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Abstract

In 2005, Lin and Tzeng proposed a solution to Yao’s Millionaires problem in the setting

of semi-honest parties. At the end of the protocol only the party (Alice) who is responsible

for setting up the system parameters knows the outcome. It does not specify how to have the

other party (Bob) know the result. In this note, we present an improvement of the Lin-Tzeng

solution. It requires that Alice and Bob alternately perform the original protocol twice.

Under the reasonable assumption that a participator does not deviate from the prescribed

steps before he/she obtains the outcome, Alice and Bob can almost simultaneously obtain

the result. To the best of our knowledge, it is the first time to show that one participator

has only an advantage of lnn/n possibility to cheat the other in the reasonable setting.

Keywords. Multiplicative homomorphic encryption; Semi-honest assumption; Exponen-

tially lifting transform.

1 Introduction

Yao’s Millionaires problem is a special example of the general secure multiple-party computation.

In the scenario, Alice has a secret integer x and Bob has a secret integer y. They want to know

x > y or x ≤ y, without leaking any information of x and y. Yao [15] first presented a

solution to the problem. Since then, the solutions [1, 4, 7, 12, 13] have been proposed. These

solutions used additive or XOR homomorphic encryption schemes. In 2005, Lin and Tzeng [9]

proposed a solution based on the ElGamal encryption which is probabilistic and multiplicative

homomorphic. In 2011, Y. Huang et al [6] proposed a fast secure two-party computation using

garbled circuits. Among these solutions, Lin-Tzeng protocol is more easily to accept by crypto-

researchers because it is directly based on mathematically intractable problems.

In this note, we shall point out that at the end of Lin-Tzeng solution only the party (Alice)

who is responsible for setting up the system parameters knows the outcome. They did not
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specify how to have the other party (Bob) know the result. We stress that in the scenario it is

not preferable to require that Alice honestly tells Bob the result. We present an improvement of

the Lin-Tzeng solution. It requires that Alice and Bob alternately perform the original protocol

twice. At last, Alice and Bob can almost simultaneously obtain the result. It is the first time to

show that one participator has only an advantage of lnn/n possibility to cheat the other in the

reasonable setting. We also remark that it is no use to introduce an obvious transfer protocol

for exchanging the sequences obtained by the participators.

2 Preliminary

Yao’s Millionaires problem: Alice has an integer x, and Bob has an integer y. They want to

know x ≤ y, or x > y, without leaking any information of x and y.

Multiplicative homomorphic encryption. An encryption E is multiplicative homomor-

phic if for arbitrary m1,m2 it satisfies E(m1)× E(m2) = E(m1 ×m2).

The ElGamal encryption can be described as follows.

[Setup] Pick p = 2q + 1, where p and q are two big primes. Let Gp denote the group

(multiplicative) of the residues modulo p. Let Gq denote a subgroup of order q which is generated

by g . Publish p, q, g, h = g−α and keep α ∈ Z∗
q in secret.

[Encryption] Given m ∈ Gq, pick r ∈ Z∗
q and compute c = E(m) = (a, b) = (gr,mhr).

[Decryption] Given c = (a, b), compute D(c) = b× aα = m.

It is easy to check that ElGamal encryption is multiplicative homomorphic. In fact, we have

E(m1)× E(m2) = (gr1 ,m1h
r1)× (gr2 ,m2h

r2) = (gr1+r2 , (m1 ×m2)h
r1+r2) = E(m1 ×m2)

If c = E(1) = (a, b), then the exponentially lifting transform c′ = ck = (ak, bk), where

k ∈ Z∗
q , has the property that D(c′) = D(c) = 1. This is due to that b′ × (a′)α = mk = 1k = 1.

Notice that the Lin-Tzeng solution depends on this property.

3 Lin-Tzeng solution revisited

The Lin-Tzeng scheme uses the binary representations of x and y to define two sets S1
x and S0

y .

It then proves that

x > y ⇐⇒ S1
x ∩ S0

y ̸= ∅

Let s = snsn−1 · · · s1 ∈ {0, 1}n be a string of length n. The sets S0
s and S1

s are defined as

follows:

S0
s = {snsn−1 · · · si+11 | si = 0, 1 ≤ i ≤ n}
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S1
s = {snsn−1 · · · si+1si | si = 1, 1 ≤ i ≤ n}

Example 1. s = 101101. S0
s = {11, 10111}, S1

s = {1, 101, 1011, 101101}. Actually, |S0
s | = k,

where k is the number of bit 0 contained in the string s. |S1
s | = l, where l is the number of bit

1 contained in the string s.

Example 2. x = 101110, y = 101101. S1
x = {1, 101, 1011, 10111}, S0

y = {11, 10111}. Since

S1
x ∩ S0

y = {10111} ̸= ∅, we have x > y.

We now describe the Lin-Tzeng solution.

1. Alice is responsible for setting up the parameters of ElGamal encryption. She then picks

α ∈ Z∗
q and computes h = g−α. Publish p, q, g, h.

2. Alice uses the binary representation x = xnxn−1 · · ·x1 ∈ {0, 1}n to construct a 2×n table

T where T [i, j], i ∈ {0, 1}, 1 ≤ j ≤ n, and

T [xi, i] = E(1)i, T [x̄i, i] = E(ri), ri ∈ Gq.

Send T to Bob.

Notice that E(1)i denotes the ciphertext of unit 1 encrypted by ElGamal

encryption which is placed in the i-th column. Since each column has a

ciphertext of unit 1, it is confusing to simply use the notation E(1) as the

original [9]. Due to that ElGamal encryption is probabilistic, we have

E(1)i ̸= E(1)j if i ̸= j. For example, if x = xnxn−1 · · ·x1 = 1101 · · · 1,
then T is generated as follows

n n− 1 n− 2 n− 3 · · · 1

0 E(rn) E(rn−1) E(1)n−2 E(rn−3) · · · E(r1)

1 E(1)n E(1)n−1 E(rn−2) E(1)n−3 · · · E(1)1

Since the randomness of E(ri), E(1)i, 1 ≤ i ≤ n, Bob can not determine

the position of E(1)i, 1 ≤ i ≤ n.

3. Bob uses the binary representation y = ynyn−1 · · · y1 to construct the set S0
y . For t =

tntn−1 · · · ti ∈ S0
y , he looks up the table T for T [tj , j], i ≤ j ≤ n, and computes

ct = T [tn, n]× T [tn−1, n− 1] · · · × T [ti, i]

Using the exponential lifting transform, he obtains c′t from ct. Let |S0
y | = λ. He obtains

c′1, c
′
2, · · · , c′λ. Let l = n− λ. He picks l random zj = (aj , bj) ∈ G2

q , 1 ≤ j ≤ l and construct the

following sequence

z1, · · · , zl, c′1, · · · , c′λ

Randomly permutate the sequence to obtain ĉ1, · · · , ĉn. Send the resulting sequence to Alice.
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4. Alice computes mi = D(ĉi), 1 ≤ i ≤ n. If there exists mi = 1, then she concludes that

x > y. Otherwise, x ≤ y.

Correctness. If S1
x ∩ S0

y = t̂, then t̂ = t̂nt̂n−1 · · · t̂i = xnxn−1 · · ·xi. Hence,

ct̂ = T [t̂n, n]× T [t̂n−1, n− 1] · · · × T [t̂i, i]

= T [xn, n]× T [xn−1, n− 1] · · · × T [xi, i]

= E(1)nE(1)n−1 · · ·E(1)i

Therefore, E(1)nE(1)n−1 · · ·E(1)i = E(1), D(ct̂) = D(E(1)) = 1.

The following Table 1 summarizes the steps of Lin-Tzeng solution.

Table 1: Lin-Tzeng solution
Alice Bob

Pick α← Z∗
q , compute h← g−α.

p,q,g,h
−− 99K

For x = xnxn−1 · · ·x1, construct
T = {T [i, j]}0≤i≤1,1≤j≤n, where

T [xi, i] = E(1)i, T [x̄i, i] = E(ri), ∀ ri ∈ Gq.
T

−− 99K For y = ynyn−1 · · · y1, compute S0
y =

{ynyn−1 · · · yi+11 | yi = 0, 1 ≤ i ≤ n}.
Let |S0

y | = λ, l = n− λ.

For ∀ t = tntn−1 · · · ti ∈ S0
y , compute

ct = T [tn, n] · · · × T [ti, i].

Exponentially lift ct to c′t.

Pick zj = (aj , bj), 1 ≤ j ≤ l,

construct a sequence

z1, · · · , zl, c′1, · · · , c′λ.
Permutate it to obtain

ĉ1,···,ĉn
L99 −− ĉ1, · · · , ĉn.

Compute mi = D(ĉi), 1 ≤ i ≤ n.

If there is mi = 1, then x > y.

4 Improvement of Lin-Tzeng solution and its cheating advan-

tage analysis

At the end of the Lin-Tzeng protocol, it does not specify how to have Bob know the outcome.

The usual measure is to require that Alice honestly tells Bob the result. But in the scenario it

is not preferable because Alice can cheat Bob in the stage. In the original scheme, the semi-

honest requirement is not explicitly specified. We think the following explicit assumption is

more reasonable.
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Semi-honest assumption: A participator does not deviate from the prescribed steps before

he/she obtains the outcome. Once he/she obtains the result, he/she will try to cheat the other

participator.

4.1 Improvement

As a modification, we suggest having Alice and Bob alternately perform the original protocol

twice. To keep them in symmetric positions, they should agree to the system parameters (p, q, g)

for ElGamal encryption. See the following table 2 for the other steps.

Table 2: Modified Lin-Tzeng solution
Alice (p, q, g) Bob

x = xnxn−1 · · ·x1 y = ynyn−1 · · · y1
Pick α← Z∗

q , compute h← g−α. Pick β ← Z∗
q , compute h̃← g−β .

h
−− 99K

h̃
L99 −−

Construct Construct

T = {T [i, j]}0≤i≤1,1≤j≤n, where T̃ = {T̃ [i, j]}0≤i≤1,1≤j≤n, where

T [xi, i] = E(1)i, T [x̄i, i] = E(ri), ∀ ri ∈ Gq. T̃ [yi, i] = E(1)i, T [ȳi, i] = E(r̃i), ∀ r̃i ∈ Gq.
T

−− 99K
T̃

L99 −−
Compute S0

x = Compute S0
y =

{xnxn−1 · · ·xi+11 |xi = 0, 1 ≤ i ≤ n}. {ynyn−1 · · · yi+11 | yi = 0, 1 ≤ i ≤ n}.
Let |S0

x| = λ, l = n− λ. Let |S0
y | = λ′, l′ = n− λ′.

For ∀ t = tntn−1 · · · ti ∈ S0
x, compute For ∀ s = snsn−1 · · · si ∈ S0

y , compute

ct = T [tn, n] · · · × T [ti, i]. ds = T [sn, n] · · · × T [si, i].

Exponentially lift ct to c′t. Exponentially lift ds to d̃s.

Pick zj = (aj , bj), 1 ≤ j ≤ l, Pick z̃j = (ãj , b̃j), 1 ≤ j ≤ l′,
construct a sequence construct a sequence

z1, · · · , zl, c′1, · · · , c′λ. z̃1, · · · , z̃l′ , d̃1, · · · , d̃λ′ .
Permutate it to obtain Permutate it to obtain

ĉ1, · · · , ĉn. d̂1, · · · , d̂n.
ĉ1

−− 99K
d̂1L99 −−

...
ĉn

−− 99K
d̂nL99 −−

Use α to compute mi = D(d̂i), 1 ≤ i ≤ n. Use β to compute m̃j = D(ĉj), 1 ≤ j ≤ n.
If there is mi = 1, then x > y. If there is no m̃j = 1, then x > y.
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4.2 Cheating advantage analysis

Due to the unbalanced positions of two participators, the works [1, 4, 7, 12, 13] did not consider

the advantage of that one participator cheats the other party. In the above modification, it is

easy to see that the positions of Alice and Bob are symmetric. Having the explicit semi-honest

assumption, we now estimate cheating advantages.

Lemma 1. Suppose x = xnxn−1 · · ·x1 ∈ {0, 1}n and y = ynyn−1 · · · y1 ∈ {0, 1}n. The

sets S0
x and S1

x are defined as follows: S0
x = {xnxn−1 · · ·xi+11 |xi = 0, 1 ≤ i ≤ n}, S1

x =

{xnxn−1 · · ·xi+1xi |xi = 1, 1 ≤ i ≤ n}. If x ̸= y, then

|S0
x ∩ S1

y | = 1 or 0.

Proof. If a, b ∈ S0
x ∩ S1

y , a < b, then a must be of the form

a = xn · · ·xi+11 = yn · · · yi+1yi ∈ {0, 1}n+1−i, and xi = 0, yi = 1,

for some index i. On the one hand, by the definition of S0
x, we know that b must be of the form

b = xn · · ·xi+1 0 xi−1 · · ·xj+1 1 ∈ {0, 1}n+1−j , xj = 0

for some index j. On the other hand, by the definition of S1
y , b must be of the form

b = yn · · · yi+1 1 yi−1 · · · yj ∈ {0, 1}n+1−j , yj = 1.

This leads to a contradiction. �
After Alice and Bob obtain ĉ1, · · · , ĉn and d̂1, · · · , d̂n, respectively, they should alternately

exchange ĉi, d̂i one by one. In the step of exchanging ĉi and d̂i, Bob only has the advantage

of 1/(n + 1 − i) possibility to cheat Alice because |S0
x ∩ S1

y | = 1 or 0. On average, we have the

following bound
1/n+ 1/(n− 1) + · · ·+ 1

n
≈ lnn/n.

That is, Bob has an advantage of lnn/n possibility to cheat Alice. So does Alice. Therefore,

due to the randomness of two sequences ĉ1, · · · , ĉn and d̂1, · · · , d̂n, Alice and Bob will almost

simultaneously obtain the result. By the way, both two protocols in [1] and [4] do not specify

how to have Bob know the result, and not estimate the cheating advantage. To the best of our

knowledge, it is the first time to show that one participator has only an advantage of lnn/n

possibility to cheat the other in the reasonable setting.

5 Further discussion

To prevent Alice from cheating Bob, one might introduce an oblivious transfer protocol [2, 5,

8, 10, 11, 14] into the original scheme. Concretely, it requires that Alice and Bob alternatively
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execute the original protocol twice. Denote the sequence obtained by Bob as d̂1, · · · , d̂n, and
denote the sequence obtained by Alice as ĉ1, · · · , ĉn. Alice and Bob exchange d̂1, · · · , d̂n and

ĉ1, · · · , ĉn using the oblivious transfer protocol. We here stress that the transferred d̂1, · · · , d̂n and

ĉ1, · · · , ĉn are not recognizable. Any party, say, Alice, can cheat the other party by transferring

an arbitrary sequence c̄1, · · · , c̄n. If Bob honestly transfer d̂1, · · · , d̂n, then he will be cheated.

Thus, the primitive of oblivious transfer is not applicable to the Lin-Zeng solution.

We here point out that in most reasonable applications of OT, the transferred messages must

be recognizable for the receiver, or the sender is willing to disclose some messages to the receiver.

The property has been explicitly specified in the earlier works by Rabin [11], Even, Goldreich

and Lempel [3]. It stressed that:

The notion of a “recognizable secret message” plays an important role in our

definition of OT. A message is said to be a recognizable secret if, although the

receiver cannot compute it, he can authenticate it once he receives it.

The notion of a recognizable secret message is evidently relevant to the study of

cryptographic protocols, in which the sender is reluctant to send the message while

the receiver wishes to get it. In such protocols, it makes no sense to consider the

transfer of messages that are either not secret (to the receiver) or not recognizable

(by the receiver).

In symmetric case, such as signing contracts, both two participators can easily verify the

correctness of the received messages. In unsymmetric case, such as a database manager plays

the role of the sender and a client plays the role of the receiver, it is usual that the sender is

willing to disclose some messages to the receiver. To sum up, if the transferred messages are not

recognizable then the receiver can not decide which message to retrieve. But it is a pity that in

most cases the transferred messages are not recognizable.

6 Conclusion

We improve the Lin-Tzeng solution to Yao’s Millionaires problem by having the two participators

alternately perform the original Lin-Zeng protocol twice. We specify the assumption that a

participator does not deviate from the prescribed steps before he/she obtains the outcome. We

also estimate the cheating advantage under the reasonable assumption.
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