
Indistinguishability Obfuscation
from Semantically-Secure Multilinear Encodings

Rafael Pass∗ Karn Seth† Sidharth Telang‡

July 23, 2014

Abstract

We define a notion of semantic security of multilinear (a.k.a. graded) encoding schemes, which
stipulates security of class of algebraic “decisional” assumptions: roughly speaking, we require that
for every nuPPT distribution D over two constant-length sequences ~m0, ~m1 and auxiliary elements
~z such that all arithmetic circuits (respecting the multilinear restrictions and ending with a zero-
test) are constant with overwhelming probability over (~mb, ~z), b ∈ {0, 1}, we have that encodings
of ~m0, ~z are computationally indistinguishable from encodings of ~m1, ~z. Assuming the existence of
semantically secure multilinear encodings and the LWE assumption, we demonstrate the existence
of indistinguishability obfuscators for all polynomial-size circuits. We additionally show that if
we assume subexponential hardness, then it suffices to consider a single (falsifiable) instance of
semantical security (i.e., that semantical security holds w.r.t to a particular distribution D) to
obtain the same result.

We rely on the beautiful candidate obfuscation constructions of Garg et al (FOCS’13), Brakerski
and Rothblum (TCC’14) and Barak et al (EuroCrypt’14) that were proven secure only in idealized
generic multilinear encoding models, and develop new techniques for demonstrating security in the
standard model, based only on semantic security of multilinear encodings (which trivially holds in
the generic multilinear encoding model).

We also investigate various ways of defining an “uber assumption” (i.e., a super-assumption) for
multilinear encodings, and show that the perhaps most natural way of formalizing the assumption
that “any algebraic decision assumption that holds in the generic model also holds against nuPPT
attackers” is false.

∗Cornell University, Cornell NYC Tech. Email: rafael@cs.cornell.edu. Work supported in part by a Alfred P.
Sloan Fellowship, Microsoft New Faculty Fellowship, NSF Award CNS-1217821, NSF CAREER Award CCF-0746990,
NSF Award CCF-1214844, AFOSR YIP Award FA9550-10-1-0093, and DARPA and AFRL under contract FA8750-11-2-
0211. The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
US Government.
†Cornell University. Email: karn@cs.cornell.edu.
‡Cornell University. Email: sidtelang@cs.cornell.edu.

0

1 Introduction

The goal of program obfuscation is to “scramble” a computer program, hiding its implementation details
(making it hard to “reverse-engineer”), while preserving the functionality (i.e, input/output behavior)
of the program. Precisely defining what it means to “scramble” a program is non-trivial: on the one
hand, we want a definition that can be plausibly satisfied, on the other hand, we want a definition that
is useful for applications.

A first formal definition of such program obfuscation was provided by Hada [Had00]: roughly speak-
ing, Hada’s definition—let us refer to it as strongly virtual black-box—is formalized using the simulation
paradigm. It requires that anything an attacker can learn from the obfuscated code, could be simulated
using just black-box access to the functionality.1 Unfortunately, as noted by Hada, only learnable func-
tionalities can satisfy such a strong notion of obfuscation: if the attacker simply outputs the code it is
given, the simulator must be able to recover the code by simply querying the functionality and thus the
functionality must be learnable.

An in-depth study of program obfuscation was initiated in the seminal work of Barak, Goldreich,
Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+01]. Their central result shows that even if we
consider a more relaxed simulation-based definition of program obfuscation—called virtual black-box
(VBB) obfuscation—where the attacker is restricted to simply outputting a single bit, impossibility can
still be established.2 Their result is even stronger, demonstrating the existence of families of functions
such that given black-box access to fs (for a randomly chosen s), not even a single bit of s can be guessed
with probability significantly better than 1/2, but given the code of any program that computes fs,
the entire secret s can be recovered. Thus, even quite weak simulation-based notions of obfuscation are
impossible.

But weaker notions of obfuscation may be achievable, and may still suffice for (some) applications.
Indeed, Barak et al. [BGI+01] also suggested two such notions:

• The notion of indistinguishability obfuscation, first defined by Barak et al. [BGI+01] and explored
by Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b], roughly speaking requires that
obfuscations O(C1) and O(C2) of any two equivalent circuits C1 and C2 (i.e., whose outputs agree
on all inputs) from some class C are computationally indistinguishable.

• The notion of differing-input obfuscation, first defined by Barak et al. [BGI+01] and explored by
Boyle, Chung and Pass [BCP14] and by Ananth, Boneh, Garg, Sahai and Zhandry [ABG+13]
strengthens the notion of indistinguishability obfuscation to also require that even if C1 and C2

are not equivalent circuits, if an attacker can distinguish obfuscations O(C1) and O(C2), then
the attacker must “know” an input x such that C1(x) 6= C2(x), and this input can be efficiently
“extracted” from the attacker.

In a very recent breakthrough result, Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b] pro-
vided the first candidate constructions of indistinguishability obfuscators for all polynomial-size circuits,
based on so-called multilinear (a.k.a. graded) encodings [BS03, Rot13, GGH13a]—for which candidate
constructions were recently discovered in the seminal work of Garg, Gentry and Halevi [GGH13a], and
more recently, alternative constructions were provided by Coron, Lepoint and Tibouchi [CLT13].

The obfuscator construction of Garg et al proceeds in two steps. They first provide a candidate
construction of an indistinguishability obfuscator for NC1 (this construction is essentially assumed to
be secure); next, they demonstrate a “bootstrapping” theorem showing how to use fully homomorphic
encryption (FHE) schemes [Gen09] and indistinguishability obfuscators for NC1 to obtain indistin-
guishability obfuscators for all polynomial-size circuits. Further constructions of obfuscators for NC1

1Hada actually considered a slight distributional weakening of this definition.
2A similar notion of security (without referring to obfuscation) was considered even earlier by Canetti [Can97] in the

special case of what is now referred to as point-function obfuscation.

1

were subsequently provided by Brakerski and Rothblum [BR14] and Barak, Garg, Kalai, Paneth and
Sahai [BGK+13]—in fact, these constructions achieve the even stronger notion of virtual-black-box
obfuscation in idealized “generic” multilinear encoding models. Additionally, Boyle, Chung and Pass
[BCP14] present an alternative bootstrapping theorem, showing how to employ differing-input obfusca-
tions for NC1 to obtain differing-input (and thus also indistinguishability) obfuscation for both circuits
and Turing machines. (Ananth et al [ABG+13] also provide Turing machine differing-input obfuscators,
but start instead from differing-input obfuscators for polynomial-size circuits.)

In parallel with the development of candidate obfuscation constructions, several surprising applica-
tions of both indistinguishability and differing-input obfuscations have emerged (see e.g., [GGH+13b,
SW14, HSW14, BZ14, GGHR14, BCP14], and more recently [BCPR14, BP13, GGG+14, KNY14,
KMN+14]). Most notable among these is the work of Sahai and Waters [SW14] (and the “punctured
program” paradigm it introduces) which shows that for some interesting applications of virtual black-
box obfuscation (such as turning private-key primitives into public-key one), the weaker notion of
indistinguishability obfuscation suffices. Furthermore, as shown by Goldwasser and Rothblum [GR07],
indistinguishability obfuscators provide a very nice “best-possible” obfuscation guarantee: if a function-
ality can be VBB obfuscated (even non-efficiently!), then any indistinguishability obfuscator for this
functionality is VBB secure. Finally, as shown by Boyle, Chung and Pass [BCP14] indistinguishability
obfuscation in fact implies a notion of differing-input obfuscation (when restricted to programs that differ
on polynomially-many inputs); and this notion already suffices for some applications of differing-input
obfuscation (see e.g., [BST13], [BM14a], [BM14b]).

1.1 Towards “Provably-Secure” Obfuscation

But despite these amazing developments, the following question remains open:

Can the security of general-purpose indistinguishability obfuscator be reduced to some “nat-
ural” intractability assumption?

The principal goal of the current paper is to make progress toward addressing this question. Note that
while the construction of indistinguishability obfuscation of Garg et al is based on some intractability
assumption, the assumption is very tightly tied to their scheme—in essence, the assumption stipulates
that their scheme is a secure indistinguishability obfuscator. The VBB constructions of Brakerski and
Rothblum [BR14] and Barak et al [BGK+13] give us more confidence in the plausible security of their
obfuscators, in that they show that at least “generic” attacks—that treat multilinear encoding as if
they were “physical envelopes” on which multilinear operations can be performed—cannot be used to
break security of the obfuscators. But at the same time, non-generic attacks against their scheme are
known—since general-purpose VBB obfuscation is impossible. Thus, it is not clear to what extent
security arguments in the generic multilinear encoding model should make us more confident that these
constructions satisfy e.g., a notion of indistinguishability obfuscation. In particular, the question of to
what extent one can capture “real-world” security properties from security proofs in the generic model
through a “meta-assumption” (regarding multilinear encodings) was raised (but not investigated) in
[BGK+13]; see Remark 1 there.

In this work, we initiate a study of the above-mentioned question:

• We are concerned with the question of whether some succinct and general assumption (that is
interesting in its own right, and is not “tailored” to a particular obfuscation construction) about
some low-level primitive for which candidate constructions are known (e.g., multilinear encodings),
can be used to obtain indistinguishability obfuscation.

• More importantly, we are interested in reducing the security of the obfuscation to some simpler
assumption, not just in terms of “description size” but in terms of computational complexity—

2

that is, we are not interested in assumptions that “directly” (without any security reduction) imply
security of the obfuscation.

• Finally, ideally, we would like the assumption to be efficiently falsifiable [Nao03], so that it is
possible to efficiently check whether the assumption is broken. This is particularly pressing since
the assumption that a particular scheme (e.g., one of the schemes of [GGH+13b, BR14, BGK+13])
is an indistinguishability obfuscator is not an efficiently falsifiable assumption, making it hard to
check whether they can be broken or not: a presumed attacker must exhibit two functionally-
equivalent circuits C1 and C2 that it can distinguish obfuscations of; but checking whether two
circuits are functionally equivalent may not be polynomial-time computable. (In fact, assuming
the existence of indistinguishability obfuscation and one-way functions, it is easy to come up
with a method to sample C1, C2, z such that with high probability C1(z) 6= C2(z) (and thus,
given z, we can easily distinguish obfuscations of them), yet the pair of circuits (C1, C2) are
indistinguishable from a pair of functionally equivalent circuits.3 Thus, there are "fake attacks"
on indistinguishability obfuscation that cannot be efficiently distinguished from a real attack.)

1.2 Security of Multilinear (Graded) Encodings

Towards explaining the assumptions we consider, let us start by briefly recalling multilinear (a.k.a.
graded) encoding schemes [GGH13a, GGH+13b]. Roughly speaking, such schemes enable anyone that
has access to a public parameter pp and encodings ExS = Enc(x, S), EyS = Enc(y, S′) of ring elements
x, y under the sets S, S′ ⊂ [k] to efficiently :4

• compute an encoding Ex·yS∪S′ of x · y under the set S ∪ S′, as long as S ∩ S′ = ∅;

• compute an encoding Ex+yS of x+ y under the set S as long as S = S′;

• compute an encoding Ex−yS of x− y under the set S as long as S = S′.

(Given just access to the public-parameter pp, generating an encoding to a particular element x may not
be efficient; however, it can be efficiently done given access to the secret parameter sp.) Additionally,
given an encoding ExS where the set S is the whole universe [k]—called the “target set”—we can efficiently
check whether x = 0 (i.e., we can “zero-test” encodings under the target set [k].) In essence, multilinear
encodings enable computations of certain restricted set of arithmetic circuits (determined by the sets S
under which the elements are encoded) and finally determine whether the output of the circuit is 0; we
refer to these as the legal arithmetic circuits.

Semantical Security of Multilinear (Graded) Encodings The above description only explains
the functionality of multilinear encodings, but does not discuss security. As far as we are aware, there
have been two approaches to defining security of multilinear encodings. The first approach, initiated in
[GGH13a], stipulates specific hardness assumptions closely related to the DDH assumption. The second
approach instead focuses on generic attackers and assumes that the attacker does not get to see the
actual encodings but instead can only access them through legal arithmetic circuits.

3In particular, (mirroring the ideas from the lower bound for witness encryption of [GGSW13]), given a statement x,
let Cxb be an obfuscation of a circuit that given a witness w outputs b iff w is an NP-witness for the statement x (and
⊥ otherwise). If x is false, then by the indistinguishability obfuscation property, (Cx0 , Cx1) is indistinguishable from two
obfuscations of the same constant ⊥ function. This still holds even if we sample a true x (and its associated witness z)
from a hard-on-the-average language (as long as we do not give z to the distinguisher). Yet given the trapdoor z, we can
clearly distinguish Cx0 , C

x
1 and also obfuscations of them.

4Just as [BR14, BGK+13], we here rely on “set-based” graded encoding; these were originally called “generalized”
graded encodings in [GGH13a]. Following [GGH+13b, BGK+13] (and in particular the notion of a “multilinear jigsaw
puzzles” in [GGH+13b]), we additionally enable anyone with the secret parameter to encode any elements (as opposed to
just random elements as in [GGH13a]).

3

In this work, we consider the first approach, but attempt to capture a general class of algebraic
“decisional” assumptions (such as the the graded DDH assumption of [GGH13a]) which hold against
generic attackers (and as such, it can be viewed as a merge of the two approaches). In essence, our notion
of (single-message) semantical security attempts to capture the intuition that encodings of elements m0

and m1 (under the set S) are indistinguishable in the presence of encodings of “auxiliary” elements ~z
(under sets ~T), as long as m0,m1, ~z are sampled from any “nice” distribution D; in the context of a
graded DDH assumption, think of ~z as a vector of independent uniform elements, m0 as the product
of the elements in ~z and m1 as an independent uniform element. We analogously consider stronger
notions of constant-message and multi-message semantical security, where m0,m1 (and S) are replaced
by either constant-length or arbitrary polynomial-length vectors ~m0, ~m1 of elements (and sets ~S).

Defining what makes a distribution D “nice” turns out to be quite non-trivial: A first (and minimal)
approach—similar to e.g., the uber assumption of [BBG05] in the context of bilinear maps—would be
to simply require that D samples elements ~m0, ~m1, ~z such that no generic attacker can distinguish ~m0, ~z
and ~m1, ~z. As we discuss in Section 1.3, the most natural formalization of this approach can be attacked
assuming standard cryptographic hardness assumptions. The distribution D considered in the attack,
however, is “unnatural” in the sense that encodings of ~mb, ~z actually leak information about ~mb even
to generic attackers (in fact, this information fully determines the bit b, it is just that it cannot be
computed in polynomial time).

Our notion of a valid message distribution disallows such information leakage w.r.t. generic attacks.
More precisely, we require that every (even unbounded-size) legal arithmetic circuit C is constant over
(mb, ~z), b ∈ {0, 1} with overwhelming probability; that is, there exists some bit c such that with
overwhelming probability over m0,m1, ~z ← D, C(mb, ~z) = c for b ∈ {0, 1} (recall that a legal arithmetic
circuit needs to end with a zero-test and thus the output of the circuit will be either 0 or 1). We refer
to any distribution D satisfying this property as being valid, and our formal definition of semantical
security now only quantifies over such valid message distributions.

Obfuscation from Semantically-Secure Multilinear Encodings As a starting point, we observe
that slight variants of the constructions of [BR14, BGK+13] can be shown to satisfy indistinguishabil-
ity obfuscation for NC1 assuming multi-message semantically-secure multilinear encodings. In fact, any
VBB secure obfuscation in the generic model where the construction only releases encodings of elements
(as the constructions of [BR14, BGK+13] do) satisfies indistinguishability obfuscation assuming a slight
strengthening of multi-message semantical security where validity only considers polynomial-size (as
opposed to arbitrary-size) legal arithmetic circuits:5 let ~m0 denote the elements corresponding to an
obfuscation of some program Π0, and ~m1 the elements corresponding to an obfuscation of some func-
tionally equivalent program Π1. VBB security implies that all polynomial-size legal arithmetic circuits
are constant with overwhelming probability over both ~m0 and ~m1 (as any such query can be simulated
given black-box access to the functionality of the program), and thus encodings of ~m0 and ~m1 (i.e.,
obfuscations of Π0 and Π1) are indistinguishable. By slightly tweaking the construction of [BGK+13]
and the analysis6, we can extend this to hold against all (arbitrary-size) legal arithmetic circuits, and
thus indistinguishability of the encodings (which implies indistinguishability of the obfuscations) follows
as a direct consequence of the multi-message security assumption.

While this observation does takes us a step closer towards basing the security of obfuscation on a
simple, natural, assumption, it is unappealing in that the assumption itself directly implies the security
of the scheme (without any security reduction); that is, it does not deal with our second desiderata of
reducing security to a simpler assumption—in particular, simply assuming that the (slight variant of
the) scheme of [BGK+13] is secure is a special case of the multi-message security assumption.

5We thank Sanjam Garg for this observation.
6Briefly, we need to tweak the construction to ensure a “perfect” simulation property.

4

Our central result shows how to construct indistinguishability obfuscators for NC1 based on the
existence of constant-message semantically-secure multilinear encodings; in the sequel, we simply refer
to such schemes as being semantically secure (dropping “constant-message” from the notation). Note
that the constant-message restriction not only simplifes (and reduces the complexity) of the assump-
tion, it also takes us a step closer to the more standard GDDH assumption. (As far as we know,
essentially all DDH-type assumptions in “standard”/bilinear or multilinear settings consider a constant-
message setting, stipulating indistinguishability of either a single or a constant number of elements in
the presence of polynomially many auxiliary elements. It is thus safe to say that such constant-message
indistinguishability assumptions are significantly better understood their multi-message counterpart.)

Theorem 1 (Informally stated). Assume the existence of semantically secure multilinear encodings.
Then there exists an indistinguishability obfuscator for NC1.

As far as we know, this is the first result presenting indistinguishability obfuscators for NC1 based
on any type of assumption with a “non-trivial” security reduction w.r.t. arbitrary nuPPT attackers.

The core of our result is a general technique for transforming any obfuscator for matrix branching
programs that satisfies a weak notion of neighboring-matrix indistinguishability obfuscation—which
roughly speaking only requires indistinguishability of obfuscations of branching programs that differ only
in a constant number of matrices—into a “full-fledged” indistinguishability obfuscator. (We emphasize
that this first result is unconditional—it does not pertain to any particular construction and does not
rely on any computational assumptions—and we thus hope it may be interesting in its own right.) We
next show how to adapt the construction of [BGK+13] and its analysis to satisfy neighboring-matrix
indistinguishability obfuscation based on semantical secure multilinear encodings; on a high-level, the
security analysis in the generic model is useful for proving that the particular message distribution we
consider is “valid”.7

If additionally assuming the existence of a leveled FHE [RAD78, Gen09] with decryption in NC1—
implied, for instance, by the LWE assumption [BV11, BGV12]—this construction can be bootstrapped
up to obtain indistinguishability obfuscators for all polynomial-size circuits by relying on the technique
from [GGH+13b].

Theorem 2 (Informally stated). Assume the existence of semantically secure multilinear encodings and
a leveled FHE with decryption in NC1. Then there exists indistinguishability obfuscators for P/poly.

Semantical Security w.r.t. Restricted Classes of Distributions Our most basic notion of se-
mantical security requires indistinguishability to hold w.r.t. to any “valid” message distribution. This
may seem like a strong assumption. Firstly, such a notion can clearly not be satisfied by a deterministic
encoding schemes (as envisioned in the original work of [BS03])—we can never expect encodings of 0
and 1 (under a non target set, and without any auxiliary inputs) to be indistinguishable. Secondly, even
if we have a randomized encoding scheme in mind (such as the candidates of [GGH13a, CLT13]), giving
the attacker access to encodings of arbitrary elements may be dangerous: As mentioned in [GGH13a],
attacks (referred to as “weak discrete logarithm attacks”) on their scheme are known in settings where
the attacker can get access to “non-trivial” encodings of 0 under any non-target set S ⊂ [k]. (We mention
that, as far as we know, no such attacks are currently known on the candidate construction of [CLT13].)

For the purposes of the results in our paper, however, it suffices to consider a notion of semantical
security w.r.t. restricted classes of distributions D. In particular, to deal with both of the above issues,
we consider “high-entropy” distributions D that sample elements ~m0, ~m1, ~z such that 1) each individual
element has high-entropy, and 2) any element, associated with a non-target set S ⊂ [k], that can be

7As we explain in more details later, to use our transformation, we need to deal with branching programs that satisfy
a slightly more liberal definition of a branching program than what is used in earlier works. This is key reason why we
need to modify the construction and analysis from [BGK+13].

5

obtained by applying “legal” algebraic operations to (~mb, ~z) (for b ∈ {0, 1}) has high-entropy (and thus is
non-zero with overwhelming probability).8 We refer to such message distributions as being entropically
valid.

Basing Security on a Single Falsifiable Assumption The assumption that a scheme satisfies
semantical security may be viewed as an (exponential-size) class of algebraic “decisional” assumptions
(or as a “meta”-assumption, just like the “uber assumption” of [BBG05]): we have one assumption for
each valid message distributions D. Indeed, to prove indistinguishability of obfuscations of two circuits
C0, C1, we rely on an instance in this class that is a function of the circuits C0, C1—in the language of
[GGSW13, GLW14], security is thus based on an “instance-dependent” assumption.

This view-point also clarifies that semantical security is not an efficiently falsifiable assumption
[Nao03]: the problem is that there may not exist an efficient way of checking whether a distribution
D is valid (as this requires checking that all legal arithmetic circuits are constant with overwhelming
probability, which in our particular case would require checking whether C0 and C1 are functionally
equivalent).

We finally observe that both of these issues can be overcome if we make subexponential hardness
assumptions: there exists a single (uniform PPT samplable) distribution Sam over nuPPT message
distributions D that are provably entropically valid such that it suffices to assume the existence of an
encoding scheme that is entropic semantically secure w.r.t., this particular distribution with subexponen-
tially small indistinguishability gap.9 Note that this is a single, non-interactive and efficiently falsifiable,
decisional assumption.

1.3 Alternative Security Notions for Multilinear Encodings

We finally investigate various ways of defining a “super” (or uber) assumption for multilinear encodings.
As mentioned above, a natural way of defining security of multilinear encodings would be to require
that for specific classes of problems, generic attacks cannot be beaten (this is the approach alluded
to in [BGK+13]). Perhaps the most natural instantiation of this in the context of a multilinear DDH
assumption would be to require that for any distribution D over ~m0, ~m1, ~z (where ~m0, ~m1 are constant-
length sequences), if encodings of ~m0, ~z and and ~m0, ~z are indistinguishable w.r.t. to generic attackers,
then they are also indistinguishable w.r.t. arbitrary nuPPT attackers; in essence, “if an algebraic
decisional assumption holds w.r.t. to generic attacks, then it also holds with respect to nuPPT attackers”.
We refer to this notion of security as extractable uber security.10

Our second main result shows that, assuming the existence of a leveled FHE with decryption in
NC1, there do not exist extractable uber-secure multilinear encodings (even if we only require security
to hold w.r.t high-entropy distributions D).

Theorem 3 (Informally stated). Assume the existence of a leveled FHE with decryption in NC1. Then
no multilinear encodings can satisfy extractable (entropic) uber security.

The high-level idea behind this result is to rely on the “conflict” between the feasibility of VBB
obfuscation in the generic model of [BGK+13] and the impossibility of VBB obfuscation in the “standard”
model [BGI+01]: we let ~mb, ~z contain a generically-secure VBB obfuscation of a program Πb that hides
b given just black-box access to Πb, yet b can be recovered given the code of Πb. By generic security
of the obfuscation, it follows that efficient generic attackers cannot distinguish ~m0, ~z and ~m1, ~z yet,

8Technically, by high-entropy, we here mean that the min-entropy is at least log |R|−O(log log |R|) where R is the ring
associated with the encodings; that is, the min-entropy is “almost” optimal (i.e., log |R|).

9These results were added to our e-Print report April 25, 2014, motivated in part by [GLW14] (which bases witness
encryption [GGSW13] on an instant-independent assumption) and a question asked by Amit Sahai.

10We use the adjective “extractable” as this security notion implies that if an nuPPT attacker can distinguish encodings,
then the arithmetic circuits needed to distinguish the elements can be efficiently extracted out.

6

“non-generic” (i.e., standard PPT) attackers can. In our formal treatment, to rule out constant-message
(as opposed to multi-message) security, we rely on a variant of the obfuscator presented in this paper,
enhanced using techniques from [BGK+13].

We emphasize that in the above attack it is cruicial that we restrict to efficient (nuPPT) generic
attacks. We finally consider several plausible ways of defining uber security for multilinear encodings,
which circumvent the above impossibility results by requiring indistinguishability of encodings only if
the encodings are statistically close w.r.t. unbounded generic attackers (that are restricted to making
polynomially many zero-test queries). We highlight that none of these assumptions are needed for our
construction of an indistinguishability obfuscation and are stronger than semantical security, but they
may find other applications.

1.4 Construction Overview

The Basic Obfuscator We start by providing a construction of a “basic” obfuscator; our final con-
struction will then rely on the basic obfuscator as a black-box. The construction of this obfuscator
closely follows the design principles laid out in the original work by Garg et al [GGH+13b] and follow-
up constructions [BR14, BGK+13] (in fact, the basic obfuscator may be viewed as a simplified version
of the obfuscator from [BGK+13]). As these works, we proceeds in three steps:

Following the original work of Garg et al (as well as subsequent works), the basic obfuscator proceeds
in three steps:

• We view the NC1 circuit to be obfuscated as a branching program BP (using Barrington’s Theorem
[Bar86])—that is, the program is described by m pairs of matrices (Bi,0, Bi,1), each one labelled
with an input bit inp(i). The program is evaluated as follows: for each i ∈ [m], we choose one
of the two matrices (Bi,0, Bi,1), based on the input. Next, we compute the product of the chosen
matrices, and based on the product determine the output—there is a unique “accept” (i.e., output
1) matrix, and a unique “reject” (i.e., output 0) matrix.

• The branching program BP is randomized using Kilian’s technique [Kil88] (roughly, each pair
of matrices is appropriately multiplied with the same random matrix R while ensuring that the
output is the same), and then “randomized” some more—each individual matrix is multiplied by
a random scalar α. Let us refer to this step as Rand.

• Finally the randomized matrices are encoded using multilinear encodings with the sets selected
appropriately. We here rely on a (simple version) of the straddling set idea of [BGK+13] to
determine the sets. We refer to this step as Encode.

(The original construction as well as the subsequent works also consisted of several other steps, but
for our purposes these will not be needed.) The obfuscated program is now evaluated by using the
multilinear operations to evaluate the branching program and finally appropriately use the zero-test to
determine the output of the program.

Roughly speaking, the idea behind the basic obfuscator is that the multilinear encodings intuitively
ensure that any attacker getting the encoding needs to multiply matrices along paths that corresponds
to some input to the branching program (the straddling sets are used to ensure that the input is
used consistently in the evaluation)11; the scalars α, roughly speaking, ensure that a potential attacker
without loss of generality can use a single “multiplication-path” and still succeed with roughly the
same probability, and finally, Kilian’s randomization steps ensures that if an attacker only operates on
matrices along a single path that corresponds to some input x (in a consistent way), then its output can
be perfectly simulated given just the output of the circuit on input x. (The final step relies on the fact

11The encodings, however, still permit an attacker to add elements within matrices.

7

that the output of the circuit uniquely determines product of the branching program along the path,
and Kilian’s randomization then ensures that the matrices along the path are random conditioned on
the product being this unique value.) Thus, if an attacker can tell apart obfuscations of two programs
BP0, BP1, there must exist some input on which they produce different outputs. The above intuitions
can indeed be formalized w.r.t. generic attackers (that only operate on the encodings in a legal way,
respecting the set restrictions), relying on arguments from [BR14, BGK+13]. This already suffices to
prove that the basic obfuscator is an indistinguishability obfuscator assuming the encodings are multi-
message semantically secure.12

The Merge Procedure To base security on the weaker assumption of (constant-message) semanti-
cal security, we will add an additional program transformation steps before the Rand and Encode steps.
Roughly speaking, we would like to have a method Merge(BP0, BP1, b) that “merges” BP0 and BP1 into
a single branching program that evaluates BPb; additionally, we require that Merge(BP0, BP1, 0) and
Merge(BP0, BP1, 1) only differ in a constant number of matrices. We achieve this merge procedure by
connecting together BP0, BP1 into a branching program of double width and adding two “switch” matri-
ces in the beginning and the end, determining if we should go “up” or “down”. Thus, to switch between
Merge(BP0, BP1, 0) (which is functionally equivalent to BP0) and Merge(BP0, BP1, 1) (which is func-
tionally equivalent to BP1) we just need to switch the “switch matrices”. More precisely, given branching
programs BP0 and BP1 described respectively by pairs of matrices {(B0

i,0, B
0
i,1), (B1

i,0, B
1
i,1)}i∈[m], we

construct a merged program Merge(BP0, BP1, b) described by {(B̂0
i,0, B̂

0
i,1)}i∈[m+2] such that

B̂0
i,b = B̂1

i,b=

(
B0

(i−1),b 0

0 B1
(i−1),b

)
for all 2 ≤ i ≤ m+ 1 and b ∈ {0, 1}

and the first and last matrices are given by:

B̂0
1,b = B̂0

m+2,b = I2w×2w for b ∈ {0, 1}

B̂1
1,b = B̂1

m+2,b =

(
0 Iw×w

Iw×w 0

)
for b ∈ {0, 1}

It directly follows from the construction that Merge(BP0, BP1, 0) and Merge(BP0, BP1, 1) differ only
in the first and the last matrices (i.e., the “switch” matrices). Furthermore, it is not hard to see that
Merge(BP0, BP1, b) is functionally equivalent to BPb.

Our candidate obfuscator is now defined as iO(B) = Encode(Rand(Merge(BP, I, 0))), where I is
simply a “dummy" program of the same size as BP .13

The idea behind the merge procedure is that to prove that obfuscations of two programs BP0, BP1

are indistinguishable, we can come up with a sequence of hybrid experiments that start with iO(BP0)
and end with iO(BP1), but between any two hybrids only changes a constant number of encodings,
and thus we may rely on semantic security of multilinear encodings to formalize the above intuitions.
At a high level, our strategy will be to matrix-by-matrix, replace the dummy branching program in the
obfuscation of BP0 with the branching program for BP1. Once the entire dummy branching program
has been replaced by BP1, we flip the “switch" so that the composite branching program now computes
the branching program for BP1. We then replace the branching program for BP0 with BP1, matrix by
matrix, so that we have two copies of the branching program for BP1. We now flip the “switch" again,

12As mentioned above, there are still some minor subtleties involved in doing this: the analyses of [BR14, BGK+13]
implicitly show that all polynomial-size legal arithmetic circuits are constant with overwhelming probability, but by slightly
tweaking the constructions and the analyses to ensure a “perfect” simulation property, we can extend these arguments to
hold against all (arbitrary-size) legal arithmetic circuits and thus base security on multi-message semantical security.

13This description oversimplifies a bit. Formally, the Rand step needs to depends on the field size used in the Encode
steps, and thus in our formal treatment we combine these two steps together.

8

and finally restore the dummy branching program, so that we end up with one copy of BP1 and one copy
of the dummy, which is now a valid obfuscation of BP1. In this way, we transition from an obfuscation
of BP0 to an obfuscation of BP1, while only changing a small piece of the obfuscation in each step.
(On a very high-level, this approach is somewhat reminiscient of the Naor-Yung “two-key” approach
in the context of CCA security [NY90] and the “two-key” bootstrapping result for indistinguishability
obfuscation due to Garg et al [GGH+13b]—in all these approaches the length of the scheme is artificially
doubled to facilitate a hybrid argument. It is perhaps even more reminiscient of the Feige-Shamir
“trapdoor witness” approach for constructing zero-knowledge arguments [FS90], whereby an additional
“dummy” trapdoor witness is introduced in the construction to enable the security proof.)

More precisely, consider the following sequence of hybrids.

• We start off with iO(BP0) = Enc(Rand(Merge(BP0, I, 0)))

• We consider a sequence of hybrids where we gradually change the dummy program I to become
BP1; that is, we consider Encode(Rand(Merge(BP0, BP

′, 0))), where BP ′ is “step-wise” being
populated with elements from BP1.

• We reach Encode(Rand(Merge(BP0, BP1, 0))).

• We turn the “switch” : Encode(Rand(Merge(BP0, BP1, 1))).

• We consider a sequence of hybrids where we gradually change the BP0 to become BP1; that is,
we consider Encode(Rand(Merge(BP ′, BP1, 1))), where BP ′ is “step-wise” being populated with
elements from BP1.

• We reach Encode(Rand(Merge(BP1, BP1, 1))).

• We turn the “switch” back: Encode(Rand(Merge(BP1, BP1, 0))).

• We consider a sequence of hybrids where we gradually change the second BP1 to become I; that
is, we consider Encode(Rand(Merge(BP1, BP

′, 0))), where BP ′ is “step-wise” being populated with
elements from I.

• We reach Encode(Rand(Merge(BP1, I, 0))) = iO(BP1).

By construction we have that if BP0 and BP1 are functionally equivalent, then so will all the hybrid
programs–the key point is that we only “morph” between two branching programs on the “inactive”
part of the merged branching program. Furthermore, by construction, between any two hybrids we
only change a constant number of elements. Thus, if some distinguisher can tell apart iO(BP0) and
iO(BP1), it must be able to tell apart two consecutive hybrids. But, by semantic security it then follows
that some “legal” arithmetic circuit can tell apart the encodings in the two hybrids. Roughly speaking,
we can now rely on simulation security of the basic obfuscator w.r.t. to just legal arithmetic circuits to
complete the argument. A bit more precisely, based on BP0, BP1 and the hybrid index i, we can define
a message distribution Di,BP0,BP1 that is valid (by the simulation arguments in [BGK+13]) as long as
BP0 is functionally equivalent to BP1, yet our distinguisher manages to distinguish messages samples
from Di,BP0,BP1 , contradicting semantical security.

Dealing with branching programs with non-unique outputs There is a catch with the final step
though. Recall that to rely on Kilian’s simulation argument it was crucial that there are unique accept
and reject matrices. For our “merged” programs, this is no longer the case (the output matrix is also a
function of the second “dummy” program), and thus it is no longer clear how to prove that the message
distribution above is valid. We overcome this issue by noting that the first column of the output matrix
actually is unique, and this is all we need to determine the output of the branching program; we refer to

9

such branching programs as fixed output-column branching programs. Consequently it suffices to release
encodings of the just first column (as opposed to the whole matrices) of the last matrix pair in the
branching program, and we can still determine the output of the branching program. As we show, for
such a modified scheme, we can also simulate the (randomized) matrices along an “input-path” given
just the first column of the output matrix.

A Modular Analysis: Neighboring-Matrix Indistinguishability Obfuscation In the actual
proof, we provide a more modular analysis of the above two steps (that may be interesting in its own
right).

• We define a notion of neighboring-matrix indistinguishability obfuscation, which relaxes indistin-
guishability obfuscation by only requiring security to hold w.r.t. any two functionally equivalent
branching programs that differ in at most a constant number of matrices.

• We then use the above merge procedure (and the above hybrid argument) to show that the
existence of a neighboring-matrix iO for all “fixed output column” branching programs implies the
existence of a “full-fledged” iO.

• We finally use the “basic obfuscator” construction to show how to construct a neighboring-matrix
iO for all fixed output column branching programs based on (constant-message) semantical secu-
rity.

Basing Security on a (Single) Falsifiable Assumption To base security on a falsifiable assumption,
we rely on a different merge procedure from the work of Boyle, Chung and Pass [BCP14]: Given two
NC1 circuits C0, C1 taking (at most) n-bit inputs, and a string z, let M̂erge(C0, C1, z) be a circuit that
on input x runs C0(x) if x ≥ z and C1(x) otherwise; in essence, this procedure lets us “traverse” between
C0 and C1 while provably only changing the functionality on at most one input. ([BCP14] use this type
of merged circuits to perform a binary search and prove that indistinguishability obfuscation implies
differing-input obfuscation for circuits that differ in only polynomially many inputs.) We now define
a notion of neighboring-input iO, which relaxes iO by only requiring that security holds with respect
to “neigboring-input” programs M̂erge(C0, C1, z), M̂erge(C0, C1, z + 1) that are functionally equivalent.
Note that checking whether M̂erge(C0, C1, z), M̂erge(C0, C1, z + 1) are functionally equivalent is easy:
they are equivalent iff C0(z) = C1(z). (As such, the assumption that a scheme satisfies neighboring-
input iO is already an efficiently falsfiable assumption.) Furthermore, by a simple hybrid argument over
z ∈ {0, 1}n, exponentially-secure neighboring-input iO implies “full” iO—exponential security is needed
since we have 2n hybrids. (We mention a very recent work by Gentry, Lewko and Waters [GLW14]
in the context of witness encryption [GGSW13] that similarly defines a falsifiable primitive “positional
witness encryption” that implies the full-fledged notion with an exponential security loss.)

Additionally, note that to show that our construction satisfies exponentially-secure neigboring-input
iO, we only need to rely on exponentially-secure semantical security w.r.t. classes of sets and message
distributions corresponding to programs of the form M̂erge(C0, C1, z), M̂erge(C0, C1, z+1). Equivalently,
it suffices to rely on exponentially-secure semantical security w.r.t. a single distribution over sets and
message distributions corresponding to uniformly selected programs M̂erge(C0, C1, z), M̂erge(C0, C1, z+
1) (i.e., z, C0, C1 are picked at random); again, this only results in an exponential security loss. Finally,
by padding the security parameter of the multilinear encodings in the construction, it actually suffices
to rely on subexponential security.

1.5 Discussion and Future Work

We have introduced a new security notion, semantical security, for multilinear (a.k.a. graded) encodings,
which captures a general (but quite restrictive) class of algebraic decisional assumption over multilinear

10

encodings. Our main result demonstrates the existence of indistinguishability obfuscators (iO) assuming
the existence of semantically secure multilinear encodings and the LWE assumption; as far as we know,
this yields the first construction of iO based on a “simple-to-state” assumption about some algebraic
primitive (namely, multilinear encodings) for which candidate constructions are known.

We additionally show that it suffices to assume the existence of encoding schemes that satisfy a
specific, falsifiable, instance of semantical security (i.e., that a specific assumption in the class holds
w.r.t. the encoding scheme); this time, however, we need to assume subexponentially-hard semantical
security. This shows that under subexponential reductions, indistinguishability obfuscation can be based
on a single, non-interactive and falsifiable, assumption.

We finally consider various strengthenings of semantical security, which (among other things) mo-
tivate why in our definition of semantical security, we restrict the class of algebraic decisional assump-
tions: we show that the assumption that “every non-interactive algebraic decisional assumption that
holds against generic attackers holds against nuPPT attackers” is false.

Our work leaves open several interesting questions:

• Can we base iO on polynomial-hardness of a falsfiable (and preferrably non-interactive) assumption
(using a security-preserving reduction)? Note that for many applications of iO (e.g., functional
encryption [GGH+13b]) it suffices to require indistinguishability for restricted distributions of
programs that (with overwhelming probability) are provably functionally equivalent; for these ap-
plications, our proof already shows they can be based on specific, falsifiable, instances of semantical
security (without assuming subexponential hardness).

• Even in the regime of subexponential hardness, the specific assumption that we use—although it is
a special case of semantical security—is not particularly natural, and does not have a particularly
“simple” description. In essence, we consider semantical security with respect to distributions over
elements that describe the obfuscation of a random branching program. (As such, in our eyes,
perhaps the best reason to believe this assumption is true that it is a falsifiable special case of
semantical security). It would be much more desirable to base security on semantical security
w.r.t. a single simple and natural distribution over ~m0, ~m1, ~z, where, for instance, similar to the
GDDH assumption, ~z are uniformly random elements. We conjecture that our assumption actually
can be “massaged” into a nicer looking assumption, closer in spirit to the GDDH assumption.

Two recent works take a major step in this direction. The elegant work of Gentry, Lewko and
Waters [GLW14]14 bases witness encryption [GGSW13] on exponential hardness of some simple as-
sumptions over multinear encodings—the “multilinear subgroup eliminations assumption” and the
“multilinear subgroup decision assumption” (which are closer in spirit to the GDDH assumption);
however, in contrast to our work they rely on multilinear (graded) encodings over composite-order
rings (for which the only candidate is a modified variant of [CLT13]), or require more complex as-
sumptions over prime-order rings (that still are false for the [GGH13a] construction); furthermore,
they require several additional functionalities from graded encodings—in particular, “subring gen-
eration”, and “subring sampling”, which require releasing additional “auxiliary elements” and thus
challenges security (which is why a variant of the [CLT13] construction is needed).

Even more recently, the beautiful work by Gentry, Lewko, Sahai and Waters [GLSW14] manages to
demonstrate also iO from just the multilinear subgroup assumption over composite-order rings.15

Just as [GLW14] they require the additional functionalities from graded encoding scheme (and
as such the only candidate construction currently know is the variant of the [CLT13] scheme

14This result is subsequent to our results on iO from (entropic) semantical security, but preceeds our results on iO from
single-distribution semantical security.

15This result is subsequent to our results on iO from (entropic) semantical security, and appears to be concurrent to
(appearing on e-Print only a few days after) our results on iO from single-distribution semantical security.

11

introduced in [GLW14]). Although the implementation details are quite different, the construction
in [GLSW14] follows our general approach of “merging” threads of branching programs (we here
consider only two threads, whereas they consider multiple), and using a switch between “active”
and “inactivate” threads. (Additionally, their notion of a “positional” iO is closely related to our
notion of neighboring-input iO.)16

• Another interesting question is finding other applications of entropic semantically secure mul-
tilinear encodings. Our impossibility results—which show that there exist algebraic decisional
assumptions that are false despite being true w.r.t. generic attackers—present a further challenge
to the practice of arguing the plausibility of an assumption (even a “DDH-type” assumption)
through security arguments in the generic model. At this point it seems that checking whether
some specific algebraic assumption falls within the class of assumptions considered by entropic se-
mantical security (or perhaps even just uber security) may be a viable replacement to the standard
“sanity check” of arguing security in the generic model.

• In this paper we have focused on indistinguishability obfuscation. An interesting problem is basing
stronger notions of obfuscation on some succinct and natural assumption on a low-level primitive.
We mention that our result that any scheme satisfying iO security w.r.t. “neighboring-matrix”
programs can be turned in a “fully” secure scheme, applies also to differing-input security.

A recent beautiful work of Bitansky, Canetti, Kalai and Paneth [BCKP14] introduces a strength-
ening of semantical security (called “strong-sampler” semantical security) which also consider non-
samplable (i.e., computationally unbounded) message distributions (as opposed to nuPPT distri-
butions as we consider here); their key result demonstrated the existence of VGB (virtual grey-box
secure) [BC10] obfuscators for NC1 assuming strong-sampler semantical security. VGB security is
a strengthening of iO; but it is not known how to bootstrap VGB for NC1 to all polynomial-size
circuits.

1.6 Outline of the Paper

We provide some preliminaries in Section 2. We define semantical security of multilinear (aka graded)
encodings in Section 3. Our construction of an indistinguishability obfuscator and its proof of security
is provided in Section 4. We show how to slightly modify the construction to be based on a single
(falsifiable) instance of semantical security in Section 5. We finally study alternative notions of security
for multilinear encodings in Section 6.

2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. Let Z denote the integers,
and Zp the integers modulo p. Given a string x, we let x[i], or equivalently xi, denote the i-th bit of
x. For a matrix M , we let M [i, j] denote the entry of M in the ith row and jth column. We use ek to
denote the vector that is 1 in position k, and 0 in all other positions. The length of ek is generally clear
from the context. We use Iw×w to denote the identity matrix with dimension w × w.

By a probabilistic algorithm we mean a Turing machine that receives an auxiliary random tape as
input. If M is a probabilistic algorithm, then for any input x, M(x) represents the distribution of
outputs of M(x) when the random tape is chosen uniformly. M(x; r) denotes the output of M on input
x when the random tape is fixed to r. An oracle algorithm MO is a machine M that gets oracle access
to another machine O, that is, it can access O’s functionality as a black-box.

16But as mentioned above, the results relying on neighboring-input iO were not part of our original manuscript and
appear to be concurrent to the ones in [GLSW14].

12

By x← S, we denote an element x is sampled from a distribution S. If F is a finite set, then x← F
means x is sampled uniformly from the set F . To denote the ordered sequence in which the experiments
happen we use semicolon, e.g. (x← S; (y, z)← A(x)). Using this notation we can describe probability
of events. For example, if p(·, ·) denotes a predicate, then Pr[x ← S; (y, z) ← A(x) : p(y, z)] is the
probability that the predicate p(y, z) is true in the ordered sequence of experiments (x ← S; (y, z) ←
A(x)). The notation {(x ← S; (y, z) ← A(x) : (y, z))} denotes the resulting probability distribution
{(y, z)} generated by the ordered sequence of experiments (x ← S; (y, z) ← A(x)). We define the
support of a distribution supp(S) to be {y : Pr[x← S : x = y] > 0}.

By isZero, we denote the predicate such that isZero(x) = 1 exactly when x = 0, and isZero(x) = 0
otherwise.

2.1 Obfuscation

We recall the definition of indistinguishability obfuscation due to [BGI+01].

Definition 1 (Indistinguishability Obfuscator). A uniform PPT machine iO is an indistinguishability
obfuscator for a class of circuits {Cn}n∈N if the following conditions are satisfied

• Correctness: There exists a negligible function ε such that for every n ∈ N, for all C ∈ Cn, we
have

Pr[C ′ ← iO(1n, C) : ∀x, C ′(x) = C(x)] ≥ 1− ε(n)

• Security: For every pair of circuit ensembles {C0
n}n∈N and {C1

n}n∈N such that for all n ∈ N, for
every pair of circuits C0

n, C
1
n ∈ Cn such that C0

n(x) = C1
n(x) for all x the following holds: For every

nuPPT adversary A there exists a negligible function ε such that for all n ∈ N,

|Pr[C ′ ← iO(1n, C0
n) : A(1n, C ′) = 1]− Pr[C ′ ← iO(1n, C1

n) : A(1n, C ′) = 1]| ≤ ε(n)

We additionally say that iO is subexponentially-secure if there exists some constant α > 0 such
that for every nuPPT A the above indistinguishability gap is bounded by ε(n) = 2−O(nα).

Note: We observe that the above definition allows for a negligible correctness error. That is, for any
circuit C, there is a negligible fraction of “bad” randomness r such that iO(C; r) is not functionally
equivalent to C. However, if we can efficiently check if r is “bad”, we can modify iO so that iO(C; r)
outputs C in the clear if r is “bad”. Then the modified iO has perfect correctness, and its security
remains intact since only a negligible fraction of r are “bad”. We note that our construction, as well as
all previous ones, have the property that a “bad” r can be efficiently detected, and thus these schemes
can be modified to have perfect correctness.

We now recall the definitions of iO for NC1 and P/poly.

Definition 2 (Indistinguishability Obfuscator for NC1). A uniform PPT machine iO is an indistin-
guishability obfuscator for NC1 if for every constant c, iO(c, ·, ·) is an indistinguishability obfuscator for
the class of circuits Cc = {Ccn}n∈N where Ccn is the set of circuits that have size at most nc, and have
depth at most c log n.

Definition 3 (Indistinguishability Obfuscator for P/poly). A uniform PPT machine iO is an indistin-
guishability obfuscator for P/poly if for every constant c, iO(c, ·, ·) is an indistinguishability obfuscator
for the class of circuits Pc = {Pcn}n∈N where Pcn is the set of circuits that have size at most nc.

The following simple lemma will be useful in the sequel.

Lemma 4. Let iO be a (subsexponentially-secure) indistinguishability obfuscator for C1. Then iO′
defined as iO′(c, 1n, C) = iO(1n

c
, C) is a (subexponentially-secure) indistinguishability obfuscator for

NC1.

13

Proof. Consider any pair of circuit ensembles {C0
n}n∈N, {C1

n}n∈N in Cc. Assume for contradiction that
there exists some nuPPT A and a polynomial p(·) such that A(1n) distinguishes iO′(c, 1n, C0

n) =
iO(1n

c
, C0

n) and iO′(c, 1n, C1
n) = iO(1n

c
, C1

n) with probability 1/p(n) for infinitely many n. Note that
for every n, C0

n, C
1
n ∈ C1nc . Thus, for infinitely many n ∈ N, there exists circuits C0

n, C
1
n ∈ C1nc such

that A(1n) distinguishes iO(1n
c
, C0

n) and iO(1n
c
, C1

n) with probability 1/p(n). In other words, for in-
finitely many n′ ∈ N of the form n′ = nc, there exist circuits C̃0

n′ = C0
n, C̃1

n′ = C1
n such that the nuPPT

A′(1n
′
) = A(1n) distinguishes iO(1n

′
, C̃0

n′) and iO(1n
′
, C̃1

n′) with probability 1/p(n) = 1/p(n′1/c)), which
contradicts that iO is an indistinguishability obfuscator for C1.

The same argument also works in the context of subexponential security.

2.2 Branching programs for NC1

We recall the notion of a branching program.

Definition 4 (Matrix Branching Program). A branching program of width w and length m for n-bit
inputs is given by a sequence:

BP = {inp(i), Bi,0, Bi,1)}mi=1

where each Bi,b is a permutation matrix in {0, 1}w×w, inp(i) ∈ [n] is the input bit position examined in
step i.

Then the output of the branching program on input x ∈ {0, 1}n is as follows:

BP (x)
def
=

{
1, if (

∏m
i=1Bi,x[inp(i)]) · e1 = e1.

0, otherwise

The branching program is said to be oblivious if inp : [m] → [n] is a fixed function, independent of the
function being evaluated.

The above definition differs slightly from the definition of matrix branching programs generally used,
which have the slightly stronger requirement that

∏n
i=1Bi,x[inp(i)] = Iw×w when BP (x) is accepting,

and
∏n
i=1Bi,x[inp(i)] = Preject for some fixed permutation matrix Preject 6= Iw×w when BP (x) is rejecting.

More generally,

Definition 5. The branching program is said to have fixed accept and reject matrices Paccept and Preject

if, for all x ∈ {0, 1}n,

m∏
i=1

Bi,x[inp(i)] =

{
Paccept when BP (x) = 1

Preject when BP (x) = 0

We now have the following theorem due to Barrington:

Theorem 5. ([Bar86]) There exist 5× 5 permutation matrices Paccept and Preject with Paccept · e1 = e1,
and Preject ·e1 = ek where k 6= 1 such that the following holds. For any depth d and input length n, there
exists a lengthm = 4d, a labeling function inp : [m]→ [n] such that, for every fan-in 2 boolean circuit C of
depth d and n input bits, there exists an oblivious matrix branching program BP = {inp(i), Bi,0, Bi,1}mi=1,
of width 5 and length m that computes the same function as the circuit C.

In particular, every circuit in NC1 has a polynomial length branching program of width 5. Further, two
circuits of the same depth d will have the same fixed accepting and rejecting permutations Paccept and
Preject, and a fixed labelling function inp : [m]→ [n].

14

The branching programs we consider in this work will not have fixed output matrices. However, the
first column of their output matrices will be fixed and depend only on the output of the program. That
is, the first column of the output matrix is either paccept or preject, depending on whether the program
accepts or rejects. Furthermore, we will consider ensembles of classes of programs where these fixed
columns paccept and preject are the same for all programs in every class in the ensemble.

Definition 6 (Fixed Output Column Ensemble). An ensemble of classes of branching programs B =
{Bn}n∈N where Bn contains branching programs of constant width w, is a fixed output column ensemble
if there exists vectors paccept, preject ∈ {0, 1}w such that for every n ∈ N, every branching program
BP = {inp(i), Bi,0, Bi,1)}mi=1 ∈ Bn and every input x it holds that

(
m∏
i=1

Bi,x[inp(i)])) · e1 =

{
paccept when BP (x) = 1

preject when BP (x) = 0

Subsequently, whenever we refer to an ensemble of classes of branching programs we will implicitly
be referring to a fixed output column ensemble.

3 Semantically Secure Graded Encoding Schemes

In this section we define what it means for a graded encoding scheme to be semantically secure. We
start by recalling the notion of graded encoding schemes due to Garg, Gentry and Halevi [GGH13a].

3.1 Graded Encoding Schemes

Graded (multilinear) encoding schemes were originally introduced in the work of Garg, Gentry and
Halevi [GGH13a]. Just as [BR14, BGK+13], we here rely on “set-based” (or “asymmetric”) graded en-
coding; these were originally called “generalized” graded encodings in [GGH13a]. Following [GGH+13b,
BGK+13] and the notion of “multilinear jigsaw puzzles” from [GGH+13b], we additionally enable anyone
with the secret parameter to encode any elements (as opposed to just random elements as in [GGH13a]).

Definition 7 ((k,R)-Graded Encoding Scheme). A (k,R)-graded encoding scheme for k ∈ N and ring
R is a collection of sets {EαS : α ∈ R,S ⊆ [k]} with the following properties

• For every S ⊆ [k] the sets {EαS : a ∈ R} are disjoint.

• There are associative binary operations ⊕ and 	 such that for every α1, α2 ∈ R, S ⊆ [k], u1 ∈ Eα1
S

and u2 ∈ Eα2
S it holds that u1 ⊕ u2 ∈ Eα1+α2

S and u1 	 u2 ∈ Eα1−α2
S where ‘+′ and ‘−′ are the

addition and subtraction operations in R.

• There is an associative binary operation ⊗ such that for every α1, α2 ∈ R, S1, S2 ⊆ [k] such that
S1 ∩ S2 = ∅, u1 ∈ Eα1

S1
and u2 ∈ Eα2

S2
it holds that u1 ⊗ u2 ∈ Eα1·α2

S1∪S2
where ‘·’ is multiplication in

R.

Definition 8 (Graded Encoded Scheme). A graded encoding scheme E is associated with a tuple of
PPT algorithms, (InstGenE ,EncE ,AddE , SubE ,MultE , isZeroE) which behave as follows:

• Instance Generation: InstGenE takes as input the security parameter 1n and multilinearity param-
eter 1k, and outputs secret parameters sp and public parameters pp which describe a (k,R)-graded
encoding scheme {EαS : α ∈ R,S ⊆ [k]}. We refer to EαS as the set of encodings of the pair (α, S).
We restrict to graded encoding schemes where R is Zp and p is a prime exponential in n and k.

• Encoding: EncE takes as input the secret parameters sp, an element α ∈ R and set S ⊆ [k], and
outputs a random encoding of the pair (α, S).

15

• Addition: AddE takes as input the public parameters pp and encodings u1 ∈ Eα1
S1
, u2 ∈ Eα2

S2
, and

outputs an encoding of the pair (α1 + α2, S) if S1 = S2 = S and outputs ⊥ otherwise.

• Negation: SubE takes as input the public parameters pp and encodings u1 ∈ Eα1
S1
, u2 ∈ Eα2

S2
, and

outputs an encoding of the pair (α1 − α2, S) if S1 = S2 = S and outputs ⊥ otherwise.

• Multiplication: MultE takes as input the the public parameters pp and encodings u1 ∈ Eα1
S1
, u2 ∈

Eα2
S2
, and outputs an encoding of the pair (α1 ·α2, S1∪S2) if S1∩S2 = ∅ and outputs ⊥ otherwise.

• Zero testing: isZeroE takes as input the public parameters pp and an encoding u ∈ ES(α), and
outputs 1 if and only if α = 0 and S is the universe set [k].17

Whenever it is clear from the context, to simplify notation we drop the subscript E when we refer to the
above procedures (and simply call them InstGen,Enc, . . .).

In known candidate constructions [GGH13a, CLT13], encodings are “noisy” and the noise level
increases with each operation; the parameters, however, are set so that any poly(n, k) operations can
be performed without running into trouble. For convenience of notation (and just like all other works
in the area), we ignore this noise issue.18

Note that the above procedures allow algebraic operations on the encodings in a restricted way.
Given the public parameters and encodings made under the sets ~S, one can only perform algebraic
operations that are allowed by the structure of the sets in ~S. We call such operations ~S-respecting and
formalize this notion as follows:

Definition 9 (Set Respecting Arithmetic Circuits). For any sequence ~S of subsets of [k], we say that
an arithmetic circuit C (i.e. gates perform only ring operations {+,−, ·}) is ~S-respecting if it holds that

• Eevery input wire of C is tagged with some set in ~S.

• For every + and − gate in C, if the tags of the two input wires are the same set S then the output
wire of the gate is tagged with S. Otherwise the output wire is tagged with ⊥.

• For every · gate in C, if the tags of the two input wires are sets S1 and S2 and S1 ∩ S2 = ∅ then
the output wire of the gate is tagged with S1 ∪ S2. Otherwise the output wire is tagged with ⊥.

• It holds that the output wire is tagged with the universe set [k].19

We say that a circuit C is weakly ~S-respecting if all the above conditions hold except the last, that
is, the output wire may be tagged with some set T ⊆ [k], where T is not necessarily equal to [k]. We say
that C is non terminal ~S-respecting if T is a strict subset of [k].

17In the candidate scheme given by [GGH13a], isZero may not have perfect correctness: the generated instances (pp, sp)
can be “bad” with some negligible probability, so that there could exist an encoding u of a nonzero element where
isZero(pp, u) = 1. However, these “bad” parameters can be efficiently detected during the execution of InstGen. We can
thus modify the encoding scheme to simply set Enc(pp, e) = e whenever the parameters are “bad” (and appropriately
modify Add, Sub,Mult and isZero so that the operate on “unencoded” elements. This change ensures that, for every pp,
including “bad” ones, the zero test procedure isZero works with perfect correctness. We note that since bad parameters
occur only with negligible probability, this change does not affect the security of the encodings.

18The above definition can be easily generalized to deal with the candidates by only requiring that the above conditions
hold when u1, u2 have been obtained by poly(n, k) operations.

19For ease of notation, we assume that the description of a set S also contains a description of the universe set [k].

16

3.2 Semantical Security

We now turn to defining semantical security of graded encoding schemes. Towards explaining our
notion of semantical security, let us first consider a “DDH-type” assumption for (asymmetric) multilinear
encodings, similar in spirit to the “graded DDH” assumption of Garg et al [GGH13a] (which was in the
contex of symmetric multilinear encodings, whereas we here consider asymmetric ones). Consider a
distribution D sampling n random elements ~z, and let m0 =

∏
i∈[n] zi be the product of the elements in

~z, andm1 = z′ be just a random element. A DDH-type assumption—let us refer to it as the “asymmetric
graded DDH assumption (aGDDH)”—would require that encodings of m0, ~z and m1, ~z under the sets
S, ~T are indistinguishable as long as (a) S is the target set [k], and (b) S is not the disjoint union of the
sets in ~T ; that is, the set-restrictions prohibit “legally” multiplying all the elements of ~z and subtracting
them from m0 or m1. ~z.

Note that for any such sets S, ~T , the particular (joint) distribution D over m0,m1, ~z has a nice
“zero-knowledge” property w.r.t. generic attacker: for every (S, ~T)-respecting circuit C, isZero(C(·)) is
constant over (mb, ~z), b ∈ {0, 1} with overwhelming probability: that is, there exists some bit c such
that with overwhelming probability over m0,m1, ~z ← D, isZero(C(mb, ~z)) = c for b ∈ {0, 1}, and as
(except with negligible probability) no zero-test query leaks anything to a generic attacker. To see
this, note that any such isZero(C(m,~z) function is of the form isZero(a · m + p(~z)) where p(·) is a
polynomial of degree at most n− 1. If a = 0 and p(·) is the zero-polynomial, then clearly the function
evaluates to 1. If either a = 1 or p(·) is a non-zero polynomial, then no matter whether m = m0 or
m = m1, isZero(C(·, ·)) is evaluating a non-zero polynomial of degree at most n at a random point; by
the Schwartz-Zippel lemma, with overwhelming probability (proportional to the field size), both these
polynomials will evaluate to a non-zero value, and thus the zero-test will output 0.

We refer to any distributionD satisfying the above “zero-knowledge w.r.t. generic attackers” property
as being valid w.r.t. S, ~T . We formalize this notion through what we refer to as a (S, ~T)-respecting
message sampler. As mentioned in the introduction, for our purposes, we need to consider a more
general setting where m0,m1, and S are replaced by constant-length vectors ~m0, ~m1, ~S; for generality,
we provide a definition that considers arbitrary length vectors of messages.

Definition 10 (Set-Respecting Operations). Let {kn}n∈N be an ensemble where kn ∈ N. We say
f = {fn}n∈N is an ensemble of set-respecting operations if for every n ∈ N, and every pair of sequences
of sets ~S, ~T over [kn] we have that fn(~S, ~T) outputs a (~S, ~T)-respecting arithmetic circuit.

Definition 11 (Valid Message Sampler). Let E be a graded encoding scheme. We say that a nuPPT M
is a valid message sampler if

• M on input 1n and a public parameter pp ∈ InstGen(1n, 1kn) computes the ring R associated with
pp and next based on only 1n, 1kn and R generates and outputs

– a pair (~S, ~T) of sequences of sets over [kn] and

– a pair (~m0, ~m1) of sequences of |S| ring elements and a sequence ~z of |T | ring elements.

• There exists a polynomial Q(·, ·) such that for every ensemble {kn}n∈N and ensemble of set-
respecting operations {fn}n∈N, for every n ∈ N there exists a constant c ∈ {0, 1} such that that for
any b ∈ {0, 1},

Pr[(~m0, ~m1, ~z, ~S, ~T)←M(1n, pp);C ← fn(~S, ~T) : isZero(C(~mb, ~z)) = c] ≥ 1−Q(n, kn)/|R|.

Let us comment that Definition 11 allows the message sampler M to select ~m0, ~m1, ~z based on the
ring R = Zp; note that this is needed even to model the aGDDH assumption (or else we could not define
what it means to pick a uniform element in the ring). On the other hand, to make the notion of valid

17

message samplers as restrictive as possible, we prevent the message selection from depending on pp in
any other way. Looking ahead, this restriction makes the notion somewhat nicer behaved; see Lemma
6.

We can now define what it means for a graded encoding scheme to be semantically secure. Roughly
speaking, we require that encodings of (~m0, ~z) and (~m1, ~z) under the sets (~S, ~T) are indistinguishable
as long as (~m0, ~m1, ~z) is sampled by a message sampler that is valid w.r.t. (~S, ~T).

Definition 12 (Semantic Security). Let E be a graded encoding scheme and q(·) and c(·) be polynomials.
We say a graded encoding scheme E is (c, q)-semantically secure if for every polynomial k(·), every
ensemble {(~Sn, ~Tn)}n∈N where ~Sn and ~Tn are sequences of subsets of [k(n)] of length c(k(n))) and q(k(n))
respectively, for every {(~Sn, ~Tn)}n∈N-set-respecting message sampler M and every nuPPT adversary A,
there exists a negligible function ε such that for every security parameter n ∈ N,

|Pr[Output0(1
n) = 1]− Pr[Output1(1

n) = 1]| ≤ ε(n)

where Outputb(1n) is A’s output in the following game:

• Let (sp, pp)← InstGen(1n, 1k(n)).

• Let ~m0, ~m1, ~z ←M(1n, pp).

• Let ~ub ← {Enc(sp, ~m0[i], ~Sn[i])}c(kn)i=1 , {Enc(sp, ~z[i], ~Tn[i])}q(k(n))i=1 .

• Finally, run A(1n, pp, ~ub).

We say that E is (constant-message) semantically secure if it is (O(1), O(k))-semantically secure; we
say that E multi-message semantically secure if it is (O(k), O(k))-semantically secure. We additionally
say that E is subexponentially-hard semantically secure if there exists some exists some constant α > 0
such that for every nuPPT A the above indistinguishability gap is bounded by ε(n) = 2−O(nα).20

In analogy with the GDDH assumption, our notion of semantical security restricts to the case
when the number of elements encoded is O(k).21 As the following lemma (whose proof is delegated to
Appendix C) shows, any such encoding scheme can be modified to one that is secure as long as the
number of elements in ~z is (a-priori) polynomially bounded.

Lemma 6. Let c, ε be constants and let E be a (c, kε)-semantically secure encoding scheme. Then for
every polynomial q(k) there exists a (c, q(k))-semantically secure encoding scheme.

Also, note that our notion of semantical security requires that security holds w.r.t. to any polynomial
multilinearity parameter k(·); again, this is without loss of generality: Any encoding scheme E that is
semantically secure for any multilinearity parameter k(n) ≤ n, can be turned into a new scheme E ′ that
is (full-fledged) semantically secure, by simply letting InstGen′(1n, 1k) = InstGen(1n+k, 1k).

Finally, one may also consider a notion of unbounded semantical security (that is provably stronger
than semantical security)22 which requires that E is (O(1), q(k))-semantically secure for every polynomial
q(k); this notion is not needed for our results. A recent result by [BCKP14] shows that for natural

20We could also have considered an even stronger notion where the adversary A is allowed to be of subexponential-size;
this will not be needed for our result, but may be useful in other contexts.

21This restriction was suggested in [BCKP14] and independently by Hoeteck Wee; our original formulation of semantical
security considered an unbounded polynomial number of elements in ~z (but our proof of security only relied on security
for O(k) elements). We now refer to this stronger notion as unbounded semantical security ; see below.

22Any semantically secure encoding scheme E can be modified into a new encoding scheme E ′ that still is semantically
secure but not unbounded semantically secure. Simply let each encoding additionally release a random share of a secret-
sharing of sp. If few shares are released (i.e., ~z is small) security is untouched, but if many shares are released security is
trivially broken.

18

special cases of message samplers, unbounded single-message semantical security implies multi-message
semantical security; we mention that this result only applies in the regime of polynomial security (and
in particular does not apply for subexponential-hard semantical security).

Let us end this section by remarking that (sub-exponentially hard) semantical security trivially holds
against polynomial-time “generic” attackers that are restricted to “legally” operating on the encodings—
in fact, it holds even against unbounded generic attackers that are restricted to only making polynomially
(or even subexponentially) many zero-test queries: recall that each legal zero-test query is constant
with overwhelming probability (whether we operate on ~m0, ~z or ~m1, ~z) and thus by a Union Bound, the
output of any generic attacker restricted to polynomially many zero-test queries is also constant with
overwhelming probability; see Section 6 for a formal statement.

Semantical Security w.r.t. Restricted Classes of Message Samplers For our specific construc-
tion of indistinguishability obfuscators it suffices to assume the existence of semantically secure encodings
w.r.t. restricted classes of message samplers M , where the {(~Sn, ~Tn)}n∈N-respecting condition on M is
replaced by some stronger restriction on M . It particular, it suffices to restrict to message samplers
M that induce a high-entropy distribution over ~m0, ~m1, ~z—not only the individual elements have high
min-entropy but also any element computed by applying a “non-terminal” sequence of legal arithmetic
operations to ~mb, ~z (for b ∈ {0, 1}). More precisely, we say that a M is a H-entropic {(~Sn, ~Tn))}n∈N-
respecting message sampler if M is {(~Sn, ~Tn))}n∈N-respecting, where the sets Sn and Tn are over the
universe set [kn] and additionally:

• For every security parameter n, every pp ∈ InstGen(1n, 1kn) describing a ring R, every non-terminal
(~Sn, ~Tn)-respecting arithmetic circuit C that computes a non-zero polynomial in its inputs, it holds
that for b ∈ {0, 1},

H∞(C(~mb, ~z)) ≥ H(log |R|)

where (~m0, ~m1, ~z)←M(1n, pp).

We here focus on “very” high entropy message samplers, where H(n) = n−O(log n), and refer to such
message samplers as simply entropic {~Sn, ~Tn)}n∈N-respecting message sampler (or entropically valid),
and refer to encoding schemes satisfying semantical security w.r.t. such restricted message samplers as
entropic semantically secure.

Additionally, for our purposes, we may consider semantic security with respect to even more re-
stricted types of message samplers M and sets (~Sn, ~Tn). In particular, where: (1) Each individual
element sampled is statistically close to a uniform ring element; (2) Elements sampled are “almost” pair-
wise independent: each pair of elements encoded is statistically close to two uniform ring elements;23

(3) The sets contained in the sequences ~Sn, ~Tn are pairs of indices {i, j}, i, j ∈ [kn]. Properties 1, 2
are natural abstractions of what happens in the GDDH assumption (property 2 is a relaxation of the
independence, as opposed to just pair-wise independence, property satisfied by the GDDH assumption).
Property 3 implies that (if we consider a arithemtic circuit) exactly k/2 multiplications on the elements
must be performed before a zero-testing can be done; combined with the above entropic message sampler
condition, this implies that any set-respecting arithmetic circuit of multiplicative degree smaller than
k/2 produces a high-entropy element when applied to the sampled elements.24

4 iO from Semantically Secure Multilinear Encodings

In this section we prove that semantically secure multilinear encodings implies indistinguishability ob-
fuscators for NC1. We will show this through the following steps.

23We thank Hoeteck Wee to suggesting to consider independence properties among the elements.
24We thank Shai Halevi for this observation (and more generally for suggesting that we consider the output of low-degree

arithmetic circuits as an alternative to our entropic condition.).

19

• We first introduce a weaker notion of indistinguishability obfuscation for branching programs,
which we call neighboring-matrix indistinguishability obfuscation. Roughly speaking, this notion
guarantees that the obfuscations of any pair of functionally equivalent branching programs that
differ in only a few matrices are computationally indistinguishable.

• We show that any neighboring-matrix indistinguishability obfuscator for branching programs can
be transformed into an full indistinguishability obfuscator for NC1.

• Finally, we show that assuming the existence of semantically secure multilinear encodings, there
exists a neighboring-matrix indistinguishability obfuscator for branching programs.

4.1 Neighboring-Matrix Indistinguishability Obfuscation (nm-iO)

We introduce a weaker notion of indistinguishability obfuscation for branching programs. This notion is
similar to indistinguishability obfuscation except that instead of requiring security to hold with respect
to any pair of functionally equivalent programs, we require security to hold with respect to any pair
of neighboring programs that are functionally equivalent. We say a pair of branching programs are
neighboring if they differ in only a few matrices.

Definition 13 (Neighboring-Matrix Branching Programs). We say that BP0 and BP1 are a pair of
neighboring-matrix branching programs if they differ in at most 4 matrices. We say that {BP 0

n}n∈N
and {BP 1

n}n∈N are a pair of neighboring-matrix branching program ensembles if for every n ∈ N, BP 0
n

and BP 1
n are a pair of neighboring-matrix branching programs.

Definition 14 (Neighboring-Matrix Indistinguishability Obfuscator). A uniform PPT machine Obf is
an neighboring-matrix indistinguishability obfuscator for an ensemble of classes of branching programs
{Bn}n∈N if it satisfies the same correctness and security conditions as in Definition 1 except that the
security condition quantifies only over pairs of neighboring-matrix branching program ensembles (as
opposed to pairs of arbitrary circuit ensembles as in Definition 1).

4.2 From nm-iO to iO

In this section we show that any neighboring-matrix indistinguishability obfuscator for a particular
ensemble of classes of branching programs can be transformed into full indistinguishability obfuscators
for NC1.

Roughly speaking, the indistinguishability obfuscator iO will use the neighboring-matrix indistin-
guishability obfuscator Obf in the following way: iO on input a circuit C, first converts it to an oblivious
branching program BP using Theorem 5. Next, iO doubles the width of BP by “merging” it with a
dummy branching program that computes the constant 1, and then adds a branch at the very start
that chooses whether to use the true program or the dummy, based on a “switch". iO simply returns
the obfuscation of the above “merged” branching program as produced by Obf.

At a high level, to show indistinguishability of iO(C1) and iO(C2), our strategy will be to obfuscate
(using Obf) the “merged” branching program for C1, and then, matrix by matrix, replace the dummy
branching program with the branching program for C2. Once the entire dummy branching program has
been replaced by C2, we flip the “switch" so that the composite branching program now computes the
branching program for C2. We then replace the branching program for C1 with C2, matrix by matrix,
so that we have two copies of the branching program for C2. We now flip the “switch" again, and finally
restore the dummy branching program, so that we end up with one copy of C2 and one copy of the
dummy. In this way, we transition from iO(C1) to iO(C2), while only changing a small piece of the
branching program being obfuscated under Obf in each step, and keeping the functionality the same. If
Obf is a neighboring-matrix indistinguishability obfuscator then each step of these transitions must be
indistinguishable, hence showing iO is an full indisntinguishability obfuscator.

20

4.2.1 Merging Branching Programs

We first describe a method Merge for combining any two matrix branching programs together to create
a composite branching program of double width, in a way that enables switching by changing only a
small number of matrices.

Construction 1 (Merging branching programs). Let BP 0 = {inp(i), B0
i,0, B

0
i,1}mi=1 and BP 1 = {inp(i),

B1
i,0, B

1
i,1}mi=1 be oblivious matrix branching programs, each of width w and length m for n input bits.

(We assume that the same labelling function inp : [m]→ [n] is used for each of BP 0 and BP 1, and this
is without loss of generality because we can add extra dummy levels so that this property holds.)
Define branching programs B̂P 0 = {inp′(i), B̂0

i,0, B̂
0
i,1}

m+2
i=1 and B̂P 1 = {inp′(i), B̂1

i,0, B̂
1
i,1}

m+2
i=1 , each of

width 2w and length m+ 2 on l input bits, where:

inp′(i)
def
=


1, when i = 1

inp(i− 1), when 2 ≤ i ≤ m+ 1

1, when i = m+ 2

and, for all levels except the first and the last, B̂P 0 and B̂P 1 agree, given by:

B̂0
i,b = B̂1

i,b
def
=

(
B0

(i−1),b 0

0 B1
(i−1),b

)
for all 2 ≤ i ≤ m+ 1 and b ∈ {0, 1}

and the first and last levels are given by:

B̂0
1,b = B̂0

m+2,b = I2w×2w for b ∈ {0, 1}

B̂1
1,b = B̂1

m+2,b =

(
0 Iw×w

Iw×w 0

)
for b ∈ {0, 1}

We define Merge so that Merge(BP 0, BP 1, 0) = B̂P 0 and Merge(BP 0, BP 1, 1) = B̂P 1.

We will show that B̂P 0 and B̂P 1 are matrix branching programs that compute the same functions
as BP 0 and BP 1 respectively, with the additional feature that B̂P 0 and B̂P 1 differ from each other in
only two levels, namely the first and the last. Further, since inp′ does not depend on the function being
computed, B̂P 0 and B̂P 1 are oblivious matrix branching programs.

Accordingly, with respect to Merge(BP 0, BP 1, b) we will often use the phrase active branching
program to refer to BP b.

Claim 7. For BP 0 = {inp(i), B0
i,0, B

0
i,1}mi=1 and BP 1 = {inp(i), B1

i,0, B
1
i,1}mi=1 each of width w and

length m on n input bits, define B̂P 0 and B̂P 1 as above. Then, for each b ∈ {0, 1}, x ∈ {0, 1}n,

m+2∏
i=1

B̂b
i,x[inp′(i)] =

(∏m
i=1 B

b
i,x[inp(i)] 0

10
∏m

i=1 B
1−b
i,x[inp(i)]

)

Proof. We observe that B̂P 0 and B̂P 1 agree on each level except the first and last, that is,

B̂0
i,b = B̂1

i,b =

(
B0

(i−1),b 0

0 B1
(i−1),b

)
∀ i : 2 ≤ i ≤ m+ 1, b ∈ {0, 1}

21

Then we have, for any x ∈ {0, 1}n,
m+1∏
i=2

B̂0
i,x[inp′(i)] =

m+1∏
i=2

B̂1
i,x[inp′(i)] =

m+1∏
i=2

(
B0

(i−1),x[inp′(i)] 0

0 B1
(i−1),x[inp′(i)]

)

=

m∏
i=1

(
B0
i,x[inp(i)] 0

0 B1
i,x[inp(i)]

)

=

(∏m
i=1 B

0
i,x[inp(i)] 0

0
∏m

i=1B
1
i,x[inp(i)]

)
Where the change of indices in the second step follows because inp′(i) = inp(i− 1) when 2 ≤ i ≤ m+ 1.
We now consider the two case for b ∈ {0, 1}.
Case 1: (b = 0)
In this case,

m+2∏
i=1

B̂0
i,x[inp′(i)] = I2w×2w ·

(∏m
i=1 B

0
i,x[inp(i)] 0

0
∏m

i=1 B
1
i,x[inp(i)]

)
· I2w×2w

=

(∏m
i=1B

0
i,x[inp(i)] 0

0
∏m

i=1B
1
i,x[inp(i)]

)
as required.
Case 2: (b = 1)
In this case,

m+2∏
i=1

B̂1
i,x[inp′(i)] =

(
0 Iw×w

Iw×w 0

)
·

(∏m
i=1 B

0
i,x[inp(i)] 0

0
∏m

i=1 B
1
i,x[inp(i)]

)
·
(

0 Iw×w
Iw×w 0

)

=

(
0

∏m
i=1 B

1
i,x[inp(i)]∏m

i=1 B
0
i,x[inp(i)] 0

)
·
(

0 Iw×w
Iw×w 0

)

=

(∏m
i=1 B

1
i,x[inp(i)] 0

0
∏m

i=1B
0
i,x[inp(i)]

)
as required.

Claim 8. For all BP 0 and BP 1 each of width w and length m on n input bits, for each b ∈ {0, 1}, for
all x ∈ {0, 1}n,

Merge(BP 0, BP 1, b)(x) = BP b(x)

Proof. LetBP 0 = {inp(i), B0
i,0, B

0
i,1}mi=1 andBP 1 = {inp(i), B1

i,0, B
1
i,1}mi=1. Define B̂P 0 = Merge(BP 0, BP 1, 0)

and B̂P 1 = Merge(BP 0, BP 1, 1) as above. We observe that for any x ∈ {0, 1}n,

Merge(BP 0, BP 1, b)(x) = 1

⇐⇒ (
m+2∏
i=1

B̂b
i,x[inp′(i)]) · e1 = e1

⇐⇒

(∏m
i=1 B

b
i,x[inp(i)] 0

0
∏m

i=1B
1−b
i,x[inp(i)]

)
· e1 = e1 (from Claim 7)

⇐⇒ (
m∏
i=1

Bb
i,x[inp(i)]) · e1 = e1

⇐⇒ BP b(x) = 1

22

Thus Merge(BP 0, BP 1, b)(x) = BP b(x).

The following claim illustrates some useful properties of the Merge procedure that we will use later.
Firstly it notes that changing the bit Merge gets as input changes only the “switch” matrices in the first
and last level of the program Merge outputs. Secondly, changing one level of a program Merge gets as
input changes the output program in one level only. Finally, the first column of the output matrix of
the widened program output by Merge depends only on the first column of the output matrix of the
active program. The claim follows by observing the definition of Merge.

Claim 9. Let BP0 and BP1 be length m, width w branching programs, with input length n.

• Merge(BP0, BP1, 0) and Merge(BP0, BP1, 1) differ in only 4 matrices, the matrices corresponding
to the first and last level.

• Let BP ′1 be a length m branching program that differs from BP1 in only the ith level for some
i ∈ [m]. Then for both b ∈ {0, 1}, Merge(BP0, BP1, b) and Merge(BP0, BP

′
1, b) also differ only in

the ith level. A similar statement holds for branching programs BP ′0 that differ from BP0 in only
one level.

• For any b ∈ {0, 1}, let BP = Merge(BP0, BP1, b), and Pout
BP (·) and Pout

BPb(·) be the functions
computing the output matrices on a given input for BP and BPb respectively. Then for every
input x ∈ {0, 1}n,

col1(Pout
BP (x)) = extend(col1(Pout

BPb(x)))

where extend extends a length w vector by appending w zeroes to the end.

Let us emphasize that even ifBP0 andBP1 have fixed accept and reject matrices,Merge(BP0, BP1, b)
may no longer be a branching program with fixed accept and reject matrices; however, it will be a
branching program having fixed output column (as required by Definition 6).

4.2.2 The Construction

In this section we show how to construct an indistinguishability obfuscator for the class C1, given a
neighboring-matrix indistinguishability obfuscator for branching programs Obf. By Lemma 4, iO can
be converted into indistinguishability obfuscator for NC1.

Description of iO(1n, C) :

1. iO verifies that input C ∈ C1n (that is, C is a circuit with size at most n and depth at most log(n)),
and aborts otherwise.

2. iO uses Barrington’s Theorem to convert C into an oblivious width 5 permutation branching
program. It pads this branching program as follows: First, it increases the number of input
bits to the branching program to n. Next, it adds dummy levels to the end of the branching
program until its length is the same as the longest branching program for a circuit in C1

n (which is
O(4log(n)) = O(n2)). Then, for every level in the branching program, it replaces it with n dummy
levels that read every bit of the input in sequential order, inserting the original level into the
corresponding position in this sequence.

This procedure ensures that every padded branching program for a circuit in C1n has the same
length, same number of input bits, and the same input labelling function inp as the padded
branching program for any other circuit in C1n. Let the padded branching program be BP =
{inp(i), Bi,0, Bi,1}mi=1.

23

3. iO generates a dummy width-5 branching program I = {inp(i), I5×5, I5×5}mi=1 of length m, where
each permutation matrix at each level is the identity matrix. iO then computes B̂P = Merge(BP, I, 0).

4. iO outputs Obf(B̂P).

4.2.3 Proof of security

Theorem 10. There exists a ensemble of classes of branching programs B such that if there exists a
neighboring-matrix indistinguishability obfuscator for B then there exist indistinguishability obfuscators
for NC1.

Proof. We first define the ensemble of classes B = {Bn}n∈N. The class Bn is simply the class of all
matrix branching programs of width 10, and length n3 + 2 such that for every input x it holds that

(
m∏
i=1

Bi,x[inp(i)])) · e1 =

{
e1 when BP (x) = 1

ek when BP (x) = 0

where k 6= 1 is such that ek = extend(Preject · e1) and Preject is the rejecting matrix from Theorem 5.
Let Obf be a neighboring-matrix indistinguishability obfuscator for B, and let iO be the obfuscator

relying on Obf constructed in Section 4.2.2 . We will show iO is a indistinguishability obfuscator for
C1; by Lemma 4, this implies the existence of indistinguishability obfuscators for NC1.

Assume for contradiction that there exists a nuPPT distinguisher D and polynomial p such that
for infinitely many n, there exist functionally equivalent circuits C0

n, C
1
n ∈ C1n such that D distinguishes

iO(1n, C0
n) and iO(1n, C1

n) with advantage 1/p(n). For any n ∈ N, let BP0 and BP1 be the branching
programs of length m = poly(n) obtained by applying Theorem 5 to the circuits C0

n and C1
n respectively,

and padding them so they have the same length and same input labelling function.
Let Hybi be a procedure that takes as input two length m branching programs P0 and P1 (with

the same labeling function) and outputs a “hybrid” length m branching program whose first i levels are
identical to the first i levels of P0 and all the other levels are identical to those of P1. Formally, let
P0 = {inp(j), Bj,0, Bj,1}j∈[m] and P1 = {inp(j), B′j,0, B

′
j,1}j∈[m].

Hybi(P0, P1) = {inp(j), Bj,0, Bj,1}ij=1, {inp(j), B′j,0, B
′
j,1}mj=i+1

For every n ∈ N we define hybrid distributions in the following way.

• We start with H0 which is the obfuscation of the circuit C0
n.

H0 = iO(1n, C0
n) = Obf(Merge(BP0, I, 0))

• For i = 1, 2 . . .m, let
Hi = Obf(Merge(BP0,Hybi(BP1, I), 0))

We change, one level at a time, the second branching program Merge takes as input from I to
BP1.

• We have that Hm = Obf(Merge(BP0, BP1, 0)). We change the “switch” input to Merge so that
the second branching program BP1 is active.

Hm+1 = Obf(Merge(BP0, BP1, 1))

• For i = 1, 2 . . .m, let

Hm+i+1 = Obf(Merge(Hybi(BP1, BP0), BP1, 1))

We change the first program Merge takes as input from BP0 to BP1, one level at a time as before.

24

• We have that H2m+1 = Obf(Merge(BP1, BP1, 1)). We switch back so that the first program is
active (which in this case is the same as the second program BP1)

H2m+2 = Obf(Merge(BP1, BP1, 0))

• For i = 1, 2 . . .m, let
H2m+i+2 = Obf(Merge(BP1,Hybi(I,BP1), 0))

We change the second program Merge takes as input from BP1 to I, one level at a time as before.
Finally we get

H3m+2 = iO(1n, C1
n) = Obf(Merge(BP1, I, 0))

which is the obfuscation of the circuit C1
n.

Recall that by assumption D distinguishes between {iO(1n, C0
n)}n∈N and {iO(1n, C1

n)}n∈N. That is,
there is a polynomial p such that for infinitely many n

|Pr[D(1n, H0) = 1]− Pr[D(1n, H3m+2)]| > 1/p(n)

By the above hybrid argument, D must distinguish between a pair of consecutive hybrids. That is,
there exists some i ∈ {0, 1, . . . 3m+ 1} such that

|Pr[D(1n, Hi) = 1]− Pr[D(1n, Hi+1)]| > 1/4mp(n)

We now show that Hi and Hi+1 can be expressed as the Obf(BP) and Obf(BP ′) respectively where
BP and BP ′ are relaxed matrix branching programs that differ in at most 4 matrices, agree on all
inputs and come from Bn.

Claim 11. For every n, there exist branching programs BP,BP ′ ∈ Bn such that

• Hi = Obf(BP) and Hi+1 = Obf(BP ′).

• BP and BP ′ differ in at most 4 matrices.

• For all x, BP (x) = BP ′(x).

Proof. We consider three cases: when i is equal to m, 2m+ 1 and otherwise.

Case 1: i = m: By definition ofHi andHi+1, the branching programsBP andBP ′ areMerge(BP0, BP1, 0)
and Merge(BP0, BP1, 1) respectively. By Claim 9, BP and BP ′ differ in the “switch” matrices, which
make up 4 matrices (the first and last level). Furthermore, BP and BP ′ compute BP0 and BP1 re-
spectively which are equivalent programs by assumption. It remains to show that BP,BP ′ ∈ Bn. Note
that BP and BP ′ have width 10 and length n3 + 2. By Claim 9, the first column of the output ma-
trix for a merged branching program only depends on the first column of the output matrix of the
active program. Hence, for every input x, col1(Pout

BP (x)) = extend(col1(Pout
BP0(x))). By Theorem 5,

Pout
BP0(x) is either Paccept or Preject depending on the output BP0(x). Therefore, for all inputs x such

that BP (x) = 0,
col1(Pout

BP (x)) = extend(col1(Preject)) = ek

Similarly, for all inputs x such that BP (x) = 1,

col1(Pout
BP (x)) = extend(col1(Paccept)) = e1

The same argument holds for BP ′ too, in which case BP1 is active and has the same accepting and
rejecting permutations Paccept and Preject by Theorem 5.

25

Case 2: i = 2m+1: By definition ofHi andHi+1, the branching programs BP and BP ′ areMerge(BP1,
BP1, 0) and Merge(BP1, BP1, 1) respectively. As before, these programs differ in the 4 matrices only.
Furthermore, both BP and BP ′ compute the same function, as the active program is the same (BP1).
Also as before, from Claim 9 and Theorem 5 we have that for all inputs x,

col1(Pout
BP (x)) = col1(Pout

BP ′(x)) = extend(col1(Pout
BP1(x))) = et

where t = 1 if BP1(x) = 1 and t = k otherwise.

Case 3: i 6= m and i 6= 2m+ 1: First, consider the subcase when i < m or i > 2m+ 1. The programs
BP and BP ′ are of the form Merge(BP0, Pi) and Merge(BP0, Pi+1) respectively where Pi and Pi+1 are
branching programs that differ only in the i + 1th level. By Claim 9, BP and BP ′ differ only in the
i + 1th level too. Furthermore, in both BP and BP ′, the active program is BP0. Hence BP and BP ′

compute the same function and similarly as the previous case, we have that for all inputs x,

col1(Pout
BP (x)) = col1(Pout

BP ′(x)) = extend(col1(Pout
BP0(x))) = et

where t = 1 if BP1(x) = 1 and t = k otherwise. The case when m < i < 2m+ 1 follows similarly. This
concludes the proof of the claim.

Therefore we have that there is a polynomial p′ such that for infinitely many n there exist functionally
equivalent branching programs BP,BP ′ ∈ Bn that differ in only a few matrices such that

|Pr[D(1n,Obf(BP)) = 1]− Pr[D(1n,Obf(BP ′))]| > 1/p′(n)

This implies Obf is not a neighboring-matrix indistinguishability obfuscator for B and hence a contra-
diction.

4.3 From Semantic Security to nm-iO

In this section we show that assuming the existence of semantically secure multilinear encodings, there
exists a neighboring-matrix indistinguishability obfuscator for any ensemble of classes of branching
programs.

As in previous works [GGH+13b, BR14, BGK+13], the strategy for our construction will be to apply
Kilian’s randomization technique to the matrices, and then encode these matrices using the graded
encoding scheme. The encoding will be using a so-called “straddling set system" (as in [BGK+13]) that
will enforce that any arithmetic circuit operating on these encodings can be decomposed into a sum of
terms such that each term can be expressed using only encodings that come from one branch of the
branching program (more specifically, from the path through the branching program corresponding to
evaluating a particular input x to the branching program).

As mentioned in the introduction, although we will closely follow techniques from [BR14, BGK+13]
(our obfuscator may be viewed as a simplified version of the obfuscator from [BGK+13]), we cannot
directly rely on their proofs for two reasons:

1. The proofs in [BR14, BGK+13] rely on the fact that we are only obfuscating branching programs
with fixed accept and reject matrices; as mentioned, we need to handle more general classes of
branching programs.

2. The proofs in [BR14, BGK+13] only reason about polynomial-size generic attackers. In contrast,
to rely on semantical security, we need to reason about unbounded arithmetic circuits.

26

4.3.1 Randomizing Branching Programs

We start by describing Kilian’s randomization technique [Kil88] for a branching program, adapted to
our setting, by defining a process Rand that randomizes the matrices of a branching program BP . We
will decompose the randomization into two parts, RandB and Randα, defined below, and define Rand as
their composition.

Definition 15 (RandB). Let BP = {inp(i), Bi,0, Bi,1}mi=1 be a branching program of width w and length
m, with length-n inputs. Let p be a prime exponential in n. Then the process RandB(BP, p) samples m
random invertible matrices R1, R2, . . . , Rm ∈ Zw×wp uniformly and independently, and computes

B̃i,b = R(i−1) ·Bi,b ·R−1i for every i ∈ [m], and b ∈ {0, 1}

where R0 is defined as Iw×w, and
t = Rm · e1

RandB then outputs
({B̃i,b}i∈[m],b∈{0,1}, t, p)

Definition 16 (Randα). Let ({B̃i,b}i∈[m],b∈{0,1}, t, p) be the output of RandB(BP, p) as defined above.
On this input, Randα({B̃i,b}i∈[m],b∈{0,1}, p) samples 2m non-zero scalars {αi,b ∈ Zp : i ∈ [m], b ∈ {0, 1}}
uniformly and independently, and outputs

({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)

Definition 17 (Rand). Let BP = {inp(i), Bi,0, Bi,1}mi=1 be a branching program of width w and length
m, with length-n inputs. Let p be a prime exponential in n. Then we define Rand(BP, p) to be:

Rand(BP, p) = (Randα(RandB(BP, p)))

= ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)

Where ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t) are as computed in the executions of Randα and RandB.

Execution of a randomized branching program: To computeBP (x) from the output of Rand(BP, p),
given some input labelling function inp : [m]→ [n], and x ∈ {0, 1}n, we compute

Out(x) = (

m∏
i=1

αi,x[inp(i)] · B̃i,x[inp(i)]) · t

Where Out ∈ ZwP is a w× 1 vector. The intermediate multiplications cause each R−1i to cancel each Ri,
and R0 = Iw×w, so the above computation can also be expressed as:

Out(x) = (
m∏
i=1

αi,x[inp(i)] ·Bi,x[inp(i)]) · e1

When BP (x) = 1, we have that
m∏
i=1

αi,x[inp(i)] ·Bi,x[inp(i)] · e1 = (
m∏
i=1

αi,x[inp(i)]) · e1

When BP (x) = 0, we have that
m∏
i=1

αi,x[inp(i)] ·Bi,x[inp(i)] · e1 = (

m∏
i=1

αi,x[inp(i)]) · ek

27

for k 6= 1. Hence, to compute BP (x), we compute Out(x) and output 0 if Out(x)[1] = 0, and 1 otherwise.

Simulating a randomized branching program: Previous works ([BGK+13, BR14]) followed [Kil88]
to show how to simulate the distribution of any single path corresponding to an input x using just BP (x).
However, the simulator required that branching programs have unique accept and reject matrices Paccept

and Preject.
We would also like a theorem, along the lines of [Kil88], that shows that any single path through

a randomized branching program BP corresponding to an input x can be simulated knowing just the
accept/reject behavior of BP on x (i.e. by knowing whether BP (x) = 1).

In our setting, however, branching programs only meet the relaxed requirement that the output
matrix Pout(x) computed by evaluating BP on input x satisfies Pout(x) · e1 = e1 ⇐⇒ BP (x) = 1.
There can thus be multiple accept and reject matrices, and the particular accept or reject matrix
output by BP can depend both on x and on the specific implementation of BP (and not simply its
accept/reject behavior). In contrast, in previous works, because Paccept and Preject were unique, knowing
just the accept/reject behavior of BP on x also determines Pout(x).

What we will show is that, for the particular randomization scheme chosen above, we can simulate
any single path through a randomized branching program BP corresponding to an input x without
knowing the exact accept/reject matrix Pout(x), but rather just knowing the first column pout(x) =
col1(Pout(x)).

This will be sufficient for our applications, because the class of branching programs we randomize
will have the property that there are fixed columns paccept and preject ∈ Zwp such that for all x ∈ {0, 1}n,
if BP (x) = 1 then col1(Pout(x)) = paccept, and if BP (x) = 0 then col1(Pout(x)) = preject. In the case of
such programs, col1(Pout(x)) is determined solely by BP (x), and not the particular implementation of
BP . Thus, for these programs, we can simulate given only BP (x).

Before we show this theorem, we define notation for a path through a branching program corre-
sponding to an input x.

Definition 18 (projx). Let inp : [m] → [n] be an input labelling function, and, for any x ∈ {0, 1}n,
define projx, relative to inp, such that for any branching program BP with labelling function inp, for any
prime p ∈ N, and for any ({B̃i,b}i∈[m],b∈{0,1}, t)← RandB(BP, p)

projx({B̃i,b}i∈[m],b∈{0,1}, t) = ({B̃i,x[inp(i)]}i∈[m], t),

that is, projx selects the elements from ({B̃i,b}i∈[m],b∈{0,1}, t) used when evaluating input x.

We now show a version of Kilian’s theorem, adapted to our construction.

Theorem 12. There exists an efficient simulator KSim such that the following holds. Let BP =
{inp(i), Bi,0, Bi,1}i∈[m] be a width-w branching program of length m on n bit inputs, and p a prime
exponential in n. Let x ∈ {0, 1}n be an input to BP , and let bi = x[inp(i)] for each i ∈ [m]. Let Pout(x) =∏m
i=1Bi,bi denote the matrix obtained by evaluating BP on x, and let pout(x) = col1(Pout(x)) denote

the first column of this output. Let projx(RandB(BP, p)) be defined respecting the labelling function inp.
Then KSim(1m, p, pout(x)) is identically distributed to projx(RandB(BP, p)).

Proof. We begin by defining KSim(1n, p, BP (x)) as follows:

• For each i, KSim selects B̃i,bi to be a uniformly random invertible matrix in Zw×wp .

• KSim selects t ∈ Zwp solving

(
∏
i∈[m]

B̃i,bi) · t = pout(x) (1)

where bi = x[inp(i)] for each i.

28

• KSim outputs {{B̃i,bi}i∈[m], t}

We want to show that the distribution output by KSim matches the real distribution of {{B̃i,bi}i∈[m], t}
in the output of RandB(BP, p). But from [Kil88], we have the following:

Claim 13. The distribution of {{B̃i,bi}i∈[m], Rm} can be exactly sampled given Pout(x), by sampling
{B̃i,bi}i∈[m], Rm to be uniformly random and independent invertible matrices in Zw×wp subject to

(
∏
i∈[m]

B̃i,bi) ·Rm = Pout(x) (2)

The above claim implies the following:

Claim 14. The distribution of {{B̃i,bi}i∈[m], Rm} can be sampled by independently choosing each B̃i,bi
uniform and invertible, and fixing Rm solving equation (2).

Proof. This follows because for every choice of invertible B̃i,bi , there exists Rm solving equation (2)
given by

Rm = (
∏
i∈[m]

B̃i,bi))
−1 · Pout(x) (3)

Further, every solution to equation (2) can be represented as invertible B̃i,bi , and an Rm solving
equation (3). Thus choosing a random solution to equation (2) corresponds to independently choosing
each B̃i,bi uniformly and invertible, and fixing Rm solving equation (3).

From the above argument, we have that the distribution of projx(Rand(BP, p)) is exactly the same
as the distribution produced by independently choosing each B̃i,bi uniform and invertible, fixing Rm
solving equation (3), setting t to be the first column of Rm, and outputting {{B̃i,bi}i∈[m], t}. But note
that each column coli(Rm), i ∈ [w] is the unique solution to

(
∏
i∈[m]

B̃i,bi) · coli(Rm) = coli(Pout(x))

Thus we have that each B̃i,bi is independent, uniform, and invertible, and, using i = 1, t is the unique
solution to

(
∏
i∈[m]

B̃i,bi) · t = pout(x)

and, in particular, that t is determined by only the first column of Pout(x). Thus, we see that the
distribution of projx(RandB(BP, p)) is exactly the same as that output by KSim.

4.3.2 Choosing a Set System

In this section we will describe how to choose a collection of sets under which to encode a randomized
branching program using the graded encoding scheme. Our selection of sets will closely follow [BGK+13],
in that we use straddling set systems. However, one difference is that while they use dual input branching
programs, we restrict our attention to single-input schemes. As a consequence, the sets will be simpler
and consist of fewer elements.

We first define straddling set systems.

29

Definition 19 (Straddling Set Systems [BGK+13]). A straddling set system with n entries is a collec-
tion of sets Sn = {Si,b : i ∈ [n], b ∈ {0, 1}} over a universe U , such that:⋃

i∈[n]

Si,0 =
⋃
i∈[n]

Si,1 = U

and for every distinct non-empty sets C,D ⊆ Sn, we have that if:

1. (Disjoint Sets:) C contains only disjoint sets. D contains only disjoint sets.

2. (Collision:)
⋃
S∈C S =

⋃
S∈D S

Then it must be that ∃b ∈ {0, 1} such that:

C = {Sj,b}j∈[n] , D = {Sj,(1−b)}j∈[n]

Informally, the guarantee provided by a straddling set system is that only way to exactly cover U using
elements from Sn is to use either all sets {Si,0}i∈n or all sets {Si,1}i∈n. We use a slight variant of their
construction, choosing U to be [2n], each Si,0 to be one of {1, 2}, {3, 4}, . . . , {2n− 1, 2n}, and each Si,1
to be one of {1, 2n}, {2, 3}, {4, 5} . . . , {2n − 2, 2n − 1}.25 By a proof exactly following [BGK+13], we
have that this construction is a straddling set system.

Theorem 15 (Following Construction 1 in [BGK+13]). For every n ∈ N , there exists a straddling set
system Sn with n entries, over a universe U of 2n elements; furthermore, each set in the straddling set
system has size exactly two.

We now define the process SetSystem which takes as input the length m of a branching program,
the number of input bits n, and the input labelling function inp : [m] → [n] for a branching program.
SetSystem will output the collection of straddling set systems that we will use to encode any branching
program of length m on n input bits, with labelling function inp.

Execution of SetSystem(m,n, inp):
We let nj denote the number of levels that inspect the jth input bit in inp. That is,

nj = |{i ∈ [m] : inp(i) = j}|

For every j ∈ [n], SetSystem chooses Sj to be a straddling set system with nj entries over a set Uj , such
that the sets U1, . . . , Un are disjoint. Let U =

⋃
j∈[n] Uj . SetSystem then chooses St be a set of two

elements26, disjoint from U . We associate the set system Sj with the j’th input bit of the branching
program corresponding to inp. SetSystem then re-indexes the elements of Sj to match the steps of the
branching program as described by inp, so that:

Sj = {Si,b : inp(i) = j, b ∈ {0, 1}}

By this indexing, we also have that Si,b ∈ Sinp(i) for every i ∈ [m], for every b ∈ {0, 1}.
Let k = |U ∪ St|, and WLOG, assume that the U js and St are disjoint subsets of [k] (otherwise

SetSystem relabels the elements to satisfy this property).
SetSystem then outputs

k, {Si,b}i∈[m],b∈{0,1}, St

25In the construction of [BGK+13], U = [2n− 1], and each Si,0 is one of {1}, {2, 3}, . . . , {2n− 2, 2n− 1}, and each Si,1
is one of {1, 2}, {3, 4}, . . . , {2n − 1}. We could have also worked with this construction, but modify it slightly to ensure
that all encodings are under sets of size exactly two.

26We make this choice to ensure that every set in the output of SetSystemconsists of exactly two indices {i, j} for
i, j ∈ [k]

30

4.3.3 The Construction

We finally describe our neighboring-matrix indistinguishability obfuscator Obf for branching programs.
Obf will use Rand and SetSystem as subroutines.
Description of Obf(BP) :

Input. Obf takes as input an oblivious permutation branching program BP = {inp(i), Bi,0, Bi,1}mi=1 of
width w, length m and taking n input bits.

Choosing sets. Obf runs SetSystem(m,n, inp) and receives k, {Si,b}i∈[m+2],b∈{0,1}, St.

Initializing the GES. Obf runs InstGen(1n, 1k) and receives secret parameters sp and public parame-
ters pp which describe a (k,R)-graded encoding scheme. We assume the ring R is equal to Zp for
some p exponential in n and k.

Randomizing BP. Obf executes Rand(BP, p), and obtains its output, {{inp(i), αi,0·B̃i,0, αi,1·B̃i,1}i∈[m], t}

Output. Obf outputs:

pp, {inp(i), Enc(sp, αi,0 · B̃i,0, Si,0), Enc(sp, αi,0 · B̃i,0, Si,1)}i∈[m], Enc(sp, t, St)

We also define a generic version of Obf, which we refer to as GObf. Its output will be used to
initialize an oracle M for the idealized version of the graded encoded scheme. GObf(BP, pp) acts
exactly as Obf(BP), except that it works with a fixed public parameter pp supplied as input, and in
the Output step, GObf outputs

pp, {inp(i), (αi,0 · B̃i,0, Si,0), (αi,1 · B̃i,1, Si,1)}i∈[m], (t, St)

that is, the output before it is encoded under the multilinear encoding scheme.

4.3.4 Proof of security

We show that Obf defined in Section 4.3.3 is a neighboring-matrix indistinguishability obfuscator for
any ensemble of classes of branching programs, if the underlying multilinear encodings are semantically
secure.

Theorem 16. Assume the existence of an entropic semantically secure multilinear encoding scheme.
Then there exist a neighboring-matrix indistinguishability obfuscator for any ensemble of classes of
branching programs.

Proof. Consider any ensemble B = {Bn}n∈N of classes of branching programs. We show that the
obfuscator Obf is a neighboring-matrix indistinguishability obfuscator for B. Assume for contradiction
there exist a pair of ensembles {BP 0

n}n∈N, {BP 1
n}n∈N nuPPT D and polynomial p such that for infinitely

many n, BP 0
n , BP

1
n are functionally equivalent programs in Bn that differ in at most 4 matrices and

|Pr[D(1n,Obf(BP 0
n)) = 1]− Pr[D(1n,Obf(BP 1

n))]| > 1/p(n)

We will show that the semantic security of the multilinear encodings used by Obf implies a contradic-
tion. In particular, we construct a message sampler M which samples (~m0, ~m1, ~z) such that Obf(BP 0

n)
is simply the encoding of (~m0, ~z) and Obf(BP 1

n) is the encoding of (~m1, ~z). We then show that if BP 0
n

and BP 1
n agree on all inputs, then the message sampler M is valid in the sense of Definition 11 and

therefore D breaks the semantic security of the encoding scheme used, hence a contradiction.

31

Fix n ∈ N, and let BP 0
n = {inp(i), Bi,0, Bi,1}i∈[m] and BP 1

n = {inp(i), B′i,0, B
′
i,1}i∈[m]. Let L ⊂

[m] × {0, 1} be the set of indices of those matrices in which BP 0
n and BP 1

n differ. Note that by
assumption |L| = 4. All other matrices of BP 0

n and BP 1
n are the same.

Let (k, {Si,b}i∈[m],b∈{0,1}, St) = SetSystem(m,n′, inp) where n′ is the input length of the branching
programs BP 0

n , BP
1
n , and let

~Sn = {Sl}l∈L
~Tn = ({Sl}l /∈L, St)

We now define a message sampler M as follows. When run with security parameter 1n, M gets BP 0
n

and BP 1
n as non-uniform advice. On input 1n, public parameters pp that describe a (k,Zp)-graded

encoding scheme, M samples m random invertible 10× 10 matrices over Zp, {Ri}i∈[m] and 2m random
scalars from Zp, {αi,b}i∈[m],b∈{0,1}. M then uses these matrices and scalars to randomize BP 0

n and BP 1
n

as described by Rand(·, p) to obtain {αi,b · B̃i,b}i∈[m′],b∈{0,1}, {αi,b · B̃′i,b}i∈[m′],b∈{0,1} and t. M outputs

~m0 = {αl · B̃l}l∈L

~m1 = {αl · B̃′l}l∈L
~z = ({αl · B̃l}l /∈L, t)

We observe that D(1n,Obf(BP bn)) is simply the output of D when playing the semantic security
game in Definition 12 parameterized by the bit b with the message sampler M and sets (~Sn, ~Tn) (as
defined above). To see this, observe that the distribution of (~m0, ~z) is identical to Rand(BP 0

n , p) and
the distribution of (~m1, ~z) is identical to Rand(BP 1

n , p). When these elements are encoded under sets
~Sn, ~Tn then we obtain the distributions Obf(BP 0

n) and Obf(BP 1
n) respectively.

Recall that for infinitely many n,

|Pr[D(1n,Obf(BP 0
n)) = 1]− Pr[D(1n,Obf(BP 1

n))]| > 1/p(n)

Since the graded encoding scheme is semantically secure, and |~Sn| ∈ O(1) and |~Tn| ∈ O(k), it must
be that M is not a {~Sn, ~Tn}n∈N-respecting message sampler. In the remainder of the proof we show
that if BP and BP ′ agree on all inputs then M is a {~Sn, ~Tn}n∈N-respecting message sampler, hence
implying a contradiction. Similar statements were shown in [BGK+13] and [BR14]. In particular, GObf
is a simplified version of the obfuscator of [BGK+13], which [BGK+13] shows is VBB secure against
algebraic adversaries. We will follow the structure of the proof in [BGK+13], but cannot use it in a
black-box way due to the differences in the construction and the fact that their proof only works for
branching programs that have unique accepting and rejecting output matrices. The branching programs
we consider may not have this property.

To prove that M is a {~Sn, ~Tn}n∈N-respecting message sampler we need to show that there exists
a polynomial Q such that for every n ∈ N, every (sp, pp) in the support of InstGen(1n, 1k), and every
(~Sn, ~Tn)-respecting arithmetic circuit C, there exists a constant c ∈ {0, 1} such that for any b ∈ {0, 1},

Pr[(~m0, ~m1, ~z)←M(1n, pp) : isZero(C(~mb, ~z)) = c] ≥ 1−Q(n, k)/|R|.

where R is the ring associated with pp. We show that the result of applying any (~Sn, ~Tn)-respecting
arithmetic circuit C on (~m0, ~z) (resp. (~m1, ~z)), can be simulated with overwhelming probability given
just BP 0

n . This implies (by a union bound over b ∈ {0, 1}) that for every such C there exists some
bit c such that with overwhelming probability C(~mb, ~z) = c for b ∈ {0, 1}, and thus M is {~Sn, ~Tn}n∈N-
respecting. It suffices to show the following lemma and to note that BP 0

n and BP 1
n are functionally

equivalent.

32

Lemma 17. There exists a Turing machine CSim such that for every m,n,w ∈ N, v0, v1 ∈ {0, 1}w,
labeling function inp : [m] → [n], prime number p, and ~S-respecting arithmetic circuit C where ~S =
SetSystem(m,n, inp), the following holds. For every branching program BP of length m, width w and
labeling function inp for which on every input x, col1(Pout(x)) = vBP (x) it holds that

Pr[isZero(C(Rand(BP, p))) 6= CSimBP (1m, p, C, v0, v1)] ≤ 32wm/p

The proof of the lemma follows the structure of the VBB simulation in [BGK+13], appropriately
adapted to deal with the fact that our branching programs do not have a unique output by relying on
Theorem 12.

Proof. Roughly speaking the lemma follows from the the property that ~S-respecting arithmetic circuits,
due to the straddling set systems in ~S, can only evaluate expressions that are “consistent” with some
inputs. In particular, following [BGK+13], the polynomial evaluated by C can be expressed as the sum
of single-input terms where each single-input term is a function of elements that are consistent with
some single input to the branching program. Next, we rely on Theorem 12 to show that the sum of
these single-input terms will depend only on the value of the branching program on these inputs.

The following proposition states that the function a ~S-respecting arithmetic circuit computes can
be expressed as the sum of several single-input terms. This decomposition is very similar to the one
shown in [BGK+13].27

Proposition 1. Fixm,n,w ∈ N and inp : [m]→ [n]. Let ~S = SetSystem(m,n, inp) = ({Si,b}i∈[m],b∈{0,1},

St), and let C be any ~S-respecting arithmetic circuit. There exists a set X ⊆ {0, 1}n of inputs such that

(i)
C({αi,bB̃i,b}i∈[m],b∈{0,1}, t) ≡

∑
x∈X

Cx({αi,bB̃i,b}i∈[m],b∈{0,1}, t)

where each Cx is a ~S-respecting arithmetic circuit, whose input wires are labelled only with sets
respecting a single input x ∈ {0, 1}n, that is, only with sets ∈ {Si,x[inp(i)]}i∈[m] ∪ {St}.

(ii) For each Cx above, for every branching program BP of width w and length m on n input bits, with
input labelling function inp, every prime p, and every ({αi,b · B̃i,b}i∈m,b∈{0,1}, t)← Rand(BP, p)

Cx({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αx · px({B̃i,x[inp(i)]}i∈[m], t)

where px is some polynomial, and αx = (
∏
i∈[m] αi,x[inp(i)]). Furthermore, when px is viewed as a

sum of monomials, each monomial contains exactly one entry from each B̃i,x[inp(i)], and one entry
from t.

The proof of Proposition 1 uses the following lemma:

Lemma 18. Fix m,n,w ∈ N and inp : [m] → [n]. Let ~S = SetSystem(m,n, inp) = ({Si,b}i∈[m],b∈{0,1},

St), and let C be any weakly ~S-respecting arithmetic circuit whose output wire is tagged with T ⊆ [k].
Then there exists a set U ⊆ {0, 1, ∗}m such that for every branching program BP of width w and length
m on n input bits, with input tagging function inp, every prime p, and every ({αi,b ·B̃i,b}i∈m,b∈{0,1}, t)←
Rand(BP, p),

27The key difference is that [BGK+13] proves such a decomposition for “dual-input” branching program, and use the
“dual-input” property to show that there are only polynomially many terms in the decomposition.

33

(i)
C({αi,bB̃i,b}i∈[m],b∈{0,1}, t) ≡

∑
u∈U

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t)

where each Cu is a weakly ~S-respecting arithmetic circuit, whose input wires are tagged only with
sets ∈ {Si,u[i]}i∈[m]:u[i] 6=∗ ∪ {St}, and whose output wire is tagged with T .

(ii) Each Cu above is the sum of several “monomial” circuits, where each monomial circuit performs
only multiplications of elements in ({αi,b ·B̃i,b}i∈m,b∈{0,1}, t), is weakly ~S-respecting, and has output
wire tagged with T .

(iii) For each Cu above,

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αu · pu({B̃i,u[i]}i∈[m]:u[i] 6=∗, t)

where pu is some polynomial, and αu = (
∏
i∈[m]:u[i]6=∗ αi,u[i]). Furthermore, when pu is viewed as a

sum of monomials, each monomial contains exactly one entry from each B̃i,u[i] such that u[i] 6= ∗,
and possibly one entry from t. Further, pu can be computed by a weakly ~S-respecting circuit whose
output wire is tagged with T .

The lemma can be proved using a simple induction. We provide a complete proof of the lemma in
Appendix B. Given this lemma, the proof of Proposition 1 is as follows:

Proof. Part (i) We consider the special case of Lemma 18 part (i), in which C is ~S-respecting (as
opposed to only weakly ~S-respecting). In this case, we have that each Cu in the decomposition of C is
also ~S-respecting, and in particular, each Cu for u ∈ U has its output wire tagged with the universe set
[k].

We first observe that for any Cu in the decomposition of C, u cannot contain ∗. This is because the
output of Cu is tagged with [k], and thus must have at least one input wire tagged with either of Si,0
or Si,1 for each i, or else the straddling set Sinp(i) will be incomplete, and thus the output wire cannot
be tagged with [k].

Further, we observe that for every u ∈ U , for every j ∈ [n], there must be a bit bj ∈ {0, 1} such that
for every i ∈ [m] such that inp(i) = j, u[i] = bj . This can be seen by considering any monomial circuit
in Cu individually. Recall from Lemma 18 part (ii) that Cu is formed by summing some number of
monomials circuits, each of which is ~S-respecting and has output wire tagged with [k]. This means that
Sj ⊆ [k] is covered by the elements of the monomial. However, since Sj is constructed as a straddling set,
the only way to cover Sj in a monomial circuit that only contains multiplication gates, is by using either
all sets from {Si,0 : inp(i) = j}i∈m or all sets from {Si,1 : inp(i) = j}i∈m. This means, correspondingly,
that u must be such that there is a bit bj ∈ {0, 1}, for every i ∈ [m] such that inp(i) = j, u[i] = b. Define
x ∈ {0, 1}n so that x[j] = bj for all j ∈ [n]. In this way, we can define a one-to-one correspondence from
each u ∈ U to corresponding x ∈ {0, 1}n, and we simply relabel each Cu to the corresponding Cx to get
the desired decomposition of C. We observe that the additional conditions on each Cx can be achieved
from the corresponding conditions on Cu as guaranteed by Lemma 18.

Part (ii) Part (ii) follows directly from Part (i) of this proposition, together with Lemma 18 part (iii),
and the observation that each Cu in Lemma 18 is relabelled to Cx for some x ∈ {0, 1}n in Part (i) of
this proposition.

Now we are ready to describe the simulator CSim. CSim gets as input 1m, prime p, a ~S-respecting
circuit C, vectors v0, v1 and has oracle access to a length m branching program BP . Let X be the set
of inputs and {px}x∈X be the single-input polynomials corresponding to the decomposition of C. For

34

every x ∈ X, CSim queries BP on x, samples dx ← KSim(1m, p, vBP (x)) and checks whether px(dx) = 0.
CSim outputs 1 if and only if for every input x ∈ X, px(dx) = 0.

Now we prove correctness of our simulation. First, we prove some claims that will be useful. In each
of these claims, let projx be defined with respect to the labeling function inp of the branching program
BP . The following claim states that if C(Rand(BP, p)) is always zero, then every single-input term is
always zero.

Claim 19. If Pr[C(Rand(BP, p) = 0] = 1 then for every input x ∈ X,

Pr[px(projx(RandB(BP, p))) = 0] = 1

Proof. Consider a fixed d = ({B̃i,b}i∈[m],b∈{0,1}, t) in the support of RandB(BP, p) and let Cd({αi,b}i∈[m],b∈{0,1}) =

C({αi,b · B̃i,b}i∈[m],b∈{0,1}, t). By Proposition 1, we know that

Cd({αi,b}) =
∑
x∈X

(
∏
i∈[m]

αi,x[inp(i)])px(projx(d))

and Cd is a degree m+ 2 polynomial. By assumption, C(Rand(BP, p)) is always zero (over the support
of Rand(BP, p)); hence, Cd({αi,b}) = 0 for all non-zero {αi,b}. By the Schwartz-Zippel lemma, this can
happen only if Cd is the zero polynomial. By the structure of Cd, this implies that for every x ∈ X,
px(projx(d)) = 0. This argument works for every fixed value of d, hence we have that for every x ∈ X,
Pr[px(projx(RandB(BP, p))) = 0] = 1.

The next claim states that if C(Rand(BP, p)) is not always zero, then it is zero with small probability.
Furthermore, there exists a single-input term that is zero with small probability.

Claim 20. For any ~S-respecting circuit C, if Pr[C(Rand(BP, p)) = 0] < 1 then the following holds.

1. Pr[C(Rand(BP, p)) = 0] ≤ 16wm/p

2. There exists x ∈ X such that Pr[px(projx(RandB(BP, p))) = 0] ≤ 16wm/p, where X is obtained
from the decomposition of C by Proposition 1.

Proof. We start by showing part 1.

Part 1: If Rand(BP, p) = Randα(RandB(BP, p)) can be expressed as a low-degree (≤ 2w) polynomial
on uniformly random values in Zp—namely, the α’s and the randomization matrices Ri’s—then by the
Schwartz-Zippel lemma the first part of the claim directly follows. However, there are two barriers to
applying this argument:

• RandB does not sample uniformly random matrices {Ri}i∈[m]; rather, it chooses uniformly random
invertible matrices Ri. Similarly, Randα does not sample uniformly random {αi,b}i∈[m],b∈{0,1};
rather, it chooses uniformly random non-zero αi,b.

• RandB also needs to compute inverses R−1i to Ri for every i ∈ [m] (which may no longer be
expressed as low degree polynomials in the matrices {Ri}i∈[m]).

To handle the second issue, consider the distribution RandBadj(BP, p) that is defined exactly as RandB(BP, p)

except that for every i ∈ [m] it uses adj(Ri) = R−1i det(Ri) instead of R−1i . Note that every entry of the
adjoint of a w×w matrix M is some cofactor of M (obtained by the determinant of the w− 1×w− 1
matrix obtained by deleting some row and column of A). Hence every entry of adj(Ri) can be ex-
pressed as a degree w polynomial in Ri. Let Randadj(BP, p) = Randα(RandBadj(BP, p)). It follows that
Randadj(BP, p) is computed by degree (at most) 2w polynomial in the matrices {Ri}i∈[m] and scalars
{αi,b}i∈[m],b∈{0,1}.

35

Furthermore, we show that Pr[C(Randadj(BP, p)) = 0] = Pr[C(Rand(BP, p)) = 0]. Recall that by
Proposition 1,

C ≡
∑
x∈X

Cx

and for each Cx above and every ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)← Rand(BP, p) ,

Cx({αi,b · B̃i,b}i∈[m],b∈{0,1}, t) = αx · px({B̃i,x[inp(i)]}i∈[m], t)

where αx = (
∏
i∈[m] αi,x[inp(i)]) and px is a polynomial such that, when viewed as a sum of monomials,

each monomial contains exactly one entry from each B̃i,x[inp(i)], and one entry from t. Recall that for
every i ∈ [m],

B̃i,x[inp(i)] = Ri−1Bi,x[inp(i)]R
−1
i

For every i ∈ [m], replacing R−1i with adj(Ri) has the effect of multiplying each monomial in px with
the scalar det(Ri). Hence

Cx(Randadj(BP, p)) = (
∏
i∈[m]

det(Ri)) · Cx(Rand(BP, p))

Since C is the sum of such Cx terms, it holds that C(Randadj(BP, p)) = (
∏
i∈[m] det(Ri))C(Rand(BP, p)).

For every i ∈ [m], by invertibility, det(Ri) 6= 0 and hence

Pr[C(Randadj(BP, p)) = 0] = Pr[C(Rand(BP, p)) = 0]

So far, we have that Randadj(BP, p) is computed by a degree 2w polynomial in the matrices {Ri}i∈[m]

and scalars {αi,b}i∈[m],b∈{0,1}. However the first issue remains: each Ri is uniformly random invertible
and each αi,b is uniformly random non-zero, whereas we need them to be uniformly random. Con-
sider the distribution Randadj,U (BP, p) that is obtained by the computing the same polynomial on
uniformly random matrices {Ri}i∈[m] and scalars {αi,b}i∈[m],b∈{0,1} over Zp. In Claim 29, we show
that the statistical distance between Randadj(BP, p) and Randadj,U (BP, p) is at most 8wm/p. Further-
more, the support of Randadj,U (BP, p) contains the support of Randadj(BP, p). This implies that if
Pr[C(Randadj(BP, p)) = 0] < 1 then Pr[C(Randadj,U (BP, p)) = 0] < 1.

We now turn to proving the statement of the claim. Using facts shown above, we have that

Pr[C(Rand(BP, p)) = 0] < 1 =⇒ Pr[C(Randadj(BP, p)) = 0] < 1 =⇒ Pr[C(Randadj,U (BP, p)) = 0] < 1

By Proposition 1, C evaluates a m+1 degree polynomial, and Randadj,U (BP, p) is computed by a degree
2w polynomial in uniformly random values in Zp. By the Schwartz-Zippel lemma,

Pr[C(Randadj,U (BP, p)) = 0] < 1 =⇒ Pr[C(Randadj,U (BP, p) = 0] ≤ 2w(m+ 1)/p ≤ 8wm/p

We have that the statistical distance between Randadj,U (BP, p) and Randadj(BP, p) is at most 8wm/p.
Therefore, Pr[C(Rand(BP, p)) = 0] = Pr[C(Randadj(BP, p)) = 0] ≤ 16wm/p thus proving the first
part of the claim. We proceed to show part 2.

Part 2: By Proposition 1, for every x ∈ X, there exists a ~S-respecting arithmetic circuit Cx such that
for every ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)← Rand(BP, p),

Cx({αi,b · B̃i,b}i∈[m],b∈{0,1}, t) = αx · px({B̃i,x[inp(i)]}i∈[m], t)

where αx = (
∏
i∈[m] αi,x[inp(i)]) and C =

∑
x∈X Cx. In particular, px({B̃i,x[inp(i)]}i∈[m], t) = 0 iff Cx({αi,b ·

B̃i,b}i∈[m],b∈{0,1}, t) = 0 (since αi,b is non-zero).

36

Thus, we have that

Pr[C(Rand(BP, p))) = 0] = Pr[Cx(Randα(RandB(BP, p))) = 0] = Pr[px(projx(RandB(BP, p))) = 0]

There must exist an input x ∈ X such that Pr[Cx(Rand(BP, p))) = 0] < 1 or else Pr[C(Rand(BP, p))) =
0] = 1. By the first part of the claim, it follows that

Pr[C(Rand(BP, p))) = 0] ≤ 16wm/p,

which concludes the proof.

Now we analyze the correctness of the simulator CSim. We consider the following two cases: when
C(Rand(BP, p)) is always zero, and otherwise.

Case 1: Pr[C(Rand(BP, p)) = 0] = 1: In this case we will show that the simulation always succeeds.
If Pr[C(Rand(BP, p)) = 0] = 1 then by Claim 19, for every x ∈ X, Pr[px(projx(RandB(BP, p))) = 0] =
1. Recall that KSim(1m, p, vBP (x)) simulates projx(RandB(BP, p)) perfectly. Therefore, CSim always
outputs 1 and hence succeeds.

Case 2: Pr[C(Rand(BP, p)) = 0] < 1: In this case, by the first part of Claim 20 we have that

Pr[isZero(C(Rand(BP, p))) = 1] ≤ 16wm/p

By the perfect simulation of KSim, we have that

Pr[CSimBP = 1] = Pr[∀x (dx ← projx(RandB(BP, p)) : px(dx) = 0)]

By second part of Claim 20 there exists input xC such that Pr[pxC (projxC (RandB(BP, p))) = 0] ≤
16wm/p. Therefore,

Pr[CSimBP = 1] ≤ Pr[pxC (projxC (RandB(BP, p))) = 0] ≤ 16wm/p

Therefore, by a union bound we have that

Pr[isZero(C(D)) = CSimBP = 0] > 1− 32wm/p

This concludes the proof of the lemma.

4.3.5 Restricting to Entropic Message Samplers

We here show that the message samper M in the previous section satisfies the required high-entropy
condition (required by the notion of entropic semantical security); that is, M is entropically valid.

Recall that the message sampler M in the proof of Theorem 16 gets as input the description of a
ring R = Zp and samples (~m0, ~m1, ~z) such that (~m0, ~z) and (~m1, ~z) are the “randomizations" (as defined
in the description of Rand) of fixed branching programs. We now show the following proposition, which
combined with the fact that the length m of the branching programs is polynomial in log |R| (recall that
R = Zp where p is a prime exponential in the multilinearity parameter k which is < 3m), implies that
the output of a non-terminal set-respecting circuit on input (~mb, ~z) (for both b ∈ {0, 1}) has min-entropy
log |R| −O(log log |R|), as required.

37

Proposition 2. Let BP be a branching program of length m, width w, input length n and input labeling
function inp. Let p be a prime and ~S = SetSystem(m,n, inp). Let C be a non-terminal ~S-respecting
arithmetic circuit that computes a non-zero polynomial. Then we have that

H∞(C(Rand(BP, p))) ≥ log(
p

12wm
)

or equivalently, for any fixed output a ∈ Zp

Pr[C(Rand(BP, p)) = a] ≤ 12wm/p

Proof. Let T be the set that tags the output wire of C as per the construction given in Definition
9. Since C is non-terminal ~S-respecting, we have that T is a strict subset of [k] where (k, ~S) =
SetSystem(m,n, inp). By Lemma 18 part (iii), there exists a set U of labels u ∈ {0, 1, ∗} such that for
every ({αj,b · B̃j,b}j∈[m],b∈{0,1}, t)← Rand(BP, p) we have that

C({αj,b · B̃j,b}j∈[m],b∈{0,1}, t) =
∑
u∈U

αu · pu({B̃j,u[j]}j∈[m]:u[j]6=∗, t) (4)

where αu =
∏
j∈[m]:u[j] 6=∗ αj,u[j]. Furthermore, each pu is computed by a weakly ~S-respecting circuit

whose output wire is also tagged with T . Since C computes a non-zero polynomial, there must exist
v ∈ U such that pv is a non-zero polynomial. We now have the following claim.

Claim 21. Pr[pv({B̃j,v[j]}j∈[m]:v[j] 6=∗, t) = 0] ≤ 10wm/p.

Proof. To see this, we first observe that since T is a strict subset of [k] and pv is computed by a ~S-
respecting circuit whose output wire is tagged with T , either pv does not operate on some level of the
branching program or it does not operate on t; that is, either,

• there exists j ∈ [m] such that v[j] = ∗, or

• pv is not a function of t.

In the first case, by an argument similar to that in Claim 14, we can show that the distribution
({B̃j,v[j]}j∈[m]:v[j] 6=∗, t) is identical to the distribution ({Rj}j∈[m]:v[j] 6=∗, col1(Rm+1)) where {Rj}m+1

j=1 are
random invertible matrices over Zw×wp . By Claim 29, this distribution is statistically 8wm/p-close to
the distribution where each matrix entry is uniformly random in Zp. Furthermore, since pv is computed
by a ~S-respecting circuit, it is of degree at most m + 1 < 2wm. By the Schwartz Zippel lemma, the
evaluation of pv on such random inputs from Zp is zero with probability at most 2wm/p. All in all, we
have Pr[pv({B̃j,v[j]}j∈[m]:v[j] 6=∗, t) = 0] ≤ 10wm/p.

In the second case, pv acts on the {B̃j,v[j]}j∈[m]. Following Claim 14, this distribution is identi-
cal to that of m random invertible matrices over Zw×wp . Similarly to the first case, it follows that
Pr[pv({B̃j,v[j]}j∈[m]) = 0] ≤ 10wm/p.

Let E be the event that pv({B̃j,v[j]}j∈[m]:v[j]6=∗, t) 6= 0. For any fixed output a ∈ Zp we have that

Pr[C(Rand(BP, p)) = a] ≤ Pr[C(Rand(BP, p)) = a|E] + Pr[Ē] (5)

For a fixed {B̃j,b}j∈[m],b∈{0,1} let q(B̃,a) be a polynomial in variables {αj,b}j∈[m],b∈{0,1} such that

q(B̃,a)({αj,b}j∈[m],b∈{0,1}) = C({αj,b · B̃j,b}j∈[m],b∈{0,1})− a

When the event E occurs, we claim that the resulting polynomial q(B̃,a) is a non-zero polynomial
of degree at most m. This can be easily seen given the decomposition of C in (4). When q(B̃,a) is a

38

non-zero polynomial then by the Schwartz Zippel lemma, its evaluation on uniformly random non-zero
inputs {αj,b}j∈[m],b∈{0,1} is zero with probability at most m/p− 1 ≤ 2wm/p. Therefore, we have

Pr[C(Rand(BP, p)) = a|E] = Pr[qB̃({αj,b}) = 0|E] ≤ 2wm

p
(6)

Combining (6) and (5) and Claim 21, we have Pr[C(Rand(BP, p)) = a] ≤ 12wm/p.

4.4 Achieving Obfuscation for Arbitrary Programs

[GGH+13b] show that any indistinguishability obfuscation scheme for NC1 can be bootstrapped into
an indistinguishability obfuscation scheme for all poly-sized circuits using FHE. That is, they prove the
following theorem.

Theorem 22 ([GGH+13b]). Assume the existence of indistinguishability obfuscators iO for NC1 and a
leveled Fully Homomorphic Encryption scheme with decryption in NC1. Then there exists an indistin-
guishability obfuscator iO′ for P/poly.

Applying their construction to our indisinguishability obfuscator yields an indistinguishability ob-
fuscator for arbitrary polynomial size circuits:

Theorem 23. Assume the existence of a entropic semantically secure multilinear encoding scheme and
a leveled Fully Homomorphic Encryption scheme with decryption in NC1. Then there exists indistin-
guishability obfuscators for P/poly.

5 iO from Single-Distribution Semantical Security

The assumption that a scheme satisfies semantical security w.r.t. some class of message samplers may
perhaps be best viewed as a class of assumptions (or a “meta-assumption”, just like the “uber assumption”
of [BBG05]), or alternatively as an interactive assumption, where the attacker first selects the sets ~S, ~T
and the message sampler M , and then gets a challenge according to the message sampler.

This view point also clarifies that even for the above-mentioned restricted classes of message dis-
tributions, semantical security is not an efficiently falsifiable assumption [Nao03]: the problem is that
there may not exist an efficient way of checking whether a message sampler is valid (which requires
checking that all set-respecting circuits are constant with overwhelming probability).

We here show that a single, falsifiable, instance of this class of assumptions suffices for proving
security of indistindinguishability obfuscator, albeit at the cost of subexponential hardness.

5.1 Single-Distribution Semantical Security

Let us start by formalizing a “single-distribution” version of semantical security, where we restrict
semantical security to hold w.r.t. to a single efficiently samplable distribution over pairs of message
samplers M , and sets ~S, ~T . We call this distribution over message samplers and sets an instance
sampler. Analogously to the notion of a valid message sampler, we now define a notion of a valid
instance sampler as follows:

Definition 20. We say that a PPT Sam is a (c, q)-(entropically) valid instance sampler if

• There exist a polynomial k(·), such that for every n ∈ N, for every rn ∈ {0, 1}∞ , Sam(1n, rn)
outputs a tuple (~Sn, ~Tn,Mn), where ~Sn, ~Tn are sequences of sets over [k(n)] with |~Sn| = c(k(n))
and |~Tn| = q(k(n)).

39

• For every sequence of random tapes {rn}n∈N, {Mn}n∈N is (entropically) { ~Sn, ~Tn}n∈N-respecting,
where for every n ∈ N, (~Sn, ~Tn,Mn)← Sam(1n; rn).

Definition 21 (Single-distribution Semantic Security). Let E be a graded encoding scheme and Sam be
a (c, q)-valid instance sampler. We say that E is semantically secure w.r.t. Sam if for every nuPPT
adversary A, there exists a negligible function ε such that for every security parameter n ∈ N,

|Pr[Output’0(1
n) = 1]− Pr[Output’1(1

n) = 1]| ≤ ε(n)

where Output’b(1n) is A’s output in the following game:

• Let ~Sn, ~Tn,Mn ← Sam(1n).

• Let kn be such that ~Sn and ~Tn are sequences of sets over [kn]. Let (sp, pp)← InstGen(1n, 1kn).

• Let ~m0, ~m1, ~z ←Mn(1n, pp).

• Let ~ub ← {Enc(sp, ~m0[i], ~Sn[i])}c(n)i=1 , {Enc(sp, ~z[i], ~Tn[i])}q(n)i=1 .

• Finally, run A(1n, pp, (~Sn, ~Tn),Mn, ~ub).

Note that given an (O(1), O(k))-valid instance sampler Sam, the assumption that E is semantically-
secure w.r.t. Sam is a special case of the assumption that E is (constant-message) semantically secure; if
E is not semantically secure w.r.t. Sam, there exists ensembles {rn}n∈N, {~Sn, ~Tn}n∈N and {Mn}n∈N such
that ~Sn, ~Tn,Mn = Sam(1n; rn) (and thus {Mn}n∈N is a valid message sampler for {~Sn ~Tn}n∈N, yet the
nuPPT A(1n, ·, ~Sn, ~Tn,Mn, ·) breaks semantical security when considering {~Sn, ~Tn}n∈N and {Mn}n∈N.

Furthermore, that given an (O(1), O(k))-(entropically) valid instance sampler Sam, the assump-
tion that E is semantically-secure w.r.t. Sam is a non-interactive and efficiently falsifiable (decisional)
assumption—in essence, it is a specific instance of a DDH-type assumption over multilinear encodings.

5.2 Basing Security on Single-Distribution Semantical Security

We now show how to slightly modify the construction iO from Section 4.3.3 so that we can base it on
single-distribution semantical security assumption. This time, however, we require subexponentially-
hard semantical security (and as such the assumption is incomparable to the one needed for the scheme
from Section 4.3.3.)

Towards this, we introduce a new notion of neighboring-input indistinguishability obfuscation. As we
shall see, the assumption that a scheme satisfies neighboring-input iO is already an efficiently falsifiable
assumption. We then show that a) exponentially-secure neighboring-input iO implies “full” iO, and b)
exponentially-secure neighboring-input iO can be based on subexponentially-hard single-distribution
semantic security. (We mention a very recent work by Gentry, Lewko and Waters [GLW14] in the
context of witness encryption [GGSW13] that similarly defines a falsifiable primitive “positional witness
encryption” that implies the full-fledged notion with an exponential security loss.)

5.2.1 Neighboring-input Indistinguishability Obfuscation

We start by recall a different “merge” procedure from the work of Boyle, Chung and Pass [BCP14]:
Given two NC1 circuits C0, C1 taking (at most) n-bit inputs, and a string z, let M̂erge(C0, C1, z) be a
circuit that on input x runs C0(x) if x ≥ z and C1(x) otherwise. ([BCP14] use this type of merged
circuits to perform a binary search and prove that indistinguishability obfuscation implies differing-input
obfuscation for circuits that differ in only polynomially many inputs.) Also, M̂erge is defined such that
M̂erge(C0, C1, 0) = C0 and M̂erge(C0, C1, 2

n) = C1. It is easy to see that an NC1 circuit computing

40

M̂erge(C0, C1, z) can be efficiently found given NC1 circuits C0, C1 and z; (abusing notation) let M̂erge
denote an efficient procedure that outputs such a circuit.

The notion of neighboring-input iO relaxes iO by only requiring that security holds with respect
to “neigboring-input” programs M̂erge(C0, C1, z), M̂erge(C0, C1, z + 1) that are functionally equivalent.
Note that checking whether M̂erge(C0, C1, z), M̂erge(C0, C1, z + 1) are functionally equivalent is easy:
they are equivalent iff C0(z) = C1(z). As such, the assumption that a scheme satisfies neighboring-input
iO is efficiently falsfiable.

Definition 22. A uniform PPT machine iO is a neighboring-input indistinguishability obfuscator for
the class of circuits {Cn}n∈N if it satisfies the same correctness condition as in Definition 1 but the
security condition is replaced by:

• Security: For every nuPPT adversary A there exists a negligible function ε such that for all
n ∈ N, all C0, C1 ∈ C1n and all z ∈ {0, 1} such that C0(z) = C1(z),

|Pr[A(1n, C ′0, C
′
1, z, iO(1n, C ′0) = 1]− Pr[A(1n, C ′0, C

′
1, z, iO(1n, C ′1) = 1]| ≤ ε(n)

where C ′b = M̂erge(C0, C1, z + b).

We additionally say that iO is exponentially-secure if for every nuPPT A the above indistinguishability
gap is bounded by ε(n) = 2−O(n2).

Theorem 24. There exists an (O(1), O(k))-entropically valid instance sampler Sam, such that if there
exists an encoding scheme that is subexponentially-hard semantically secure w.r.t. Sam, then there exists
an exponentially-secure neighboring-input indistinguishability obfuscator for C1.

Proof. Consider the obfuscator iO(·, ·, ·) for NC1 presented in Section 4.3.3. We change it to run the
underlying multilinear encoding scheme with security parameter n′ = n2/α, where α is the subexponen-
tial security constant for the encoding scheme. Let c∗ be the constant such that the sizes and depth of
M̂erge(C0, C1, z) where C0, C1 ∈ C1n and z ∈ {0, 1}n are bounded by nc∗ and c∗ log(n) respectively. We
show that iO(c∗, ·, ·) = iO(·, ·) = is an exponentially-secure indistinguishability obfuscator for C1 based
on subexponentially-hard semantical security with respect to an instance sampler Sam.

Assume for contradiction there exists nuPPT A such that for infinitely many n, there exist C0, C1 ∈
C1n, z ∈ {0, 1} such that C0(z) = C1(z) and A given (1n, C ′0, C

′
1, z) where C ′0 = M̂erge(C0, C1, z) and

C ′1 = M̂erge(C0, C1, z + 1), distinguishes iO(1n, C ′0) and iO(1n, C ′1), with probability, say, 2−n
2 .

We define hybrid distributions similarly as in the proof in Section 4.2.3 corresponding to iO(1n, C ′0)
and iO(1n, C ′1). Recall that each of these hybrids correspond to one step in the transition from a
branching program for C ′0 to a branching program C ′1, where each step changes at most two levels of
the branching program. Let h(n) be the number of such hybrids. We have that the circuits C ′0 and C ′1
determine for every j ∈ [h(n)−1] a hybrid distribution Hj such that H0 is identical to iO(1n, C ′0), Hh(n)

is identical to iO(1n, C ′1) and for every j ∈ [h(n)− 1], indistinguishability of Hj and Hj+1 follows from
neighboring-matrix indistinguishability obfuscation which in turn follows from a reduction to semantic
security.

We now define Sam(1n
′
; rn′) as follows: Using random coins rn′ , Sam uniformly samples C0, C1 ← C1

n,
z ← {0, 1}n and a random hybrid index j ∈ [h(n) − 1]. It checks whether C0(z) = C1(z) and if not,
it sets C1 = C0. Next, it generates C ′0 = M̂erge(C0, C1, z) and C ′1 = M̂erge(C0, C1, z + 1). Finally, it
outputs the sets (~Sn′ , ~Tn′) and message sampler Mn′ used in the reduction to semantic security when
arguing indistinguishability of hybrids Hj and Hj+1, as determined by the circuits C ′0 and C ′1.

Note that since the pair of the circuits C ′0, C ′1 sampled by Sam are always functionally equivalent, by
the same proof as in Section 4.3.4 (more specifically, Lemma 17), we have that the messages ~m0, ~m1, ~z
output by Mn′ are such that every (~Sn′ , ~Tn′)-respecting circuit is constant on both ~m0, ~z and ~m1, ~z,

41

except with probability at most Q(n′, k)/|R| for some fixed polynomial Q(·, ·). Thus, for every sequence
of random tapes {rn}n∈N, {Mn}n∈N is { ~Sn, ~Tn}n∈N-respecting, where for every n ∈ N, ~Sn, ~Tn,Mn =
Sam(1n; rn). We conclude that Sam is a (O(1), O(k))-valid instance sampler.

By assumption, there exists a j ∈ [h(n) − 1] such that A distinguishes Hj and Hj+1 with advan-
tage 2−n

2
/h(n). We now define a nuPPT attacker A′ for semantical security w.r.t. Sam: For each n′,

A′ receives as non-uniform advice the index j∗ and proceeds as follows: A′(1n′ , pp, , (~Sn′ , ~Tn′),Mn′ , ~ub)
examines Mn′ and extracts the underlying circuits C∗0 , C∗1 the underlying merge index z∗ and the un-
derlying hybrid index j∗ from it. (We assume Mn′ is defined so that this information is efficiently
extractable.) If j = j∗, C∗0 = C ′0, C

∗
1 = C ′1 and z∗ = z, A′ executes A(1n, C∗0 , C

∗
1 , z
∗, (pp, ~ub)), and

otherwise simply outputs 1.
Let us now analyze the success probability of A′:

• Conditioned on the event when j = j∗, C∗0 = C ′0, C
∗
1 = C ′1 and z∗ = z, A′ distinguishes with

advantage 2−n
2
/h(n).

• Otherwise A′’s output is 1.

Since C∗0 , C∗1 , z∗, j∗ are chosen at random, it follows that A′ has a total distinguishing advantage of
at least 2−3n · 2−n2

/h(n)2 = 2−O(n2) = 2−O(n′α), which contradicts the assumption that the encoding
scheme is subexponentially secure with respect to Sam.

5.2.2 From ni-iO to iO

Theorem 25. If there exists PPT iO that is an exponentially-secure neighboring-input indistinguisha-
bility obfuscator for C1, then there exists a PPT iO′ that is a subexponentially-secure indistinguishability
obfuscator for NC1.

Proof. Assume the existence of a PPT iO that is an exponentially-secure neighboring-input indistin-
guishability obfuscator for the class C1. We show that iO is a (subexponentially-secure) indistinguisha-
bility obfuscator for C1; by Lemma 4, this suffices for concluding the existence of (subexponentially-
secure) indistinguishability obfuscators for NC1.

Assume there exists some nuPPT A such that for infinitely many n, there exists a pair of functionally
equivalent circuits C0

n, C1
n ∈ C1n such that A distinguishes iO(1n, C0

n) and iO(1n, C1
n) with probability,

say, 2−n. For any such n, consider a sequence of 2n + 1 hybrid distributions, where

• H0 = iO(1n, C0
n) = iO(1n, M̂erge(C0

n, C
1
n, 0))

• Hi = iO(1n, M̂erge(C0
n, C

1
n, i)) for i ∈ [1, . . . , 2n − 1]

• H2n = iO(1n, C1
n)) = iO(1n, M̂erge(C0

n, C
1
n, 2

n))

There must exist some z such that A distinguishesHz andHz+1 with advantage at least 2−n·2−n = 2−2n.
Thus, there exists some sequence of programs {C0

n, C
1
n}n∈N where C0

n, C
1
n ∈ C1n and a sequence of of inputs

{zn}n∈N, zn ∈ [0, . . . , 2n− 1], such that for infinitely many n, A distinguishes iO(1n, M̂erge(C0
n, C

1
n, zn))

and iO(1n, M̂erge(C0
n, C

1
n, zn + 1)) with advantage 2−2n. This directly contradicts the exponential secu-

rity of the neighboring-input indistinguishability obfuscator iO.

Combing the above theorems, we get the following corollary.

Theorem 26. There exists an (O(1), O(k))-entropically valid instance sampler Sam, such that if there
exists an encoding scheme that is subexponentially-hard semantically secure w.r.t. Sam, then there exists
a subexponentially-secure indistinguishability obfuscator for NC1.

42

6 Alternative Security Notions of Semantical Security Encodings

In this section we consider alternative ways of defining security of multilinear encodings. First, in
section 6.1 we show that semantical security holds (in a very strong sense) w.r.t. generic attackers.
Next, in section 6.2 we consider various “uber assumptions” (similar to the uber-assumption of [BBG05]
in the context of bilinear maps)28 which capture the intuition that “if an algebraic decisional assumption
holds w.r.t. to generic attacks, then it also holds with respect to nuPPT attackers”. As we shall see the
perhaps most natural formalization of this notion is false (under standard cryptographic assumptions)—
in particular, we give a concrete example of a algebraic decisional assumption that holds in the generic
model but is false w.r.t. nuPPT attackers. We finally consider alternative ways for formalizing such an
uber assumption.

6.1 Semantical Security w.r.t. Algebraic Attackers

We begin by showing that semantic security holds in the generic model. We formally define an algebraic
adversary or generic adversary by considering adversaries that interact with the following oracle.

Definition 23 (OracleM). LetM be an oracle which operates as follows:

• M gets as initial input a ring R, k ∈ N and list L of m pairs {(αi, Si)}mi=1, α ∈ R and S ⊆ [k].

• Every oracle query to M is an arithmetic circuit C : Rm → R. When queried with C, M checks
whether C is a ~S-respecting arithmetic circuit where ~S = {Si}mi=1. If not,M outputs ⊥. Otherwise,
M computes C on {αi}mi=1 and outputs 1 if and only if the output of C is zero, and outputs 0
otherwise.

To formalize that (even subexponentially-hard) semantical security holds w.r.t. generic attackers, we
define a stronger notion of a set-respecting message samplers—which requires not only that the output
of every set-respecting circuit is constant with overwhelming probability, but also that this holds for the
output of any unbounded algebraic attacker that is restricted to polynomially-many zero-test queries—
and show that this notion in fact already is implied by the standard one. This shows that semantical
security holds in a very strong sense w.r.t. to generic attackers.

Definition 24 (Strongly Respecting Message Sampler). We say that a nuPPTM is a strongly {(~Sn, ~Tn)}n∈N-
respecting message sampler (or strongly valid w.r.t. {(~Sn, ~Tn)}n∈N) if it satisfies the same conditions
as in Definition 11 but where the second bullet is replaced by the following:

• For every polynomial p, there exists some polynomial Q such that for every n ∈ N, every (sp, pp)
in the support of InstGen(1n, 1kn), every (deterministic) oracle algorithm A that on input 1n makes
at most p(n) oracle queries, there exists some string α ∈ {0, 1}∗ such that

Pr[(~m0, ~m1, ~z)←M(1n, pp) : AM(pp, ~p0)(1n) = AM(pp, ~p1)(1n) = α] ≥ 1−Q(n, kn)/|R|.

where ~pb = {(mb[i], Si)}
c(n)
i=1 , {(z[i], Ti)}

q(n)
i=1 and c(n) and q(n) are the lengths of ~Sn and ~Tn respec-

tively.

Note that validity is the special case of strong validity where we restrict to the case when p(n) = 1.

Theorem 27. A message samplerM is strongly {(~Sn, ~Tn)}n∈N-respecting if and only it is {(~Sn, ~Tn)}n∈N-
respecting.

28We thank Shai Halevi for pointing out the connection with [BBG05].

43

Proof. The "only if" direction is trivial (as mentioned, if p(n) = 1 strong validity collapses down to
validity). To prove the "if direction", consider some M , p(·), security parameter n ∈ N, (sp, pp) ∈
InstGen(1n, 1k(n)) where pp defines a ring R, and oracle machine A (the algebraic adversary) such that
A(1n) makes at most p(n) oracle queries. From semantic security of E , we have that there exists some
polynomial Q(·, ·) such that for every (~S, ~T)-respecting arithmetic circuit C, there exists a constant
cC ∈ {0, 1} such that for every b ∈ {0, 1} ,

Pr[(~m0, ~m1, ~z)←M(1n, pp) : isZero(C(~mb, ~z)) 6= c] ≤ Q(n, k(n))/|R|

For b ∈ {0, 1}, consider an execution of both AM(pp,~pb)(1n) where ~m0, ~m1, ~z are sampled by M . Note
that except with probability Q(n, k(n))/|R| it holds the first oracle query C1 by A is answered as cC1 .
Analogously, if the first i queries C1, . . . , Ci were answered as cC1 , . . . cCi , then except with probability
Q(n, k(n))/|R|, the (i+1)th query Ci+1 will be answered as cCi+1 . It follows that except with probability
p(n)Q(n, k(n))/|R| over ~m0, ~m1, ~z, the output of A is identical to the output of an execution of A where
every oracle query C is answered by the bit cC . Thus, for every algebraic attacker A there exists
some string α—namely the output of A where every oracle query C is answered by cC—such that for
b ∈ {0, 1}, except with probability p(n)Q(n, k(n))/|R|, the output of AM(pp,~pb)(1n) is α.

Note that for the above proof to go through it is cruicial that we restrict the algebraic attacker to
making polynomially-many (or subexponentially-many) oracle queries. This is not just an anomaly of
the proof: if we allow the attacker to make an unbounded number of queries, then strong validity would
no longer imply validity; we discuss this point further in Section 6.2.2.

6.2 Uber Assumptions for Multilinear Encodings

A natural question is whether there are reasonable qualitative strengthenings of semantical security that
can be used to achieve stronger notions of obfuscation, such as differing-input (a.k.a. extractability)
obfuscation. We here consider such a strengthening.

At first sight, it may seem like the most natural way of defining security of multilinear encodings
would be to require that for specific classes of problems, generic attacks cannot be beaten (this is the
approach alluded to in [BGK+13]). A natural “uber assumption” (similar to the uber-assumption of
[BBG05] in the context of bilinear maps) would be to require that “if an algebraic decisional assumption
holds w.r.t. to generic attacks, then it also holds with respect to nuPPT attackers”. Let us now formalize
this notion.

6.2.1 Extractable Uber Security

We start by defining a notion of a computationally valid message sampler: roughly speaking, we want to
capture the intuition that no generic attacker can distinguish ~m0, ~z from ~m1, ~z. To get a definition that
is a strong as possible, we require indistinguishability to hold in a pointwise sense: with overwhelming
probability, the output of AM(pp, ~p0)(1n, pp) is required to be the same as the output of AM(pp, ~p1)(1n, pp).

Definition 25 (Computationally Respecting Message Sampler). We say that a nuPPT M is a compu-
tationally {(~Sn, ~Tn)}n∈N-respecting message sampler (or computationally valid w.r.t. {(~Sn, ~Tn)}n∈N) if
it satisfies the same conditions as in Definition 11 but where the second bullet is replaced by the following:

• For every nuPPT oracle machine A, there exists some negligible function ε such that for every
n ∈ N,

Pr[(sp, pp)← InstGen(1n, 1kn), (~m0, ~m1, ~z)←M(1n, pp) : AM(pp, ~p0)(1n, pp) 6= AM(pp, ~p1)(1n, pp)] ≤ ε(n)

where ~pb = {(mb[i], Si)}
c(n)
i=1 , {(z[i], Ti)}

q(n)
i=1 and c(n) and q(n) are the lengths of ~Sn and ~Tn respec-

tively.

44

Note that computational validity differs from strong validity (which is equivalent to “ plain” validity)
in two main aspects: 1) we no longer require the output of the algebraic attacker to be constant
with overwhelming probability; rather, we only require that it cannot tell apart ~m0 and ~m1, and 2)
the algebraic attacker is restricted to be nuPPT (as opposed to being unbounded and only making
polynomially many queries).

We now define extractable “uber security” in exactly the same way as semantic security except that
we only require the message sampler to be computationally valid (and define entropic uber security
in the analogous way). In other words, extractable uber security implies that whenever ~m0, ~z and
~m1, ~z are pointwise computationally indistinguishable w.r.t. legal algebraic attackers, encodings of them
computationally indistinguishable. (We use the term “extractable” since this notion of security requires
that if encodings can be distinguished, then we can efficiently find (or “extract”) set-respecting circuits
that distinguish the elements.)

We now have the following theorem.

Theorem 28. Assume the existence of a leveled Fully Homomorphic Encryption scheme with decryption
in NC1. Then no graded encoding scheme satisfies entropic extractable uber security.

Proof. Consider any graded encoding scheme E . To show that E is not entropic extractable uber secure
we need to show that there exists an entropic computationally respecting message samplerM and PPT
adversary A such that A distinguishes between encodings of (~m0, ~z) and (~m1, ~z) where (~m0, ~m1, ~z)←M .

OurM will sample obfuscations of the following circuit family, that was shown to be unobfuscatable
in the virtual black box setting [BGI+01].Let (Gen,Enc,Dec,Eval) be a semantically secure fully homo-
morphic encryption scheme with ciphertext size N(·); for simplicity of exposition, let us first assume
that it is an “unleveled” FHE. For each security parameter n, consider the class of circuits

Cn = {Cn,a,b,v,pk,sk,â}a,b∈{0,1}n,v∈{0,1},(pk,sk)∈Gen(1n),â∈Enc(pk,a)

taking N(n)-bit inputs, where

Cn,a,b,v,pk,sk,â(x) =


(pk, â) if x = 0

b if x = a

v if Dec(sk, x) = b

0 otherwise

Then M(1n, pp) operates as follows, given public parameters pp to a graded encoding scheme it first
computes the ring R = Zp associated with pp.

• M samples (pk, sk) ← Gen(1n) and a, b ← {0, 1}n uniformly at random, and computes â =
Enc(pk, a).

• M generates branching programs BP 0 and BP 1 corresponding to Cn,a,b,0,pk,sk,â and Cn,a,b,1,pk,sk,â
respectively, and computes B̂P 0 = Merge(BP 0, BP 1, 0) and B̂P 1 = Merge(BP 0, BP 1, 1), each of
width 10 and length m. Recall, from Claim 9, that B̂P 0 and B̂P 1 differ only in levels 1 and m,
and that B̂P 0 and B̂P 1 are functionally equivalent to BP 0 and BP 1 respectively.

• M samples m random invertible matrices over Z10×10
p , {Ri}i∈[m] and 2m random scalars from

Zp, {αi,b}i∈[m],b∈{0,1}. M then uses these matrices and scalars to randomize B̂P 0 and B̂P 1 as
described by Rand(·, p) to obtain {αi,b · B̃i,b}i∈[m],b∈{0,1}, {αi,b · B̃′i,b}i∈[m],b∈{0,1} and t.

• M outputs
~m0 = ({α1,b · B̃1,b}b∈{0,1}, {αm,b · B̃m,b}b∈{0,1})

45

~m1 = ({α1,b · B̃′1,b}b∈{0,1}, {αm,b · B̃′m,b}b∈{0,1})

~z = ({αi,b · B̃i,b}i∈[m′]/{1,m},b∈{0,1}, t)

Note that (~m0, ~z) is identically distributed to Rand(B̂P 0, p) and similarly (~m1, ~z) is identically
distributed to Rand(B̂P 1, p) As a result, by Proposition 2, we have that M is an entropic message
sampler.

Let ({Si,b}i∈[m],b∈{0,1}, St) = SetSystem(m,N, inp), where inp is the labelling function for the branch-
ing programs B̂P 0 and B̂P 1, and let

~Sn = {S1,b, Sm,b}b∈{0,1}

~Tn = ({Si,b}i∈[m′]/{1,m},b∈{0,1}, St)

We show that M is a computationally {~Sn, ~Tn}n∈N-respecting message sampler, i.e. no nuPPT oracle
machine A′ can pointwise distinguish the oracles M(~m0, ~z) and M(~m1, ~z). We note that by Lemma
17 and a Union Bound over A′’s queries, the output of A′M(~m0,~z) (resp. A′M(~m1,~z)) can be simulated
with only oracle access to BP0 (resp. BP1), or equivalently, to Cn,a,b,0,pk,sk,â (resp. Cn,a,b,1,pk,sk,â)29. In
fact, with high probability over the randomness of M , A′ and the simulator, the simulator’s output is
identical to the output of A′. We observe that this simulation can be made efficient using the techniques
introduced in [BGK+13] (i.e. by modifying BP0 and BP1 to be dual-input branching programs and
correspondingly changing SetSystem); this requires encodings elements using sets of size 4 (as opposed
to 2 as in our original construction). Let this efficient simulator be Sim.

We would now like to argue that with high probability over the randomness ofM and Sim, SimBP 0 =
SimBP 1 . Recall that the circuits Cn,a,b,0,pk,sk,â (equivalent to BP0) and Cn,a,b,1,pk,sk,â (equivalent to
BP1) differ only on inputs x for which Dec(sk, x) = b (on these inputs Cn,a,b,0,pk,sk,â(x) = 0, whereas
Cn,a,b,1,pk,sk,â(x) = 1). Since b was randomly chosen from an exponentially large set of values, to find
such an input with noticeable probability, Sim must query one of the circuits on input a with noticeable
probability, otherwise its view is independent of b. However, if the original ciphertext â is an encryption
of 0 instead of a, then the view of Sim is independent of a, and thus Sim can only query a with negligible
probability. Thus by the semantic security of the FHE scheme, the probability that Sim can query a
when given BP0 or BP1 is negligible. This implies that the outputs of SimBP 0 and SimBP 1 differ with
only negligible probability.

We now have that :

• A′M(~m0,~z) = SimBP0 , except with negligible probability;

• SimBP0 = SimBP1 , except with negligible probability;

• SimBP1 = A′M(~m1,~z), except with negligible probability.

By a union bound, we have that A′M(~m0,~z) = A′M(~m1,~z), except with negligible probability. Thus M
must be a computationally respecting sampler. Finally, it follows using identically the same argument
as in Section 4.3.5 that the message sampler satisfies the required high-entropy condition and thus is
an entropic computationally respecting message sampler.

Now we will show an nuPPT adversary A that distinguishes between encodings of (~m0, ~z) and
(~m1, ~z) when encoded under sets (~Sn, ~Tn) Note that given encodings of one of (~m0, ~z) and (~m1, ~z), A in
fact receives either Obf(B̂P 0) or Obf(B̂P 1). Let us refer to this input to A as O.

29To apply the Union Bound it is important that the query response C(~mb, ~z) depends only on the queried arithmetic
circuit C and the input-output behavior of BPb as shown in Lemma 17

46

A evaluates O on input 0 to receive (pk, â), and then simply homomorphically evaluates O on the
ciphertext â in order to generate a valid encryption of the hidden value b, and then feeds this new
ciphertext back into O to reveal the secret bit v, and then outputs v. Thus A succeeds in distinguishing
(~m0, ~z) and (~m1, ~z) with probability 1. Additionally, note that since O is a constant-width branching
program, O can be computed by a NC1 circuit, thus for this argument it suffices to use a leveled FHE.

We thus have that no graded encoding scheme can satisfy entropic extractable uber security.

6.2.2 “Plain” Uber Security

Due to the above impossibility result, we here consider a weaker variant of an uber security—which we
simply refer to as (plain) “uber security”, where we strengthen the “computational validity” condition to
a “weak validity” condition where the the algebraic attacker is allowed to be unbounded while making
polynomially many queries. Note that weak validity differs from strong validity only in the respect
that weak validity does not require the output of the algebraic attacker is constant (with overwhelming
probability).

Definition 26 (Weakly Respecting Message Sampler). We say that a nuPPTM is a weakly {(~Sn, ~Tn)}n∈N-
respecting message sampler (or weakly valid w.r.t. {(~Sn, ~Tn)}n∈N) if it satisfies the same conditions as
in Definition 11 but where the second bullet is replaced by the following:

• For every polynomial p, there exists some polynomial Q such that for every n ∈ N, every (sp, pp)
in the support of InstGen(1n, 1kn), every (deterministic) oracle algorithm A that on input 1n makes
at most p(n) oracle queries,

Pr[(~m0, ~m1, ~z)←M(1n, pp) : AM(pp, ~p0)(1n) = AM(pp, ~p1)(1n)] ≥ 1−Q(n, kn)/|R|.

where ~pb = {(mb[i], Si)}
c(n)
i=1 , {(z[i], Ti)}

q(n)
i=1 and c(n) and q(n) are the lengths of ~Sn and ~Tn respec-

tively.

We define “uber security” in exactly the same way as semantic security except that we only require
the message sampler to be weakly valid (and define entropic uber security in the analogous way). In
other words, uber security implies that whenever ~m0, ~z and ~m0, ~z are pointwise statistically close w.r.t.
legal algebraic attackers, encodings of them computationally indistinguishable.

Let us remark that for uber security to imply semantical security, it is important that we restrict the
algebraic attacker (in the definition of a weakly valid message sampler) to only make polynomially many
queries. Otherwise, even the aGDDH distribution (described in Section 3) is not weakly valid: With
high probability over (m0,m1, ~z) sampled from the aGDDH distribution, there always exists some legal
arithmetic circuit C such that isZero(C(m0, ~z)) 6= isZero(C(m1, ~z)).30 Therefore, an unbounded-query
algebraic adversary could simply go over all legal arithmetic circuits and distinguish the elements.

We are not aware of any attacks (like those against extractable uber security) against “plain” uber
security, and it thus seems like a reasonable strengthening of semantical security, which may have
other applications. In fact, we may consider an even further strengthening of this notion—which we
refer to as statistical uber security— by replacing the the weakly valid message sampler by a super
weakly valid message sampler which only requires ~m0, ~z and ~m1, ~z to be statistically indistinguishable
by algebraic attackers (as opposed to be pointwise statistically indistinguishable); that is, the second
bullet in Definition 11 is replaced by:

30Consider a very simple aGDDH instance, where |~z| = 2, T1 = T2 = S = [k]. For non-zero z1, z2, there always exists
some a such that the circuit C(m, z1, z2) = isZero(m−az1) yields different outputs on input (m0, ~z) and (m1, ~z)—namely,
a = z2.

47

• For every (computationally unbounded) oracle machine A that makes at most polynomially many
oracle queries, there exists a negligible function ε such that for every security parameter n ∈ N,

|Pr[(sp, pp)← InstGen(1n, 1k(n)), (~m0, ~m1, ~z)←M(1n, pp) : AM(pp, ~p0)(1n, pp) = 1]−
Pr[(sp, pp)← InstGen(1n, 1k(n)), (~m0, ~m1, ~z)←M(1n, pp) : AM(pp, ~p1)(1n, pp) = 1]| ≤ ε(n)

where ~pb = {(mb[i], Si)}
c(n)
i=1 , {(z[i], Ti)}

q(n)
i=1 and c(n) and q(n) are the lengths of ~Sn and ~Tn respec-

tively.

6.3 Strong Semantical and Uber Security

Recall that in the definition of both validity and weak validity, we consider arbitrary-size set-respecting
circuits. We may weaken both validity conditions (and thus obtain stronger notion of semantical and
uber security) by restricting attention to only polynomial-size arithmetic circuits. Note that in the
context of uber security, this takes us a step closer to extractable uber security (which is impossible
under reasonable assumption): we restrict to algebraic attackers that make polynomially-many queries
and each query is polynomial-size, but the attacker may generate these queries (and generate its final
output) in a computationally unbounded way. We refer to these notions respectively as strong semantical
security and strong uber security.

6.4 Weak Semantic Security

We end this section by considering a weaker notion of semantical security—let us refer to it as weak
semantical security—where the definition of a valid message sampler requires the the answer to every
set-respecting circuit is actually constant (as opposed to only being constant with overwhelming prob-
ability); a similar relaxation can be applied also to uber security. While we do not know whether any
of these weaker assumptions suffices for obtaining obfuscation (and they do not imply the aGDDH as-
sumption), the weak notion of semantical security suffices for obtaining witness encryption [GGSW13]—
roughly speaking, the notion of witness encryption enables a sender to encrypt a message m using an
NP-statement x such that a) if the statement is false, then encodings of any two messages are indistin-
guishable, and b) if the statement is true, then anyone who has a witness w for x can recover m. Let
us briefly sketch this construction:31 As in [GGSW13], we focus on the NP-language Exact-Cover where
an x instance consist of sets S1, . . . , Sn ⊆ [k]; for a true instance, there exists some “exact cover” of
[k] using a subset of the sets, whereas for a false instance no such exact cover exists. Now, to encrypt
the bit m under the instance S1, . . . Sn, use a multilinear encoding scheme over the set [k + 1], encode
1 under each of the sets S1, . . . Sn and finally encode m under the set {k + 1}. Clearly anyone who
knows an exact cover can obtain an encoding of m under [k+ 1] (by appropriately multiplying the sets
corresponding to the exact cover and additionally the encoding of m under {k + 1}). On the other
hand, if the instance is false, there is no exact cover, and thus “legal” algebraic operation can never
be used to obtain an encoding under the full set [k + 1] and thus zero-testing can never be used; thus
indistinguishability of encryptions follows by weak semantical security.

7 Acknowledgments

We are very grateful to Benny Applebaum, Omer Paneth, Ran Canetti, Kai-Min Chung, Sanjam Garg,
Craig Gentry, Shai Halevi, Amit Sahai, abhi shelat, Hoeteck Wee and Daniel Wichs for many helpful

31The observation that semantically secure multilinear encoding directly implies witness encryption was obtained in a
conversation with Sanjam Garg, Craig Gentry and Shai Halevi.

48

comments. We are especially gratefeul to Shai for pointing out the connection between semantical secu-
rity for multilinear encodings and the “uber” assumption for bilinear maps of [BBG05], and for several
very useful conversations about multilinear encodings and the security of the [GGH13a] constructions,
to Amit for several helpful conversations about the presentation of our results, and Benny for suggesting
we make our proof more modular (which lead to the notion of neigboring-matrix branching programs).
Finally thanks to the anonymous Crypto reviewers for their useful comments. Thanks so very much!

References

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-
inputs obfuscation and applications. 2013.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1. In STOC, pages 1–5, 1986.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Advances in Cryptology EUROCRYPT 2005, pages 440–456.
2005.

[BC10] Nir Bitansky and Ran Canetti. On strong simulation and composable point obfuscation.
In CRYPTO, pages 520–537, 2010.

[BCKP14] Nir Bitansky, Ran Canetti, Yael Kalai, and Omer Paneth. Virtual-grey-box obfuscation
from general circuits. In Advances in Cryptology CRYPTO 2014, 2014.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In TCC,
pages 52–73, 2014.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable
one-way functions. In STOC 2014, 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im) possibility of obfuscating programs. In Advances in Cryptology
CRYPTO 2001, pages 1–18. Springer, 2001.

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. Cryptology ePrint Archive, Report 2013/631, 2013.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309–325, 2012.

[BM14a] Christina Brzuska and Arno Mittelbach. Indistinguishability obfuscation versus point
obfuscation with auxiliary input. Cryptology ePrint Archive, Report 2014/405, 2014.
http://eprint.iacr.org/.

[BM14b] Christina Brzuska and Arno Mittelbach. Using indistinguishability obfuscation via uces.
Cryptology ePrint Archive, Report 2014/381, 2014. http://eprint.iacr.org/.

[BP13] Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional
auxiliary input. 2013.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits via
generic graded encoding. In TCC, pages 1–25, 2014.

49

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Con-
temporary Mathematics, 324(1):71–90, 2003.

[BST13] Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Poly-many hardcore bits for any one-
way function. Cryptology ePrint Archive, Report 2013/873, 2013. http://eprint.iacr.
org/.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. In FOCS, pages 97–106, 2011.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more
from indistinguishability obfuscation. In Advances in Cryptology CRYPTO 2014, 2014.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial infor-
mation. In Advances in Cryptology CRYPTO 1997, pages 455–469, 1997.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps
over the integers. In Advances in Cryptology, CRYPTO 2013, pages 476–493, 2013.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In
STOC ’90, pages 416–426, 1990.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao
Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In
EUROCRYPT, pages 578–602, 2014.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Advances in Cryptology–EUROCRYPT 2013, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. Proc.
of FOCS 2013, 2013.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure mpc
from indistinguishability obfuscation. In TCC, pages 74–94, 2014.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its
applications. In Proceedings of the 45th Annual ACM Symposium on Symposium on Theory
of Computing, STOC ’13, pages 467–476, 2013.

[GLSW14] Craig Gentry, Allison Lewko, Amit Sahai, and Brent Waters. Indistinguishability obfus-
cation from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309, 2014. http://eprint.iacr.org/.

[GLW14] Craig Gentry, Allison Bishop Lewko, and Brent Waters. Witness encryption from instance
independent assumptions. In Advances in Cryptology CRYPTO 2014, 2014.

[GR07] Shafi Goldwasser and Guy Rothblum. On best-possible obfuscation. In Theory of Cryp-
tography, volume 4392, pages 194–213. 2007.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Advances in Cryptology–
ASIACRYPT 2000, pages 443–457. Springer, 2000.

50

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. In EUROCRYPT, pages 201–220, 2014.

[Kil88] Joe Kilian. Founding crytpography on oblivious transfer. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages 20–31. ACM, 1988.

[KMN+14] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev. One-
way functions and (im)perfect obfuscation. Cryptology ePrint Archive, Report 2014/347,
2014. http://eprint.iacr.org/.

[KNY14] Ilan Komargodski, Moni Naor, and Eylon Yogev. Secret-sharing for np. Cryptology ePrint
Archive, Report 2014/213, 2014. http://eprint.iacr.org/.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, pages 96–109,
2003.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 427–437, 1990.

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy homomorphisms.
Foundations of Secure Computation, Academia Press, pages 169–179, 1978.

[Rot13] Ron D Rothblum. On the circular security of bit-encryption. In Theory of Cryptography,
pages 579–598. Springer, 2013.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. Proc. of STOC 2014, 2014.

A Technical Lemma

Claim 29. Fix m,w ∈ N, and let p ∈ N be a prime. Let D0 be the following distribution:

D0 = {{Ri}i∈[m], {αi,b}i∈[m],b∈{0,1}}

where each Ri is a uniformly random invertible matrix in Zw×wp (i.e det(Ri) 6= 0, and each αi,b is a
uniformly random non-zero scalar in Zp.

Let D1 be a distribution defined identically to D0, except with each Ri being a uniformly random (not
necessarily invertible) matrix in Zw×wp , and each αi,b a uniformly random (not necessarily non-zero)
scalar in Zp.
Then:

∆(D0,D1) ≤ 8wm/p

where ∆(D0,D1) denotes the statistical distance between distributions D0 and D1.

Proof. Note that D0 and D1 are each uniformly distributed on their respective supports, and that

51

supp(D0) ⊆ supp(D1). Then the statistical distance between D0 and D1 can be computed as follows:

∆(D0,D1) =
∑

d∈supp(D0)∪supp(D1)

|Pr[D0 = d]− Pr[D1 = d]|

=
∑

d∈supp(D0)

|Pr[D0 = d]− Pr[D1 = d]|+
∑

d∈supp(D1)\supp(D0)

|Pr[D1 = d]|

=
∑

d∈supp(D0)

| 1

|supp(D0)|
− 1

|supp(D1)|
|+

∑
d∈supp(D1)\supp(D0)

| 1

|supp(D1)|
|

= (|supp(D0)| · |
1

|supp(D0)|
− 1

|supp(D1)|
|) + (|supp(D1) \ supp(D0)| · |

1

|supp(D1)|
|)

= 2 · (1− |supp(D0)|
|supp(D1)|

)

But notice that (1 − |supp(D0)|
|supp(D1)|) can be interpreted as Pr[∃i ∈ [m], b ∈ {0, 1} : det(Ri) = 0 ∨ αi,b = 0].

For each i ∈ [m], the probability det(Ri) = 0 can be bounded by applying the Schwartz-Zippel lemma
to the det(·), which is a polynomial of degree w. Thus we have that Pr[det(Ri) = 0] ≤ w/p. Further,
each αi,b is zero with probability 1/p. Hence, applying a union bound, we have that

∆(D0,D1) = 2 · (1− |supp(D0)|
|supp(D1)|

)

≤ 2 · (2m/p+mw/p)

≤ 8wm/p

B Proof of Lemma 18

In this section, we prove Lemma 18, restated below for clarity:

Lemma 22. Fix m,n,w ∈ N and inp : [m] → [n]. Let ~S = SetSystem(m,n, inp) = ({Si,b}i∈[m],b∈{0,1},

St), and let C be any weakly ~S-respecting arithmetic circuit whose output wire is tagged with T ⊆ [k].
Then there exists a set U ⊆ {0, 1, ∗}m such that for every branching program BP of width w and length
m on n input bits, with input tagging function inp, every prime p, and every ({αi,b ·B̃i,b}i∈m,b∈{0,1}, t)←
Rand(BP, p),

(i)
C({αi,bB̃i,b}i∈[m],b∈{0,1}, t) ≡

∑
u∈U

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t)

where each Cu is a weakly ~S-respecting arithmetic circuit, whose input wires are tagged only with
sets ∈ {Si,u[i]}i∈[m]:u[i] 6=∗ ∪ {St}, and whose output wire is tagged with T .

(ii) Each Cu above is the sum of several “monomial” circuits, where each monomial circuit performs
only multiplications of elements in ({αi,b ·B̃i,b}i∈m,b∈{0,1}, t), is weakly ~S-respecting, and has output
wire tagged with T .

(iii) For each Cu above,

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αu · pu({B̃i,u[i]}i∈[m]:u[i] 6=∗, t)

52

where pu is some polynomial, and αu = (
∏
i∈[m]:u[i]6=∗ αi,u[i]). Furthermore, when pu is viewed as a

sum of monomials, each monomial contains exactly one entry from each B̃i,u[i] such that u[i] 6= ∗,
and possibly one entry from t. Further, pu can be computed by a weakly ~S-respecting circuit whose
output wire is tagged with T .

Proof. Part (i)We begin by expressing the circuit C as a polynomial in variables ({αi,b·B̃i,b}i∈m,b∈{0,1}, t),
in the form of a sum of monomials (possibly exponentially many). We do so recursively: we associate
each wire w of the circuit with a multiset Sw of pairs of monomials and signs (“+1” or “-1”), such that the
sum of the monomials multiplied by their respective signs computes the same value as the value com-
puted by the circuit at that wire. We eventually output the multiset of monomial pairs corresponding
to the output wire. We compute the sets of monomials as follows:

• Any input wire of the circuit reading input variable v can be represented as the set {(v,+)}.

• The output wire of an addition gate can be represented as the union of the multisets of monomial
pairs representing the gates left and right children.

• The output wire of an subtraction gate can be similarly represented as the union of the multisets
of the gate’s left input wire, and of its right input wire with the “sign” component of every pair
negated (from “+1” to ”-1” and vice versa), to reflect subtraction.

• For the output wire of a multiplication gate, for each pair (M1, s1) in the multiset of its left input
and each pair (M2, s2) in the multiset of its right input, we add (M1 ·M2, s1 · s2) to the multiset
of the output wire.

We note that it holds inductively in the above process that the sum of the monomials in the multiset
associated with each wire w in C, multiplied by its appropriate sign, equals the value computed on that
wire w.

We also show that each monomial in the set corresponding to a wire can be computed by a weakly
~S-respecting circuit whose output wire has the same tag as the wire. This can again be seen inductively:

• This property holds at any input wire of C, since the only monomial in the set can be computed
using the input wire itself as the “monomial circuit".

• This property also holds at any output wire of an addition or subtraction gate, since the circuit
corresponding to any monomial in this wire’s set is the same as the circuit for the monomial from
the corresponding incoming wire to the gate.

• Finally, at the output wire of a multiplication gate G, for any monomial M in this wire’s set
computed as the product of monomials M1 and M2, the circuit for M is simply the circuit
for each of M1 and M2, joined by a multiplication gate. Since G performs a set respecting
multiplication, and the output wires of M1 and M2’s circuits have the same tags as the input
wires of G, we have that the multiplication joining M1 and M2’s circuits to produce M ’s circuit
is set-respecting, and so the circuit corresponding to M is a weakly ~S-respecting circuit whose
output wire has the same tag as the output wire of G.

Thus each of the monomials in the decomposition of C can be represented as a weakly set-respecting
arithmetic circuit with output wire tagged with T , where this circuit simply multiplies together all
terms in the monomial in some order, and performs no additions. Finally, the tags of the input wires
of these monomial circuits must be mutually disjoint, otherwise the monomial circuit would perform a
non-set-respecting multiplication at some level.

53

We label each monomial M with an element u ∈ {0, 1, ∗}m, where u[i] = b if Si,b is the label on one
of input wires inM ’s circuit representation, and u[i] = ∗ if neither Si,0 and Si,1 are labels on any ofM ’s
input wires. We note that no monomial can have both Si,0 and Si,1 on its input wires because these two
sets are not disjoint, and the tags of the input wires of the monomial circuits must be mutually disjoint.

We now let Cu be the circuit representing the subtraction of all momonials in the the decomposition
of C labelled with u and sign (−1) from the sum of all momonials in the the decomposition of C
labelled with u and sign (+1). Since each monomial can be represented as a weakly set-respecting
circuit with output wire tagged with T , adding several monomials together is a set-respecting operation,
as is subtracting several monomials from the sum, and thus each Cu is a weakly set-respecting circuit.
Further, since each monomial circuit has output wire tagged with T , each Cu also has output wire
tagged with T . Further, by the way we labelled each monomial, each of the input wires of Cu is tagged
only with sets ∈ {Si,u[i]}i∈[m]:u[i] 6=∗∪{St}. Finally, if we sum over all the u, we capture all the monomials
in the decomposition of C multiplied by their respective signs, so we have that

∑
uCu = C.

Part (ii) We observe that by construction of Cu, it is a sum of several monomial circuits each of which
performs only multiplications of its inputs, is weakly ~S-respecting, and has output wire tagged with T .

Part (iii) From part (ii), we have that for each Cu, it is a sum of several monomial circuits each of which
performs only multiplications of its inputs, is weakly ~S-respecting, and has output wire tagged with T .
Furthermore, for each such monomial circuit the input tags are drawn from sets ∈ {Si,u[i]}i∈[m]:u[i]6=∗ ∪
{St}. In fact, each of these monomials must contain exactly one input wire tagged with each of the sets
in {Si,u[i]}i∈[m]:u[i] 6=∗, and exactly one set tagged with St if and only if St ⊆ T . This means that each of
these monomials is the product of one element chosen from each of the matrices ({αi,u[i] ·B̃i,u[i]}i∈m:u[i]6=∗,
and possibly one element from t. Thus each monomial in the decomposition of Cu has a common factor
of αu = (

∏
i∈[m]:u[i] 6=∗ αi,u[i]).

We can now write Cu as a polynomial (namely the sum of its monomials multiplied by their respective
signs), and by factoring αu from each of it monomials and letting pu be the remaining polynomial, we
have, as required, that

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αu · pu({B̃i,u[i]}i∈[m]:u[i]6=∗, t)

Finally, we note that computing pu is the same as computing Cu if the alphas are set to 1. Since Cu
is ~S-respecting, we thus have that pu can be computed by a weakly ~S-respecting circuit whose output
wire is tagged with T .

C Proof of Lemma 6

In this section we prove Lemma 6, restated below for clarity.

Lemma 30. Let c, ε ∈ N and E be an (c, kε)-semantically secure encoding scheme. Then for every
polynomial q(k) there exists a (c, q(k))-semantically secure encoding scheme.

Proof. Consider any polynomial q(·) and constants c, ε. Given a (c, kε)-semantically secure encoding E ,
we construct a new multilinear encoding scheme E ′ and prove that E ′ is (c, q(k))-semantically secure.
Let (InstGen,Enc,Add,Sub,Mult, isZero) be the algorithms associated with E . We define a new encoding
scheme E ′ = (InstGen′,Enc′,Add′,Sub′,Mult′, isZero′) as follows.

• InstGen′ on input (1n, 1k) runs (pp, sp) ← InstGen(1n, 1(q(k)+1)1/ε) and generates an encoding of
a uniformly random non-zero element e under the set {k + 1, . . . (q(k) + 1)1/ε} by running u1 ←
Enc(sp, e, {k + 1, . . . (q(k) + 1)1/ε}). InstGen′ outputs (pp, u1) as the public parameters and sp as
the secret parameters.

54

• Enc′,Add′, Sub′,Mult′ are identical to Enc,Add, Sub,Mult respectively.

• isZero′ takes as input public parameters (pp, u1) and an encoding u under the set [k] to zero-test.
isZero′ simply outputs isZero(Mult(pp, u, u1)). The correctness of isZero′ follows from that of isZero
and the fact that Mult(pp, u, u1) returns an encoding, under the set [(q(k) + 1)1/ε], of an element
which is zero if and only if u is an encoding of zero.

It is easy to see that the correctness of E ′ follows from that of E .
We now show that E ′ is (c, q(k))-semantically secure. Assume for contradiction there exists a polyno-

mial k′(·), ensemble {~S′n, ~T ′n}n∈N of sets where |~S′n| = c, |~T ′n| = q(k′(n)), {~S′n, ~T ′n}n∈N-respecting message
sampler M ′ and nuPPT adversary A′ such that for sufficiently large n, A′ distinguishes encodings of
elements as described in the semantic security game in Definition 12.

Let k(·) be a polynomial such that k(n) = (q(k′(n)) + 1)1/ε. For every n ∈ N, let ~Sn, ~Tn be a
sequence of sets over [k(n)] where ~Sn = ~S′n and ~Tn = (~T ′n, {k′(n) + 1, . . . k(n)}). We will construct
a {~Sn, ~Tn}n∈N-respecting message sampler M and nuPPT adversary A such that (M,A) breaks the
(c, kε)-semantic security of E .

We define the message sampler M as follows: on input 1n, pp ∈ InstGen(1n, 1k(n)), M samples
(~m0, ~m1, ~z) ← M ′(1n, pp). and outputs the elements (~m0, ~m1, (~z, e)) where e is a uniformly random
non-zero element, i.e. M outputs the same elements sampled byM ′ with an additional element e. Note
that M ′ samples elements based only on the ring associated with the public parameters pp, which in
this case, is the same ring associated with pp′ ∈ InstGen′(1n, 1k

′(n)).
To show that M is {~Sn, ~Tn}n∈N-respecting, we claim that for any (~Sn, ~Tn)-respecting circuit C

acting on (~m0, ~m1, (~z, e)) there exists a (~S′n, ~T
′
n)-respecting circuit C ′ acting on (~m0, ~m1, ~z) such that

isZero(C(·)) = isZero(C ′(·)). C ′ is simply the circuit C computes to obtain an element corresponding to
the set [k′(n)], with which it must multiply an element under the set {k′(n) + 1, . . . k(n)} to reach the
target set [k(n)]. Since M ′ is {~S′n, ~T ′n}n∈N-respecting, the output of isZero(C ′(·)) is constant with over-
whelming probability. Therefore, the output of isZero(C(·)) is constant with overwhelming probability
too, and M is {~Sn, ~Tn}n∈N-respecting.

We now define a nuPPT adversary A that breaks the semantic security of E . On input encodings
~u and public parameters pp, A simply removes the last encoding u from ~u and runs A′ on input public
parameters (pp, u) and the remaining encodings. Observe that for any security parameter n, the output
of A in the semantic security game in Definition 12 when played with message sampler M and sets
~Sn, ~Tn is identical to the output of A′ in the game played with message sampler M ′ and sets ~S′n, ~T ′n.
Recall that ~Sn, ~Tn are sequences of sets over [k(n)] and |~Sn| = c and |~Tn| = k(n)ε. Therefore, this
contradicts the (c, kε)-semantic security of E .

55

