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Abstract. In many cases, we can only have access to a service by prov-
ing we are sufficiently close to a particular location (e.g. in automobile
or building access control). In these cases, proximity can be guaranteed
through signal attenuation. However, by using additional transmitters an
attacker can relay signals between the prover and the verifier. Distance-
bounding protocols are the main countermeasure against such attacks;
however, such protocols may leak information regarding the location of
the prover and/or the verifier who run the distance-bounding protocol.

In this paper, we consider a formal model for location privacy in the con-
text of distance-bounding. In particular, our contributions are threefold:
we first define a security game for location privacy in distance-bounding;
secondly, we define an adversarial model for this game, with two adver-
sary classes; finally, we assess the feasibility of attaining location privacy
for distance-bounding protocols. Concretely, we prove that for proto-
cols with a beginning or a termination, it is theoretically impossible to
achieve location privacy for either of the two adversary classes, in the
sense that there always exists a polynomially bounded adversary that
wins the security game. However, for so-called limited adversaries, which
cannot see the location of arbitrary provers, carefully chosen parameters
do, in practice, enable computational location privacy.

1 Introduction

Often, our location is critical in order to gain access to places and/or
services. For instance, in applications such as automobile access con-
trol the key (prover) needs to be close enough to the car lock (verifier)
in order to unlock it [17]. In some cases, unlocking the car may in



fact also start the car (in passive keyless entry and start (PKES) sys-
tems [18]). If the proximity check is performed through signal attenu-
ation, an adversary may easily perform man-in-the-middle attacks by
relaying messages between the communicating parties (provers and
verifiers), while these parties are situated far from each other. Thus,
in the automobile example, an adversary may unlock the car even if
the car key (and the prover) is located very far. This type of attack
(called mafia fraud [11]) can also be mounted against bankcards [13],
mobile phones [19], proximity cards [20], and wireless ad hoc net-
works [21].

Distance-bounding (DB) protocols are meant to counteract man-
in-the-middle relay attacks in authentication schemes. They are chal-
lenge - response authentication protocols, that allow the verifier, by
measuring the time-of-flight of the messages exchanged, to calculate
an upper bound on the prover’s distance (as well as checking the
validity of the responses, which usually ensure authentication). DB
protocols were first introduced by Brands and Chaum [6] to preclude
relay attacks in ATM systems. Subsequently, numerous DB proto-
cols were proposed [22, 27, 9] and many attacks against them have
been published [2, 3, 15]. DB protocols have also been analysed for
the case of noisy channels [23] and the optimal setting of security
parameters [12, 25]. To the best of our knowledge [4, 5] describes the
latest most secure distance-bounding protocol against all known at-
tack modes. Another provably-secure protocol attaining quite strong
terrorist-fraud resistance requirements has been recently published
in [16].

Location privacy was introduced in the context of distance -
bounding by Rasmussen and Čapkun [26], who noted that distance-
bounding protocols may leak further location-related information
than just the fact that the prover is within the maximum allowed
distance from the verifier. This information leakage follows from the
measurement of messages’ arrival times.

To combat this, Rasmussen and Čapkun [26] proposed a privacy-
preserving distance-bounding protocol (denoted here as the RČ pro-
tocol). Though the protocol in [26] claims to preserve location pri-
vacy, we note that location privacy has never been formalised in the
literature. Additionally, the RČ protocol has been shown to be sus-
ceptible to a non-polynomial dictionary attack which may reveal the



prover’s and verifier’s locations [1] as well as to a mafia fraud attack
[24]. Mitrokotsa et al. [24] have proposed a new distance bounding
protocol called Location-Private Distance Bounding (LPDB) that
improves the basic construction of the RČ protocol and renders it
secure against the latter attack.

Distance bounding can also be extended to location verification
[29] (also known as secure positioning [28]) when multiple verifiers
interact with a single prover. In that case the location of the prover
can be determined using the intersection of the bounding spheres
surrounding each verifier. This approach is also taken under con-
sideration in the recent work regarding position-based cryptography
[10]. Our approach here is different as we consider a single verifier
and many provers, and we thus only achieve distance bounding, and
not secure positioning. Furthermore, in position-based cryptography
all the adversaries have the same knowledge as the prover, including
the secret key. However, in our model, we do not allow the adver-
sary knowledge of the secret key, as that would allow it to trivially
distinguish between the two provers in the location privacy game,
without actually requiring any location data.

We also mention the recent work on localisation privacy by Burmester
[7, 8], where location is used in a steganographic sense (such that
provers are convinced that verifier-generated challenges are honest,
and they do not reveal their presence to adversaries). However, very
notably the constructions in [8] require provers to be aware of their
position/location, which is a strong assumption in the case of general
provers. In this case, location is used as a part of the verifier’s chal-
lenge, and the prover verifies that the location is sufficiently close to
the prover’s location.

Contributions: In this paper, we address precisely the topics of
location privacy in distance-bounding. Our contributions are three-
fold:

1. We first define a classical left-or-right indistinguishability game
for location privacy in distance-bounding protocols. In this game,
the adversary knows its distance to the verifier V and can create
provers P at arbitrary distances from itself and V.

2. For this location privacy game, we consider two main adversarial
classes: omniscient and limited adversaries. Omniscient adver-



saries capture an adversary that can measure the signal strength
of the transmitted messages and are aware, for all transmissions
along the timed channel, when the message is sent and when it
arrives at them. Unsurprisingly, no location privacy is feasible for
omniscient adversaries. Limited adversaries, on the other hand,
are only aware of the time at which they receive messages from
other participants.

3. Finally, we show that achieving location privacy with respect to
limited adversaries is impossible for protocols with a beginning or
a termination, and which run in polynomial time. We prove that
location privacy against limited adversaries minimally requires
the prover and the verifier to introduce exponential delays be-
tween receiving and sending messages, and we give a lower bound
for these delays. Since the transmission speed is high (e.g. the
speed of light in the case of RFID transmissions), the delay can
be implemented in practice. Finally, we show how to specify these
delays in the LPDB protocol proposed in [24].

Organisation: This paper is organised as follows. We begin by
defining distance-bounding protocols and location privacy in section
2, outlining also our adversarial classes. We then assess the feasi-
bility of achieving location privacy for distance-bounding protocols
in section 3, for both omniscient and limited adversaries, giving a
lower bound for the delays that each party must have between re-
ceiving a message and sending a response message. We apply our
results and the obtained bound in section 4, in order to modify the
LPDB protocol [24] to attain location privacy with respect to limited
adversaries.

2 Preliminaries

2.1 Communication Model

Our distance-bounding scenario resembles that of Dürholz et al. [14],
but we consider multiple provers. Concretely, there is a single verifier
V, but many provers P1, . . . ,Pn, such that V and Pi for every i share
a secret key Ki output by a key generation algorithm Kg. We also
assume that when it is initialised, the verifier V is also equipped with



an upper bound on the maximum allowed communication time (or
time distance) tmax between itself and the prover.

The communication model considered by [14] is round-based.
However, e.g. the RČ [26] and the LPDB [24] distance-bounding
protocols are not round-based. Therefore, we consider a more gener-
alised model, where the two parties P and V interact with no round-
based restriction, via two types of channels: a timeless and a timed
channel. Parties P and V may send messages m along each of the
two channels (i.e., they are duplex channels). In order to make the
model more realistic we consider the transmissions along the timed
channel to be bit-by-bit.

More formally, the timed channel is associated with the global
clock, such that each bit of an input message m will be associated
with a time ts at which the sending party has sent the bit. The
corresponding output bit of message m is associated with a time tr,
which is the time at which the receiving party has received the bit.
The bit-by-bit treatment of the transmission time is compulsory,
as in practice, each bit of the message is transmitted sequentially
or in smaller packets. However, for practical purposes we will often
associate (in our proofs) the sending time of a message by the sending
time of the first bit of this message, since this particular value is
enough to leak significant information regarding the position of the
honest protocol participants (prover and/or verifier).

For the sake of completeness for our model, however, we associate
a message m with an |m|-dimensional vector of sending times t̄s and
an |m|-dimensional vector of transmission times t̄r. We also require
that the values in t̄s and those in t̄r are monotone non-decreasing,
i.e. for any message m and any 1 ¤ i   j ¤ m, it holds that tsi ¤
tsj and tri ¤ trj . Furthermore, if we consider the communication
between two parties A and B and that a message m is sent from
the party A to the party B at time t̄s then the reception time t̄r of
the message m at the party B will satisfy the following equation for
every i � t1, . . . , |m|u:

tri � tsi � tAB.

where tAB denotes the time distance between the parties A and B.
More precisely, tAB denotes the time (measured in time units TU)
that every bit of a message m takes to travel between A and B.



Moreover, if the message m leaks off this channel to an adver-
sary A, each bit of the leaked message is associated with an |m|-
dimensional timestamp t̄rA. Note that this information alone may
not suffice to learn the sending time of the message, as the adversary
does not necessarily know the distance between it and the sending
party.

Both channels allow the prover P and the verifier V to interact
concurrently, i.e. it is possible that both the prover P and the verifier
V transmit at the same time across the duplex channel. This is indeed
the case for the RČ protocol [26].

We now define communication in distance-bounding protocols as
being slow (or lazy) if it takes place on the timeless communication
channel and fast (or time-critical) if it takes place on the timed
communication channel. Note that it is possible to alternate fast
and slow communication arbitrarily. We note that this approach is
perfectly in-tune with the similar communication model of [14], but
it is also compatible with protocols that are not round-based.

Definition 1. We say that DB � pV,P, Kgq is a distance-bounding
protocol with parameters ptmax, ǫq where tmax denotes the upper bound
on transmission time in the fast phase and ǫ denotes the tolerance
level for honest P-V authentication failures if:

Key Generation: Kg generates a secret key K �Ý Kgp1ℓq for any
ℓ P N.
Distance-Bounding Authentication: The joint execution of
the prover and verifier algorithms V and P for parameters ptmax, ǫq
ends with a verifier-generated distance-bounding authentication bit
b P t0, 1u.
We require ǫ-completeness, i.e., the interaction of an honest prover
P and an honest, fixed verifier V for parameters ptmax, ǫq is accepted
by the verifier with probability at least 1� ǫ if tVP ¤ tmax.

2.2 Adversarial Models

In our framework, the goal of the adversary is to break location
privacy as defined below. In this section, we first show how adver-
saries interact with the communication channels and with the hon-
est parties during an attack. Then, we define two adversarial classes



depending on the strength of the adversary. Finally, we show the
location privacy game.

We consider adversaries A that interact with the distance-bounding
system as follows: (1) A may eavesdrop on the communication (across
both the timed and the timeless channel) of an honest prover P and
an honest verifier V; and (2) A may interact with honest provers
in prover-adversary sessions and with honest verifiers in adversary-
verifier sessions. Note that this behaviour implies that an adver-
sary can mount a full man-in-the-middle attack by simply opening
concurrent prover-adversary and adversary-verifier sessions. This is
again in agreement with the treatment given by Duerholz et al.; we
refer to that paper for the more formal notions of session identifiers.

In view of [30,?], we consider that frequency hopping (i.e. imple-
menting a protocol such that the sender and the receiver hop from
one frequency to another during the transmission) is not an effective
countermeasure against eavesdropping adversaries. In particular, by
simply eavesdropping all possible frequencies (in practice the prover
and the verifier are unable to use too many different frequencies),
the adversary can successfully “piece together” the communication.

We consider two types of adversaries: the limited and the omni-
scient adversaries, which are described as follows:

Limited adversaries: These adversaries may eavesdrop on
honest prover-verifier sessions or communicate with provers and veri-
fiers in prover-adversary and respectively adversary-verifier sessions.
On eavesdropping the timed channel in honest prover-verifier ses-
sions, limited adversaries learn the transmitted message m and the
bit-by-bit time the message is received at, t̄rA � t̄s � t̄PA, where P

is the party that sent the message m and t̄PA is an |m|-dimensional
vector with entries equalling the time distance tPA between P and
the adversary A. Note that the adversary A is able to choose its
location and knows tAV (i.e. its time distance from the verifier V);
consequently, A learns the sending times at which the verifier sends
its messages.

Omniscient adversaries: These adversaries can also eaves-
drop on honest prover-verifier sessions or communicate with provers
and verifiers as above. Additionally, an omniscient adversary can
measure the signal strength of the transmitted messages and is aware,
for all transmissions along the timed channel, when the message is



sent and when it arrives at them. More precisely, on eavesdropping
on the timed channel during an honest prover-verifier session, strong
adversaries learn the message m, the bit-by-bit time the message is
received, t̄rA � t̄s � t̄PA, and the bit-by-bit sending time t̄s. Thus,
strong adversaries can trivially learn the distance between them and
the party P that sent the message.

To justify that an omniscient adversary can also learn the send-
ing time of messages, we could model this by distributed, limited
adversaries, i.e. A � pA1,A2q. The composite adversary A chooses
the locations of A1 and A2 and can do triangulation of signals. This
definition also extends to a moving adversary (i.e. an adversary that
is able to change its location) as discussed in Section 3.1.

We consider only polynomial adversaries, (i.e. having polynomial
run-time and running polynomially many sessions with the provers
and the verifier). The adversary’s goal is to break the location privacy
of the distance-bounding protocol, which we define by means of a
left-or-right indistinguishability game as described below.

Phase 1: In this phase, a limited adversary is given the security
parameter (in unary) 1λ. The adversary may now initialise provers
Pi and the verifier V at arbitrary locations with respect to itself and
the verifier, and may interact arbitrarily with the provers and the
verifier. At the end of this phase, the adversary outputs two indices
i, j such that tPiV and tPjV are both smaller than the threshold tmax;
which are forwarded to a challenger.
Phase 2: The challenger checks that the two provers are both within
the maximum distance tmax, then closes all sessions that are open for
these provers. The challenger flips a bit b and assigns the handle PChal

as follows: PChal � Pi if b � 0 and PChal � Pj if b � 1.
Phase 3: Finally, by interacting with the challenge prover PChal, as
well as all other provers with the exception of Pi and Pj , the ad-
versary must produce a decision bit d. Let ExpLocPriv

DB pA, 1λq be the
output of a single run of the location privacy game. We say that the
adversary wins if d � b, and we write it as ExpLocPriv

DB pA, 1λq � 1. The
adversary can be considered as a hypothesis test for the following
hypotheses:



H0 : the response sent from the prover PChal to V’s challenge is actually
from the prover P0.

and

H1 : the response sent from the prover PChal to V’s challenge is actually
from the prover P1.

We define the advantage of the adversary in this game as:

AdvLocPriv

DB A � ��2P
�
ExpLocPriv

DB pA, 1λq � 1
�� 1

��
Definition 2. We say that distance-bounding protocols provide lo-
cation privacy if �locP0

, locP1
, �locV , �A it holds:

Adv
LocPriv

DB A � neglp1λq
We should note here that an adversary would select the location

of the participants in such a way to maximize his advantage. Thus,
an adversary A would not select P0 and P1 at the same location or
at equal distance to A and V.

3 Why Location Privacy does not Work

In this section we first argue that location privacy cannot be achieved
with respect to an omniscient adversary. Then, we show that location
privacy can only be achieved with respect to limited adversaries if
the honest parties running the protocol introduce a delay in their
transmissions; we furthermore give a lower bound on this delay.

3.1 Omniscient Adversary

It is trivial to see that no location privacy can be attained with
respect to an omniscient adversary. Indeed, consider an omniscient
adversary placed arbitrarily with respect to the verifier. Let this
adversary A create two provers P0 and P1 such that the distance
between this adversary and the provers is different i.e. tP0A � tP1A.

Obviously an adversary A would choose his location in such a way
in order to maximise his advantage. Thus, choosing to be at equal



distance from the two provers he is trying to distinguish would not
be a good choice.

The adversary forwards P0,P1 to the challenger, receiving the
handle PChal, which is either P0 or P1. Now, the adversary eavesdrops
on a session between PChal and V, thus learning the sending time of
the messages and the time it receives them. It thus calculates the
time distance between itself and the two parties communicating and,
since the distances are all different, it can identify the parties w.p.
1.

A single, but moving adversary (i.e., an adversary than can change
its position during the attack) could also infer some information
about the location of the prover by standing between P0 and P1 and
moving toward P0 due to the Doppler phenomenon. If bits arrive
with a higher frequency, they must be sent by P0 instead of P1.

3.2 Limited Adversary

By eavesdropping on the duplex timed channel between the chal-
lenged prover and the verifier, the adversary will receive tri

A
, the

timestamp when A receives the first bit of message mi. The adver-
sary A also observes:

– tV � tr1A: the time A receives the first message bit from V.
– tP � tr2

A
: the time A receives the first message bit from P.

In what follows we show that the very first bit sent through the
timed channel leaks. To be able to prove that, we make the following
reasonable assumptions as for how the sending time of this first bit
is decided during the protocol. Note that similar observations hold
for the final bit sent. For simplicity, we only treat the first one.

Assumption 1 We assume that the distance bounding phase of a
distance-bounding protocol may have one of the following construc-
tions:

– Case 1: The verifier V starts the distance bounding phase after
a reference time t0 and a random delay, possibly equal to 0, which
we denote delayV , while the prover Pb where b P t0, 1u starts after
receiving the first message from the verifier V and a random delay
delayPb

.



– Case 2: The prover Pb starts the distance bounding phase after
a reference time t0 and a random delay delayPb

, while the verifier
V starts after receiving the first message from the prover Pb and
a random delay delayV .

– Case 3: The prover Pb and the verifier V start sending mes-
sages independently. More precisely, the prover Pb starts sending
messages after a reference time TPb

and a random delay delayPb
,

while the verifier V starts sending messages after a reference time
TV and a random delay delayV .

We should note here that when we mention “random delay” we mean
a delay of arbitrary distribution.

Assumption 2 We also assume that A knows the times TPb
(where

b P t0, 1u) and TV ; the latter value is defined only for Case 3 of
Assumption 1.

In figure 1 are depicted the above described cases. Without loss of
generality in figure 1 the adversary A is located between the verifier
V and the prover P.

It is easy to see that in our model a limited adversary A, knows
and can even choose the locations of P0, P1 with respect to itself and
the verifier V, i.e. the values tAP0

, tAP1
, tVP0

, tVP1
. Also, A knows the

distance tAV to V. We will show how an adversary intercepting the
values above can distinguish between the two hypotheses H0,H1

with non-negligible probability.

Lemma 1. Under Assumptions 1 and 2 we assume that there exists
ǫ and a bound B such that:

Prdelay ¤ Bs � 1� ǫ,

where delay might represent the delays of the provers delayP0
, delayP1

,
or the delay (delayV) of the verifier as defined in Assumption 1.
Then, there exists an adversary A against location indistinguishabil-
ity which achieves a distinguishing advantage:

AdvA ¥ R
tmax

4B

Vp1� 2ǫq.
where tmax is the maximum allowed transmission time between a le-
gitimate prover P and a verifier V.



Moreover, this adversary does not need to take part in the actual
protocol; the attack relies exclusively on eavesdropping. Assuming
that the protocol is complete and polynomially bounded, there is a
negligible ǫ such that B exists and is polynomially bounded. So, the
advantage AdvA is not negligible. Consequently, a distance-bounding
protocol as defined in definition 1 does not provide location privacy
as per definition 2.
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Fig. 1. Transmission of messages between the verifier and the prover for the three
different cases of the construction of a distance-bounding protocol.



Proof. Based on Assumption 1 we have three cases.
Case 1: The verifier V starts the distance bounding phase after a
reference time t0 and a random delay (denoted as delayV), whereas
the prover Pb starts after receiving the first message from the verifier
V and a random delay (denoted as delayPb

).
This case is depicted in figure 1 (a). More precisely, we consider that
the following events take place:

1. After some time reference t0 and a delayV the verifier V sends a
message c to the prover Pb where b P t0, 1u. The first bit of this
message will arrive at the adversary A at time tV such that:

tV � t0 � delayV � tVA (1)

where tVA denotes the time of flight for one bit from the verifier
V to the adversary A.

2. The prover Pb with b P t0, 1u responds to the verifier V with a
message r, after some delay (delayPb

). The first bit of r arrives
at A at time tPb

such that:

tPb
� t0 � delayV � tVPb

� delayPb
� tPbA

(2)

where tVPb
denotes the time-of-flight for one bit from V to Pb,

and tPbA
denotes the time-of-flight for one bit from Pb to A.

From equations (1) and (2) it is easy to see that:

tPb
� tV � tVPb

� tVA � delayPb
� tPbA

We let db be the probability density function (pdf) of delayPb
, i.e.

we consider the delay to be a random variable distributed according
to db. If hypothesis H0 holds, then tP � tP0

, while if hypothesis H1

holds, then tP � tP1
. Since tP and tV depend on random delays, they

can be perceived as random variables. Let:

T � tP � tV � tVP0
� tVA � tP0A and

∆ � tVP1
� tP1A � tVP0

� tP0A

Note that whereas the value ∆ is fixed and even chosen by the ad-
versary, T is a random variable, depending on the delays. Indeed, if



hypothesis H0 holds then T � delayP0
has pdf d0, while if hypothesis

H1 holds, then T � delayP1
�∆ and we write P rT � ts � d1pt�∆q,

i.e. T has a distribution equivalent to d1, shifted by a fixed value ∆.
In the following, we often condition success probabilities on hy-

potheses H0 and H1 and use the notation PHb
revents for Prevent | Hb holdss,

i.e. the probability that event holds, conditioned on the fact that Hb

holds.
We consider that A is implementing a best distinguisher based

on the likelihood that PH0
rT � ts ¡ PH1

rT � ts for observed value
t. If this holds, then A outputs 0, else it outputs 1. So A outputs 0
iff the observed value of
T � tP � tV � tVP0

� tVA � tP0A is T � t such that:

Prt � delayP0
s ¡ Prt � delayP1

�∆s
Then, it holds:

Adv � PH0
rAÑ 0s � PH1

rAÑ 0s� 1

2

» �8�8 |d0ptq � d1pt�∆q|dt, (3)

where d0 and d1 make r0, Bs have density at least 1�ǫ. When tP0V �
tP1V � tmax, P0, V and P1 are aligned in this order and the adversary
A overlaps with the location of P0, then ∆ � 2tmax.
Case 2: The prover Pb starts the distance bounding phase after a
reference time t0 and a random delay (denoted as delayPb

). While
the verifier V starts after receiving the first message from the prover
Pb and a random delay (denoted as delayV).

This case is depicted in figure 1 (b). Now, we have:

tPb
� t0 � delayPb

� tPbA

tV � t0 � delayPb
� tPbV

� delayV � tVA

tV � tPb
� tPbV

� delayV � tVA � tPbA

We let:

T � tV � tP � tP0V � tVA � tP0A and

∆ � tP1V � tP1A � tP0V � tP0A



Similarly, if the adversary A is implementing a distinguisher for the
two provers P0 and P1 then its advantage is given by:

Adv � PH0
rAÑ 0s � PH1

rAÑ 0s� 1

2

» �8�8 |dptq � dpt�∆q|dt (4)

where d denotes the pdf of the random variable delayV , such thatr0, Bs has density at least 1� ǫ. When tP0V � tP1V � tmax, P0, V and
P1 are aligned and the location of the adversary A overlaps with the
location of the prover P1, then ∆ � 2tmax. Thus, from equations (3)
and (4) we derive that in both cases it holds:

Adv � 1

2

» �8�8 |q0ptq � q1pt�∆q|dt

for some functions q0 and q1 that make r0, Bs have density at least
1� ǫ. We further have a case where ∆ � 2tmax. Let:

xb,i � » i|∆|pi�1q|∆| qbptqdt and n � R
B|∆|V

We have xb,0 � 0, xb,n�1 � 0, xb,i ¥ 0 and xb,1 � � � � � xb,n ¥ 1 � ǫ.
Given I � t0, . . . , nu we let TI � �

iPI �pi � 1q|∆|, i|∆|�. For ∆ ¡ 0,
we have:

AdvTI ,∆ �
i̧PI px0,i � x1,i�1q and (5)

AdvTI ,�∆ �
i̧PI px0,i � x1,i�1q

Let:

Adv∆ � max
I

AdvTI ,∆ � 1

2

ņ

i�0

|x0,i � x1,i�1|
Adv�∆ � max

I
AdvTI ,�∆ � 1

2

ņ

i�0

|x0,i � x1,i�1|
We have:



Adv∆ � Adv�∆ � 1

2

ņ

i�0

p|x0,i � x1,i�1| � |x0,i � x1,i�1|q (6)¥ 1

2

ņ

i�0

|x1,i�1 � x1,i�1|
Since x1,i ¥ 0 and x1,1 � � � � � x1,n ¥ 1 � ǫ, there exists j such

that: x1,j ¥ 1�ǫ
n

. Thus:

Adv∆ � Adv�∆ ¥ 1

2
p|x1,j � x1,j�2| � |x1,j�2 � x1,j�4| � . . . q (7)¥ x1,j

2
¥ 1� ǫ

2n

Thus,

maxpAdv∆, Adv�∆q ¥ 1� ǫ

4n

So, there exists ∆ such that:

Adv∆ ¥ R |∆|
4B

Vp1� ǫq
For ∆ � 2tmax there exists an adversary A such that:

AdvA ¥ R
tmax

2B

Vp1� ǫq
Case 3: The prover Pb and the verifier V send messages indepen-
dently. More precisely, the prover Pb starts sending messages after
a reference time TPb

and a random delay (delayPb
) while the verifier

V starts sending messages after a reference time TV and a random
delay (delayV). We assume that for this case the adversary A knows
the values TPb

� TV .
This case is depicted in figure 1 (c). We now have:

tV � TV � delayV � tVA

tPb
� TPb

� delayPb
� tPbA

tPb
� tV � delayPb

� delayV � TPb
� tPbA

� TV � tVA

We let:

T � tP � tV � TP1
� tP1A � TV � tVA and (8)

∆ � TP1
� tP1A � TP0

� tP0A (9)



We consider that the adversary A is implementing a best distin-
guisher based on the likelihood if PH0

rtP � tV s ¡ PH1
rtP � tVs then

A outputs 0 otherwise it outputs 1. So, A outputs 0 iff tP � tV �
TP1

� tP1A � TV � tVA � T � t such that:

Prt � delayP0
� delayVs ¡ Prt � delayP1

� delayV �∆s
Then, it holds:

Adv � PH0
rAÑ 0s � PH1

rAÑ 0s� 1

2

» �8�8 |q0ptq � q1pt�∆q|dt (10)

where qb for b P t0, 1u denotes the pdf of the random variable
delayPb

� delayV and the support of q0 and q1 make r�B, Bs have
density at least 1 � 2ǫ. When tP0V � tP1V � tmax, P0, V and P1 are
aligned in this order and if TP1

¥ TP0
the location of the adversary

A overlaps with the location of P0 while if TP1
  TP0

the location of
the adversary A overlaps with the location of the prover P1. Thus,
in both of these cases it holds that |∆| ¥ 2tmax. Let:

xb,i � » i|∆|pi�1q|∆| qbptqdt and n � R
B|∆|V

We have xb,0 � 0, xb,n�1 � 0, xb,i ¥ 0, xb,�n�1 � ... � xb,n ¥ 1 � 2ǫ
and:

Adv∆ � Adv�∆ � 1

2

ņ

i��n

p|x0,i � x1,i�1| � |x0,i � x1,i�1|q¥ 1

2

�ņ

i�0

|x1,i�1 � x1,i�1|
Since x1,i ¥ 0 and x1,�n�1 � � � � � x1,n ¥ 1 � 2ǫ, there exists j such
that: x1,j ¥ 1�2ǫ

2n
. Thus:

Adv∆�Adv�∆¥ 1

2
p|x1,j � x1,j�2|�|x1,j�2 � x1,j�4|�. . .q¥ x1,j

2
¥ 1� 2ǫ

4n

Thus,



maxpAdv∆, Adv�∆q ¥ 1� 2ǫ

8n

So, there exists ∆ such that:

Adv ¥ R |∆|
8B

V ¥ tmax

4B
p1� 2ǫq [\

Lemma 2. If Assumption 1 holds and db follows the uniform dis-
tribution in the range r0, Bs and denotes the pdf of the delayPb

while
delayV is always equal to 0 then the best distinguisher based on tP�tV
and the locations satisfies:

AdvA � 2tmax

B
,

where tmax denotes the maximum allowed transmission time between
a legitimate prover P and a verifier V.

Proof. Following the proof of the Lemma 1 on page 11 the best
distinguisher based on tP � tV and the locations (of the provers and
the verifier) follows equations (3), (4) or (10). So, it satisfies:

Adv � 1

2

» �8�8 |d0ptq � d1p�∆� tq| dt

since delayV � 0. Since db follows the uniform distribution in the
range r0, Bs, it holds:

AdvA � 1

2

» ∆

0

dt

B
� 1

2

» B�∆

B

dt

B
� ∆

B

and ∆ is bounded by 2tmax in all three cases. [\
Practical Consequences Although the attack is polynomial, we
can still live with it in practice thanks to the very high celerity of
light, since the time it takes to cover 10 m is 2�25 sec. Indeed, let:

h � log2

B

2tmax



The best advantage is comparable to guessing h bits correctly. To
have a privacy level of h bits (i.e., a best advantage of 2�h), we shall
thus have:

B ¥ 2h�1tmax (11)

For instance, when tmax is the time light takes to go through the
distance of 10 m and h � 20 bits (i.e., an adversary cannot distin-
guish two provers, accept with one chance out of a million), we have
B ¥ 0.07 sec, which is still a reasonable delay, though not polyno-
mially bounded due to equation (11).

However, note that adding such a delay does not immediately
guarantee location privacy against any attacker. This delay only pre-
vents the generic attack we showed, and can be extended to any
passive attacker, but it is not trivial to know whether it also auto-
matically prevents active limited-adversary attacks. This issue is left
for future work.

4 Location Private Construction

In this section we apply our results from the previous section to
achieve a location private distance-bounding protocol for limited ad-
versaries. The proposed protocol is based on the LPDB protocol [24].
We assume that the verifier V and the prover P share a secret key
K. As in the LPDB protocol, we have two phases: the initialisation
phase and the distance-bounding phase.

– Initialisation Phase: The prover P generates a random nonce
NP and sends it to the verifier V. The verifier V generates a
random nonce NV and sends it to the prover P. Both the prover
and the verifier use as input the concatenation of the nonces NP

and NV as input to a keyed pseudorandom function (fK) and
divide the output of the PRF into two parts, i.e.:

M ||RP Ñ fKpNP ||NVq.
Furthermore, V generates another random value RV of length n.

– Distance Bounding Phase: Both the prover P and the ver-
ifier V start their actions at a commonly agreed time t. More



Prover P Verifier V

Initialization phase

NP

$�Ý t0, 1un NPÝÝÝÝÝÝÝÝÝÑ NV

$�Ý t0, 1un, RV

$�Ý t0, 1un

M}RP �Ý fKpNP}NVq NV�ÝÝÝÝÝÝÝÝÝ M}RP �Ý fKpNP}NVq
Distance Bounding phase

start at time t start at time t

wait for delay ∆
$�Ý r0, Bs compute streamV :�

streamV
oo o/ o/ o/ o/ o/ o/ RandV1

}M}RV}RandV2

- drop received bits during |RandV1
| ¥ Bf

the waiting time |RandV2
| ¥ tmaxf

compute streamP :�
RandP1

}RP ` R̂V}RandP2
s.t.|streamP| � |streamV|

the sending of RP ` R̂V synchronises
with the reception of RV

- start transmitting after ∆
streamP

///o/o/o/o/o/o

Fig. 2. Proposed location-private distance-bounding protocol, secure against limited

adversaries. Here
$�Ý denotes sampling uniformly at random, �Ý denotes a simple mes-

sage transmission, andø denotes a continuous stream transmission at maximal bit
rate.

precisely, at time t the verifier V starts transmitting the stream
of bits streamV such that: streamV :� RandV1

}M}RV}RandV2
.

At time t the prover P starts waiting for a delay ∆ that follows
the uniform distribution with range r0, Bs, where B satisfies the
following condition as explained in section 3.2:

B ¥ 2h�1tmax

The prover P drops any bits received during the waiting time ∆.
After this delay, the prover P starts transmitting the stream of
bits streamP such that:

streamP :� RandP1
}RP ` R̂V}RandP2

where R̂V denotes the received value of RV from the prover P.
The transmission of RP ` R̂V must start as soon as P starts
receiving the bits of RV .
We note here that RandP1

, RandP2
, RandV1

, RandV2
denote ran-

dom values generated by the prover P and the verifier V respec-
tively. Compared to the LPDB protocol [24], we further require



that: |streamV | � |streamP | and |RandV1
| ¥ Bf and|RandV2

| ¥ tmaxf.

The verifier V could freely select the length of RandV1
and RandV2

satisfying these inequalities. It is easy to see that it holds:|RandP1
| � |RandV1

| � |M | � ptPV �∆qf
which is positive and|RandP2

| � |RandV2
| � ptPV �∆qf

which is also positive.

4.1 Security of the Location Private Construction

We briefly sketch here the security proof for our new protocol.

Theorem 1. For a passive limited adversary, if f is a PRF then:

Adv
LocPriv

DB pAq ¤ 2�h � negl

Proof. Note that the maximal delay B is exponential in h due to
equation (11). For a passive limited adversary A, fK can be replaced
by a random function, then M and RP can be assumed to be random.
Then, the distribution of the view of the adversary V iewA consists
of NP , NV , streamV , streamP and the time of reception of the two
streams. The reception time of the first bits are tV and tP . Since the
streams have equal length, all other reception times can be obtained
from tV and tP .

We reduce the LocPriv game to a similar one where the PRF f is
replaced by a random function. The difference between AdvLocPriv

DB pAq
and the new advantage Adv is negligible, thanks to the PRF property.
Clearly, the messages are uniformly distributed.

The protocol belongs to Case 3 of assumption 2. Based on Lemma
5, we have:

Adv ¤ 2tmax

B
¤ 2�h [\



We should mention here that the security of the proposed pro-
tocol conforms with the theorem 2 that has already been proven for
the LPDB protocol [24].

Theorem 2. Assuming that f is a PRF, that RV is uniformly dis-
tributed in a set of exponential size, that RP is in a set of exponential
size, the LPDB protocol [24] is a distance bounding protocol which
provides resistance to distance fraud, and resistance to mafia fraud.

5 Conclusions

In this paper, we investigate the problem of location privacy in
distance-bounding protocols. More precisely, we define a security
game for location privacy in distance-bounding protocols and an
adversarial model, composed of two classes of adversaries, an om-
niscient and a limited adversary. We prove that location privacy
is information-theoretically impossible for any adversary of the two
classes. In particular, a generic passive adversary can break the loca-
tion privacy of any polynomial-time protocol. Nevertheless, we show
that for limited adversaries, carefully chosen parameters enable com-
putational, provable location privacy in practice. For those parame-
ters we propose a location private distance-bounding protocol based
on the LPDB distance-bounding protocol [24].
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