
Construction of Multiplicative Monotone Span
Program∗

Yuenai Chen 1, Chunming Tang 1,2

1 School of Mathematics and Information Sciences, Guangzhou University,
Guangzhou 510006, China

2 Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong
Higher Education Institutes, Guangzhou University, 510006, China

Abstract. Multiplicative monotone span program is one of the impor-
tant tools to realize secure multiparty computation. It is essential to
construct multiplicative monotone span programs for secure multiparty
computations. For any access structure, Cramer et al. gave a method
to construct multiplicative monotone span programs, but its row size
became double, and the column size also increased. In this paper, we
propose a new construction which can get a multiplicative monotone
span program with the row size less than double without changing the
column size.

Keywords: secure multiparty computation, monotone span program, mul-
tiplicative

1 Introduction

Secure multiparty computation can be defined as the problem of n partici-
pants P = {P1, · · · , Pn} want to compute an agreed function f(x1, · · · , xn) =
(y1, · · · , yn) in a secure way, where the participant Pi takes the input xi, and
receives the output yi for 1 ≤ i ≤ n. Here the security means guaranteeing the
correctness of the output as well as the privacy of each participant’s input, even
though some participants cheat.

Any a computable function can be assumed to be a polynomial over fi-
nite field[1−3]. Thus secure multiparty computation problem is transformed into
how to compute the addition and multiplication in a security way. As we are
known, linear secret sharing scheme can be used to realize the secure multi-
party computation[4,5]. According to the addition homomorphism of linear secret
sharing scheme, the addition can be easily compute. For multiplication, Cramer

2 ∗This work was supported by the Foundation of National Natural Science of China
under Grant No. 11271003, Guangdong Provincial Natural Science Foundation
(China) under Grant No. S2012010009950, High Level Talents Project of Guang-
dong, and Science Research Project of Education Bureau in Guangzhou under Grant
No. 2012A004.



introduces a multiplicative monotone span program[6], which can convert the
product of the two main keys to a linear combination of each participant’s sub-
key product which can be computed individually. Therefore, the multiplication
is converted into a linear computation, which can be safely computed. It is es-
sential for secure multiparty computation that how to construct a multiplicative
monotone span program. Cramer gives a construction[6], which makes the row
size of the monotone span program to double, and the column size also increases.
The row size of the monotone span program refers to the data diffusion of the
linear secret sharing scheme, while the column size determines the computa-
tional complexity when reconstructing keys. Considering this, we propose a new
construction of multiplicative monotone span program which can make the row
size less than double without changing the column size.

2 Basic Knowledge

Suppose P = {1, · · · , n} is the set of all players in a secret sharing schemeThe
access structure Γ over P is the collection of some subsets of P . Γ has mono-
tonicity, if A ∈ Γ , A ⊂ B, then B ∈ Γ .

An linear secret sharing scheme(LSSS) is defined over a finite field F, and the
secret s to be distributed is an element in F. The dealer distributes the secret s
among players in P according to an distributed function Π : S×R→ s1×· · ·×sn
which is linear, i.e., Π(s, r) = (s1 · · · , sn), where r ∈ R is random input. Each
player i receives from the dealer a share si.

An LSSS is said to realize Γ , if 1) for any A ∈ Γ , the players in A can
recover the secret s, then A is called qualified subset; 2) For any B /∈ Γ , the
players in B can not get any information about the secret s, then B is called
unqualified subset. If we use R to represent the collection of all unqualified
subsets, then R is called adversary structure. If A ∈ Γ , and for any C ⊂ A,
C /∈ Γ , then A is called the minimal qualified subset. Once the minimal qualified
subsets are set up, Γ is uniquely determined; And vice versa. Therefore, we
use Γ to represent the collection of all minimal qualified subsets in the rest of
this paper. Similarly, If D /∈ Γ , but for any E ⊃ D, E ∈ Γ , then D is called
the maximal unqualified subset, and we use R to represent the collection of all
maximal unqualified subsets. R and Γ are uniquely determined by each other.

Most proposed secret sharing schemes are linear, but the concept of an LSSS
was first considered in its full generality by Karchmer and Wigderson[7] who
introduced the equivalent notion of monotone span program(MSP). The span
program is a linear algebraic model for computing boolean functions[7]. For any
access structure Γ , it can be represented by a Boolean function as follow:

For any A ∈ Γ , let λA = (λ1, · · · , λn), where λi = 1 if and only if i ∈ A,
otherwise λi = 0. Now we can define the Boolean function fΓ :{0, 1}n → {0, 1}
over access structure Γ that for any λ ∈ {0, 1}n, fΓ (λ) = 1 if and only if there is
A ∈ Γ such that λA = λ, otherwise fΓ (λ) = 0. For simplicity reasons, we denote
f(A) = 1 if and only if A ∈ Γ , otherwise f(A) = 0.



Definition 2.1[8] An MSP is given by a quadruple (F,M, ϕ, ε), where F is a
field, M is a (d× l)-matrix over F with a labeling ϕ : {1, · · · , d} → {1, · · · , n},
which assigns to every row of M a player in P , and ε is a fixed non-zero vector,
called the target vector. Without loss of generality, we take ε = (1, · · · , 1). The
row size of a monotone span program is the number of rows of matrix M , and
the column size is the number of columns of M , denoted by Rsize and Csize
respectively.

As we are known, MSP can be used to realize an LSSS. Suppose M =
(m1, · · · ,md)

>, where mi ∈ Fl is the i-th row vector of M . In order to determine
the shares of secret s, the dealer chooses a random vector u = (u1, · · · , ul) ∈ Fl
such that s = uε>, and the share si = um>i is assigned to a player according to
ϕ.

Definition 2.2[8] We say the MSP (F,M, ϕ, ε) accepts the subset A ⊂ P if and
only if ε ∈ span(MA); otherwise we say it rejects A.

MA represents the sub-matrix of M , which is composed by all the row vectors
which are assigned to players in A. Suppose MA = (mi1 , · · · ,mit)

> span(MA) =
span{mi1 , · · · ,mit} represents the space generated by the vectors mij , j =
1, · · · , t.

If the MSP accepts A, then the secret can be recovered by first solving the
linear equation

ε =

t∑
j=1

xjmij

after finding xjs, the secret can be computed as

s = uε> =

t∑
j=1

xjum>ij =

t∑
j=1

xjsij

Definition 2.3[8] An MSP (F,M, ϕ, ε) computes the Boolean function fΓ :{0, 1}n →
{0, 1} if it accepts exactly those sets A ∈ Γ . Then we say the MSP realize access
structure Γ .

Actually, MSPs and LSSSs are in natural 1-1 correspondence. Since it is more
convenient to use MSP than LSSS when describing some issues, so in this paper,
we use multiplicative MSP(M-MSP) instead of multiplicative LSSS to discuss its
construction.

As we have mentioned, M-MSP is very important to multi-party computa-
tion, therefore, it is critical to construct an M-MSP for any access structure. Now
we introduce the definition and determination of M-MSP given by Cramer[6] and
Zhifang Zhang[9] respectively.

Assume (F,M, ϕ, ε) computes the Boolean function fΓ , for any two vectors
x = (x1, · · · , xd)> and y = (y1, · · · , yd)> of d dimensions over Fd, defines the
operation ”⊗” as follow:

x⊗ y = (xiyi, xiyj + xjyi|1 ≤ i < j ≤ d, i 6= j, ϕ(i) = ϕ(j))>,



Rewrite the vectors x = (x1, · · · , xd)> and y = (y1, · · · , yd)> as

x =



x11
...

x1d1
...
xn1

...
xndn



1
...
1
...
n
...
n

, y =



y11
...

y1d1
...
yn1

...
yndn



1
...
1
...
n
...
n

Where xi1, · · · , xidi and yi1, · · · , yidi are labeled by participant i for 1 ≤ i ≤ n,
and d =

∑n
i=1 di, then

x⊗ y = (xijyij , xksykt + xktyks|1 ≤ i, j ≤ d, 1 ≤ k ≤ n, 1 ≤ s < t ≤ dk),

obviously, the dimension of x⊗ y is d∗ =
∑n
i=1

di(di+1)
2 .

Definition 2.4[6] An MSP (F,M, ϕ, ε) is said to be multiplicative, if there

is a vector z called the recombination vector of dimension d∗ =
∑n
i=1

di(di+1)
2

such that, for any s, s′ ∈ F and any vectors y, y′ ∈ Fl satisfying εy> = s and
εy′> = s′, we have

ss′ = 〈z,My> ⊗My′>〉

It is difficult to determine whether an MSP is multiplicative using definition,
therefor, Zhifang Zhang proposed a method to determine whether an MSP is
multiplicative or not, which can be carried out less difficult[9].

Denotes M = (M1, · · · ,Ml), where Mi is the i-th column of M , i.e. Mi =
(m1i,m2i, · · · ,mdi)

>. Let

M∗ = (M1 ⊗M1, · · · ,M1 ⊗Ml,M2 ⊗M2, · · · ,M2 ⊗Ml, · · · ,Ml ⊗Ml)

where M∗ is composed of all vectors which are the results of operations of ”⊗”

of any two columns, which can be the same, of M . Obviously, M∗ is d∗ × l(l+1)
2

matrix. Similarly, let

ε∗ = (v1v1, · · · , v1vl, v2v2, · · · , v2vl, · · · , vlvl),

then the dimension of vector ε∗ is l(l+1)
2 .

Theorem 2.5[9] An MSP (F,M, ϕ, ε) is multiplicative if and only if linear equa-
tion system ε∗ = zM∗ has solution, and z is the recombination vector.

Now for a given MSP, we can decide if it is multiplicative or not according
to the linear equation system ε∗ = zM∗, if the linear equation system ε∗ = zM∗

has a solution, then it is; otherwise, it is not. Therefore, how to construct a
multiplicative MSP if it is not?

It is well know that Cramer et al. have given a construction[6], which is
in general not optimal (in terms of the number of rows and columns) due to



their construction doubles the number of rows, and also increases the number
of columns. In addition, Cramer et al.’s construction is applied to any ”given”
span program, that is, there must be a preparatory given span program, and
construct an M-MSP based on it.

Now we propose a new construction for any given access structure according
to solve a quadratic equation system. The idea is to transform a non multiplica-
tive MSP to be multiplicative by adding rows to it one-by-one, without changing
the access structure. However, the computation complexity of this method is very
large due to the solve of the quadratic equations. Even so, our construction is
still meaningful, because it may generate an M-MSP with small row size than
double increased, moreover, it need not change the column size.

In section 3, we will briefly introduce the construction of linear code for any
access structure, as it is a tool for our construction of M-MSP. Then in section
4, we’ll first to review Cramer et al.’s construction of M-MSP, then give our
construction. Finally, we’ll give an example to show how it works.

3 The Optimal Linear Code for Access Structure Γ

Definition 3.1[10] A linear code C of length n + 1 over Fq is simply a linear
subspace of Fn+1

q . If C has dimension k, then C is generated by the rows of a
k× (n+ 1) matrix G = (g0,g1, . . . ,gn) of rank k, which is called a generating
matrix of C.

Now we explain the LSSS introduced by Massey[10]. In this scenario the secret
s is an element of Fq and there are n players and a dealer.

In order to determine the shares, the dealer chooses randomly and uniformly
a vector u = (u1, · · · · · · , uk) ∈ Fkq such that s = ug0 and the share is si = ugi
for i = 1, · · · , n.

As stated in [14], if g0,gi1 , · · · ,git are linearly dependent, then the secret
can be recovered by first solving the linear equation

g0 =

t∑
j=1

xjgij

after finding xjs, the secret can be computed as

s = ug0 =

t∑
j=1

xjugij =

t∑
j=1

xjsij .

We say the linear code C realize access structure Γ , if for any A ∈ Γ , we
have g0 ∈ span{gi|i ∈ A}.

Given a linear code C, it uniquely decides an access structure; But for any
given access structure, there are many (not unique) linear codes to realize it.
However, we care about the linear code which has the shortest length called the
optimal linear code. In [11], we have given a method to find the optimal linear
code. Now we briefly review it and for the details please read paper [11].



Suppose we are given an access structure Γ = {S1, · · · , Sm}, where Si ⊂ [1, n]
for 1 ≤ i ≤ m. we define m× (n+ 1) matrix H with the following form:

H =


1 h11 h12 · · · h1n
1 h21 h22 · · · h2n
...

...
... · · ·

...
1 hm1 hm2 · · · hmn



where hij 6= 0 if j ∈ Si, else hij = 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Suppose we have found the corresponding adversary structure of Γ which is
R = {R1, · · · , Rl}. Define

G =


1 g11 g12 · · · g1n
1 g21 g22 · · · g2n
...

...
... · · ·

...
1 gl1 gl2 · · · gln



where gij = 0 if j ∈ Ri, and gij is unknown for all j /∈ Ri.

Theorem 3.2 There is a linear code to realize access structure Γ = {S1, · · · , Sm}
over F if and only if the system of quadratic equations GH> = 0 has a solution.

If the system GH> = 0 has a solution, then we get an ideal linear code,
because the size of each share is equal to the size of the secret. The prove of this
theorem is given by [11].

Example 1. Find a linear code over F7
q for Γ = {(1, 2, 3), (3, 4, 5), (3, 5, 6)}.

First, we find out the corresponding adversary structureR = {(1, 2, 4, 5, 6), (1, 3,
4, 6), (2, 3, 4, 6), (1, 3, 5), (2, 3, 5)}. Then

H =

1 h11 h12 h13 0 0 0
1 0 0 h23 h24 h25 0
1 0 0 h33 0 h35 h36

 , G =


1 0 0 g13 0 0 0
1 0 g22 0 0 g25 0
1 g31 0 0 0 g35 0
1 0 g42 0 g44 0 g46
1 g51 0 0 g54 0 g56

 .



According to theorem 3.2, we need to solve the following system of equations:

1 + h13g13 = 0
1 + h12g22 = 0
1 + h11g31 = 0
1 + h12g42 = 0
1 + h11g51 = 0
1 + h23g13 = 0
1 + h25g25 = 0
1 + h25g35 = 0
1 + h24g44 = 0
1 + h24g54 = 0
1 + h33g13 = 0
1 + h35g25 = 0
1 + h35g35 = 0
1 + h36g46 = 0
1 + h36g56 = 0

It is straightforward to find a general solution: h13 = h23 = h13, h25 = h35,
g31 = g51 = −h−111 , g22 = g42 = −h−112 , g44 = g54 = −h−124 , g25 = g35 = −h−125 ,
g46 = g56 = −h−136 , g13 = −h−113 .

If the system GH> = 0 has not any solutions, there is an algorithm to
generate an optimal linear code(in terms of the length of the code).

Algorithm 3.3: The optimal linear code for Γ .

1. Add one column to matrixes G and H respectively, we obtain two matrixes
G1 and H1 with n+2 columns. We emphasis that the new column is the i-th
column of G1 and H1 respectively, then the i-th column has the same form
with the (i+ 1)-th column in G1 and H1 respectively for every 1 ≤ i ≤ n.
There exists a linear code with length n + 2 realizing Γ if the system of
quadratic equations G1H

>
1 = 0 has a solution. There is an output which is

a linear code realizing Γ .
2. If there does not exist solution of G1H

>
1 = 0, two columns are added up in

matrixes G and H which are changed into two matrixes G2 and H2 with
n + 3 columns respectively. New two columns have same forms with two
columns or one column of G and H respectively.
There exists a linear code with length n + 3 realizing Γ if the system of
quadratic equations G2H

>
2 = 0 has a solution. There is an output which is

a linear code realizing Γ .
3. Suppose there does not exist solution of GiH

>
i = 0, where matrixes Gi

and Hi are obtained by being added up i columns in matrixes G and H
respectively. i + 1 columns are added up in matrixes G and H which are
changed into two matrixes Gi+1 and Hi+1 with n+i+2 columns respectively.
New i + 1 columns have same forms with i + 1 columns, or i columns, . . . ,
or one column of G and H respectively.
There exists a linear code with length n+ i+ 2 realizing Γ if the system of
quadratic equations Gi+1H

>
i+1 = 0 has a solution. There is an output which

is a linear code realizing Γ .



4. Repeating the step 3, and obtaining a linear code realizing Γ until the system
of quadratic equations Gi+1H

>
i+1 = 0 has a solution for some i.

As we have mentioned, for any access structure Γ , there are many linear
codes to realize it. Similarly, there are many MSPs to realize a given access
structure Γ . And we also care about the optimal MSP with the smallest row
size and column size, even the optimal M-MSP. In [12], we have proven that
there is an 1-1 correspondence between the linear code C with the generated
matrix G and MSP (F,M, ϕ, ε) realizing the same access structure Γ , and the
transform is M = (G\1)>, where 1 is the left-most column of G which is the all
one column. Therefore, it is the same to use linear code as to use MSP.

4 The Construction of Multiplicative Monotone Span
Program

4.1 Cramer et al.’s construction

To our knowledge, the methods to construct M-MSP are not so much. In paper
[13], there was an ideal construction for access structure defined by the connec-
tivity of graph; For general access structure, Cramer et al. gave a construction[6],
which doubles the row size of the MSP, and also increases the column size.

Cramer et al.’s construction is based on the following idea:
Suppose (F,M1, ϕ1, ε1) and (F,M2, ϕ2, ε2) are the MSPs computing Boolean

functions f1 and f2 respectively, where M1 is d × l1 matrix and M2 is d × l2
matrix. Let

M̃ =

(
M1 0d×(l2−1)

c10d×(l1−1) M2\c1

)
ϕ̃ is defined by: the labels of the first d rows of M̃ are the same with (F,M1, ϕ1, ε1),
and the labels of the last d rows are the same with (F,M2, ϕ2, ε2). If M>1 M2 =

ε>1 ε2, then (F, M̃ , ϕ̃, ε̃) is M-MSP computing Boolean function f1 ∨ f2.
Given a access structure Γ , suppose (F,M, ϕ, ε) is the MSP computing

Boolean function fΓ . Take the dual access structure Γ ∗ = {A ⊂ P |P −A /∈ Γ}.
Let z0 be a solution of system zM = ε, and z1, · · · , zd−l be a set of basis of
solution space of system zM = 0. Let

M∗ = (z>0 , z
>
1 , · · · , z>d−l)

Obviously, we have M>M∗ = ε>ε∗, where ε = (1, 0, · · · , 0), ε∗ = (1, 0, · · · , 0).
Therefor, (F,M∗, ϕ, ε∗) is the MSP computing Boolean function fΓ∗ .

Thus, we can construct M̃ according to (F,M, ϕ, ε) and (F,M∗, ϕ, ε∗), and

obtain an MSP (F, M̃ , ϕ̃, ε̃) computing fΓ ∨ fΓ∗ . If the adversary structure R
meets Q2 condition, then Γ ∗ ⊆ Γ , therefor, fΓ ∨ fΓ∗ = fΓ .

From the matrix M̃ we find that the row size becomes double, and the column
size also increases.



4.2 our construction

Considering Cramer et al.’s construction doubles the row size, we propose a
new construction for any given access structure according to solve a quadratic
equations system. The idea is to transform a non M-MSP to be multiplicative
by adding rows to it one-by-one, without changing the access structure. We use
an algorithm to describe the new construction:

Algorithm 4.1: Construction of Multiplicative Monotone Span Program

(1) According to access structure Γ and adversary structure R, we obtain two
matrixes of H and G respectively, by executing algorithm 3.3, we obtain the
optimal linear code G;

(2) using the correspondence between linear code and MSP, we get an MSP
(F,M, ϕ, ε) according to M = (G\1)>;

(3) compute M∗ and ε∗ according to M and ε, if there is a solution of linear
equation system zM∗ = ε∗, then M has multiplication, output M ;

(4) If there is no solution of zM∗ = ε∗, add one row to M and denote by M1, if
the new row is the i-th row of M1, then it has the same form as well as the
label with the (i + 1)-th row of M1, 1 ≤ i ≤ n. Compute M∗1 according to
M1, if there is a solution of system zM∗1 = ε∗, then M1 has multiplication,
output M1;

(5) If there is no solution of zM∗1 = ε∗, then add two rows to M and denote by
M2, the two new rows have the same forms as well as labels with one or two
rows of M . Compute M∗2 according to M2, if there is a solution of system
zM∗2 = ε∗, then M2 has multiplication, output M2;

(6) If there is no solution of zM∗i = ε∗, then add i + 1 rows to M and denote
by Mi+1, the i + 1 new rows have the same forms as well as labels with 1
or 2· · · or i + 1 rows of M . Compute M∗i+1 according to Mi+1, if there is a
solution of system zM∗i+1 = ε∗, then Mi+1 is multiplicative, output Mi+1;

(7) Repeat the step (6) until the system zM∗i+1 = ε∗ has solution.

As we know, not all access structures have M-MSP to realize it. Only if
the access structure satisfy the Q2 condition which means for any A,B ∈ R,
A ∪B 6= P , there is M-MSP to realize it.

Proof. The output(if have) of this algorithm is multiplicative and realizing
the same access structure Γ . Because 1) add rows to M is similar to add columns
to G which has been proven that it won’t change the access structure in paper
[11]; 2) The output matrix satisfy the determination theorem 2.5.
Theorem 4.2 If the adversary structure R does’t satisfy the Q2 condition, there
must be two columns in M which is obtained by the step (2) of the above algo-
rithm, such that the result of the two columns’ operation ”⊗” is zero vector.

It is easy to account for this result. Actually, G is constructed according
to adversary structure R. If R does’t satisfy the Q2 condition, then there are
A,B ∈ R such that A ∪ B = P . Suppose gA = (1, · · · , gsi, · · · , gsj , · · · ) and
gB = (1, · · · , gti, · · · , gtj , · · · ) is the corresponding rows of A and B in G, If i /∈ A,
then i ∈ B, and gB = (1, · · · , 0︸︷︷︸

i

, · · · , gtj , · · · ); If j /∈ B, then j ∈ A, and gA =



(1, · · · , gsi, · · · , 0︸︷︷︸
j

, · · · ). Because M = (G\1)>, and (· · · , gsi, · · · , 0︸︷︷︸
j

, · · · )>⊗

(· · · , 0︸︷︷︸
i

, · · · , gtj , · · · ) = 0, therefore, the theorem is established.

Remarks We have several remarks about this algorithm:

1. If R does’t satisfy Q2 condition, then the algorithm has no output, that is,
there is no multiplicative MSP, this conclusion is supported by theorem 4.2.

2. When R meets Q2 condition, the algorithm must have output during finite
steps, i.e. there must be a recombination vector z such that zM∗i = ε∗.
Actually, when adding rows to M , it is just an increase of column vectors in
coefficient matrix M∗i

> of system zM∗i = ε∗ according to the construction
of M∗, while the rows number won’t change. From the knowledge of linear
algebra, it only can increase the rows rank of coefficient matrix M∗i

> by
adding rows to matrix M , but not reduce. When matrix M∗i

> has full rows
rank, then system zM∗i = ε∗ must has solution.

3. It is reasonable to add rows to M but not columns. If we add columns to
M , the only result is, we increase some equations basis on the system of
zM∗ = ε∗. If the system zM∗ = ε∗ has no solution, then won’t be the new
system which is added some columns to M .

4. The monotone span program obtained by algorithm 4.1 realize the same
access structure. This is because: fix matrix M , then matrix G is fixed, and
system GH> = 0 become linear equations system on variable h. If GH> = 0
has solution, after we add some rows, which have the same form with some
rows of M , to M , that is, add some columns to G as well as H, it won’t
change the property that linear equations system has solution on variable
h, actually, let the added columns in H be zero vector, the new system
GH> = 0 still has solution. Finally we obtain a monotone span program
realize the same access structure.

4.3 Example

Example 2. Let P = {1, 2, 3, 4}, Γ = {(1, 2), (1, 3), (1, 4), (2, 3, 4)}, R = {(1),
(2, 3), (2, 4), (3, 4)}, and R is Q2, the matrixes H and G are:

H =


1 h11 h12 0 0
1 h21 0 h23 0
1 h31 0 0 h34
1 0 h42 h43 h44

 , G =


1 0 g12 g13 g14
1 g21 0 0 g24
1 g31 0 g33 0
1 g41 g42 0 0

 .

Since there is a contradiction in the system:

1 + h11g21 = 0
1 + h21g21 = 0
1 + h11g31 = 0
1 + h31g31 = 0
1 + h44g24 = 0
1 + h31g21 + h34g24 = 0



so GH> = 0 has no solution. Add one column to H and G respectively, then we
get

H1 =


1 h′11 h11 h12 0 0
1 h′21 h21 0 h23 0
1 h′31 h31 0 0 h34
1 0 0 h42 h43 h44

 , G1 =


1 0 0 g12 g13 g14
1 g′21 g21 0 0 g24
1 g′31 g31 0 g33 0
1 g′41 g41 g42 0 0

 .

Now the system of G1H
>
1 = 0 has solutions. Note that if we add one column

in the second, or third, or forth column to H and G respectively, the equations
system G1H

>
1 = 0 has no solution.

We take one solution over F11 as follow:

G1 =


1 0 0 4 4 4
1 0 −1 0 0 1
1 1 1 0 1 0
1 −1 0 1 0 0

 .

let M = (G1\1)>, then

M =


0 0 1 −1
0 −1 1 0
4 0 0 1
4 0 1 0
4 1 0 0

 .

The label φ is: φ(1) = φ(2) = 1, φ(3) = 2, φ(4) = 3, φ(5) = 4; Now we’ll
determine if the system zM∗ = ε∗ has a solution, the coefficient matrix and the
extended matrix of system is

(M∗>, ε∗>) =



0 0 0 5 5 5
0 0 0 0 0 4
0 0 0 0 4 0
0 0 0 4 0 0
0 1 0 0 0 1
0 −1 −1 0 0 0
0 0 1 0 0 0
1 1 2 0 1 0
−1 0 −1 0 0 0
1 0 0 1 0 0



1
1
1
1
1
1
1
1
1
1

Applying elementary row transformation to this matrix we find the system
zM∗ = ε∗ has no solution. Add one row to M which is the 5-th row in M1:

M1 =


0 0 1 −1
0 −1 1 0
4 0 0 1
4 0 1 0
x y 0 0
4 1 0 0

 .



and H1 is

H1 =


1 h′11 h11 h12 0 0 0
1 h′21 h21 0 h23 0 0
1 h′31 h31 0 0 h′34 h34
1 0 0 h42 h43 h

′
44 h44


Let h′34 = h′44 = 0 in order to system G1H

>
1 = 0 still has solution. Now the

coefficient matrix and the extended matrix become

(M∗1
>, ε∗>) =



0 0 0 5 5 x2 5 8x
0 0 0 0 0 xy 4 x+ 4y
0 0 0 0 4 0 0 0
0 0 0 4 0 0 0 0
0 1 0 0 0 y2 1 2y
0 −1 −1 0 0 0 0 0
0 0 1 0 0 0 0 0
1 1 2 0 1 0 0 0
−1 0 −1 0 0 0 0 0
1 0 0 1 0 0 0 0



1
1
1
1
1
1
1
1
1
1

Take x = y = 1, we can verify the system zM∗1 = ε∗ has solution, take one
solution z = (−2,−2, 1, 3, 3, 0, 3, 0), then M1 is multiplicative. �

4.4 The Comparison between Our Construction and Cramer’s

From the above example, we can see that our construction has advantage in the
size of monotone span program:

\ Rsize Csize Rsize′ Csize′

ours 5 4 6 4
cramer 5 4 10 ↑

While in the computational complexity of the algorithm, Cramer’s construc-
tion is easier to realize compared with our’s. Therefore, how to reduce the com-
plexity of the algorithm is still a big problem.

5 Conclusion

Multiplicative monotone span program is important to the secure multi-party
computation when using linear secret sharing scheme to realize it. In this paper,
we give a new construction of multiplicative monotone span program, which can
make the size become smaller compare with Cramer et al’s, with the tools of
linear code. Unfortunately, the computational complexity of our construction is
very large, therefore, reducing the complexity will be our future work.



References

1. Pippenger N.,Fischer M.J. Relations among complexity measures. Journal of the
ACM,1979,26361-381.

2. Schnorr C.P. The network complexity and the Turing machine complexity of finite
functions. Acta Informatica,1976, (7):95-107.

3. Zwick U. Boolean Circuit Complexity, Fall Semester 1994/5, Lecture 3, Tel Aviv,
1994. http://www.cs.tau.ac.il/

4. Cramer R.,Damgard I.,Maurer U. General Secure Multi-Party Computation from
any Linear Secret-Sharing Scheme Proc. EUROCRYPTO’00, Springer-Verlag
LNCS, vol 1807:316-334.

5. Zhang Z. Secret Sharing and Secure Multiparty Computation. Academy of Math-
ematics and Systems Science PhD thesis, 2007

6. Cramer R.,Damgard I.,Maurer U. General Secure Multi-Party Computation from
any Linear Secret-Sharing Scheme[C]//Proc.EUROCRYPT’00. 2000:316-334.

7. M.Karchmer,A.Wigderson. On span programs [J]. In Proceedings of the Eighth
Annual Structure in Complexity Theory Conference,IEEE,1993: 102-111.

8. Radomirović Saša. Investigations Into Span Programs With Multiplication. Insti-
tute for theoretical Computer Science Diploma Thesis, ETH Zürich, 1998.

9. Zhang Z. Multiplicative Monotone Span Program. Journal of Graduate University
of Chinese Academy of Sciences, 2006,236827-832.

10. J.L.Massey. Minimal codewords and secret sharing [J]. Proc. 6th Joint Swedish-
Russian Workshop on Information Theory, August 22-27, 1993: 276-279.

11. C. Tang, S. Gao and C. Zhang. The Optimal Linear Secret Sharing Schemes for
any Given Access Structure. Journal of Systems Science & Complexity, Vol.26,
No.4, 2013, pp.634-649.

12. Yuenai Chen, Chunming Tang, Shuguang Dai, The Greatest Lower Bound of Mono-
tone Span Programs. CHINACRYPT2011:159-163

13. Zhang Z. Monotone span program with multiplication. Graduate School of the
Chinese Academy of Sciences, 2006,6(23):827-832.

14. C.Ding, J.Yuan. Covering and secret sharing with linear codes. In Discrete Math-
ematics and Theoretical Computer Science(Lecture Notes in Computer Science),
2003,2731:11-25.


