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Abstract. Zorro is an AES-like lightweight block cipher proposed in CHES 2013, which
only uses 4 S-boxes per round. The designers showed the resistance of the cipher against
various attacks and concluded the cipher has a large security margin. Recently, Guo et. al
[1] have given a key recovery attack on full-round Zorro by using the internal differential
characteristics. However, the attack only works for 264 out of 2128 keys. In this paper,
the secret key selected randomly from the whole key space can be recovered with a time
complexity of 2108 full-round Zorro encryptions and a data complexity of 2112.4 chosen
plaintexts. We first observe that the fourth power of the MDS matrix used in Zorro equals
to the identity matrix. Moveover, several iterated differential characteristics and iterated
linear trails are found due to the interesting property. We select three characteristics with
the largest probability to give a key recovery attack on Zorro and a linear trail with the
largest correlation to show a a linear distinguishing attack with 2105.3 known plaintexts.
The results show that the security of Zorro against linear and differential cryptanalysis
evaluated by designers is insufficient and the block cipher Zorro is far from a random
permutation.
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1 Introduction

Block ciphers are used as building blocks for many symmetric cryptographic primitives
for encryption, authentication, pseudo-random number generation, and hash functions.
Security of these primitives is evaluated in regard to known attacks against block
ciphers. Among the different types of attacks, the statistical ones exploit non-uniform
behavior of the data extracted from the cipher to distinguish the block cipher from
random permutations. Differential cryptanalysis[2] and linear cryptanalysis[3] are the
most prominent statistical attacks against block ciphers.

Differential cryptanalysis has been introduced in 1990 by Biham and Shamir in or-
der to break the DES block cipher. This statistical cryptanalysis exploits the existence
of a differential, i.e., a pair (△in,△out) of differences such that for a given input differ-
ence △in, the output difference after encryption equals △out with a high probability.
For a b-bit random permutation, the probability is about 2−b. The gap of the probabil-
ity results in a distinguisher between the cipher and the random permutation, which is
often extended to distinguish the correct key and the wrong keys. In 1993, the iterated
differentials are proposed to analyze DES and s2-DES[4]. Since then, the differential
cryptanalysis is always a hot topic of cryptanalysis[5–7]. The problem of estimating the
data complexity, time complexity and success probability of a differential cryptanalysis
is far from being simple. Until 2011, [8] presented a general method (Algorithm 1) for
finding an accurate number of samples to reach given error probabilities which can be
applied to the differential cryptanalysis.

Linear cryptanalysis[9, 10] is a known-plaintext attack proposed in 1993 by Matsui
to break DES. It exploits the correlation between linear combinations of input bits



and linear combinations of output bits of the block cipher. If the correlation between
input and output equals C, the required amount of known plaintexts is about C−2

if we want to distinguish the block cipher from the random permutation with a high
success probability.

Zorro[11] is a new lightweight block cipher proposed at CHES 2013. It is an AES-
like block cipher and is designed to improve the side-channel resistance of AES[12].
The secret key is added to the state only after each 4 rounds as in the block cipher
LED-64[13]. The S-box layer of Zorro only applies four same S-boxes to the first row
per round and the S-box is different from that of AES. Besides, the MC operation is the
same as AES. The designers have evaluated the security of the cipher against various
methods. For differential/linear cryptanalysis, authors found a balance between the
number of inactive S-boxes and the number of freedom degrees for the differential (or
linear) paths. Considering the average number of conditions imposed at each round,
designers concluded that 14(or 16) rounds are the upper bound for building a classical
differential(or linear) path. Finally, a 12-round meet-in-the-middle attack was shown
as the best powerful attack on Zorro in the single key model. Recently, Guo et. al[1]
have given a key recovery attack on full-round Zorro by using the internal differential
characteristics, while it only works for 264 keys of the whole key space.

In this paper, we revaluated the security of Zorro against differential cryptanalysis
and linear cryptanalysis. As mentioned in [1], the main weakness of Zorro includes
defining a new S-box and applying only four S-boxes to the first row per round. Besides,
we observed that the fourth power of the MDS matrix of Zorro(or AES) is equal
to the identity matrix. Coincidentally, one step of Zorro consists four rounds with
four MDS matrix transformations. Interestingly, there exist several iterated differential
characteristics with a high probability and iterated linear trails with a high correlation
for one step of Zorro. Furthermore, we can recover the secret key of the full-round
Zorro based on a 23-round differential characteristic with a time complexity of 2108

full-round Zorro encryptions. Meanwhile, the 1/C2 of some linear trails of full-round
Zorro is also lower than the size of the palintext space 2128 . Thus, we can obtain a
full-round linear distinguisher for Zorro with 1/C2 known plaintexts. All in all, the
above results have threatened the theoretical security of the full-round Zorro.

The remainder of this paper is organized as follows. Section 2 gives a brief descrip-
tion of Zorro block cipher. Section 3 proposes some iterated differential characteristics
for one step of Zorro and shows a key recovery attack on full-round Zorro. Section 4
presents a linear distinguisher of full-round Zorro based on the theory of correlation
matrix. Finally, Section 5 concludes this paper.

2 A brief description of Zorro

The block cipher Zorro has 128-bit key and 128-bit state. It iterates 24 rounds and the
24 rounds are divided into 6 steps of 4 rounds each.

Encryption Algorithm. As in AES-128, the state in Zorro is regarded as 4×4 matrix
of bytes, and one round consists of four distinct transformations: SB∗, AC, SR and
MC. SB∗ is the S-box layer where only 4 same S-boxes are applied to the 4 bytes of
the first row in the state matrix. The S-box used in Zorro is different from the one of
AES and the definition of S-box is referred to Appendix A. Next, AC is the addition
of round constants in round i. Specifically, the four constants (i, i, i, i<<3) are added
to the four bytes of the first row. Finally, the last two transformations, SR and MC,



are the AES’s ShiftRows and MixColumns.

Key Schedule Algorithm. The key schedule algorithm of Zorro is similar to that
of LED. Before the first and after each step, the master key is bitwisely added to the
state and the same addition is done after the last step.

Let us focus on MC(MixColumns) used in Zorro and it is a permutation operation
on the state column by column. The matrix multiplication can be shown as:

M =











02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02











.

Interestingly, the following equation is true:

M4 =











01 00 00 00

00 01 00 00

00 00 01 00

00 00 00 01











.

Combined with the fact that only 4 S-boxes are applied to the first row in each round,
iterated differential characteristics and linear trails are found for four rounds of Zorro.

3 Differential Cryptanalysis of Full-Round Zorro

Differential cryptanalysis defines characteristics that describe possible evolvements of
the differences through the cipher. For non-linear operations (such as S-boxes), it is
possible to predict statistical information on the output difference given the input
difference by generating the differential distribution table (DDT). Given the expected
difference for the intermediate data before the last round, it may be possible to deduce
the unknown key by a statistical analysis. The attack is a chosen plaintext attack
that is performed in two phases: In the data collection phase the attacker requests
encryption of a large number of pairs of plaintexts, where the differences of all the
plaintext pairs are selected to have the plaintext difference of the characteristic. In the
data analysis phase the attacker then recovers the key from the collected ciphertexts.

Generally, the total probability of a differential characteristic is the product of the
probabilities of each round assuming that the round functions are independent. The
secret key is added to the data every four rounds and 4 rounds of Zorro can be seen
as a step that has no constants in the rounds, if we add one value to the input and
one at the output of the step [1]. For Zorro, the assumption that the step functions
are independent is more rational than the one that round functions are independent.
In this section, we will present a 23-round differential distinguisher of Zorro under
the assumption that the step functions are independent. Furthermore, a key recovery
attack of full-round Zorro is shown.

3.1 Iterated Differential Characteristic

As mentioned by designers, the most damaging differential patterns are those that
would exclude active bytes affected by non-linear operations. This kind of differential



characteristic with probability 1 exists for at most two rounds. We extend the differ-
ential pattern to 4 rounds with 4 active bytes, which is shown in Figure 1. The big
squares represent states, small squares represent bytes , gray bytes are the ones with a
non-zero difference and the letters in gray bytes present the difference values. In order
to remove the influence of ShiftRow, we set the four byte differences in each row all
equal. If the output differences of all the 4 active S-boxes are equal to the input differ-
ences, then the differences of #1 are equal to that of #9 because M4 = I. Firstly, we
find that 255 different values of (a, b) make the path from #1 to #7 with probability
1. After searching the differential distribution table (DDT) of the S-box used in Zorro,
111 original differences make the path from #7 to #9 possible.*S Baaaa bbbb A CS RM C *S Bccccd eeee ddd A CS RM C ffff gggg*S B A CS RM C *S Biiiij kkkk jjj A CS RM ChhhhA K # 1 # 2 # 3 # 4 # 5# 6 # 7 # 8 # 9 aaaa bbbbaaaa bbbb ccccd eeee dddffff gggg # 5 ffff gggg iiiij kkkk jjj hhhhp

 

Fig. 1. Iterated differential characteristic of four rounds Zorro

The probability of the differential characteristic from #1 to #9(four rounds) is
determined by the value of (h, h) in DDT. Specifically, if the value of (h, h) in DDT of
S-box is m, then there are m different values with the equation S(x)

⊕

S(x
⊕

h) = h.
Thus, the probability of the differential characteristic p shown in Figure 1 is (m/256)4.
Obviously, the largest m means the highest probability of the characteristic. We find
that the maximum m is equal to 6 and 3 options of (a, b) make the probability of
the differential characteristic shown in Table 1 be (6/256)4 ≈ 2−21.66. Furthermore,
if we replace the state of #1 by #3,#5 or #7, another three iterated differential
characteristics appear.

Table 1. Three kinds of iterated differential characteristics on one step

NO a b c d e f g h i j k

1 22 58 22 88 98 166 138 123 221 35 169

2 107 189 107 183 10 30 200 234 244 93 149

3 88 232 88 123 147 174 30 247 89 140 146

3.2 Key Recovery Attack on Full-Round Zorro

In order to recovery the secret key of Zorro, three iterated differential characteristics
of 23-round Zorro are used to distinguish the right key and the wrong keys. With
the assumption that the step functions of Zorro are independent, we can extend the
iterated characteristics to 5 steps of Zorro. The probability becomes 2−21.66×5=2−108.3

which is much lower than 2−128 in random permutation. Meanwhile, the 23-round
differential characteristics shown in Figure 2 have the same probability 2−108.3 as the



path from #1 to #7 with probability 1, where the values of a and b are referred to
Table 1. With another assumption that the secret key is randomly chosen from the
whole key space, we can give a key recovery attack on the full-round Zorro.

1 s t e paaaa bbbbA K # 1 aaaa bbbb# 1 1 s t e paaaa bbbbA K # 1 aaaa bbbb# 11 s t e paaaa bbbbA K # 1 aaaa bbbb# 1 3 r o u n d saaaa bbbbA K # 1
1 s t e paaaa bbbbA K # 1 aaaa bbbb# 1 1 s t e paaaa bbbbA K # 1 aaaa bbbb# 1
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Fig. 2. Differential characteristics on 23-round Zorro

Outline In order to recover the secret key of Zorro efficiently, we combine 3
iterated differential trails to give a structure attack. If we denote the secret key by K,
we can change the order of MC and AK in the last round by adding the equivalent key
K

′

= MC−1(K) before MC. Meanwhile, recovering the equivalent key means that the
secret key is found. Note that it is impossible to distinguish equivalent keys that share
the same values in the last three rows based on the above distinguisher. Therefore, we
focus on the 4 bytes of the first row of K ′. We first reduce the size of guessing key
space from 232 to 23 and then exhaustively search the remaining key candidates for
the whole 128-bit key.

1. Choice of Plaintext Pairs

The chosen plaintexts structure is shown as Figure 3. It is easy to see that in such a
structure each difference appears three times. Thus, a total of 9 pairs are contained
in a structure of 7 plaintexts. Choose n structures and ask all the 7n plaintexts for
the corresponding ciphertexts, we can obtain 9n plaintext-ciphertext pairs.

2. Choice of Ciphertext Pairs

Choose ciphertext pairs so that the differences of the input of 24-round satisfy the
condition in #7. About 232 among 2128 pairs can satisfy the differential condition.
Therefore, it remains about 9n× 2−96 plaintext-ciphertext pairs to distinguish the
right key from wrong keys.

3. Reduction of Key Candidates of the First Row

Guess the four bytes of the first row of K
′

(232), and decrypt the remaining pairs
to get the differences of the bytes who fall in the first row of the output of 23-
round. If the differences satisfy the the condition in the first row of the output of
distinguisher, increase the corresponding counter of the guessing key.

4. Extraction from Key Candidates

There are 9n × 2−96 plaintext-ciphertext pairs to distinguish the right key from
wrong keys. The incorrect key is suggested with a probability of 2−32 while it is
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Fig. 3. Chosen plaintexts structure

about 2−108.3/2−96 = 2−12.3 for the right key. Utilizing the probability differences
between the correct key and incorrect keys, we can extract the correct key. We use
the ranking paradigm to filter out the correct one as the right key candidates and
only keep the keys in the first 23 positions.

5. Recovery the Right Key
Exhaustively test the remaining key candidates to find the correct 128-bit key.

Complexities

1. Data Complexity
As mentioned in the first step of attack, 7n chosen plaintexts are needed to process
the attack.

2. Time Complexity
One computational complexity is checking whether the differences of ciphertext
pairs satisfy the differences of last three rows of #7 or not. It costs about one-round
encryption for one pair. Thus, all pairs spend about 9n × 2−4.6 full-round Zorro
encryptions. Another computational complexity is incrementing counters for cor-
rect key candidates from the tuples of guessed 32-bit keys and plaintext-ciphertext
pairs. It is smaller than 9n × 2−96 × 232 one round encryption. Finally, we need
about 23 × 296 full-round Zorro encryptions to exhaustively test the remaining key
candidates.

3. Memory Complexity
Since attackers must choose the correct key among the 32-bit keys, it is necessary
for the attacker to have enough memory for each 232 keys, which is independent of
n.

Given the probabilities (p0, p), the authors provided a general method (Algorithm
1) for finding an accurate number of samples to reach given error probabilities in [8],
where p(resp. p0) is the probability that be suggested for a wrong key(resp. for the
right key). We first denote the type-I error probability (the probability to wrongfully
discard the right key) with α and the type-II error probability (the probability to
wrongfully accept a random key as the right key) with β. In our attack, we want to
determine the number of sample 9n× 2−96 with p0 = 2−12.3 and p = 2−32. If α = 10%
and β = 2−29, about 216.71 samples(pairs) can reduce 232 keys to 23 candidates. That
is to say, the data complexity of our attack is about 2112.4 chosen plaintexts. Therefore,
the number of remaining key candidates for 128-bit key is about 23+96 = 299 and we
exhaustively check the key candidates to filter out the right key. All in all, the time



complexity is about 2112.84 × 2−4.6 + 216.84 × 232 × 1/23 + 23 × 296 ≈ 2108 full-round
Zorro encryptions.

4 Linear Distinguishing Attack on Full-Round Zorro

Consider an n-bit block cipher F and let the input of the function be x ∈ Fn
2 . A linear

approximation (u, v) with an input mask u and an output mask v has probability

p(u, v) = Prx∈F n

2
(u · x ⊕ v · F (x) = 0).

The value CF (u, v) = 2p(u, v) − 1 is called the correlation of linear approximation
(u, v).

Consider a mapping F : F
n
2 → F

n
2 given as a key-alternating iterative block cipher,

i.e. F = Fn ◦Fn−1 ◦ ... ◦F1. A linear trail consists of an input mask u and output mask
v and a vector U = (u1, ..., ur−1) with ui ∈ F

n
2 . The correlation of the trial is defined

as

CF (u, v, U) = CF1(u, u1)CF2(u1, u2)...CFr−1(ur−2, ur−1)CFr
(ur−1, v).

In contrary to the piling-up lemma[3], no assumption of any kind has to be made
for this equation to hold. The characteristics of the correlation matrixes of some special
boolean functions are summarized as follows[12]:

Lemma 1 (XOR with a Constant): Consider the function that consists of the bitwise
XOR with a constant vector k: F (x) = x ⊕ k, the correlation matrix is a diagonal
matrix with

CF (u, u) = (−1)u
T k.

Lemma 2 (Linear functions): Consider a linear function F (x) = Mx, with M an
m × n binary matrix. The elements of the corresponding correlation matrix are given
by

CF (u, v) = δ(MT v ⊕ u),

where

δ(w) =

{

1, when w = 0

0, when w 6= 0
.

Lemma 3 (Bricklayer Functions): Consider a bricklayer function y = F (x) that is
defined by the following component functions: y(i) = F(i)(x(i)) for 1 ≤ i ≤ l. For every
component function F(i) there is a corresponding correlation matrix denoted by CF(i)

.
The elements of the correlation matrix of F are given by

CF (u, v) =
∏

i

CF(i)
(u(i), v(i)),

where u = (u(1), u(2), ..., u(l)) and v = (v(1), v(2), ..., v(l)).

In this section, we will give a linear distinguishing attack for full-round Zorro
according to the above three rules. F represents the 24-round Zorro, and Fi represents
the corresponding i-th step function. Note that the fact M4 = I implies that (MT )4 =
I, where MT means the transpose of matrix M .



4.1 Iterated Linear Trail

There exists some iterated linear trials for 4 rounds of Zorro and the pattern can also
be shown as Figure 1, where the gray bytes are the ones with a non-zero mask. We
compute the correlation of the linear trail using the theory of the correlation matrix
with u = v = ui(i ≤ 6).

*S B
A CS RM C *S B1 8 21 8 21 8 21 8 23 4 1 3 31 3 31 3 31 3 3 3 43 43 4 A CS RM C*S B A CS RM C *S B1 2 21 2 21 2 21 2 21 7 0 7 37 37 37 3 1 7 01 7 01 7 0 A CS RM C1 3 61 3 61 3 61 3 6A K # 3 # 4 # 5# 6 # 7 # 8 # 11 8 21 8 21 8 21 8 23 4 1 3 31 3 31 3 31 3 3 3 43 43 42 0 82 0 82 0 82 0 8 1 9 31 9 31 9 31 9 3 # 5 2 0 82 0 82 0 82 0 8 1 9 31 9 31 9 31 9 3 1 2 21 2 21 2 21 2 21 7 0 7 37 37 37 3 1 7 01 7 01 7 0 1 3 61 3 61 3 61 3 6c

 1 4 81 4 81 4 81 4 8 1 3 31 3 31 3 31 3 3
# 1

1 4 81 4 81 4 81 4 8 1 3 31 3 31 3 31 3 3
# 2 1 4 81 4 81 4 81 4 8 1 3 31 3 31 3 31 3 3 2 0 82 0 82 0 82 0 8 1 9 31 9 31 9 31 9 3

Fig. 4. Iterated linear trail of one-step Zorro

There are 255 different (a, b) which result in the path from #1 to #7 with the abso-
lute of correlation to be 1. After searching the linear approximation table(LAT) of the
S-box used in Zorro, only 210 original linear masks make the path from #7 to #8 with
a non-zero correlation. The largest linear correlation occurs when a = 208 and b = 193
and the absolute of the corresponding correlation |c| = (28/128)4 ≈ 2−8.77. If we change
the relative location of #1 with #3,#5 or #7, |c| remains equal. Meanwhile, if the
input mask and the output mask of one step are both (0, 0, 0, 0, 208, 208, 208, 208, 0, 0,
0, 0, 193, 193, 193, 193), the linear trail is determined as Figure 4.

4.2 Linear distinguisher of the Full-Round Zorro1 s t e p2 0 82 0 82 0 82 0 8 1 9 31 9 31 9 31 9 3A K # 1 A K L i n e a rD i s t i n g u i s h e r 5 2 . 6 22C
 

!A K
2 0 82 0 82 0 82 0 8 1 9 31 9 31 9 31 9 3 # 1 1 s t e p2 0 82 0 82 0 82 0 8 1 9 31 9 31 9 31 9 3 # 1 2 0 82 0 82 0 82 0 8 1 9 31 9 31 9 31 9 3 # 1
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Fig. 5. Linear distinguisher on full-round of Zorro

If we fix the input linear mask of every step to be pattern of #1 with a = 208 and
b = 193, we can get a linear trail of full-round Zorro. The absolute of the correlation
of the linear trial can be computed as |C| = 2−8.77×6 = 2−52.62 without any assump-
tion. Thus we can distinguish the full-round Zorro from random permutation by using
1/C2 ≈ 2105.3 known plaintexts and the distinguisher is shown as Figure 5.



5 Conclusion

In this paper, we presented a full-round differential cryptanalysis of Zorro and recovered
the secret key with a data complexity of 2112.4 chosen plaintexts and a time complexity
of 2105.5 full-round Zorro encryptions. Meanwhile, we gave a linear distinguishing attack
on the full-round Zorro with 2105.3 known plaintexts.

For convenience, we fix that the differences of four bytes in each row are all the
same. If we exhaustively search the characteristics covering three rounds with proba-
bility 1, we may obtain some trails for one step of Zorro with a probability higher than
2−21.66. Thus the complexities of our key recovery attack can be improved. The similar
cases may occur for the linear distinguishing attack. In summary, the results show
that only four S-boxes located in the first row and an iterated structure as AES pro-
duce a theoretical weak block cipher. Designers should carefully reduce the non-linear
operations when designing a lightweight block cipher based on AES block cipher.
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Appendix A : S-box of Zorro

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 B2 E5 5E FD 5F C5 50 BC DC 4A FA 88 28 D8 E0 D1

10 B5 D0 3C B0 99 C1 E8 E2 13 59 A7 FB 71 34 31 F1

20 9F 3A CE 6E A8 A4 B4 7E 1F B7 51 1D 38 9D 46 69

30 53 E 42 1B F 11 68 CA AA 6 F0 BD 26 6F 0 D9

40 62 F3 15 60 F2 3D 7F 35 63 2D 67 93 1C 91 F9 9C

50 66 2A 81 20 95 F8 E3 4D 5A 6D 24 7B B9 EF DF DA

60 58 A9 92 76 2E B3 39 C 29 CD 43 FE AB F5 94 23

70 16 80 C0 12 4C E9 48 19 8 AE 41 70 84 14 A2 D5

80 B8 33 65 BA ED 17 CF 96 1E 3B B C2 C8 B6 BB 8B

90 A1 54 75 C4 10 5D D6 25 97 E6 FC 49 F7 52 18 86

A0 8D CB E1 BF D7 8E 37 BE 82 CC 64 90 7C 32 8F 4B

B0 AC 1A EA D3 F4 6B 2C FF 55 A 45 9 89 1 30 2B

C0 D2 77 87 72 EB 36 DE 9E 8C DB 6C 9B 5 2 4E AF

D0 4 AD 74 C3 EE A6 F6 C7 7D 40 D4 D 3E 5B EC 78

E0 A0 B1 44 73 47 5C 98 21 22 61 3F C6 7A 56 DD E7

F0 85 C9 8A 57 27 7 9A 3 A3 83 E4 6A A5 2F 79 4F


