
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Distributed Group Authentication for
RFID Supply Management
Mike Burmester, Senior member, IEEE, and Jorge Munilla

Abstract—We investigate an application of Radio Frequency Identification (RFID) referred to in the literature as group scanning,
in which an RFID reader device interrogates several RFID tags to establish “simultaneous” presence of a group of tags. Our goal
is to study the group scanning problem in strong adversarial settings and show how group scanning can be used in distributed
applications for supply chain management. We present a security framework for group scanning and give a formal description
of the attending security requirements. Our model is based on the Universal Composability framework and supports re-usability
(through modularity of security guarantees). We propose two novel protocols that realize group scanning in this security model,
based on off-the-shelf components such as low-cost (highly optimized) pseudorandom functions, and show how these can be
integrated into RFID supply-chain management systems.

Index Terms—Distributed RFID systems, supply-chain management, grouping-proofs, authentication.

F

1 INTRODUCTION

THE term “Internet of Things” (IOT) was coined
in 1999 by Kevin Ashton, a co-founder of the

Auto-ID Center [1] whose mission was to create a
global RFID (Radio Frequency Identification) based
product identification system for inventory and sup-
ply management. There are several advantages of
RFID technology over barcodes: RFID is wireless,
does not require direct line-of-sight, and RFID tags
can be interrogated at greater distances, faster and
concurrently [2]. This makes the IOT a wireless net-
work of objects and sensors that collect and process
information autonomously. RFID tags and sensors
enable computers to observe/identify/understand for
situational awareness without the limitations of a
human in the loop.

RFID is presently a mature technology that is
widely deployed for supply-chain management, re-
tail operations, inventory management and automatic
identification. A typical RFID deployment involves
three main components: i) tags or transponders,
which are electronic data storage devices attached to
objects to be identified; ii) readers or interrogators,
which manage tag population, read data from and
write data to tags; and iii) a back-end server, the
verifier, which is a trusted entity that exchanges tag
information with the readers and processes data ac-
cording to specific task applications.

• M. Burmester is with the Department of Computer Science, Florida
State University, Tallahassee, FL, 30302.
E-mail: burmeste@cs.fsu.edu

• J. Munilla is with the Communication Engineering Department,
Universidad de Málaga, Spain, 29070.

This work has been partially supported by Ministerio de Ciencia e Inno-
vacin (Spain) and the European FEDER Fund under project TIN2011-
25452.

Most RFID tags are passive and do not have power
of their own but get the energy needed to operate
from an RFID reader. Thus, tags are inactive until
activated by the electromagnetic field generated by
a reader that is tuned to their frequency.

Although initial designs of RFID identification pro-
tocols focused on performance with little attention
paid to resilience and security, this technology has
found use in many applications that require the im-
plementation of security mechanisms that: i) take into
account features such as the vulnerability of the radio
channel, the constrained power of the devices, the
low-cost and limited functionality of tags and the
request-response operation mode; and ii) make them
resistant to privacy/confidentiality threats, malicious
traceability and loss of data integrity. The recent
ratification of the standard Gen2v2 highlights these
security concerns [3].

When RFID technology is used for supply-chain
management, concerns regarding the monitoring of
tags and transfer of ownership or control of tags
need to be addressed. If the transfer is permanent, or
even temporal, ownership transfer protocols can be
used, for which the rights of an owner are securely
transferred to a new owner [4], [5]. However, there are
cases when the owner does not want to cede control,
even though this may be temporal. For example, a
manufacturer may use the services provided by a car-
rier who, in turn, uses other carriers to transport their
products. In such cases it is desirable that the owner
and the carrier can periodically check the integrity
of a consignment. This requirement is referred to as
group scanning, or a grouping-proof in the literature, and
involves multiple tags proving simultaneous presence
in the range of an RFID reader [6], [7].

There are several practical scenarios where

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

grouping-proofs can substantially expand the
capabilities of RFID-based systems. For example,
some products may need to be shipped together
in groups and one may want to monitor their
progress through the supply-chain—e.g., hardware
components of a system or kits. A different scenario
would be to support enforcement of safety regulations
requiring that drugs be shipped, or dispensed,
with information leaflets. However, as public key
cryptography is beyond the capability of most RFID
tags, such proofs can only be checked by a verifier
that shares private information with every tag. As a
result the carrier may not be able to check directly
the integrity of a group.

Our main contributions in this paper are to:
a) Analyze a recently proposed grouping-proof

and discuss the challenges of securing such
proofs.

b) Present a framework for RFID grouping-proofs
that addresses practical settings, in particular
supply-chain management, and that allows for
side-to-side comparisons with alternative pro-
posals.

c) Present grouping-proofs of integrity that are
generated by the tags of the group without
sharing any private information with the reader.
These can be verified by the owner but also, if
needed, by a custodian who has no control over
the tags.

The organization of this paper is as follows. In Sec-
tion 2 we review the literature and analyze a recently
proposed grouping-proof. In Section 3 we discuss
RFID deployments for supply-chain management and
present a high-level description of the security re-
quirements and procedures for group scanning, in
particular for compiling evidence during a group
interrogation, and discuss the threat model. In Sec-
tion 4 we propose two RFID protocols for group
scanning: a non-anonymous grouping-proof and a
version that adds support for anonymity. We then
show in Section 5 how these can be integrated into
RFID supply-chain management. We summarize our
main results in Section 6. In the Appendix we formally
define the functionality of our two protocols and show
that these are realized in the Universal Composability
framework.

2 BACKGROUND
Ari Juels introduced in 2004 the security context of
a new RFID application—which he called a yoking-
proof [8], that generates evidence of simultaneous
presence of two tags in the range of an RFID reader.
This first protocol was later found to be insecure [9],
[10] but, the simultaneous scanning application trig-
gered a considerable interest in the research commu-
nity. Yoking-proofs have been extended to grouping-
proofs in which multiple tags prove simultaneous pres-
ence in the range of an RFID reader—see e.g. [11].

Burmester et at. presented in [12] a protocol
which achieved anonymity by using randomized
pseudonyms for the group identifer, and forward-
security by updating the secret keys and the group
keys after each season. This protocol is essen-
tially a proof-of-concept, and not appropriate for
lightweight applications. Huang and Ku [13] pre-
sented a grouping-proof for passive low-cost tags that
uses a pseudorandom number generator to authenti-
cate flows and a cyclic redundancy code to randomize
strings. The protocol has several weaknesses, some of
which were addressed by Chien et al. [14] who, in
turn, proposed a new grouping-proof. Peris-Lopez et
al. [15] found other security flaws in these protocols
and proposed guidelines for securing them as well as
a yoking-proof protocol (for two tags).

More recently, Liu et al. proposed in this journal [6]
a grouping-proof for multiple readers and tags. In this
proof the reader is a contributing party that shares
a private key with the tags of the group. There are
several security issues with this proof that we discuss
below, and will serve as guideline for designing se-
cure grouping-proofs.

Liu et al.’s Grouping-Proof
This proof is vulnerable to de-synchronization and
privacy leaks. De-synchronization occurs when the
adversary succeeds in disrupting the protocol by
partitioning the group into two parts with one part
updating its state while the other does not.

The Liu et al. protocol uses an invertible pseudoran-
dom number generator PRNG. Authentication data
is obfuscated by using bitwise operations: XOR (⊕),
OR (∨) and modular addition (+), operations that have
been shown to be insecure [16]. In this particular case
private key information leaks.

Since the description of the Liu et al. protocol is
quite complex, here we describe only the case when
there are two tags TA, TB and a single reader R, which
is sufficient for our arguments. The tags share a secret
key s with R.

Step 1. R generates a pseudorandom number r0, and
sends it together with a pseudorandom flag FR to TA

and TB .
R→ TA, TB : r0, FR

Step 2. TA, TB check FR. If it is not correct, the protocol
terminates. Otherwise, the tags send to R their flags
FTA

, FTB
.

TA, TB → R : FTA , FTB

Step 3. R checks the flags and if correct links the tags.

R→ TA, TB : TA, TB are linked

Step 4. TA updates its flag: F ′
TA
← FTA

, computes
MA = (PIDTA ⊕F ′

TA
)∨ r0, NA = PRNG(FR∨PIDTA)

and sends these to R.

TA → R : MA||NA

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

Step 5. Upon receiving this message, R updates the
flag: F ′

TB
← FTB , selects a pseudorandom number r1,

and computes MR = (PIDTB
∨ FR) ⊕ (s + r1), NR =

(gid⊕ F ′
TB

) ∨ r1, where gid is a group identifier.

R→ TB : MR||NR||NA

The protocol continues: TB updates its flag in Step 6
and R computes F ′

TA
in Step 7.

In this protocol, parties update their flags indepen-
dently. This leads to a synchronization problem. For
example, if the protocol is interrupted after Step 4,
TA will have updated FTA

but R will not, so R
will be unable to recognize TA in the next interro-
gation in Step 2. The interruption may have a natural
origin (communication problems) or may be caused
intentionally by an adversary: physically, or by first
impersonating TA in Step 1 to get r0, FR and then
impersonating R to get TA.

Assume now that to overcome this problem the
flags are not updated independently, but only when
each party has made certain that the other has up-
dated. In this case, because of the bitwise operations,
secret key information leaks (as in [5]). In fact, if flags
remain static, an adversary can impersonate the tags
to the reader, by replaying these flags, to get different
values of MR (M ′

R,M
′′
R, . . .) and NR (N ′

R, N
′′
R, . . .)).

The computed values can be written:

MR = KA ⊕ (s+ r1) and NR = KB ∨ r1,

where KA, KB are constant and r1 varies with every
execution (r1, r′1, r′′1 , . . .). The value of KB can be
easily retrieved by observing different NR. Once KB

is known, many bits of different r1’s also get known
(those for which the corresponding bits of KB are
zero). For the bits of r1 that are known, the corre-
sponding i-th least significant bit si, can be retrieved
as follows:

1) Get two pairs: (r1,MR) and (r′1,M
′
R).

2) Compute: R = r1 ⊕ r′1 and C = MR ⊕M ′
R ⊕R.

3) For i = 1 : length(s), si is computed:
If Ci = 1 and Ri = 0 then si = ri1 ⊕ Ci+1;
Elseif Ci = 0 and Ri = 1 then si = ci ⊕ Ci+1

provided that ci can be computed, with
ci = (ci−1 ∧ (ri−1

1 ⊕ si−1)) ∨ (ri−1
1 ∧ si−1)

for i > 1 and c1 = 0.
Else Bit i cannot be retrieved for these pairs.

4) Return to Step 1 until every bit of s (for those
positions of r1 that are known) is disclosed.

Finally, as mentioned earlier, the proof is not gener-
ated by the tags themselves, but requires the reader to
check and compute authentication data for the tags.

3 FRAMEWORK ASSUMPTIONS

A typical deployment of an RFID supply-chain in-
volves three types of legitimate entities—see Figure 1:

Fig. 1. An RFID Supply-Chain Scenario

a) A group of tags (GoT).
b) The owner of GoT, who keeps the digital rights

of the tags; in particular she knows the private
information stored by the tags. However, the
GoT may not be in the physical range of the
owner.

c) The carrier, whose services are contracted by the
owner. He has physical possession of the GoT
and can access the GoT through his reader, but
does not have control over it, other than, when
allowed, verifying its integrity.

We consider two modes for supply-chain man-
agement: Mode A, where the owner monitors the
integrity of a GoT via a carrier, and Mode B where
the carrier directly monitors the GoT.

3.1 RFID Deployments
We assume the following regarding the environment
that characterizes RFID group scanning applications.

3.1.1 RFID tag capabilities
Passive UHF tags are the most common for supply-
chain applications. They have no power of their
own, operate in the far field, and use backscatter
communication [17]. Such tags work at greater dis-
tances (than inductive tags) but the delivered power
is low, and therefore lightweight cryptographic tools
should be utilized [18]. However, we can assume that
tags are able to perform basic symmetric-key crypto-
graphic operations such as selecting pseudorandom
numbers and evaluating a pseudorandom function
f : {0, 1}∗ → {0, 1}n (e.g., a pseudorandom hash
function that is one-way and collision resistant [19]).

Public key cryptography, tamper-resistant shield-
ing and on-board clocks are beyond the capabilities
of most tags. However, the activity time span of
a tag during a single session can be limited using
techniques such as measuring the discharge rate of
capacitors, as described in [8].

3.1.2 RFID Reader and verifier/server capabilities
By contrast readers and verifiers/servers are able to
perform complex cryptographic operations. Although
in practice they may be implemented on the same

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

device, with two communication ports: one for the
tags in range, the other for the rest of the high-level
entities.

In our model these entities are independent. In par-
ticular, readers will just manage the communication
between tags (Section 3.2, Assumption 2) and interface
between the verifier and the GoT.

3.1.3 RFID communication channels

Direct communication between passive RFID tags is
not possible. Such tags can only communicate with
readers that are in wireless range (they backscatter the
reader’s electromagnetic signal). However readers can
establish logical wireless channels that link the tags of
a group.

To establish a channel, the tags must provide the
reader with identifying origin information to establish
an association with the reader. After the tags get
identified (not necessarily authenticated), they get
linked with a wireless communication channel via
the reader (in practice: origin and destination tag
information is appended to all exchanged messages).
We shall not discuss physical/link layer details such
as the coupling design, the power-up and collision
arbitration processes. For details on these issues the
reader is referred to [3], [20].

RFID wireless channels are particularly vulnera-
ble because tags are restricted to lightweight cryp-
tographic protection. By contrast, the communication
channel between high level entities (i.e. readers and
verifiers) is secure since fully-fledged cryptographic
techniques can be used. However, these channels
may enjoy continuous connectivity (e.g., if they are
implemented on the same device), or may not (e.g., if
they link the carrier’s reader and the owner’s verifier).

3.2 Grouping-proof assumptions

A grouping-proof encompasses evidence that corrob-
orates the presence of a GoT during a reader interro-
gation. The evidence consists of records of temporal
events from which a verifier can infer the presence of
the tags of a group.

Let G a GoT and R an authorized reader. There
are two basic requirement regarding the interrogation
evidence and how it is compiled to get a proof of
simultaneous presence.

• (Completeness) If all tags of G are in the range of
R then a grouping-proof is generated.

• (Soundness) If when R interrogates the tags of G
a grouping-proof is generated then all tags of G
were scanned by R.

The evidence for a grouping-proof is generated us-
ing symmetric-key operations since public-key cryp-
tography goes beyond the capabilities of lightweight
tags (Section 3.1.1). Consequently grouping-proofs are
not “proofs” in the sense that they are not transferable

and can only be validated by those who share the
private keys used to generate them.

During an interrogation the verifier can be online
or offline, and different solutions for the grouping-
proof problem are required in each case. We further
distinguish between fully-interactive online and batch
online [7]. In batch mode the interactions of the
verifier are restricted to: i) broadcasting a challenge
that is valid for a (short) time span and, ii) collecting
responses from the tags (via intermediate readers)
to check the simultaneous presence of the tags of
a group. The verifier in batch mode never unicasts
messages to specific tags.

In contrast in the fully-interactive mode the verifier
can send/receive messages to/from specific tags
throughout the protocol execution. It is straight-
forward to check the integrity of a GoT in this
mode. Indeed it is sufficient for individual tags to
authenticate themselves to the verifier, who will then
decide on the validity of the grouping-proof by using
auxiliary data, e.g., an identifier of the GoT. Therefore,
in this paper, we focus on offline solutions.

Assumption 1. The verifier is either offline or batch
online.

The interrogating reader may, or may not share
private keys with the GoT. In the first case we further
distinguish two cases: the reader may or may not be
trusted. If the reader is trusted then it can share the
private information of the tags, thus becoming a de
facto online verifier. This violates Assumption 1. If
the reader is not trusted, then it should not share any
private information with GoT. Consequently we focus
on grouping-proofs that are generated independently
by the GoT.

Assumption 2. The reader is a communication enabler
that links the GoT with reliable channels, but is not
involved in any tag computation and does not share
any private keys with the GoT.

We view a grouping-proof as an independent pro-
cess in which the GoT generates corroborative evi-
dence given a certain input. A GoT consists, in turn,
of tags with similar characteristics, none of which
requires special features or is assigned an unbalanced
computation load. In particular, no tag of GoT will
assume the role of a “centralized” verifier; i.e., the
proof should be distributed.

Assumption 3. The tags of a group have similar
hardware capabilities and the computation load per
tag for generating a grouping-proof is balanced.

In general some of the tags of a group may get
compromised. It is easy to see that if this happens
then it is not possible to generate evidence that will
support simultaneous presence in any meaningful
way. Indeed if T is a tag that is controlled by the
adversary, then T can prevent a grouping-proof from
being generated by not participating actively, and

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

conversely force a grouping-proof to be generated
when GoT is not complete.

Assumption 4. The tags of a GoT are not compromised.

The motto “all for one and one for one” extends to
private shared keys and the definition of a grouping-
proof. Indeed since a group of tags is compromised
if any of its tags gets corrupted, from the perspective
of generating a grouping-proof there is no reason for
tags to have different keys. However these keys are
restricted to a specific GoT.

Assumption 5. The tags of a GoT share the same
private information.

Assumption 6. Grouping-proofs apply to specific GoT:
for a subgroup or extensions a different, independent
proof should be sought.

RFID readers broadcast messages, but as pointed
out in Section 3.1.3, if the tags get identified then the
reader can link them via unicast/multicast channels.
To enhance privacy we may wish to consider
grouping-proofs for which the tags are not identified
by the reader, and only broadcast communication is
used. In this case tags broadcast messages via the
reader that are checked by all tags in range (possible
destination). There are two cases to consider: i) only
tags listed as destination tags respond, and ii) all
tags respond (possibly with not-valid messages).
The former reveals membership in a group, and
does not provide any advantage as we shall see
in Section 4.3.2. The latter, by contrast, has the
potential to offer complete anonymity, but leads to an
ever-increasing number of broadcast messages which
hinders its implementation.

Assumption 7. The tags of a group get identified by
the reader and linked via the reader to allow for
unicast/multicast communication.

RFID communication is a sequential process and
therefore the concept of interrogation simultaneity
can only be captured by an “exposure-time”
window. That is, events are considered as happening
simultaneously only if they take place within this
window.

Assumption 8. Grouping-proofs use session numbers
(or timestamps) to define interrogation time windows
for simultaneity.

Finally, we distinguish two ways in which the
verifier can request evidence for the presence of
a GoT. The verifier can request evidence for all
GoT in range, or evidence for an specific group. In
our protocols we shall use the first, which is more
general and provides stronger anonymity. However,
both cases can be accommodated in the general
architecture described in Section 5.

Assumption 9. The verifier requests evidence for any
GoT present in the range of the reader.

3.3 Threat Model for RFID Group Authentication
We discuss the components of grouping-proofs and
their vulnerabilities.

3.3.1 The RFID-air interface
Wireless channels are particularly vulnerable to ad-
versarial threats. We shall assume the Dolev-Yao
threat model [21] in which the adversary controls the
communication channels, and may eavesdrop, block,
modify and or inject messages in any communication
between tags and readers.

However, in practice, reader-tag (forward) channels
are easier to intercept than tag-reader (backward)
channels, since the signal in the latter case is much
weaker.

3.3.2 RFID Readers and tags
We shall assume that (authorized) readers provide
reliable communication channels for all tags in their
range, when requested, and do not share any private
information with a GoT (Section 3.2, Assumption 4).
Authorized readers use a pseudorandom number
obtained from the verifier to challenge a GoT. This
serves as an identifier for authorized sessions, and
defines the corresponding validity period.

Tags are computationally constrained, restricted to
the air interface and have no clocks other than timers.
The tags of a GoT are bounded by Assumptions 3, 4,
5, 7 and 8.

3.3.3 Attacks on RFID Systems
Several types of attacks against RFID systems have
been described in the literature. Some are well known
in other platforms. In particular, the adversary may
attempt to perform impersonation, DoS, interleaving
and reflection attacks and other passive or active
attacks. Additionally, the unique aspects of RFID
applications highlight other vulnerabilities such as
unauthorized tracking, a privacy concern in which the
adversary tries to trace and/or recognize tags or GoTs.

There are also attacks on RFID systems that are
usually excluded from the security model used,
such as online man-in-the-middle relay attacks [22], side
channel or power analysis [23] attacks (cf. Section 3.1.1).
In particular, if no distance-bounding mechanism [24]
is used, our protocols in Section 4 will be subject to
active attacks that involve relaying flows between
tags faster than the time window of tag timers.
These attacks affect all RFID protocols [25], including
grouping-proof protocols [26], and can only be
addressed by making certain that precise timing
mechanisms are used.

3.3.4 Supply-Chain Management
The owner of a GoT (a back-end server) is assumed
to be a trusted entity that shares private information
with the tags such as cryptographic keys. As for the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

carrier we distinguish two cases, depending on the
supply-chain management mode. For Mode A, when
the owner monitors the integrity of a GoT in transit
via the carrier, the carrier is not trusted. For Mode
B, the carrier monitors the integrity of the GoTs and
should be trusted.

3.3.5 Universal Composability, Modularity
A protocol that is secure in isolation may become
vulnerable under concurrent execution (with other
protocols or instances of itself—see e.g., [27]). To guar-
antee security against such attacks it is necessary to
model security in a concurrency-aware model. In the
Appendix we shall use the Universal Composability
framework to capture security, which in addition to
capturing threats arising from concurrency, allows for
secure protocol re-use, e.g., as a building block for
more complex applications.

4 GROUP AUTHENTICATION

We describe two grouping-proof protocols that can be
integrated into a supply-chain management system.
The first (Section 4.2) does not provide anonymity. For
this protocol the messages the tags send to the RFID
reader include a group identifier IDgp. The second
(Section 4.3) uses pseudonyms PS that depend on the
group identifier, but the dependency is known only
to the tags. The pseudonyms are updated with every
interaction, providing “session unlinkability”, a form
of anonymity that will be defined later.

Our grouping-proofs are generated distributively,
without the verifier being involved, and can be seen
as an independent process that compiles temporal
corroborative evidence given a certain input.

There are two reasons why we present different
protocols. First, prior work on group scanning has
considered both the anonymous and non-anonymous
settings. Since anonymizing protocols requires addi-
tional computational steps and correspondingly larger
tag circuitry, simpler alternatives are preferred when-
ever anonymity is not a concern. Second, the introduc-
tion of protocols of increasing complexity facilitates
their understanding.

The parties involved in our proofs are the GoT and
the reader. The reader manages the communication
between the tags and interfaces with the verifier.
The reader does not share any information with the
GoT, other than an input it receives from the verifier
(Section 3.2, Assumption 2).

In our protocols a specific tag of the group, the
authenticator, generates the proof after checking that
all the tags in its group are accounted for. We assume
that the tags of a group store in non-volatile memory
a shared secret group key K used to prove membership
in the group, and that the authenticator tag has also an
additional key k shared with the verifier (discussed in
Section 5), and used to generate a confirmation. Tags
instances are denoted as tagi, i = 1, 2,

4.1 Compiling Evidence: the Domino Effect
Our proofs are based on temporal corroborative ev-
idence provided by authenticators generated by the
tags of a group. It is sometimes contended (e.g., [6],
[11], [15]) that to guarantee simultaneous presence of
a group of tags, the values that each tag computes
should be explicitly linked to the values the other tags
in the group compute. Our protocols use a different
approach in which the values that the tags compute
(the authenticators) are implicitly linked via a causality
relation. This approach makes the verification much
simpler and does not require that tags of a group
share different private information (Section 3.2, As-
sumption 5). We shall now discuss this approach and
justify it from a theoretical point of view.

The evidence that corroborates a grouping-proof
consists of records of temporal events. There are
several ways to compile such records. Clearly one
may discard records that can be inferred from others.
There are several ways to further reduce the number
of such records needed for a grouping-proof. Here
we describe one such approach. Suppose that a linear
causality relation on the event space that defines a
grouping-proof can be established:

event(n)⇒ event(n− 1)⇒ · · · ⇒ event(1).

Then only event(1) is needed to corroborate event(i),
i = n, . . . , 2. This “domino” chain can be linear (as
above), or more generally tree-based: it is character-
ized by events that cause other events, leading to a
root event.

The following illustration captures our approach
for compiling temporal evidence. Suppose that the
verifier has access to records of the state of an interro-
gated GoT as captured by an exposure time window
that only shows a root event. Then, if we assume
an appropriate causality structure for the events, the
verifier can infer the simultaneous presence of the tags
of GoT during an interrogation by just observing the
state of the root.

4.2 A Non-Anonymous Grouping-Proof
Our first protocol is presented in Figure 2, with the
tags arranged in a logical ring: (tag1, tag2, . . . , tagn),
with tag1 the authenticator tag. There are three phases.
In the first, the reader challenges the tags in its range
with a pseudorandom number rsys, and the tags
respond with their group identifier IDgp except for
tag1 which also includes a random session number sn.
In the second, the tags of IDgp get linked by channels
through the reader (Assumption 7, Section 3.2).

In the third phase tag1 computes an authenticator
aut2 for tag2, and the other tags generate authentica-
tors in reverse order starting from tagn, that sends
to tagn−1 the authenticator autn. Each tagi, where
i = n − 1, ..., 2, computes two authenticators: auti+1

and auti. The first is used to authenticate tagi+1 in the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

Fig. 2. A non-anonymous grouping-proof

Parties: READER: [rsys] AUTHENTICATOR TAG (tag1): [1, IDgp, k,K] tagi : [i, IDgp,K], i = 2, . . . , n

Phase 1. a) READER → ∗ : rsys (a random number is broadcast)
b) tag1 : Generate a random number sn, set timer

tag1 → READER : 1, sn, IDgp

c) For each 1 < i ≤ n

tagi → READER : i, IDgp

Phase 2. The READER links the tags of IDgp : for each 1 ≤ i ≤ n .

READER → tagi : sn, IDgp is linked,
Phase 3. tag1 : Compute aut2 = f(K; IDgp||rsys||sn||2)

a) tagn : Compute autn = f(K; IDgp||rsys||sn||n),
tagn →READER→ tagn−1 : i, autn ; timeout

b) For each 1 < i ≤ n− 1

tagi : Set timer; compute autj = f(K; IDgp||rsys||sn||j), j = i, i+ 1

If (i+ 1, Xi+1) is received with Xi+1 = auti+1 then
tagi →READER→ tagi−1 : i, auti ; timeout

else timeout
c) tag1 : If (2, X2) is received with X2 = aut2 then compute mac = f(k; IDgp||rsys)

tag1 → READER : mac ; timeout
else timeout

READER : If an authenticator is received from the tag1 then compile:
MAC = (IDgp, rsys,mac)

ring while the second is sent to tagi−1. The authentica-
tors are obtained by evaluating f(K; IDgp||rsys||sn||j),
j = i, i + 1, where f is a pseudorandom function
(Section 3.1.1). Each tag checks that the authenticator
it received is correct before sending its authenticator.
Eventually tag1 gets aut2. If this is correct then it
sends to the reader a message authentication code
mac = f(k; IDgp||rsys). Finally the reader compiles the
grouping-proof: MAC = (IDgp, rsys,mac). To validate
the proof, the verifier who keeps in a database D pairs
of values (k, IDgp) first retrieves k from D and then
checks MAC.

Each phase of the protocol can be executed concur-
rently with all tags in the group (this includes com-
puting authenticators: e.g., tag2 can evaluate aut2, aut3
immediately after being linked), except for Phase 3.
The phases cannot be consolidated without loss of
some security feature, or worse, of determinate out-
come. Indeed, the first phase incorporates random-
ness provided by the verifier’s challenge rsys and
the randomness provided by the session number sn,
which prevent replay attacks. The random challenge
defines the scanning period for the verifier, and the
session number the interrogation period of the GoT.
In particular, the verifier cannot (without further as-
sumptions) determine simultaneity of a group scan to
a finer time interval than the scanning period. Phase 2
is used to define and link the group. Phase 3 consists
of three rounds of communication, and each one is
crucial to provide the data for the grouping-proof. If
we were to suppress the exchange of auti, auti+1, or

did not implement timeout, then replay attacks would
be successful.

In this protocol the verifier is not authenticated
which, in this particular case and from a theoretical
point of view (provided that f is secure), is not a
concern because the integrity of the GoT is captured
by a message authentication code for the verifier, who
provides the challenge.

We assume that the identifier IDgp, the challenge
rsys, the keys K, k, the session number sn, and the
authenticators aut1, . . . , autn,mac, all have the same
(bit) length κ, which is the security parameter of the
protocol.

This protocol can be implemented very efficiently:
it is distributed, each tag needs only to compute two
values (tagn only one), and the verifier just needs
to perform one check. For efficient hardware imple-
mentations of pseudorandom functions the reader is
referred to [18], [28].

Due to its sequential nature, the time taken to
identify all the tags of the group is linear in n, which
could lead to problems when n is large. In the next
subsection, we capture concurrency by modifying
Phase 3.

4.2.1 A Concurrent Grouping-Proof

Arrange the tags of the group in a logical binary tree
with m = ⌈log2 n⌉ layers and root tag1, see Figure 3.
The only difference is in Phase 3 of the protocol
in which we get group authentication by having all

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8
1

2 3

4 5 6 7

10 118 9 12

Fig. 3. A binary tree arrangement for 12 tags and
authentication flows for a concurrent execution

triangles of the tree at layer j, j = m− 1, . . . , 1:

⟨leftchild(taga), rightchild(taga), taga⟩

authenticated concurrently. Left-children of the last
layer start concurrently (as tagn did in the sequen-
tial case). Each tag sets a timer and waits until it
receives an authenticator from its right-child and/or
left-sibling, depending on its position in the tree.
When the authenticator(s) is (are) received, if it is
(they are) correct and the timer has not expired, the
tag sends its own authenticator to either its right-
sibling or its parent. Thus, when all the tags in a
layer get authenticated the previous layer can get
authenticated. Until only one triangle rooted at tag1
is left, or at timeout. If any authentication fails (one
of the tags is not authenticated) the process cannot be
completed. For the concurrent protocol, the tags need
compute at most three values, with the tags at the last
layer computing either one or two values. The verifier
still performs only one check.

4.2.2 Analysis
This protocol is secure in the Universal Composability
(UC) framework (details are given in Appendix A).
Here we discuss informally the most common attacks.

Replay attacks. The first pass of the protocol, with rsys
and sn, prevents replay attacks. The verifier will not
re-use the same challenge rsys and the authenticator
will not re-use the same session number sn.

Impersonation attacks on tags are prevented by using
private keys. Impersonation attacks on an authorized
reader will not yield a valid proof: only authorized
readers have access to the verifier’s challenge rsys.

DoS attacks. It is not possible to de-synchronize a
GoT since the state of a tag is defined by IDgp and
its private key K, that are immutable.

4.3 An Anonymous Grouping-Proof
For our second grouping-proof the identifier IDgp is
replaced by a randomized group pseudonym PS , see
Figure 4. Again the tags are arranged in a ring with
tag1 the authenticator. Tags store a private counter
cnti, and initially all counters have the same value.

We use a Blum-Micali encryption [29] (that simulates
a one-time-pad) to obfuscate the value of counters.

In Phase 1, tag1 updates cnt1 ← cnt1 + 1, com-
putes the pseudonym PS = f(K; IDgp ||cnt1) and
the session number SN = f(K;PS) ⊕ cnt1, sets the
timer and sends the pair (SN ,PS) to the reader,
which in turn, broadcasts this pair. Then, each tagi,
1 < i ≤ n, computes cnt = SN ⊕ f(K;PS) and checks
that cnt > cnti. If so, tagi verifies the pseudonym
PS = f(K; IDgp ||cnt); if it is correct, it updates
cnti ← cnt′i and sends the pair (i,PS) to the reader.
The reader links those tags whose responses include
this pseudonym (Phase 2).

Phase 3, with sn = SN , is identical to the cor-
responding phase of the non-anonymous grouping-
proof except for the compilation, in which IDgp is
removed. That is, MAC = (rsys,mac), with mac =
f(k; IDgp ||rsys). The verifier keeps in a database D
pairs of values (k, IDgp), and therefore is able to match
the group by exhaustive search over all pairs using
mac and rsys.

4.3.1 A Protocol Amendment
There are two privacy concerns with this proof. The
first involves the number of participating tags in
an interrogation. This cannot be addressed without
violating Assumption 7 of Section 3.2. We shall
discuss this in Section 4.3.3 where we will prove
that full anonymity cannot be achieved in our
grouping-proof framework. The second involves the
order i of a specific tagi in the group. This concern
can addressed if it is an issue. Below we sketch a
modified protocol that randomizes the order of tags,
including the authenticator.

Phase 1. In Step b (Figure 4), tag1 selects a random
number t ∈ [1 : n], a nonce r1, computes PS =
f(K; IDgp ||(t||cnt1)), SN = f(K;PS) ⊕ (t||cnt1), and
then send to READER: (r1,SN ,PS) (t is a short string
of length ≪ κ). In Step d, each tagi computes t||cnt =
SN ⊕ f(K;PS), checks that cnt > cnti and that PS is
correct, and if so, selects a nonce ri, sets cnti ← cnt,
and sends to READER: (ri,PS).

Phase 2. The READER assigns to each tagi a unique
number ji ∈ [1 : n], with j1 = 1, and sends to each
tagi: (ri, ji,PS) is linked.

Phase 3. Each tagi assumes position ji in the group,
and includes this together with t in its authenticator.
After sending its authenticator tagt assumes the
role of authenticator in subsequent interrogations.
Upon sending mac, tag1 relinquishes its role as
authenticator.

If the interrogation is not completed then we may
get a collision with two (or more) candidates (tag1,
tagt) for authenticator tag. There are two possibili-
ties: A) tag1, tagt have different counter values (and
pseudonyms). The reader proceeds as if they were

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

Fig. 4. An anonymous grouping-proof

Parties: READER: [rsys] AUTHENTICATOR TAG (tag1): [IDgp, k,K, cnt1] tagi : [i, IDgp,K, cnti], i = 2, . . . , n

Phase 1. a) READER → ∗ : rsys (a random number is broadcast)
b) tag1 : Set cnt1 ← cnt1 + 1; compute PS = f(K; IDgp||cnt1) and SN = f(K;PS)⊕ cnt1; set timer

tag1 →READER : SN ,PS

c) READER → ∗ : SN ,PS

d) For each 1 < i ≤ n

tagi : Set timer; compute cnt = SN ⊕ f(K;PS)

If cnt > cnti

If PS = f(K; IDgp||cnt) then set cnti ← cnt and
tagi → READER : i,PS

else timeout
else timeout

Phase 2. READER links the tags with pseudonym PS : for each 1 ≤ i ≤ n .

READER → tagi : PS is linked,

Phase 3. It is identical to that of the non-anonymous case with sn = SN (Figure 2), except for the compilation:
READER : If an authenticator is received from the tag1 then compile:

MAC = (rsys,mac)

two different groups, but only the pseudonym PS that
corresponds to the highest value will be accepted by
all the tags of the group. tag1 or tagt will take part in a
grouping-proof that uses a PS with a cnt value higher
than its own, and relinquish its role as authenticator
tag after sending its authenticator. B) tag1, tagt share
the same counter value. The same pseudonym PS
is used and it is up to the READER to appoint an
authenticator tag (by selecting a corresponding nonce)
and request this tag to send a new PS (computed with
an updated cnt). We now proceed as in the first case.

4.3.2 Session Unlinkability
We cannot thwart the physical tracing carried out by
an adversary who stays in contact with the tags. While
the adversary is physically tracing a GoT, the adver-
sary can determine which executions of the protocol
are linked to this GoT. The concept of untraceability is
then related to the capability of an adversary to link
interrogations once this physical contact is temporar-
ily interrupted.

For groups of a specific order n, our protocol
provides session unlinkability. Formally, session
unlinkability is defined in terms of an experiment
ExpbO, b ∈ {0, 1}, involving a probabilistic polynomial-
time (PPT) observer O and the RFID system. Let
G0 and G1 be two GoTs of size n. O has access to
a history of earlier tag interrogations and is given
a group interrogation int1 involving G0, and an
interrogation int2, such that either i) int1 took
place before1 int2 and int1 completed normally
(successfully), or ii) an intermediate interrogation

1. A temporal relationship, as observed by O. Note that if two
interrogations that overlap in time are observed, then it can be
asserted that they do not belong to the same tag, since tags are
currently technologically limited to single-threaded execution.

involving G0 completed normally. Exp0O corresponds
to the event that G0 was involved in int2 while Exp1O
corresponds to the event that G1 was involved in
int2.

Definition. A grouping proof provides session unlink-
ability if the advantage of any PPT observer O:

AdvO = |Prob[Exp0O = 1]− Prob[Exp1O = 1]|

is negligible (in terms of the security parameter κ),
where the probabilities are taken over the coin tosses
of O.

This means that in any experiment ExpbO involving
the interrogations int1 and int2, the observer cannot
decide with probability better than negligible whether
the group involved is the same G0 or another G1.

4.3.3 Impossibility of Full Unlinkability
It is easy to show that under our assumptions in
Section 3.2 it is not possible to capture full unlink-
ability. Assume by contradiction that there is a secure
grouping-proof that provides full unlinkability, and
that the group G has only two tags: tag1, tag2. Let
flow∗ be the first protocol flow in which tag1 sends a
message to tag2. Suppose the adversary A interrupts
an authorized interrogation of G at flow∗ (our threat
model allows for this), causing the execution to abort.
Then A replays the earlier flow of the interrupted
interrogation to tag2. If only tag2 responds then we
lose unlinkability, which is a contradiction. If tag2
does not respond then we have protocol failure. Again
this is a contradiction since we are assuming that
the grouping-proof is secure, and the channels are
reliable. The only remaining case is for all tags to
respond (all but one sending pseudorandom strings),
but this would violate Assumption 7 of Section 3.2.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

4.3.4 Analysis
This protocol is secure in the Universal Composability
(UC) framework (details are given in Appendix B).
Here again we discuss informally the most common
attacks.

Our earlier comments regarding replay attacks and
impersonation attacks in Section 4.2.2 apply here as
well. Thus we focus on de-synchronization attacks
(DoS attacks) and traceability.

De-synchronization attacks. If a protocol execution
completes successfully, then all tags will share the
same counter value. As a result, no tag will accept
any previously used PS , which guarantees session
unlinkability. Even if the tags do not share the same
counter value, there are no synchronization concerns;
though some tags (that did not update their counter)
will accept a previously used PS .

Traceability. If an adversarial reader interrupts an in-
terrogation preventing some tags from updating their
counter, and then re-uses the same values against the
non-updated tags, it is able to link these tags to the
previous interrogation. However, the power of this
attack is limited because after a successful execution,
group unlinkability is restored.

Additionally, as mentioned in Section 4.3.1 our pro-
tocols leak information about the size of a group—that
cannot be prevented easily, and the order of a tag in
the group—that can be prevented.

5 SUPPLY-CHAIN MANAGEMENT

This section describes how grouping-proofs can be
used as modules in a high-level setting for supply-
chain management. Two operation modes are consid-
ered: Mode A in which the owner of tags wants to
verify the integrity of a set of tagged goods given
to a custodian (carrier), and Mode B in which the
custodian wants to verify integrity directly.

Figure 5 describes protocols for the two modes. For
simplicity, the carrier’s reader and the GoT are con-
sidered as a single entity which generates a grouping-
proof according to the protocols described in Sec-
tion 4. The owner and tags share secret information
(the key K), while the carrier does not have any
information about the tags other than that given by
the owner (and that derived during the execution of
the protocol). The owner stores in a database for each
GoT an identifier and a private key: (IDgp ,K). The
arrows “=⇒” correspond to secure communication
channels. These are trusted channels between high
level entities. In mode A, the carrier is an untrusted
entity that may try to deceive the owner by forging a
proof.

Mode A

In this mode the owner wants to check the integrity
of a consignment that is handled by the carrier, while

own
r

own
r

Owner Carrier

 ,
K gp own

MAC ID r

...
tag1

KK K

tag2 tagn

Group of tags

Carrier´s Reader

,
gp

K ID ,K gp ownMAC ID r

(a) A. Owner monitoring

 , car keyr r

 , , ; gp key v keyID r k f K r= ()
Owner

, gpK ID

Carrier

 ,
vk gp carMAC ID r

...
tag1

KK K

tag2 tagn

Group of tags

Carrier´s Reader

(b) B. Carrier monitoring

Fig. 5. Supply-Chain Management Modes

the carrier is an enabler that just relays messages
from the owner to the GoT via his reader. In this
mode batch connectivity between the owner and
carrier is required. The protocol has four passes:

Pass A1-2. The owner selects a random session
number rown and sends it to GoT via the carrier:

Owner⇒ Carrier⇒ GoT : rown

Pass A3-4. The reader interrogates tags in its range
and the GoT executes a grouping-proof protocol
(Section 4) with: rsys = rown and k = K. If the
interrogation is successful (all tags are present), a
proof is generated and sent to the owner, via the
carrier:

GoT⇒ Carrier⇒ Owner : MACK [IDgp , rown].

Upon receiving the proof, the owner searches in her
database for the group identifer—the search in the
non-anonymous case is direct while in the anonymous
case an exhaustive search is required, and then verifies
the proof.

Mode B

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

In this mode the carrier wants to verify the integrity
of a GoT directly.

Pass B0. The owner selects a random number rkey,
computes the private key kv = f(K; rkey) and sends
these together with IDgp to the carrier:

Owner⇒ Carrier : (IDgp , rkey, kv).

This phase (boxed in the figure) only needs to take
place once. The carrier can then challenge the GoT
and get a grouping-proof as follows:

Pass B1. The carrier stores the pair (IDgp , kv), selects
a random number rcar and sends this along with
rkey to GoT:

Carrier⇒ GoT : (rcar, rkey).

Pass B2. The authenticator tag of GoT computes kv
using rkey, executes a grouping-proof protocol with
rsys = rcar and k = kv, and sends the proof to the
carrier.

GoT→ Carrier : MACkv [IDgp , rcar].

Upon receiving the proof, the carrier finds the pair
(IDgp , kv) in his database, and verifies the proof.

6 CONCLUSION

Several RFID grouping-proofs have been proposed in
the literature. Most assume communication models
and capabilities which either are not properly defined
or are not practical.

In this paper we addressed the group scanning
problem in a strong adversarial setting. Our contribu-
tion was threefold. First, we reviewed the literature
related to grouping-proofs and analyzed the Liu et
al.’s protocol, recently presented in this journal. Then,
we defined a comprehensive framework for grouping-
proofs, that includes basic assumptions and criteria
for designing practical group scanning. Finally, we
proposed two novel grouping proofs that are gener-
ated by the tags in a distributed way, without sharing
any private information with the reader, and that can
be integrated into RFID supply-chain management
systems. The security of these protocols is proven
in the Universal Composability framework which
addresses security under concurrent executions and
supports re-usability.

APPENDIX A
THE NON-ANONYMOUS GROUPING-PROOF

The formal security specifications of a grouping-proof
capture the requirements for a proof of simultaneous
presence of the tags of a group. Since RFID tags are
often used as components of more complex systems,
we use a security framework that supports compos-
ability.

The Universal Composability (UC) framework de-
fines the security of a protocol in terms of its simulata-
bility by an idealized functionality F , and supports
robust composability with arbitrary protocols [30],
[31], [32], [33]. A protocol ρ UC-realizes F if, for every
probabilistic polynomial-time adversary A there is
a simulator S that translates runs of ρ in the real
world in the presence of A into runs controlled by
the functionality F in an ideal world in the presence
of an ideal world adversary Â in such a way that:
no probabilistic polynomial-time environment Z can
distinguish with non-negligible probability whether
it is interacting with an instance of ρ with A or an
instance of F with Â.

Group authentication is captured by parties having
ideal access to the functionality Fgp (Figure 6). We
first describe its basic components and attributes and
then its behavior.

Parties. There are three types: verifier, reader and tag.
In each subsession, there is a single instance of type
reader and arbitrarily many instances of tag. A and
Z are not UC parties, though A may control several
protocol parties. Upon successful completion of a
subsession, the reader generates a grouping-proof.

Sessions. A single session spans the entire life-
time (simulation instance) of the grouping-proof. It
consists of several concurrent subsessions, initiated by
protocol parties upon receiving input INITIATE from
Z . All parties in any subsession are given a unique
session identifier sid by Z . While the reader and tags
initiate subsessions, A controls the concurrency and
interaction between these subsessions.

Group authentication. Successful group authentication
in the real world is a result of sharing common
secrets. The choice of group partners is decided
by A, who has full control of the network. In the
ideal world, this is emulated by invocations of the
commands AUTHENTICATE and PROVE.

Activation sequence. Z is the first entity to be activated,
and the last to halt. Z activates A and initializes all the
protocol parties. The parties instantiate the protocol
in the real world. In our protocol and functionality,
the receiving party of any message or subroutine
output is activated next. If no outgoing message or
output is produced in the processing of an incoming
message, then by convention Z is activated. Fgp only
specifies the behavior of parties that are not controlled
by the adversary, and is activated by an INITIATE
input from a reader. For such parties it generates
and stores locally messages of type init(s, reader),
init(s′, ID) or init(s′, ID , i), where s, s′ are newly
created subsession identifier labels and ID = IDgp is
a group identifier. These messages are released to the
adversary, see Figure 6.

For clarity of presentation in the description of
the functionality, we distinguish between messages

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

Session identifier sid (effectuated by Z)

Upon input INITIATE at reader: If reader is adversarial, ignore.
Else: delete any init record of reader; generate a unique ssid
s; record and output: init(s, reader).

Upon input INITIATE at tag1 : If tag1 is adversarial, ignore.
Else: delete any init, aut or conf record of tag1; generate an
ssid s′; record and output: init(s′, ID).

Upon input INITIATE at tagi, i > 1 : If tagi is adversarial,
ignore. Else: if there is a record init(s′, ID) then delete
any records init, aut, conf of tagi and record and output:
init(s′, ID, i).

Upon input AUTHENTICATE at tagn : If there is a record
init(s′, ID , n) then record and output: aut(s′, ID , n); delete
the init record of tagn.

Upon input AUTHENTICATE at tagi : i = n− 1, . . . , 2. If there
are records init(s′, ID , i) and aut(s′, ID , i+ 1) then record
and output: aut(s′, ID , i); delete init(s′, ID , i).

Upon input CONFIRM at tag1: If there are records init(s′, ID)

and aut(s′, ID , 2) then record and output: conf(s′, ID); delete
init(s′, ID) and all aut records.

Upon request PROVE(s, s′, ID): If there are records
init(s, reader), conf(s′, ID) then record and output:
proof(s, s′, ID); delete the conf record.

Upon request IMPERSONATE(s, s′, tagi): If there is a record
init(s, reader) and tagi is an adversarial tag of ID then record
and output: proof(s, s′,PS).

Upon input VERIFY(proof(s, s′, ID)) at verifier: If there is a
record proof(s, s′, ID) then output: valid.

Fig. 6. Functionality Fgp

coming from protocol parties, called inputs, and
messages coming from the adversary, called requests,
and for simplicity use the abbreviation ssid for
subsession identifiers. A grouping-proof is generated
by invoking Fgp with the command PROVE. This
only succeeds if all tagi, i > 1, in the group are
AUTHENTICATED in the same subsession s, s′ and tag1
has CONFIRMED this, in which case proof(s, s′, ID)
is generated. Finally the adversary can attempt to
impersonate tags in the ideal world and forge a proof
by using the command IMPERSONATE(s, s′, tag); this
only succeeds if the impersonated tag is controlled
by the adversary. We shall now show that:

Theorem A.1: The non-anonymous grouping-proof
UC-realizes the functionality Fgp .

Proof: We summarize the key features of the
non-anonymous grouping-proof, which represent
real world protocol flows:

• The challenge rsys of the reader is a random
number generated by the verifier.

• The choice of authenticator tag1 in any group is
hard-coded in tags. Only one tag in a group is
the authenticator.

• Tags transmit group identifiers IDgp .

• Communication among tags is mediated by the
reader. A may disrupt/modify traffic on the
reader-tag channels of adversarial readers.

• A cannot tamper with the contents of the reader-
verifier channel of a non-adversarial reader.

• Timeouts are implemented on tags.

To emulate real world protocol runs the simulator S
performs the following actions:

• Simulates copies: v̂erifier, r̂eader, t̂agi, Â, and then
activates Â.

• Adds/removes keys in a database D̂ of v̂erifier
that contains keys of adversarial/non-adversarial
tags.

• Faithfully translates real world protocol flows
into their ideal world counterparts for all protocol
parties, including actions of the adversary.

• Simulates interactions with Z , i.e., the externally
visible part of the protocol. More specifically, S
invokes Fgp with the call INITIATE to instantiate
parties, and simulates the ideal world protocol
flows invoking Fgp with calls: AUTHENTICATE,
CONFIRM, PROVE, IMPERSONATE and VERIFY to
generate the corresponding responses (Figure 6),
which are then forwarded to the ideal world
counterparts of the real world parties, as shown
in Figure 7. The request PROVE(s, s′, ID) is used
when the real world adversary A forwards un-
modified inputs between honest tags and the
reader, and the request IMPERSONATE(s, s′, tagi)
is used whenA succeeds in authenticating the ad-
versarially controlled tagi. Note that keys shared
between the verifier and the tags are not under
the control of the adversary.

• Prevents non-adversarial readers from outputting
proof(s, s′, IDgp) in the ideal world when
A tampers with messages created by non-
adversarial tags.

The main difference between the ideal and real
world simulations is that in the ideal world, the
(non-persistent) values exchanged in tag subsessions
are uniformly random and independent, since a true
random function is used to evaluate the authenticators
and confirmation (Figure 7), whereas in the real world
a pseudorandom function f is used.

The specification of Fgp make several security guar-
antees obvious: unforgeability, freedom from replays
and other types of attacks are achieved because to
violate them, the adversary would have to guess un-
seen random, independently generated values. Since
the protocol may fail in a variety of ways, to prove
our theorem we must ensure that no combination
of failures exists, which may enable a probabilistic,
polynomial-time environment Z , that selects the ini-
tial inputs and observes the final outputs of all parties,
and which may interact with the adversary in an
arbitrary fashion during the execution of the protocol,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

Upon INITIATE at r̂eader from Â: input this to Fgp ; on output
init(s, reader) select a fresh random number rsys from a list
in database D̂ and send rsys to Â.

Upon INITIATE on t̂agi from Â: input this to Fgp ; on output
init(s′, ID) assign to t̂agi key (K, k) when i = 1 or K when
i > 1 obtained from D̂, and select a number sn from D̂. Send
(i, ID , sn) to Â.

Upon AUTHENTICATE on t̂agi, i > 1, from Â: input this
to Fgp ; on output aut(s′, ID), t̂agi computes auti as in the
non-anonymous grouping-proof, but using a random function
instead of f , and sends this to r̂eader and Â.

Upon CONFIRM on t̂ag1 from Â : input this to Fgp ; on output
conf(s′, ID), t̂agi computes mac as in the non-anonymous
grouping-proof but using a random function instead of f , and
sends this to r̂eader and Â.

Upon PROVE(s, s′, IDgp) at r̂eader from Â: input this to
Fgp ; on output proof(s, s′, IDgp), r̂eader sends (ID , rsys,mac)

to Â.

Upon IMPERSONATE(s, s′, tagi) on tagi from A : input this to
Fgp ; on output proof(s, s′, IDgp), send this to Â.

Upon VERIFY(proof(s, s′, ID) on v̂erifier: input this to Fgp ; on
output valid, send this to Â.

Fig. 7. The simulator S

that can distinguish between real and ideal world
simulations.

Observe that if the function f is assumed to be
true random, then the transcripts exchanged in tag
subsessions are uniformly random and mutually in-
dependent. Under this assumption, the real and ideal
simulations might differ only when S intervenes to
prevent PROVE in the ideal-world, that is, when A
tampers with messages from honest parties (via reflec-
tion, re-play, mangling, injection, delay, etc.) and man-
ages to reproduce valid random values (a forgery),
which result in a proof in the real-world. This can only
happen if there is a collision between the outputs of f :
i.e., if it generates the same valid value from unequal
inputs (valid and invalid). However, since f is truly
random (by assumption), the adversary cannot count
on that happening with more than negligible proba-
bility. In particular, for each given reader subsession
rsys divergence happens with probability at most
2−κmℓ, where κ is the security parameter, m the total
number of groups managed by the verifier, and ℓ the
number of interrogations during this subsession. This
is because to get a valid proof when one or more
of the tags of a group are not present, the adversary
A must select the correct value for the confirmation
mac, or the authenticator auti, and the probability
for this event is 2−κ. For the concurrent grouping-
proof we get the same probability, because again A
must select the correct value of mac or aut. Therefore
the probability of simulation distinguishability for
the grouping-proof is bounded by 2−κmL, where L

Session identifier sid (effectuated by Z)

Upon input INITIATE at reader: If reader is adversarial, ignore.
Else: delete any init record of reader; generate a unique ssid
s; record and output: init(s, reader).

Upon input INITIATE at tag1: If tag1 is adversarial, ignore.
Else: delete any init, aut or conf record of tag1; generate
an ssid s′ and a random number PS; record and output:
init(s′,PS).

Upon input INITIATE at tagi, i > 1 : If tagi is adversarial,
ignore. Else: delete any init, aut record of tagi; if there is a
record init(s′,PS) then record and output: init(s′,PS , i).

The actions for inputs AUTHENTICATE, CONFIRM,
VERIFY and requests PROVE, IMPERSONATE are similar to

those of Fgp (Figure 6) with ID replaced by PS .

Fig. 8. Functionality Fan gp

is the number of interrogations through the entire
simulation. This is negligible in the security parameter
κ.

It follows that if the environment Z can distinguish
real simulations with a pseudorandom function f
from ideal simulations then it can also distinguish real
simulations with a pseudorandom function from real
simulations with a random function. This contradic-
ticts the definition of pseudorandomness since Z is
polynomial-time.

APPENDIX B
ANONYMOUS GROUPING-PROOF

The functionality Fan gp of our second protocol
comprises the behavior expected of a grouping-proof
with session unlinkability. This is similar to Fgp

(Figure 6) except that in this case the tags return
pseudonyms PS instead of the identifier IDgp . Fan gp

is described in Figure 8. To maintain synchrony, the
tags of a group must share a “loose-synchronized”
counter cnt which, for session unlinkability,
is refreshed by all tags with each complete
interrogation. There are seven inputs/requests:
INITIATE, AUTHENTICATE, CONFIRM, PROVE,
IMPERSONATE and VERIFY. We shall now show that:

Theorem B.1: The anonymous grouping-proof UC-
realizes Fan gp .

Proof: As in Theorem A.1, the simulator S makes
copies of v̂erifier, r̂eader, t̂agi, Â, adds/removes/
updates keys and records in a database D̂ of v̂erifier,
and faithfully translates real world protocol flows
into their ideal world counterparts. However, apart
from the forgery case when a valid proof is generated
in the real world while it is not in the ideal world,
for the anonymous grouping-proof we must also
consider a DoS case when a valid proof is generated
in the ideal world while it is not in the real world.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

This occurs when the adversary A succeeds in
de-synchronizing the tags by modifying some values
in the channels (via reflection, re-play, mangling,
injection, delay, etc.) and sending the tags valid
messages (PS , C) that force them to update their
state to an invalid state (e.g., by setting a very high
value to cnt).

As in Theorem A.1, if we assume that f is true
random then this can only happen if there is a col-
lision between the outputs of f , which only happens
with negligible probability (bound by 2−κmL). So the
probability of simulation distinguishability is neglible.
If follows that if Z can distinguish real simulations
with a pseudorandom function from ideal simulations
then it can also distinguish real simulations with a
pseudorandom function from real simulations with
a random function. This is not possible since Z is
polynomial-time.

ACKNOWLEDGMENTS

The authors would like to thank...

REFERENCES
[1] K. Ashton, “That ’Internet of Things’ Thing,” RFID Journal,

2009.
[2] K. Finkenzeller, RFID Handbook : Fundamentals and Applications

in Contactless Smart Cards and Identification, 2nd ed. John Wiley
& Sons, May 2003.

[3] EPC Global, “UHF Air Interface Protocol Standard Genera-
tion2/Version2,”
http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2.

[4] G. Kapoor and S. Piramuthu, “Single RFID Tag Ownership
Transfer Protocols,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C, vol. 42, no. 2, pp. 164–173, 2012.

[5] F. G. Jorge Munilla and W. Susilo, “Cryptanalysis of an
EPCC1G2 Standard Compliant Ownership Transfer Protocol,”
Wireless Pers Commun, no. 72, pp. 245–258, 2013.

[6] H. Liu, H. Ning, Y. Zhang, D. He, Q. Xiong, and L. T.
Yang, “Grouping-proofs-based authentication protocol for dis-
tributed rfid systems,” IEEE Trans. Parallel Distrib. Syst., vol. 24,
no. 7, pp. 1321–1330, 2013.

[7] M. Burmester and J. Munilla, Security and Trends in Wireless
Identification and Sensing Platform Tags: Advancements in RFID.
IGI Global, 2013, ch. RFID Grouping-Proofs.

[8] A. Juels, ““Yoking-proofs” for RFID tags,” in PERCOMW ’04:
Proceedings of the Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 138–142.

[9] J. Saito and K. Sakurai, “Grouping proof for RFID tags,” in 19th
International Conference on Advanced Information Networking and
Applications, AINA 2005., vol. 2, March 2005, pp. 621–624.

[10] A. Juels, “Generalized “yoking-proofs” for a group of RFID
tags,” in MOBIQUITOUS 2006, 2006.

[11] S. Piramuthu, “On existence proofs for multiple RFID tags,” in
IEEE International Conference on Pervasive Services, Workshop on
Security, Privacy and Trust in Pervasive and Ubiquitous Computing
– SecPerU 2006, IEEE. Lyon, France: IEEE Computer Society
Press, June 2006.

[12] M. Burmester, B. de Medeiros, and R. Motta, “Provably Secure
Grouping-Proofs for RFID Tags,” in CARDIS, ser. Lecture
Notes in Computer Science, G. Grimaud and F.-X. Standaert,
Eds., vol. 5189. Springer, 2008, pp. 176–190.

[13] H.-H. Huang and C.-Y. Ku, “A rfid grouping proof protocol
for medication safety of inpatient,” Journal of Medical Systems,
2008.

[14] H.-Y. Chien, C.-C. Yang, T.-C. Wu, and C.-F. Lee, “Two rfid-
based solutions to enhance inpatient medication safety,” Jour-
nal of Medical Systems, 2009.

[15] P. Peris-Lopez, A. Orfila, J. C. Hernandez-Castro, and
J. C. A. van der Lubbe, “Flaws on rfid grouping-proofs.
guidelines for future sound protocols,” J. Netw. Comput. Appl.,
vol. 34, no. 3, pp. 833–845, May 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.jnca.2010.04.008

[16] Z. Ahmadian, M. Salmasizadeh, and M. Aref, “Recursive
linear and differential cryptanalysis of ultralightweight au-
thentication protocols,” Information Forensics and Security, IEEE
Transactions on, vol. 8, no. 7, pp. 1140–1151, 2013.

[17] D. Paret, RFID and Contactless Smart Card Applications. John
Wiley & Sons, 2005.

[18] International Organization for Standardization, “ISO/IEC
29192-1:Information Technology- Security Techniques -
Lightweight cryptography - Part 1: General. ISO/IEC, 2012.”

[19] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[20] ISO/IEC, “Standard # 18000 – RFID Air Interface Standard,”
http://www.hightechaid.com/standards/18000.htm.

[21] D. Dolev and A. C.-C. Yao, “On the Security of Public Key
Protocols,” IEEE Transactions on Information Theory, vol. 29,
no. 2, pp. 198–207, 1983.

[22] S. Bengio, G. Brassard, Y. Desmedt, C. Goutier, and J.-J.
Quisquater, “Secure implementations of identification sys-
tems,” J. Cryptology, vol. 4, no. 3, pp. 175–183, 1991.

[23] S. Mangard, T. Popp, and M. E. Oswald, Power Analysis Attacks
- Revealing the Secrets of Smart Cards. Springer, 2007, vol.
(ISBN: 0-387-30857-1).

[24] C. H. Kim, G. Avoine, F. Koeune, F.-X. Standaert, and
O. Pereira, “The Swiss-Knife RFID Distance Bounding Proto-
col,” in ICISC, ser. Lecture Notes in Computer Science, P. J. Lee
and J. H. Cheon, Eds., vol. 5461. Springer, 2008, pp. 98–115.

[25] J. Munilla, A. Ortiz, and A. Peinado, “Distance Bounding
Protocols with Void-Challenges for RFID,” in Workshop on
RFID Security – RFIDSec’06. Graz, Austria: Ecrypt, July 2006.

[26] D. N. Duc and K. Kim, “On the security of rfid group scanning
protocols.” IEICE Transactions, vol. 93-D, no. 3, pp. 528–530,
2010.

[27] M. Burmester, B. de Medeiros, J. Munilla, and S. Peinado.,
“Secure EPC Gen2 Compliant Radio Frequency Identication,”
International Association for Cryptological Research,
Tech. Rep. E-print #2009/147, 2009. [Online]. Available:
http://eprint.iacr.org/2009/149

[28] T. V. Le, M. Burmester, and B. de Medeiros, “Universally
composable and forward-secure RFID authentication and au-
thenticated key exchange,” in ASIACCS, F. Bao and S. Miller,
Eds. ACM, 2007, pp. 242–252.

[29] M. Blum and S. Micali, “How to generate cryptographically
strong sequences of pseudo-random bits,” SIAM J. Comput.,
vol. 13, no. 4, pp. 850–864, 1984.

[30] O. Goldreich, S. Micali, and A. Widgerson, “How to play
any mental game,” in 19th Symposium on Theory of Computing
(STOC 1987). ACM Press, 1987, pp. 218–229.

[31] D. Beaver, “Foundations of secure interactive computing,” in
Proc. Advances in Cryptology (CRYPTO 1991), ser. LNCS, vol.
576. Springer, 1991, pp. 377–391.

[32] R. Canetti, “Security and composition of multi-party crypto-
graphic protocols,” Journal of Cryptology, vol. 13:1, pp. 143–202,
2000.

[33] R. Canetti, “Universally composable security: A new paradigm
for cryptographic protocols,” in Proc. IEEE Symp. on Founda-
tions of Computer Science (FOCS 2001). IEEE Press, 2001, pp.
136–145.

