, rȳ, τȳ, 1).

– If tagȳ 6= “2”, then f̂c1,c2(x1, ȳ) = f̂c1,c2(x2, ȳ) = ⊥.

– If commit(rȳ; τȳ) 6= com, then f̂c1,c2(x1, ȳ) = f̂c1,c2(x2, ȳ) = ⊥.

– If commit(rȳ; τȳ) = com, then by the statistical binding property of the commitment scheme, it
holds that E.Dec(τȳ; c2) = (fy, Zy) (where these are the values previously learned by R after
interacting with his oracles). It follows that f̂c1,c2(x1, ȳ) = fy(x), and f̂c1,c2(x2, ȳ) = Zx =
f(x, y). Again, since fy correctly computes f(·, y), these outputs are equivalent.

An identical analysis follows for inputs (y, “2”, 0κ, 0κ, 0) and (0|y|, “2”, r, τ, 1). We omit the details.

Theorem C.11 (Theorem 3.7) Assume FEind is an IND-secure binary functional encryption scheme for
functionality F , and that E is a semantically secure symmetric key encryption scheme. Then the above
scheme is a (1, 1, 1)-simulation-secure symmetric-key binary FE scheme for functionality F .

Proof: We begin by describing the ideal world simulator, S(1κ).

• Setup: S runs (paramind,mskind) ← FEind.Setup(1κ). He chooses a random τ ← E.KeyGen(1κ).
He outputs param = (paramind) and msk = (mskind, τ).

• KeyGen: S chooses idxf ← {0, 1}κ. If the key query is received before the challenge plaintext
submission, S samples c ← E.Enc(τ, (0µ

′
)). If the key query comes after the challenge plain-

text submission, he samples c ← E.Enc(τ, (Zx)) (recall, Zx = Zy = f(x, y) and is given to
him by his oracle). He constructs a circuit computing f̂c,idxf as described previously, and outputs
FEind.KeyGen(mskind, f̂c,idxf ).

• Enc: If there has been a key query for some function f , S receives f(x, y) from his oracle. He
sets Zx = Zy = f(x, y). Then, to simulate the challenge ciphertext with tag “1”, S samples
FEind.Enc(mskind, (0

|x|, “1”, idxf , Zx, τ, 1)), where τ is the value stored in msk, and idxf is the ran-
dom value that was assigned to f during key generation. He simulates the ciphertext with tag “2” with
FEind.Enc(mskind, (0

|y|, “2”, idxf , Zy, τ, 1)). If there hasn’t been a key query yet, he instead samples
FEind.Enc(mskind, (0

|x|, “1”, 0κ, 0µ
′
, τ, 1)). He similarly simulates the challenge ciphertext with tag

“2”, outputting either FEind.Enc(mskind, (0
|y|, “2”, 0κ, Zy, τ, 1)).
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D Strong Differing-inputs Obfuscation and Adaptive Security

In this section, we define a stronger notion of differing-inputs obfuscation, and show how this notion can be
used to achieve adaptive security.

Definition D.1 A circuit family C associated with a sampler Sampler and a function oracleO is said to be a
differing-inputs circuit family if for every PPT adversary A there exists a negligible function negl such that

Pr[C0(x) 6= C1(x) : (C0, C1, aux)← Sampler(1κ), x← AO(1κ,aux,·)(1κ, C0, C1)] ≤ negl(κ).

We now define the notion of differing-inputs obfuscation for a differing-inputs circuit family.

Definition D.2 (Strong Differing-inputs Obfuscators for circuits) A uniform PPT machine diO is called
a strong Differing-inputs Obfuscator for a differing-inputs circuit family C = {Cκ} if the following condi-
tions are satisfied:

• (Correctness): For all security parameter κ, all C ∈ C, all inputs x, we have

Pr[C ′(x) = C(x) : C ′ ← diO(κ,C)] = 1.

• (Polynomial slowdown): There exists a universal polynomial p such that for any circuit C, we have
|C ′| ≤ p(|C|) for all C ′ = diO(κ,C) under all random coins.

• (Differing-inputs): For any (not necessarily uniform) PPT distinguisher D, there exists a negligi-
ble function negl such that the following holds: for all security parameters κ, for (C0, C1, aux) ←
Sampler(1κ), we have that

|Pr[DO(1κ,aux,·)(diO(κ,C0)) = 1]− Pr[DO(1κ,aux,·)(diO(κ,C1)) = 1]| ≤ negl(κ).

D.1 Adaptively Secure Multi-Client FE from Differing-inputs Obfuscation

We now present a multi-client functional encryption (MC-FE) scheme that is adaptively, IND-secure based
on strong differing-inputs obfuscation. Let E := (Gen,Enc,Dec) denote a public-key encryption scheme,
NIZK denote a non-interactive zero knowledge proof system, commit be a commitment scheme.

• Setup(1κ, n): Compute (pk, sk)← E .Gen(1κ), and (pk′, sk′)← E .Gen(1κ). Run crs := NIZK.Setup(1κ).

For i ∈ [n], choose αi, ri ← {0, 1}κ, and compute comi = commit(αi; ri). Set param = [crs, pk, pk′,
com1, . . . , comn]. The secret keys for each user are: uski := [ri, param]. The master secret key is:
msk :=

[
param, sk, sk′, {αi, ri}i∈[n]

]
• Enc(uski, x, t): For user i to encrypt a message x and a time step t, it computes the following. Choose

random ρ and ρ′ as the random bits needed for the public-key encryption scheme. Let c := E .Enc(pk, x; ρ)
and c′ := E .Enc(pk′, x; ρ′). Let statement stmt := (t, i, αi, c, c

′); let witness w := (ρ, ρ′, x, ri). Let the
NP language be defined as in Figure 9. Let π := NIZK.Prove(crs, stmt, w). The ciphertext is defined as
ct := (t, i, αi, c, c

′, π).

• KeyGen(msk, f): To generate a token for a function f over n parties’ inputs compute token TKf :=
diO(P ) for a Program P defined as in Figure 10:

• Dec(TKf , ct1, . . . , ctn): Interpret TKf as an obfuscated program. Output TKf (ct1, ct2, . . . , ctn).
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Our NP language Lpk,pk′,{comi}i∈[n]
is parameterized by (pk, pk′, {comi}i∈[n]) output by the Setup algo-

rithm as part of the public parameters. A statement of this language is of the format stmt := (t, i, αi, c, c
′),

and a witness is of the format w := (ρ, ρ′, x, ri). A statement stmt := (t, i, α, c, c′) ∈ Lpk,pk′,{comi}i∈[n]
,

iff

∃ x, (ρ, ρ′), r s.t. comi = commit(α; r) ∧ (c = E .Enc(pk, x; ρ)) ∧
(
c′ = E .Enc(pk′, x; ρ′)

)
Figure 9: NP language Lpk,pk′,{comi}i∈[n]

.

Program P (ct1, ct2, . . . , ctn):

Internal hard-coded state: param := [crs, pk, pk′, com1, . . . , comn], sk, f

1. For i ∈ [n], unpack (ti,ji, αi, ci, c
′
i, πi)← cti, and check that t1 = t2 = · · · = tn and that ji = i.

2. For i ∈ [n], let stmti := (ti, ji, αi, ci, c
′
i) and check that NIZK.Verify(crs, πi, stmti) = 1.

3. If any of these above checks fail, output ⊥. Else, for i ∈ [n], let xi ← E .Dec(sk, ci) and output
f(x1, x2, . . . , xn).

Figure 10: MC-FE: Program P .

Theorem D.3 (MC-FE from diO.) If diO is a strong differing-inputs obfuscation, NIZK is an adaptive
simulation sound non-interactive zero-knowledge proof system, the commitment scheme is computationally
hiding, and the encryption scheme is semantically secure and perfectly correct, then the above construction
is adaptively IND-secure, as defined in Section 2.3.2.

Instantiation and efficiency. We can instantiate our scheme using the simulation sound NIZK scheme as
constructed by Sahai et al. [30]. We can use the construction described by Garg et al. [17] as a candidate
of the strong diO. This way, the ciphertext is succinct, and is poly(κ) in size. The public parameter size,
encryption time are both succinct, i.e. poly(κ), and the decryption time is O(n+ |f |) · poly(κ).

Then we are going to prove Theorem D.3.
Proof: To proof the security, we will show Hybrid X and Hybrid Y (defined in the following) are indis-
tinguishable by a series of hybrids. Given any G, Ḡ, we define the following experiments.

Hybrid X: This game is simply the defined above with b = 0. In other words, the challenger will encrypt
~x∗G (in both copies of the ciphertexts c and c′) and return them to the adversary.

Hybrid 1: In this hybrid, when the challenger answers an adversary’s query, the crs generation is simu-
lated, allowing the simulator to obtain a simulated c̃rs and a trapdoor trap for simulating fake proofs.

Hybrid 2: In this hybrid, we switch the commitments to com(0κ) for all i ∈ G. The ciphertexts are still of
the form (t, i, αi, c, c

′, π), yet proofs π in the ciphertexts of the set G are generated by the simulator (since
they prove false statements, i.e. the commitments are not for αi) as Hybrid 1.

Hybrid 3: In the challenge time step, we will switch the challenge ciphertexts to E .Enc(pk, xi; ρ), E .Enc(pk′, yi; ρ′)
for all i ∈ G. The NIZK proofs for the challenge ciphertexts are simulated.
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Hybrid 4(i): In this hybrid, we let Pj denote the program constructed from the jth key query of the
adversary, and for j < i, we switch the obfuscated program to diO(P ′j), where P ′j is similar to Pj except it
is hardwired with sk′, and decrypts the second copy of each ciphertext pair and computes accordingly. Note
that Hybrid 4(1) is the same as Hybrid 3.

Hybrid Y’: In this hybrid, the challenger encrypts ~yG in both copies of the challenge ciphertexts. diO(P ′)
is given to the adversary which uses sk′ to decrypt.

Hybrid Y: This game is simply the defined above with b = 1. In other words, the challenger will encrypt
~y∗G (in both copies of the ciphertexts c and c′) and return them to the adversary. diO(P ) is given to the
adversary which uses sk to decrypt.

Then we show the indistinguishability of the hybrids by the following claims:

Claim D.4 If the NIZK is computationally zero knowledge, then Hybrid X and Hybrid 1 are computationally
indistinguishable.

Claim D.5 If the commitment is computationally hiding, then Hybrid 1 and Hybrid 2 are computationally
indistinguishable.

Claim D.6 If the encryption scheme E is semantically secure, Hybrid 2 and Hybrid 3 are computationally
indistinguishable.

The above three claims can be proved by somewhat trivial reductions. The reductions are very similar
to those presented previously, so we omit repeating them here.

Claim D.7 Let ` denote the number of key queries made by the adversary. If the security of the obfuscation
diO and the simulation soundness of the NIZK hold, then for 0 < i < `, Hybrid 4(i) and Hybrid 4(i+1) are
computationally indistinguishable.

Let param be a set of parameters sampled as in Hybrids 4(i) and 4(i+1). Namely, after running (c̃rs, trap)←
NIZK.SimSetup(1κ), (pk, sk)← E .Gen(1κ), (pk′, sk′)← E .Gen(1κ), and for i ∈ [n], comi = commit(0κ; ri),
let param = (c̃rs, pk, pk′, {comi}). Let A be some adversary that distinguishes the two hybrid worlds, and
let fi denote the ith key query of A given param and key the preceeding query responses skf1 , . . . , skfi−1

.
Then we define a sampler Sampler and an associated function oracleO as follows. Sampler samples parame-
ters exactly as just described, and then outputs (Pfi , P

′
fi
, aux), where aux = (pk, pk′, c̃rs, {comi}, sk, sk′, trap),

and the two programs are as described in Figure 10, differing only in that the first has sk hardcoded in its
state while the second has sk′ hardcoded in its state. The function oracle O(1κ, aux, ·) responds to queries
in the following manner. On input “params”, it outputs (pk, pk′, c̃rs, {comi}, sk, sk′) (while keeping trap
hidden). On input ~xG, ~yG such that fi(~xG, · · · ) = fi(~yG, · · · ), O samples random ρj and ρ′j for j ∈ G,
to be used as the random bits in the public-key encryption scheme. He computes cj := E .Enc(pk, xj ; ρj)
and c′j := E .Enc(pk′, yj ; ρ′j). Let statement stmt := (t, i, αi, cj , c

′
j). He proves that stmt is in the NP

language defined in Figure 9 by computing πj := NIZK.SimProve(c̃rs, stmt, trap). Finally, he outputs
{cj , c′j , πj}j∈G. On any other inputs, O outputs ⊥.

We first show that the circuit family associated with the Sampler and O defined above is differing-
input secure. This follows from the simulation soundness of the NIZK scheme. The circuits Pfi and P ′fi
both output ⊥ anytime the proof π does not verify for statement stmt. If the proof verifies, then either
stmt is in the language, in which case the circuits clearly have the same output, or stmt is not in the
language. In this latter case, if {cj , c′j , πj}j∈G were output by O, then by the definition of O, we know
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that fi(~xG, · · · ) = fi(~yG, · · · ) and the two programs have the same output. If an adversary can find a false
statement with a valid proof that was not output by O, we can use this adversary to break the simulation
soundness of the NIZK.

Suppose there exists an adversary A that distinguishes Hybrid 4(i) from Hybrid 4(i+1). Then we can
construct a distinguisher D that distinguishes diO(Pfi) from diO(P ′fi). D on input either diO(Pfi) or
diO(P ′fi), queries O with “params” and receives (pk, pk′, c̃rs, {comi}, sk, sk′); he uses these values to sim-
ulate the view of A as follows. He simulates Setup with c̃rs, pk, pk′ and {comi}. For j < i, he simulates
key query fj by computing diO(P ′fj ), and for j > i, he simulates that by by computing diO(Pfj ). We
note that he has sk and sk′, which suffice for this; he does not need trap to construct the obfuscation. To
reply to key query skfi , he just forwards his input from the challenger, i.e. either diO(Pfi) or diO(P ′fi).
When he receives (legal) challenge plaintexts ~xG and ~yG from A, D queries these values to O and receives
back {cj , c′j , πj}j∈G. The reader can verify that A’s view is perfectly simulated according to either Hybrid
4(i) or Hybrid 4(i+1), depending on the challenge D receives from his challenger. Thus, D can distinguish
diO(Pfi) from diO(P ′fi). This contradicts the fact that the family is strong differing-inputs as argued above.
This completes the proof of the claim.

The proofs for the remaining half of the hybrid sequence (from Hybrid 4 to Hybrid Y), are exactly
symmetric to the first half of the hybrid sequence (from Hybrid X to Hybrid 4) described above.
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