
Proofs of Data Possession and Retrievability Based on MRD

Codes∗

Shuai Han1, Shengli Liu1, Kefei Chen2, Dawu Gu1

1Department of Computer Science and Engineering

Shanghai Jiao Tong University, Shanghai 200240, China
2School of Science, Hangzhou Normal University, Hangzhou, China

shuaihan.sjtu@gmail.com, {slliu, kfchen, dwgu}@sjtu.edu.cn

Abstract

Proofs of Data Possession (PoDP) scheme is essential to data outsourcing. It provides an efficient
audit to convince a client that his/her file is available at the storage server, ready for retrieval when
needed. An updated version of PoDP is Proofs of Retrievability (PoR), which proves the client’s
file can be recovered by interactions with the storage server. We propose a PoDP/PoR scheme
based on Maximum Rank Distance (MRD) codes. The client file is encoded block-wise to generate
homomorphic tags with help of an MRD code. In an audit, the storage provider is able to aggregate
the blocks and tags into one block and one tag, due to the homomorphic property of tags. The
algebraic structure of MRD codewords enables the aggregation to be operated over a binary field,
which simplifies the computation of storage provider to be the most efficient XOR operation. We
also prove two security notions, unforgeability served for PoDP and soundness served for PoR with
properties of MRD codes. Meanwhile, the storage provider can also audit itself to locate and correct
errors in the data storage to improve the reliability of the system, thanks to the MRD code again.

Keywords: Data integrity, dependable storage, error localization, cloud computing.

1 Introduction

Data outsourcing to cloud storage reduces the storage cost and makes the data maintenance easier at
both personal and business level. When clients move their data to a service provider for storage, they
can enjoy the convenience of outsourcing storage with a relative low fee. However, they may also worry
about the security of their data, as their data is out of their hands, and can be manipulated by the
untrustworthy storage provider. The storage provider may maliciously delete some rarely accessed data
to save space, or lose some data due to system failure. Hence, one of the main issues bothering the clients
is whether their data is still available for retrieval if needed. The fact that even Amazon’s S3, one of
the best data outsourcing service provider, suffered significant downtime in 2008, makes this issue more
critical.

A naive way to solve this issue is that a client retrieves all his/her data to check its authenticity and
integrity from time to time. This costs lots of communication bandwidth, and deviates from the original
appealing features of cloud storage.

A better approach is that a client performs an audit of the storage provider. A successful audit verifies
that the provider stores the data, without the retrieval and transfer of all the data from the provider to
the client. The ability of a storage system to generate proofs of possession of client’s data, without having
to retrieve the whole file, is called Proofs of Data Possession(PoDP). PoDP only concerns the provider’s
proof of data possession. An improved version of PoDP is known as Proof of Retrievability (PoR), which
enables the provider to convince the client that the original data could be recovered through enough
interactions between the client and provider.

∗Corresponding author: Shengli Liu. Funded by NSFC Nos.61170229, 61133014, 61373153, Innovation Project
(No.12ZZ021) of Shanghai Municipal Education Commission, and Specialized Research Fund (No.20110073110016) for the
Doctoral Program of Higher Education, Major State Basic Research Development Program (973 Plan)(No.2013CB338004).

1

More precisely, a PoDP/PoR scheme is implemented through an audit in which a client interacts with
the storage provider. In each interaction, the client issues a query, and the provider feeds back a response.
The client verifies the consistency of the response. After several interactions, the client decides whether
the audit is successful or not according to some audit strategy. A successful audit indicates the client’s
confidence of the data possession of the provider. Proof of retrievability means that if a storage provider
succeeds in an audit, then there exists an extractor, which can extract all the data from interactions with
the provider.

In the above introduction, we assume that clients implement the audit, and this is called PoDP/PoR
with private verification. Audit can also be performed by any trustworthy third party, and in this case it
is called PoDP/PoR with public verification. Public verification often involves complicated computation
like modular exponentiations or bilinear pairings, which makes the corresponding PoDP/PoR inefficient.
In this paper, we only study PoDP/PoR with private verification.

To evaluate a PoDP/PoR scheme, both “system” and “crypto” criteria should be considered. As
suggested in [14], the “system” criteria includes computational complexity of the storage provider and
clients, communication complexity between the provider and clients, statelessness and unbounded use of
the interactions in the audit. The computational complexity and communication complexity determine
the efficiency of the PoDP/PoR scheme. The unbounded use means that the number of possible inter-
actions should not be bounded to some fixed threshold. The statelessness requires there should not be
state to maintain and update between interactions in an audit. The “crypto” criteria requires that a suc-
cessful audit guarantees the provider server is actually storing the file (as for PoDP), with overwhelming
probability, and the existence of an extractor to recover data with interactions between the client and
the provider (as for PoR).

In a PoDP/PoR system, the storage provider is in charge of responding to all the clients for auditing. It
is very important for the storage provider to implement light-weight computation, otherwise the provider
will be the bottleneck of the system. However, almost all the available PoDP/PoR schemes associate the
storage provider with heavy computation, like modular exponentiations or modular multiplications.

1.1 Related Works

Deswarte et al. [5] (2003) and Filho et al. [8] (2006) designed schemes to prove the data availability
based on RSA. The schemes require huge amount of modular exponentiations. Similarly, Schwarz et
al. [13] (2006) also proposed to employ algebraic signatures for integrity check of storage. The highly
computational complexity makes the aforementioned schemes impractical.

It was Juels and Kaliski [10] (2007) who first formulated the concept of Proof of Retrievability and
defined the corresponding security model. Dodis, Vadhan and Wichs [7] (2009) presented Proof of Re-
trievability Codes (PoR codes) for PoR schemes, and they also divide PoR schemes to “bounded vs.
unbounded” according to the number of possible queries in an audit, and “knowledge soundness vs.
information soundness” according to whether the extractor is probabilistic polynomial time (PPT) or
not. Naor and Rothblum [11] (2005) designed “sublinear authenticator”, which can be considered as
“information-theoretic unbounded-use of PoR schemes” according to Dodis, Vadhan and Wichs [7].

More constructions of PoR schemes are given by Ateniese et al. [6] (2007), Shacham and Waters
[14] (2008), or Schwarz and Miller [13] (2006). When authentication is achieved with a digital signature
scheme, one gets a PoR scheme with public verification.

Among all the PoDP/PoR schemes, the most charming ones are those with homomorphic authenti-
cators. These schemes were identified as homomorphic linear authenticator schemes in [7]. Ateniese et
al. [6] (2007) proposed constructions of PoDP scheme (called the ABCHKPS scheme) with homomorphic
verifiable authenticator based on the RSA assumption. The PoDP security model was further extended
to be against arbitrary adaptive PPT adversaries by Shacham and Waters [14](2008), who presented PoR
schemes (called the SW scheme) both for private verification and public verification, and their security
was given in the full security model. The file of a client is divided into blocks, and an authenticator
(tag) is computed for each block. In the audit, the client samples blocks/authenticators (tags). The
authenticator (tag) helps the owner of the file to check the integrity of the block with an authentication
key. Because of the homomorphic property, multiple file blocks resp. authenticators can be combined
into a single aggregated block/authenticator pair. And the verification is simplified to integrity check of
the aggregated block. Therefore, both the computational complexity and communication complexity of

2

an audit are greatly reduced, due to the homomorphic property of authenticators.
Wang et al. proposed [16] (2012) to integrate PoDP with dependable storage. They used Reed-

Solomon(RS) erasure-correcting codes to encode the original file of the client before storage. The audit
of PoDP will locate erasures which are later corrected with RS decoding. Their scheme is bounded and
only the client is able to implement the erasure-correcting. At the same time, erasure correction needs
interactions between the client and each individual servers to locate erasures, recover the whole encoded
file, and distribute the file among all the distributed servers. This imposes a great burden to clients’
local computation, storage, and management, and again deviates from the original goal (free of data
management) of cloud storage.

Next, we briefly review two seminal schemes. The first one was proposed by Ateniese et al. [6] (2007)
and referred to the ABCHKPS scheme. The second one was proposed by Shacham et al. [14] (2008) and
referred to the SW scheme.

1.2 The ABCHKPS Scheme

The ABCHKPS scheme proposed by Ateniese et al. [6] (2007) is based on the RSA assumption in the
Random Oracle security model. It is roughly recalled as follows.

Homomorphic Tag Generation. Each fileM is divided into blocks of 1024-bit, i.e., M = (M1,M2, · · · ,
Mw). For each block Mi, an RSA-like signature is computed as a tag Ti.

Interactions in Audit. In an audit, the client will interact with the storage provider in the form of
challenge/response. When a challenge binary vector (v1, v2, · · · , vw) of weight c is issued, the
provider computes an aggregated tag, whose computation is dominated by g

∑w
i=1 viMi mod N .

Here N is a 1024 modulus, and g is a random element from the Quadratic Residue subgroup of Z∗N .
Verifying the consistence of the provider’s response is just the RSA signature verification.

The scheme presented a security analysis about a malicious storage provider. If the provider deletes
t blocks of file M , then the scheme cannot detects the provider’s misbehavior with a probability ζ =(
w−t
c

)/(
w
c

)
.

Remember c is the weight of the challenger vector, i.e., the number of sampled blocks, and w the total
number of blocks in file M . If c = 460 and t = 0.01w, i.e., 1% fraction of M is deleted, ζ can be as small
as 1% according to [6].

The probability ζ suggests a necessary condition on auditing strategy. Only if the storage provider
correctly answers the challenge vector with probability larger than ζ, does the audit claim success.

Now we give a simple analysis of the scheme.

• To answer a challenge in the audit, the computation of the storage provider is dominated by
g
∑w

i=1 viMi mod N , which needs about c modulo exponentiations with a 1024-bit modulus. The
reason is that the exponent

∑w
i=1 viMi is about c bits longer than a 1024-bit block. Without the

secret factorization of N , the provider can not reduce the exponent
∑w
i=1 viMi with φ(N) before

the computation of modular exponentiation.

• If the storage provider deletes only a few blocks, the stored file is not the original one any more,
but it is very hard to detect the provider’s misbehavior. Let t = 1, c = 460, M be a file of 1GB,
Then w = 223, but ζ = (w − c)/w ≈ 100%.

Therefore, the ABCHKPS scheme only detects the service provider’s misbehavior when a large portion
of the file is missing. In the mean time, the computational overhead of the service provider for audit is
heavy.

1.3 The SW Scheme

The scheme presented by Shacham and Waters [14] is called the SW scheme. A new security notion,
namely ε-soundness, was proposed in the SW scheme. If the service provider correctly answers a client’s
challenges with probability at least ε, it is possible for the client to recover the file from enough interactions
with the provider. ε-soundness suggests a sufficient condition on the auditing strategy. As long as the

3

storage provider correctly answers the challenge vector with probability at least ε, the audit can claim
success.

The idea of the SW scheme is as follows.

Erasure Encoding. The original file M ′ is encoded into M with an erasure code, such that the retrieval
of ρ fraction of M is able to recover the original M ′.

Homomorphic Tag Generation. The encoded file M is divided into w blocks of the same length (the
last block may be padded to achieve the length): M = (M1,M2, · · · ,Mw). A tag σi is generated
from each block Mi with help of an authentication key K. The final file M∗ consists of the blocks
and their tags.

Interactions in Audit. In an audit, the client will interact with the storage provider in the form of
challenge/response. Let (v1, v2, · · · , vw) be a challenge vector, where vi ∈ B ⊆ Fp. The provider can
generate an aggregated pair (µ, σ) of message and tag, where µ =

∑w
i=1 viMi and σ =

∑w
i=1 viσi.

Given the prover’s response (µ′, σ′), the client is able to use the authentication key K to ver-
ify whether (µ′, σ′) is consistent or not. A consistent pair (µ′, σ′), i.e., the pair that passes the
verification, must guarantee µ′ =

∑w
i=1 viMi with overwhelming probability.

To prove that the original file M ′ can be retrieved from a storage provider who feeds back consistent
responses upon queries with some probability ε, an extractor is constructed to interact with the storage
provider to recover M ′. If the storage provider’s reply (µ, σ) passes the verification, we call that (µ, σ) is
consistent to the challenge vector (v1, v2, · · · , vw). Firstly, it is necessary to prove that a consistent reply
(µ, σ) is in fact a linear combination of the blocks, i.e., µ =

∑w
i=1 viMi, with overwhelming probability.

Secondly, if ε is big enough, the consistent responses will bring more and more information about M ′

in the form of linear combinations µ =
∑w
i=1 viMi. When enough consistent replies are collected, a ρ

fraction of the encoded file M can be recovered by solving a system of equations. Finally, with decoding
algorithm of the erasure code, ρ fraction of the encoded file M uniquely determines the original file M ′.

Although the SW scheme enjoys short responses due to the homomorphic verifiable tags, there are
some other problems with the SW scheme.

• The Erasure Encoding imposes a heavy computational burden to the clients, and makes the SW
scheme unfriendly to dynamic update of the clients’ files.

The employment of erasure correction code in [14] [7] is directly served to the security proof: it
is much easy for the extractor to recover ρ fraction of a file than the whole one. However, this
imposes a great computational burden for the client to encode the original file M ′ into M . If
M ′ has w′ blocks, the error-erasure encoding will extend the w′ blocks to w blocks, then ρ = w′

w .
The expansion rate is defined as θ = w

w′ . For a security level of 80 bits, all the operations should
be over finite field Fp with p at least 80 bits. However, such an encoding needs at least O(w′2)
multiplications over the prime field Fp. For example, if a 1GB file M ′ is divided into 220 blocks of
length 1KB, then the encoding needs at least (1024 × 8/80) × 240 > 246 modular multiplications
over Fp. Such a computational complexity served to store a file is unbearable to clients.

On the other hand, the original w′ blocks are encoded to w blocks. When one of the w′ blocks is
modified (deletion, insertion, update), at least another w − w′ blocks changes correspondingly.

• The challenge vector (v1, v2, · · · , vw) ∈ (Fp)w cannot be reduced to a binary vector to save com-
munication and computational overhead. The challenge vector implies the aggregated response
should be (

∑w
i=1 viMi,

∑w
i=1 viσi). To reduce the communication band and the computational

overhead of the storage provider, the SW scheme suggests that only l (l ≤ w) random locations
in the vector are chosen to take values from a small set B ⊆ Fp. If B = {1}, the computation
of (
∑w
i=1 viMi,

∑w
i=1 viσi) is reduced to addition over the prime field Fp. Unfortunately, B = {1}

gives an attack to the security of the SW scheme, as shown in [14]. Therefore, it is inevitable for
the storage provider to use multiplications over Fp to prepare the aggregated response.

• Theoretically, the storage provider is able to correct errors in M if an Error-Correction Code instead
of an Erasure Correction Code is involved. However, the decoding algorithm is much slower than the
encoding algorithm, and computational complexity of decoding is significantly larger than O(w′2),
where w′ is the number of blocks of the original file.

4

1.4 Our Contributions

In this paper, we proposed a PoDP/PoR scheme based on MRD codes. The main idea is as follows.
Divide the original file M into blocks M = (M1,M2, · · · ,Mw), each block being a matrix of t × k

over a small field Fq. Block Mi is encoded into a MRD codeword Ci, which is a matrix of t × n over
Fq, for i = 1, 2, · · · , w. Then each codeword Ci is used to generate a tag σσσi = Ci · k + ki, where k, ki,
i = 1, 2, · · · , w are authentication keys, and σσσi, k, ki are vectors over Fq. The final file to be stored in the
server is M∗ = (C1||σσσ1, C2||σσσ2, · · · , Cw||σσσw).

A challenge vector (v1, v2, · · · , vw) is just a random sequence of length w over the field Fq. The
corresponding valid response should be a linear combination of the blocks (

∑w
i=1 vi ◦ Ci,

∑w
i=1 vi ◦ σσσi),

where ◦ is scalar multiplication over Fq.
The validity of the response can be verified with

∑w
i=1 vi ◦σσσi = (

∑w
i=1 vi ◦ Ci) · k +

∑w
i=1 vi ◦ ki, using

the authentication key k, ki, i = 1, 2, · · · , w. Pseudo-random functions are used to generate ki to reduce
the local key storage.

The linearity of the MRD code results in homomorphic authenticators (tag), just like the scheme
by Shacham and Waters (the SW scheme). However, our proposal has different features from the SW
scheme.

• Efficient computation by the service provider. The MRD encoding plants algebraic structure
in blocks so that the generation of tags and aggregation of messages and tags can be computed over
smaller field Fq. As to the instantiation of F2, the challenge vector (v1, v2, · · · , vw) can be taken as
a random binary sequence of length w, and the computation of the storage server for the response
is simply XOR. This is the most efficient operation for the storage server.

• Mild amount of pre-computation by the client. The MRD encoding is applied block-wise. If
we take a file as a matrix. Then each row, as a block, is encoded into an MRD codeword, in contrast
to each column being encoded into an Erasure Correction Codeword in the SW scheme. The file
encoding involves w MRD encoding, so the encoding computational complexity is of O(w) in terms
of MRD encoding (compared with the O(w2) complexity of the SW scheme). When parameters of
the MRD code are fixed, the MRD encoding consumes a constant amount of computation.

• Our proposal considers both PoDP and PoR with two security notions, which justify
both the sufficiency and necessity of the audit strategy. We define two security notions
served for both the sufficiency and necessity of the audit strategy, namely unforgeability and
ε-soundness. Unforgeability considers the cheating probability of storage provider in one inter-
action of challenge-response when some blocks are missing. It serves for the proof of data possession.
ε-soundness considers the proof of retrievability, which suggests that if the provider answer chal-
lenges with consistent responses with probability at least ε, it is possible for an extractor to retrieve
the original file. The security proof strongly relies on the property of MRD codewords. The alge-
braic property of MRD codewords makes an adversary impossible to forge a response, which passes
client’s verification but is not computed as it is supposed to be. This helps to prove the unforge-
ability and ε-soundness of the scheme and justify the rationality of the audit strategy. To prove
the ε-soundness of the scheme, we do not rely on an extractor’s ability to recover some ρ fraction
of the encoded file M∗, as the SW scheme did. We rely on the randomness of each entry vi in the
challenge vector (v1, v2, · · · , vw) and the algebraic structure of MRD codewords instead.

• Efficient error location and correction for dependable storage. The linearity of the MRD
codes also enable the storage provider to implement an efficient self-audit. If there is a failure in
a self-audit, it is possible for the provider to locate the error block and fix it with MRD decoding.
To locate an error, binary search applies with complexity of O(logw). Compared with other error-
correction codes, an MRD code is more powerful since it is capable of correcting row erasures,
column erasures and rank errors.

1.5 Performance Comparison

Below gives a comparison among the ABCHKPS[6], SW[14], and our schemes. For a 1GB file, the block
size is 1024-bit(as suggested in the ABCHKPS scheme [6]), 1KB(the SW scheme [14]), 4KB(as suggested

5

in Section 5, our proposal). The block number is w = 223, 220, 218 respectively.
Unforgeability defines the successful probability ζ of a service provider in an interaction when t blocks

of the file are deleted. It is closely related to the sampling strategy. The SW scheme has the same
sampling strategy as the ABCHKPS scheme, hence they share the same unforgeability. When sampling c
blocks among the totally w blocks for an interaction, ζ can approximately be estimated by the probability
that no deleted block is sampled, i.e., ζ ≈

(
w−t
c

)/(
w
c

)
≥ (1− t/(w − c+ 1))

c
. Let the number of sampled

blocks for each interaction be c = 460, as suggested in [6]. We have a different sampling strategy, namely,
each block is sampled with probability 1/2. Therefore ζ ≈ 1/2t. It is easy to see that the unforgeability
ζ of our scheme is better, especially when the fraction of deleted blocks is small. To obtain the same
unforgeability as our scheme, both the ABCHKPS scheme and the SW scheme have to sample about half
of the blocks, i.e., c ≈ w

2 .
Suppose the multiplication in Fp has computational complexity O((log p)2) and exponentiation in Fp

has computational complexity O((log p)3) in terms of bit-XOR. The SW scheme takes a 80-bit p for Fp.
Our proposal takes a binary field as suggested in Section 5.

With the unforgeability of our scheme as a benchmark, we show the computation complexity of the
three schemes in Table 1. The table includes precomputation, computation of the client in one interaction,
and computation of the server in one interaction.

Computation

Scheme
ABCHKPS SW Ours

Precomput. (bit-XOR) O(253) O(259) O(249)

Client Comput. (bit-XOR) O(231) O(231) O(231)

Server Comput. (bit-XOR) O(252) O(238) O(233)

Table 1: Computational Complexity of the ABCHKPS, SW and Our Schemes

It should be noted the difference between the ABCHKPS scheme, our scheme and the SW scheme. In
the ABCHKPS scheme and our scheme, when one block is missing in the storage server, theoretically the
storage provider does not possess the client’s file any more. When some block is corrupted, this specific
block might be able to be recovered with MRD decoding in our scheme, but not in the ABCHKPS scheme.
As for the SW scheme, the fact that some blocks are missing does not mean that the original file can not
be recovered, due to the way error-correction code is used.

2 PoDP/PoR Scheme: Definition and Security Model

2.1 Notations and Assumptions

We use the following notations throughout the paper.

• Fq: a finite field with q elements, i.e., GF (q).

• λ: security parameter, which is an integer tending to infinity. The current security standard requires
that λ ≥ 80.

• k: a column vector of dimension t over Fq, or an element in Fqt .

• kT : transpose of the vector k.

• (C1, · · · , Cn)T: it represents

 C1

...
Cn

 instead of

 CT1
...
CTn

, where C1, · · · , Cn are matrices.

6

• ◦: scalar multiplication over Fq. Let k =
(
k(1), k(2), · · · , k(n)

)T ∈ (Fq)n, and v ∈ Fq. Then

v ◦ k =
(
v · k(1), v · k(2), · · · , v · k(n)

)T
, where · is the multiplication over Fq.

• ~a: a row vector of column vectors, i.e., ~a = (a1, a2, . . . , an), where ai is a column vector over Fq. It
can also be regarded as a matrix over Fq. Then v ◦~a = (v ◦ a1, v ◦ a2, · · · , v ◦ an).

• A||B: the concatenation of A and B.

• |S|: the cardinality of set S.

• s← S: sample element s uniformly at random from set S.

• |s|: the bit length of string s.

• a← Alg(x): run the algorithm Alg(·) with input x and obtain a as an output, which is distributed
according to the internal randomness of the algorithm.

• A function f(λ) is negligible if for every c > 0 there exists a λc such that f(λ) < 1/λc for all λ > λc.

• PRF: pseudo-random function.

• PPT: probabilistic polynomial time.

To reduce communication band and local storage, we will use pseudo-random functions to generate
the key sequence ki, i = 1, 2, · · · , w. Below define pseudo-random functions.

Let l1 and l2 be two positive integers, which are polynomially bounded functions in security parameter
λ. Let PRF = {Fs}s∈S be a family of functions indexed by s, and Fs : {0, 1}l1 → {0, 1}l2 . Function Fs(·)
can also be represented by F (s, ·). Let Γl1,l2 be the set of all functions from {0, 1}l1 to {0, 1}l2 .

Definition 1 [12] Given an adversary A which has oracle access to a function in Γl1,l2 , suppose that A
always outputs a bit. The advantage of A over PRF is defined as

AdvAPRF(1λ) =
∣∣Pr

[
AFs(1λ) = 1 | s← S

]
− Pr

[
Af (1λ) = 1 | f ← Γl1,l2

]∣∣ .
Define the advantage of PRF as AdvPRF(λ) = max

PPTA
AdvAPRF(1λ).

PRF is called pseudo-random if AdvPRF(λ) is negligible.

Obviously, the output of a pseudo-random function is a pseudo-random sequence, which is indistin-
guishable from a real random sequence to any PPT adversary.

2.2 PoDP/PoR Scheme

A PoDP/PoR scheme consists of seven PPT algorithms KeyGen, Encode, Decode, Challenge, Response,
Verification and an audit algorithm Audit, where the algorithms Challenge, Response and Verification
constitute an interaction protocol. A PoDP/PoR system associates a data storage service provider(P)
with clients(V). The algorithms in a PoDP/PoR scheme works as follows.

Key generation: (sk, pp)← KeyGen(1λ). Each client V calls (sk, pp) ← KeyGen(1λ) to get his own
private key sk and a public parameter pp. V keeps the private key sk secret and stores (sk, pp)
locally.

Storage encoding: M∗ ← Encode(sk, pp,M). When a client V prepares a file M for outsourced stor-
age, he/she will call M∗ ← Encode(sk, pp,M) to encode M to M∗. The client V submits M∗ to
the storage provider.

Storage recovery: {M,⊥} ← Decode(sk, pp,M∗). When a client V gets back the out-sourced file M∗,
he/she will call {M,⊥} ← Decode(sk, pp,M∗) to recover the original file M or ⊥ indicating that
M∗ is too corrupted to recover M .

Storage. The storage provider P stores M∗ submitted by the client V.

7

Audit: β ← Audit (u, Interaction(P(M∗, pp)� V(sk, pp))). A client V can run the interactive protocol
Interaction(P(M∗, pp)� V(sk, pp)) with the storage provider P for u times, which is polynomial in
λ. The storage provider P possesses M∗ and the client V keeps secret key sk. The protocol consists
of the following three algorithms.

Interaction (P(M∗, pp)� V(sk, pp))

ch← Challenge(1λ): This is a PPT algorithm run by the verifier V. On input the security
parameter λ, this algorithm outputs a challenge ch.

re← Response(pp,M∗, ch): This is a deterministic algorithm run by the prover P. On input
the public parameter pp, the encoded file M∗ and the challenge ch, the algorithm returns a
corresponding response re.

b← Verification(pp, sk, ch, re): This is a deterministic algorithm run by the verifier V. On input
the public parameter pp, the secret key sk, the challenge/response pair (ch, re), the algorithm
returns a bit b ∈ {0, 1}, indicating acceptance with 1 or rejection with 0.

If b = 0, the interaction protocol outputs ⊥; otherwise the protocol outputs (ch, re), and we call

(ch, re) a consistent pair and the execution of the protocol successful.

After u executions of the interaction protocol in the audit, the client will output a bit β according
to some audit strategy. If β = 1, the audit succeeds and the client will be convinced that the
storage provider is still storing the file M∗. If β = 0, the audit fails, and the client will consider
that his/her file M∗ has been corrupted or lost.

Correctness of a PoDP/PoR scheme requires that for all (sk, pp,M∗) such that (sk, pp)← KeyGen(1λ)
and M∗ ← Encode(sk, pp,M), the following two statements hold with probability 1.

• The original file M is always recovered from the correctly encoded file M∗, i.e., M = Decode(sk, pp,
M∗) if M∗ ← Encode(sk, pp,M).

• For honest P,V, algorithm Verification(pp, sk, ch, re) always outputs 1 in the interaction protocol,
hence the interaction protocol outputs a challenge/response, i.e, (ch, re)← Interaction(P(M∗, pp)�
V(sk, pp)).

Security of a PoDP/PoR scheme is considered in the following aspects.

Unforgeability for PoDP. We consider the probability ζ of a successful interaction in which a storage
provider uses a deleted version of M∗ to reply a client’s challenges. This probability ζ will play an
important role in the auditing strategy: An audit is claimed to be successful only if the number
of the successful interactions among the total u interactions is larger than ζ · u. We will define
and evaluate this probability in an unforgeability game. This probability is related to the deleted
amount of M∗.

Soundness for PoR. Each successful execution of Interaction protocol brings some confidence to the
client that his/her file is still stored by the storage provider. Successful executions of Interaction
protocol provide consistent challenge/response (chi, rei) pairs and each pair may provide some
information about the original M . The soundness of the PoR scheme suggests that the original
file M can be extracted from those consistent challenge/response (chi, rei) pairs collected from
successful interactions as long as the number (polynomial in λ) of executions of Interaction protocol
is big enough.

2.3 Unforgeability of PoDP Scheme

A malicious storage provider may delete those data that is rarely accessed by clients to save storage
space, or suffer from data loss due to outside attacks. However, the storage provider may still try to
convince the client its storage of the file M∗, even though a file M∗ is partially missing. Unforgeability of
a PoDP scheme requires that the probability of a successful interaction should be low if some part of M∗

is deleted. Unforgeability explains how much confidence a successful Interaction protocol gives a client.

8

It suggests how to set an audit strategy such that the malicious server cannot save on space by deleting
a portion of M∗ and still pass an audit. This probability is related to the proportion of the deleted to
the whole file.

Given a PoDP scheme (KeyGen,Encode,Decode,Challenge,Response, Verification, Audit), we define the
following unforgeability game UnforgePoDPA (λ) between an adversary A = (A1,A2) and a challenger V.

UnforgePoDPA (λ)

1. The challenger V obtains a secret key and a public parameter by (sk, pp)← KeyGen(1λ), and sends
pp to the adversary A1.

2. A1 chooses a message M from the message space M, and sends M to V.

3. V encodes M to M∗ with M∗ ← Encode(sk, pp,M), and sends M∗ to A1.

4. A1 deletes δ fraction of M∗ to get M̃∗. The adversary A2 is given (pp, M̃∗).

5. Test stage. V launches an Interaction protocol by sendingA2 a challenge ch, with ch← Challenge(1λ).
A2 computes a response re′ ← A2(pp, M̃∗, ch).
A = (A1,A2) wins if Verification(pp, sk, ch, re′) = 1, i.e., this Interaction protocol is successful.

Definition 2 A PoDP scheme is (δ, ζ)-unforgeable, if any PPT adversary A = (A1,A2) wins in the
above game UnforgePoDPA (λ) with probability at most ζ. In formula,

Pr

Verification(pp, sk, ch, re′) = 1

∣∣∣∣∣∣
(sk, pp)← KeyGen(1λ),M ← A1(pp),

M∗ ← Encode(sk, pp,M), M̃∗ ← A1(pp,M,M∗),

ch← Challenge(1λ), re′ ← A2(pp, M̃∗, ch)

 ≤ ζ,
where M̃∗ is a δ fraction-deleted version of M∗, and A1,A2 share neither coins nor state.

2.4 Soundness of PoR Scheme

Even a truthful storage provider may malfunction in an audit, due to temporary system failure, and that
does not imply that the provider does not possess the audited data. To be more robust, it is desirable that
the PoR system supports an ε-admissible storage prover, where the storage prover convincingly answers
an ε fraction of the challenges in an audit. We want to prove that it is still possible to distill the original
file M , as long as ε is larger than some threshold and the number of executions of Interaction protocol in
the audit is big enough. This can be characterized by the soundness of Proof of Retrievability (PoR).

A (cheating) prover P̃ε is ε-admissible, if it convincingly answers a challenge with probability at least

ε, i.e., Pr
[
Verification(pp, sk, ch, re′) = 1

∣∣∣ ch← Challenge(1λ), re′ ← P̃ε(pp, ch)
]
≥ ε. The PoR system

is ε-sound if there exists a PPT algorithm Extractor, which recovers M on input the public parameter
pp, the secret key sk and the output of the interactive protocol Interaction(P̃ε(pp, ·) � V(sk, pp)), i.e.,
Extractor

(
pp, sk, Interaction(P̃ε(pp, ·)� V(sk, pp))

)
= M , with overwhelming probability.

The formal definition of soundness of PoR scheme has been presented in [7, 14]. Here we give a refined
description.

Given a PoR scheme (KeyGen,Encode,Decode,Challenge,Response, Verification, Audit), we define the
following soundness game SoundPoRA (λ) between an adversary A and a challenger V. A is going to create
an adversarial prover P̃ε, and a PPT Extractor aims to extract the original file from interactions with P̃ε.

SoundPoRA (λ)

1. The challenger V obtains a secret key and a public parameter by (sk, pp)← KeyGen(1λ), and sends
pp to the adversary A.

2. A chooses a message M from the message space M, and sends M to V.

3. V encodes M to M∗ with M∗ ← Encode(sk, pp,M), and sends M∗ to A.

9

4. Test stage. The adversary A gets protocol access to V(sk, pp) and can interact with V for a
polynomial times. Then the adversary A outputs an ε-admissible prover P̃ε. This ε-admissible
prover P̃ε functions as an oracle, which will output a consistent re for a proper query (challenge)
ch with probability at least ε.

5. A PPT Extractor is given the public parameter pp, the secret key sk and oracle access to the
ε-admissible prover P̃ε. After querying P̃ε for a polynomial times, the Extractor outputs a file M ′.

Definition 3 [7] A PoR scheme is ε-sound, if there exists a PPT Extractor, such that for any PPT
adversary A which outputs an ε-admissible P̃ε through interacting with V in the above game SoundPoRA (λ),
Extractor is able to recover the original file M by querying P̃ε except with negligible probability. In formula,

Pr

[
M ′ 6= M

∣∣∣∣ (sk, pp)← KeyGen(1λ),M ← A(pp),M∗ ← Encode(sk, pp,M),

P̃ε ← A (pp,M,M∗, access to V(sk, pp)) ,M ′ ← Extractor(pp, sk, P̃ε)

]
is negligible.

3 Maximum Rank Distance Codes and Gabidulin Codes

Rank distance was first considered for error-correcting codes by Delsarte [4], and lots of work has been
devoted to rank distance properties, code construction, and efficient decoding. In [4, 3, 2], a Singleton
bound on the minimum rank distance of codes was established, and a class of codes achieving the bound
with equality was constructed, e.g. MRD codes. Gabidulin codes is one of MRD codes, which can
be considered as the rank metric analogues of Reed-Solomon codes. In [15], MRD codes was used in
authentication.

3.1 Rank Distance Codes

Let Fq be a finite field, and Fqt be an extended field of degree t. Let (Fqt)n be the n-dimensional vector
space over Fqt . Given a vector ~a = (a1, a2, . . . , an) ∈ (Fqt)n, each entry ai ∈ Fqt can be expressed as

a t-dimensional column vector over Fq, i.e., ai =
(
a
(1)
i , a

(2)
i , · · · , a(t)i

)T
. Consequently, vector ~a can be

expressed as a t× n matrix over Fq by expanding all the entries of ~a.

Definition 4 [1] A rank distance code CR over finite field Fqt is a subspace of (Fqt)n, satisfying the
following properties.

(a) For each codeword ~c ∈ CR, the rank weight (over Fq) of ~c, denoted as rank(~c|Fq), is defined as the
rank of the corresponding t× n matrix over Fq when ~c is expressed as a matrix over Fq.

(b) For any two codewords ~a,~b ∈ CR, the rank distance (over Fq) of ~a and ~b is defined as dR(~a,~b) =

rank(~a− ~b|Fq).

(c) The minimum rank distance of the code CR, denoted as dR(CR), is the minimum rank distance of all

possible pairs of distinct codewords in CR, i.e., dR(CR) = min
~a,~b∈CR
~a6=~b

dR(~a,~b).

We call CR a [q, c, n, t, d] rank distance code, if each codeword consists of n elements in Fqt , c = |CR| is
the number of codewords, d = dR(CR) is the minimum rank distance.

3.2 Maximum Rank Distance Codes and Gabidulin Code

For a [q, c, n, t, d] rank distance code CR with t ≥ n, it was shown that dR ≤ dH in [3], where dH denotes
the minimum Hamming distance of CR. With the Singleton Bound for block codes, we have the minimum
rank distance of CR satisfies d = dR ≤ n− k + 1, where k = logqt c.

Definition 5 A [q, c, n, t, d] rank distance code CR with t ≥ n is called the maximum-rank-distance
code(MRD code), if CR achieves the bound d = n− k + 1, where k = logqt c.

10

Definition 6 A [q, k, n, t] Gabidulin code CR with t ≥ n consists of a generation matrix Gk×n, a parity
check matrix Hn×(n−k) over Fqt and two algorithms (GabiEncode, GabiDecode).

Generation Matrix Gk×n/Parity Check Matrix Hn×(n−k). The generation matrix Gk×n is deter-
mined by n elements (g1, g2, . . . , gn), with gi ∈ Fqt , i = 1, 2, · · · , n, and all the n elements are
linearly independent over Fq. The parity check matrix Hn×(n−k) is determined by the generation
matrix Gk×n satisfying Gk×n · Hn×(n−k) = 0. In [17], a fast algorithm was shown to find hi ∈ Fqt ,
i = 1, 2, · · · , n such that

Gk×n =

g1 g2 · · · gn
gq1 gq2 · · · gqn
...

...
...

gq
k−1

1 gq
k−1

2 · · · gq
k−1

n

 , Hn×(n−k) =

h1 hq1 · · · hq

n−k−1

1

h2 hq2 · · · hq
n−k−1

2
...

...
...

hn hqn · · · hq
n−k−1

n

 . (1)

GabiEncode(~m,Gk×n). Taking as input the generation matrix Gk×n and the message vector ~m =
(m1,m2, · · · ,mk) ∈ (Fqt)k, it computes ~c = ~m ·Gk×n, and outputs the codeword ~c = (c1, c2, · · · , cn).

GabiDecode(~r,Hn×(n−k)). Taking as input the parity check matrix Hn×(n−k) and a vector~r = (r1, r2, · · · ,
rn) ∈ (Fqt)n, it outputs ~m = (m1,m2, · · · ,mk). Refer to [9] for the specific decoding algorithm.

A [q, k, n, t] Gabidulin code CR is a [q, qtk, n, t, n−k+1] MRD code and CR = {~c |~c = ~m·Gk×n, ~m = (m1,
m2, · · · ,mk),mi ∈ Fqt , i = 1, 2, · · · , k} ⊆ (Fqt)n.

The correctness of Gabidulin Code requires that ~m = GabiDecode(~c,Hn×(n−k)) if~c← GabiEncode(

~m,Gk×n) for all ~m ∈ (Fqt)k.
Lots of work has been done on the efficient decoding of Gabidulin and other MRD Codes. Decoding

algorithms have been proposed to decode erasures or errors or both of them simultaneously.
A Gabidulin codeword ~c satisfies ~c · Hn×(n−k) = 0. Let Et×n be the noise matrix over Fq, which is

added to the codeword. There are three types of noise matrix.

• Row erasures. Let x denote the number of row erasures. Row erasures means the locations of
erroneous rows are known.

• Column erasures. Let y denote the number of column erasures. Column erasures means the locations
of erroneous columns are known.

• Unknown errors. Let z be the rank of error matrix Et×n, where the error locations are unknown.

Efficient (PPT) decoding algorithms ~m← GabiDecode(~r,Hn×(n−k)) exist for erasure and error-correction
decoding [9], which correct x-fold row erasures, y-fold column erasures, and z-fold rank errors simultane-
ously, provided that x+ y + 2z ≤ d− 1, where d = n− k + 1.

4 PoDP/PoR Scheme from MRD Codes

Throughout the paper, we will use Gabidulin Code as an instantiation of MRD code. The only reason
to use Gabidulin Code instead of a general MRD code is that Gabidulin Code has explicit generation
matrix and parity check matrix, which helps us to analyze the performance of our proposal.

The primitives involved in the PoDP/PoR scheme are

• a Pseudo-Random Function PRF : Kprf × {0, 1}∗ → Fqt , which uses a seed k′, randomly chosen
from space Kprf , to generate pseudo-random keys with PRF(k′, i) for i = 1, 2, · · · . The length of
the seed k′ is determined by the security parameter λ.

• A [q, k, n, t] Gabidulin code CR with t ≥ n, which is associated with (Gk×n,Hn×(n−k), GabiEncode,
GabiDecode) defined in Definition 6.

The PoDP/PoR scheme constructed from Gabidulin codes consists of the following algorithms.

11

• (sk, pp)← KeyGen(1λ): The key generation algorithm takes as input the security parameter λ, chooses
random elements k ∈ Fqn and k′ ∈ Kprf . Choose a Pseudo-Random Function (PRF) PRF : Kprf ×
{0, 1}∗ → Fqt and a [q, k, n, t] Gabidulin code CR. Output the public parameter pp = (PRF, CR)
and the secret key sk = (k, k′).

• M∗ ← Encode(sk, pp,M): The storage encoding algorithm takes as input the secret key sk, the public
parameter pp and the original file M . It will compute an encoded file M∗ as follows.

(1) Block Division: The original file M is divided into w blocks, denoted by (M1,M2, · · · ,Mw)T,
each block Mi = (mi1,mi2, · · · ,mik) ∈ (Fqt)k consisting of k elements of Fqt . Express each

mij ∈ Fqt as a column vector of dimension t over Fq, i.e., mij =
(
m

(1)
ij ,m

(2)
ij , · · · ,m

(t)
ij

)T
. Then

each block Mi can be expressed as a t× k matrix over Fq, i.e.

Mi =

m

(1)
i1 m

(1)
i2 · · · m

(1)
ik

m
(2)
i1 m

(2)
i2 · · · m

(2)
ik

...
...

...

m
(t)
i1 m

(t)
i2 · · · m

(t)
ik

 .

(2) Gabidulin Encoding: The original file M is encoded into Gabidulin codewords block by
block with Ci ← GabiEncode(Mi,Gk×n), i = 1, 2, · · · , w. More precisely, given block Mi =
(mi1,mi2, · · · ,mik) ∈ (Fqt)k, the codeword Ci = (ci1, ci2, · · · , cin) ∈ (Fqt)n is computed as
Ci = (ci1, ci2, · · · , cin) = (mi1,mi2, · · · ,mik) · Gk×n. It should be noted that the encoding is a
matrix multiplication over finite field Fqt .

Similarly, cij =
(
c
(1)
ij , c

(2)
ij , · · · , c

(t)
ij

)T
, which is a vector over Fq, and each codeword Ci can be

expressed as a t× n matrix over Fq, i.e.

Ci =

c
(1)
i1 c

(1)
i2 · · · c

(1)
in

c
(2)
i1 c

(2)
i2 · · · c

(2)
in

...
...

...

c
(t)
i1 c

(t)
i2 · · · c

(t)
in

 .

(3) Tag Generation: Compute a tag σσσi for each codeword Ci with the secret key sk = (k, k′).

(i) Express k ∈ Fqn as a vector of dimension n over Fq, i.e., k =
(
k(1), k(2), · · · , k(n)

)T
.

(ii) Compute ki = PRF(k′, i) for i = 1, 2, · · · , w. Express ki ∈ Fqt as a vector of dimension t

over Fq, i.e., ki =
(
k
(1)
i , k

(2)
i , · · · , k(t)i

)T
.

(iii) For each codeword Ci, a tag σσσi ∈ Fqt is computed with

σσσi = Ci · k + ki =

c
(1)
i1 c

(1)
i2 · · · c

(1)
in

c
(2)
i1 c

(2)
i2 · · · c

(2)
in

...
...

...

c
(t)
i1 c

(t)
i2 · · · c

(t)
in

 ·

k(1)

k(2)

...
k(n)

+

k
(1)
i

k
(2)
i
...

k
(t)
i

 , (2)

where all the operations are in the basic field Fq.
(4) Storage File M∗ : Each block Mi is encoded as (Ci||σσσi) = (ci1, ci2, · · · , cin,σσσi).

The final encoded file M∗ consists of blocks attached with tags:

M∗ = (C1||σσσ1, C2||σσσ2, · · · , Cw||σσσw)
T

=

c11 c12 · · · c1n σσσ1

c21 c22 · · · c2n σσσ2

...
...

...
...

cw1 cw2 · · · cwn σσσw

 ,

where each entry in the matrix is an element from Fqt .

12

• {M,⊥} ← Decode(sk, pp,M∗): Parse M∗ as M∗ = (C ′1||σσσ′1, C ′2||σσσ′2, · · · , C ′w||σσσ′w)
T

.

for i = 1, 2, · · · , w do

If C ′i · Hn×(n−k) 6= 0 return “⊥”.

If σσσ′i 6= C ′i · k + ki return “⊥”.

M ′i ← GabiDecode(C ′i,Hn×(n−k)).

end for

Return M = (M ′1,M
′
2, · · · ,M ′w)

T
.

• {(ch, re),⊥} ← Interaction(P(M∗, pp)� V(sk, pp)): The interactive protocol consists of three algo-
rithms.

� ch← Challenge(1λ): The challenge ch = (v1, v2, · · · , vw) is chosen uniformly at random from
(Fq)w.

� re← Response(pp,M∗, ch): (i) First the encoded file M∗ is segmented into w blocks. Let M∗ =

(C1||σσσ1, C2||σσσ2, · · · , Cw||σσσw)
T

.

(ii) Then the response re is computed with aggregation.

re = ch ◦M∗ = (v1, v2, · · · , vw) ◦

c11 · · · c1n σσσ1

c21 · · · c2n σσσ2

...
...

...
cw1 · · · cwn σσσw

=

(
w∑
i=1

vi ◦ ci1, · · · ,
w∑
i=1

vi ◦ cin,
w∑
i=1

vi ◦ σσσi

)
,

where “◦” is scalar multiplication over vector space on Fq. More precisely, express cij =(
c
(1)
ij , c

(2)
ij , · · · , c

(t)
ij

)T
as a t-dimentional vector over Fq. Then vi ◦ cij =

(
vi · c(1)ij , vi · c

(2)
ij ,

· · · , vi · c(t)ij
)T

.

� b← Verification(pp, sk, ch, re): The input is given by the public parameter pp = (PRF, CR),
where CR is associated with the generation matrix Gk×n and parity check matrix Hn×(n−k),
the secret key sk = (k, k′) ∈ Fqn × Kprf , the challenge ch = (v1, v2, · · · , vw) ∈ (Fq)w, and
response re = (c̄1, c̄2, · · · , c̄n, σ̄̄σ̄σ) ∈ (Fqt)n+1.

(i) Parse re as (C̄, σ̄̄σ̄σ), where C̄ = (c̄1, c̄2, · · · , c̄n). Check whether C̄ is an MRD codeword by
testing C̄ · Hn×(n−k) = 0. If not, output b = 0.

(ii) Express k ∈ Fqn as a vector of dimension n over Fq, i.e., k =
(
k(1), k(2), · · · , k(n)

)T
.

Compute ki = PRF(k′, i) ∈ Fqt for i = 1, 2, · · · , w. Express ki as a vector of dimension t

over Fq, i.e., ki =
(
k
(1)
i , k

(2)
i , · · · , k(t)i

)T
.

(iii) Express C̄ as a matrix over Fq, i.e., C̄ =

c̄
(1)
1 c̄

(1)
2 · · · c̄

(1)
n

c̄
(2)
1 c̄

(2)
2 · · · c̄

(2)
n

...
...

...

c̄
(t)
1 c̄

(t)
2 · · · c̄

(t)
n

 and σ̄̄σ̄σ =

σ̄(1)

σ̄(2)

...
σ̄(t)

 .

(iv) Check

σ̄̄σ̄σ =

c̄
(1)
1 c̄

(1)
2 · · · c̄

(1)
n

c̄
(2)
1 c̄

(2)
2 · · · c̄

(2)
n

...
...

...

c̄
(t)
1 c̄

(t)
2 · · · c̄

(t)
n

 ·

k(1)

k(2)

...
k(n)

+

∑w
i=1 vi · k

(1)
i∑w

i=1 vi · k
(2)
i

...∑w
i=1 vi · k

(t)
i

 , (3)

where all the operations are in the field Fq. If Eq.(3) holds, return 1, otherwise return 0.

13

• {0,1}← Audit. The client V executes the Interaction protocol u times.

b = 0;

for i = 1 to u do Interaction(P(M∗, pp)� V(sk, pp))

ch← Challenge(1λ);

re← Response(pp,M∗, ch);

If Verification(pp, ch, re) = 1 then b← b+ 1;

end for

If (b/u > 1
q) return 1, otherwise return 0.

In the audit, b/u > 1
q means b/u− 1

q is non-negligible, since u is polynomial in λ.

The Correctness of the above PoDP/PoR scheme is guaranteed by the following facts. For all
(sk, pp,M∗) such that (sk, pp)← KeyGen(1λ) and M∗ ← Encode(sk, pp,M),

• the original file M is always recovered from the correctly encoded file M∗, due to the correctness
of the encoding/decoding algorithms of Gabidulin codes;

• the interaction protocol between the honest P,V results in 1 ← Verification(pp, sk, ch, re), hence
the interaction protocol outputs a challenge/response, i.e, (ch, re) ← Interaction(P(M∗, pp) �
V(sk, pp)), due to the following facts:

w∑
i=1

vi ◦ σσσi = (v1, v2, · · · , vw) ◦

σσσ1

σσσ2

...
σσσw

 = (v1, v2, · · · , vw) ◦

C1

C2

...
Cw

 · k +

k1
k2
...

kw

=

(
w∑
i=1

vi ◦ ci1,
w∑
i=1

vi ◦ ci2, · · · ,
w∑
i=1

vi ◦ cin

)
· k +

w∑
i=1

vi ◦ ki = (c̄1, c̄2, · · · , c̄n) · k +

w∑
i=1

vi ◦ ki,

where c̄j =
(
c̄
(1)
j , c̄

(2)
j , · · · , c̄(t)j

)T
, k =

(
k(1), k(2), · · · , k(n)

)T
and ki =

(
k
(1)
i , k

(2)
i , · · · , k(t)i

)T
, which

are vectors over Fq.

5 Performance Analysis

To evaluate the efficiency of the proposed PoDP/PoR scheme, we will analyze the local storage of the
client, the expansion rate θ of the storage, which is defined as the ratio of the length of encoded file M∗

to that of the original file M , the length of the challenge, denoted by |ch|, the length of the response,
denoted by |re|, the computational complexity of the storage provider to compute the response, and the
computational complexity of the client to verify the response.

Let MulFq denote a multiplication and AddFq denote an addition over finite field Fq.
We will use a pseudo-random function PRF : {0, 1}λ × {0, 1}∗ → Fqt as an instantiation.

Local storage: The client will store the key k ∈ Fqn , the seed k′ ∈ {0, 1}λ of PRF, and the parity
check matrix Hn×(n−k) of the [q, k, n, t] Gabidulin code. The parity check matrix is determined by
hi ∈ Fqt , i = 1, 2, · · · , n according to Eq.(1). Hence the local storage is (n log q + λ+ nt log q) bits.

Storage expansion rate θ: θ = |M∗|
|M | = n+1

k .

Length of challenge: ch ∈ (Fq)w, hence |ch| = w log q bits.

Length of response: re consists of a Gabidulin codeword and a tag, hence |re| = (n+ 1)t log q bits.

Computational complexity of the storage server: To compute re, the storage server will do (n +
1)tw(q − 1)/q multiplications and (n + 1)t(w − 1)(q − 1)/q additions over Fq on average. Hence
there are totally (n+ 1)tw(q − 1)/qMulFq + (n+ 1)t(w − 1)(q − 1)/qAddFq on average.

14

Computational complexity of the client: To test the consistency of (ch, re), the client needs (n−k)n
multiplications and (n − k)(n − 1) additions over Fqt to test Gabidulin codeword, and another
tn + wt(q − 1)/q multiplications and t(n − 1) + t(w − 1)(q − 1)/q additions over Fq on average.
Hence there are totally (n− k)nMulFqt

+ (n− k)(n− 1)AddFqt
+ (tn+ wt(q − 1)/q)MulFq + (t(n−

1) + t(w − 1)(q − 1)/q)AddFq .

Now we instantiate the PoDP/PoR scheme with security parameter λ = 80, and a [q, k, n, t] Gabidulin
Code with q = 2, k = 128, n = t = 256 and d = 129. q = 2 means that the addition over the binary field
is reduced to XOR.

We consider a file M of size 1GB. The number of blocks is w = 218.

Local Rate θ |ch| |re| Server Comput. Client Comput.

|sk|= 336 bits, |pp|=8KB ≈ 2 32KB ≈ 8KB O(233) bit-XOR O(231) bit-XOR

Table 2: Instantiation of PoDP/PoR Scheme with [2, 128, 256, 256]-Gabidulin Code

During an interaction, the server will implement 233 bit-XOR to prepare a response re. To verify the
consistency of the response, the client’s computation is dominated by 215MulF2256

. One MulF2256
needs

O(256 · 256) = O(216) bit operations. Hence the client’s computation complexity is O(231).
Consider a modular exponentiation in RSA with a 1024-bit modulus. It will take 1024 modular squares

and about 512 modular multiplications. One modular multiplication needs O(1024 · 1024) = O(220) bit
operations. So a modular exponentiation in RSA with a 1024-bit modulus has computation complexity
of O(230).

Therefore, to audit the storage of 1GB file, the computational complexity of both client and server in
an interaction is comparable to 2 and 8 modular exponentiations with a 1024-bit modulus respectively.

6 The Security of the Proposed PoDP/PoR Scheme

Remember that in the audit of the PoDP/PoR scheme, the audit strategy is determined by a threshold
1
q . Only if ε fraction , ε > 1

q , of the u executions of Interaction protocol is successful, does the audit claim
success.

The Unforgeability of the PoDP/PoR scheme will justify the necessity of the threshold 1
q . We will

prove that a malicious storage provider, who deletes at least one block of M∗, replies a response re that
passes verification in an Interaction protocol with probability at most 1

q .

On the other hand, the ε-soundness of the PoDP/PoR scheme justifies the sufficiency of the threshold
1
q . We will prove that as long as a storage provider replies a response re that passes verification with

probability ε > 1
q , there exists a PPT extractor recovering the original file M as long as the number of

executions of Interaction protocol is big enough.

Definition 7 A response re is called valid to a challenge ch if re = Response(pp,M∗, ch) and the
challenge/response (ch, re) is called a valid pair. A response re is called consistent to a challenge ch if
Verification(pp, sk, ch, re) = 1, and the challenge/response (ch, re) is called a consistent pair.

Given a challenge ch, there may exists many consistent responses, but there is only one valid
response due to the deterministic algorithm Response. Hence, a consistent pair is not necessarily a valid
pair.

Before the formal proof of Unforgeability and Soundness of the MRD-based PoDP/PoR scheme, we
will slightly change the PoDP/PoR scheme. The key sequence ki = PRF(k′, i), i = 1, 2, · · · , w, which is
used to compute tags for blocks and to verify the consistency of a challeng/response pair, is replaced with
a truly random sequence over Fqt . Then we have the following two lemmas.

Lemma 1 Suppose that ki, i = 1, 2, · · · , w, which are involved in algorithms Encode(sk, pp,M) and
Verification(pp, ch, re) of the above PoDP/PoR scheme, is randomly chosen from Fqt instead of setting

15

ki = PRF(k′, i). Suppose that some blocks of M∗ are missing. In an execution of Interaction Protocol of
the PoDP/PoR scheme, suppose that the challenge vector ch = (v1, v2, · · · , vw) ∈ (Fq)w hits at least one
deleted block of M∗, i.e, there exists an index j such that vj 6= 0 and the j-th block of M∗ is missing, then
any adversary A presents a consistent response re = (c̄1, c̄2, · · · , c̄n, σ̄̄σ̄σ) with probability at most 1/qn.

Proof: Suppose that there are e deleted blocks, and let M∗|un =
(
Ci1 ||σσσi1 , Ci2 ||σσσi2 , · · · , Ciw−e ||σσσiw−e

)T
denote the remaining (w − e) undeleted blocks. According to Eq.(2), we have

σσσil = Cil · k + kil , l = 1, 2, · · · , w − e. (4)

The challenge vector is ch = (v1, v2, · · · , vw). For any adversary A who gives a consistent response
re = (c̄1, c̄2, · · · , c̄n, σ̄̄σ̄σ) satisfying Verification(pp, sk, ch, re) = 1, let C̄ = (c̄1, c̄2, · · · , c̄n), then we have

σ̄̄σ̄σ = C̄ · k +

w∑
l=1

vl ◦ kl. (5)

Let {j1, j2, · · · , je} denote the indices of the blocks missing from M∗|un. Eq.(5) and Eq.(4) gives

σ̄̄σ̄σ −
w−e∑
l=1

vil ◦ σσσil =

(
C̄ −

w−e∑
l=1

vil ◦ Cil

)
· k +

e∑
l=1

vjl ◦ kjl . (6)

To the adversary A who knows the deleted version M∗|un, forging a consistent response re =
(
C̄, σ̄̄σ̄σ

)
satisfying Eq.(5) is equivalent to forging a pair (C̃, σ̃̃σ̃σ) satisfying

σ̃̃σ̃σ = C̃ · k +

e∑
l=1

vjl ◦ kjl . (7)

Fixing a pair (C̃, σ̃̃σ̃σ), now we count how many k and kjl , l = 1, 2, · · · , e, satisfy Eq.(7). There exists
at least one nonzero entry in (vj1 , vj2 , · · · , vje), since the challenger vector hits at least one deleted
block. Without loss of generality, we assume that vje 6= 0. When k and kjl , l = 1, 2, · · · , e − 1, are
freely chosen, kje will be uniquely determined by Eq.(7). That counts to qn+t(e−1) for Eq.(7). Since
k and kjl are uniformly distributed, an adversary A can present a consistent response with probability
qn+t(e−1)/qn+te = q−t ≤ q−n, due to t ≥ n. tu

Lemma 2 Suppose that ki, i = 1, 2, · · · , w is randomly chosen from Fqt instead of setting ki = PRF(k′, i).
In an execution of Interaction Protocol of the PoDP/PoR scheme, given a valid challenge/response pair
(ch, re), any adversary A outputs a consistent but invalid response re′ with respect to the same challenge
ch, i.e., re′ 6= re but Verification(pp, sk, ch, re′) = 1, with probability at most 1/qd, where d is the minimum
rank distance of the MRD Code.

Proof: Let M∗ = (C1||σσσ1, C2||σσσ2, · · · , Cw||σσσw)
T

be the storage file generated by Encode(sk, pp,M). Let
ch = (v1, v2, · · · , vw) be the challenge vector.

Let re =

(
w∑
i=1

vi ◦ ci1, · · · ,
w∑
i=1

vi ◦ cin,
w∑
i=1

vi ◦ σσσi
)

be the valid response computed by Response(pp,M∗,

ch). Define c̄j =
w∑
i=1

vi ◦ cij and σ̄σσ =
w∑
i=1

vi ◦ σσσi, then re = (c̄1, c̄2, · · · , c̄n, σ̄σσ).

Let re′ =
(
c̄′1, c̄

′
2, · · · , c̄′n, σ̄σσ′

)
be the consistent but invalid response forged by adversary A for challenge

ch. The invalidity of re′ implies re 6= re′. The consistency of re′ requires that σ̄σσ′ is determined by
(c̄′1, c̄

′
2, · · · , c̄′n). Consequently, re 6= re′ means (c̄1, c̄2, · · · , c̄n) 6= (c̄′1, c̄

′
2, · · · , c̄′n).

Now we analyze the probability the pair (ch, re′) is invalid but consistent.
First we assume that (c̄′1, c̄

′
2, · · · , c̄′n) is also a Gabidulin codeword, otherwise it would have been

rejected by the first step of Verification.
The fact Verification(pp, sk, ch, re) = 1 and Verification(pp, sk, ch, re′) = 1 gives us the following

equations.

σ̄σσ = (c̄1, c̄2, · · · , c̄n) · k +

w∑
i=1

vi ◦ ki, σ̄σσ′ = (c̄′1, c̄
′
2, · · · , c̄′n) · k +

w∑
i=1

vi ◦ ki. (8)

16

Define k′ =
∑w
i=1 vi ◦ ki. We know that ki is randomly chosen from Fqt for i = 1, 2, · · · , w, hence k′

is also a random element in Fqt . Then Eq. (8) are reformed with

σ̄σσ = (c̄1, c̄2, · · · , c̄n) · k + k′, σ̄σσ′ = (c̄′1, c̄
′
2, · · · , c̄′n) · k + k′. (9)

Define ∆c̄j = c̄j − c̄′j and ∆σ̄σσ = σ̄σσ − σ̄σσ′, then Eq. (9) are equivalent to the following two equations

σ̄σσ = (c̄1, c̄2, · · · , c̄n) · k + k′, ∆σ̄σσ = (∆c̄1,∆c̄2, · · · ,∆c̄n) · k. (10)

Next we determine the number of solutions for the unknowns k and k′. To satisfy the left equation of Eq.
(10), each freely chosen value of k uniquely determines the value of k′, and there are totally qn choices
for k.

As to the right equation of Eq. (10), we express all the entries as vectors over Fq, then it turns to
∆σ̄(1)

∆σ̄(2)

...
∆σ̄(t)

 =

∆c̄

(1)
1 ∆c̄

(1)
2 · · · ∆c̄

(1)
n

∆c̄
(2)
1 ∆c̄

(2)
2 · · · ∆c̄

(2)
n

...
...

...

∆c̄
(t)
1 ∆c̄

(t)
2 · · · ∆c̄

(t)
n

 ·

k(1)

k(2)

...
k(n)

 , ∆C̄ ·

k(1)

k(2)

...
k(n)

 . (11)

Due to the linear property of the Gabidulin code, (∆c̄1,∆c̄2, · · · ,∆c̄n) should also be a non-zero
Gabidulin codeword. Therefore, the matrix ∆C̄ has rank at least d. Consequently, Eq. (11) has a
solution space of size at most qn−d for k.

Since k and k′ are chosen uniformly at random, the probability that the adversary A forges an invalid
but consistent (ch, re′) pair, given the valid pair (ch, re) in an Interaction Protocol, is upper-bounded by
qn−d/qn = 1

qd
. tu

6.1 The Unforgeability of the PoDP/PoR Scheme

Now we are going to prove that if some blocks of the file M∗ are missing, a PPT storage provider cannot
present a consistent response with probability ζ, such that ζ − 1/q is non-negligible. This justifies the
necessity of the threshold 1/q in the audit strategy of the PoDP/PoR scheme.

Theorem 3 The MRD-code-based PoDP/PoR system is (δ, ζ)-unforgeable with ζ ≤ 1/qδw + 1/qn +
AdvPRF(λ). Here, w is the number of blocks of the storage file, and q is the size of the finite field on which
the MRD code is constructed.

Proof: For any PPT adversary A = (A1,A2), any (sk, pp) ← KeyGen(1λ), any M ← A1(pp), any
M∗ ← Encode(sk, pp,M), any M̃∗ ← A1(pp,M,M∗), where M̃∗ is a deleted version of M∗ with δ
fraction missing, and any ch← Challenge(1λ), we consider the probability that A2(pp, M̃∗, ch) outputs a
response re′ satisfying Verification(pp, sk, ch, re′) = 1.

We prove the theorem via two indistinguishable games, Game 0, and Game 1. Let Game 0 be the
original Game UnforgePoDPA (λ). Define Wini as the event that A wins in Game i. Our aim is to determine
Pr [Win0].

Game 0. This is the original Game UnforgePoDPA (λ) defined in subsection 2.3.

Game 1. This game is the same as Game 0 except for the Key generation. In Game 0, the secret key
generated by the Challenger is sk = (k, k′), where k← Fqn and k′ ← Kprf . To encode M to M∗, k′ is
used as a seed in a Pseudo-Random Function to generate a pseudo-random sequence ki = PRF(k′, i),
i = 1, 2, · · · , w, which is used to generate tags for each block. The same pseudo-random sequence
is used for testing the consistence of responses in Verification.

In Game 1, the challenger picks truly random elements from Fqt instead of the PRF output for ki,
i = 1, 2, · · · , w, and sets sk = (k, k1, k2, · · · , kw), which are used directly in Tag Generation and
Verification.

Any difference in the adversary’s success probability between Game 0 and Game 1 results in algo-
rithm breaking the security of the PRF. Therefore,

|Pr [Win0]− Pr [Win1] | ≤ AdvPRF(λ). (12)

17

In Game 1, the adversary A2 possesses M̃∗, which is a deleted version of M∗ with δ fraction missing.
Let Hit denote the event that the challenge vector ch = (v1, v2, · · · , vw) hits at least one missing block

of M̃∗. In other words, there exists at least an index j such that vj 6= 0 and j-th block is missing in M̃∗.

There are about δw blocks missing in M̃∗. Since vi is chosen independently and uniformly random
from Fq, vi does not hit the i-th block with probability 1/q. Hence Pr [¬Hit] = 1/qδw.

If Hit does happen, then Win1 implies the adversary A2 presents a consistent response with M̃∗.
According to Lemma 1, this probability is at most 1/qn.

Therefore,
Pr [Win1] =Pr [Win1 | ¬Hit] Pr [¬Hit] + Pr [Win1 | Hit] Pr [Hit]

≤Pr [¬Hit] + Pr [Win1 | Hit] ≤ 1/qδw + 1/qn.
(13)

Combining (13) with (12), we have ζ = Pr [Win0] ≤ 1/qδw + 1/qn + AdvPRF(λ). tu

When qn ≥ 2λ, then 1/qn + AdvPRF(λ) is negligible due to the security of PRF. The minimal value of
δ is 1/w, in which case there is only one block missing in M̃∗. In that case, ζ − 1/q is negligible. This
testifies the necessity of the threshold 1/q in the audit strategy of our scheme.

6.2 ε-Soundness of the PoDP/PoR Scheme

Even a truthful storage provider may malfunction in an audit due to some problem that it is capable of
fixing later. For example, in a distributed storage system, several storage servers access the same data
at the same time. It may overkill to claim an audit fails just because only one or two responses fail
the verification. To be more robust, it is desirable that the PoDP/PoR system supports an ε-admissible
storage prover, where the storage prover convincingly answers an ε fraction of challenges in an audit. The
problem is how to determine the lower bound of ε so that we can still prove the retrievability of the file
M . This is characterized by the ε-soundness of Proof of Retrievability (PoR) in subsection 2.4.

Now we consider how a PPT Extractor extracts the original file M through executions of the Interaction
protocol with an ε-admissible storage provider. The idea is as follows: ε should be big enough to ensure
that Extractor always gains information about M as the number of interactions with P̃ε increases. When
the number of interactions in the audit is big enough, M can be recovered by solving equations.

Theorem 4 The MRD-code-based PoDP/PoR system is ε-sound for ε > 1
q , given secure PRF and

[q, k, n, t] Gabidulin code with t ≥ n and n− k + 1 = Ω(λ).

Proof: We want to construct a PPT Extractor, such that for any PPT adversary A, any (sk, pp) ←
KeyGen(1λ), any M ← A(pp), any M∗ ← Encode(sk, pp,M), and any P̃ε ← A

(
pp,M,M∗, access to V(sk,

pp)
)
, where P̃ε is an ε-admissible prover, the Extractor is able to recover the original file M by querying

P̃ε except with negligible probability.
In Game SoundPoRA (λ), define Fail to be the event that the file M ′ extracted by the Extractor is not

equal to the original M .
Similarly, we prove the theorem via two indistinguishable games, Game 0, and Game 1. Let Game

0 be the original SoundPoRA (λ) Game. Define Faili to be the event Fail in Game i. Our aim is to prove
Pr [Fail0] is negligible.

Game 0. This is the original Game SoundPoRA (λ) defined in subsection 2.4.

Game 1. This game is the same as Game 0 except for the generation of the secret key and the em-
ployment of secret key in the Encode and Verification algorithm. In Game 1, the Challenger sets
sk = (k, k1, k2, · · · , kw), with ki, i = 1, 2, · · · , w, being a truly random sequence over Fqt . This truly
random sequence, instead of the pseudo-random sequence generated by PRF(k′, i) in Game 0, is
used to encode M to M∗ and to verify the validity of a response in Verification. Any difference in
the adversary’s success probability between Game 0 and Game 1 results in an algorithm breaking
the security of the PRF. Therefore,

|Pr [Fail0]− Pr [Fail1] | ≤ AdvPRF(λ). (14)

18

In Game 1, suppose the adversary A interacts with V(sk, pp) for h times, where h is polynomial in
λ, and outputs an ε-admissible prover P̃ε. Then the Extractor interacts with P̃ε for u = wλ

ε−1/q times. For

each challenge sent by V or by the Extractor, the adversary A or P̃ε replies a response. Suppose there
are a consistent responses in total, then a ≤ h + u. According to Lemma 2, each consistent response
is invalid with probability at most 1/qd. Let Bad be the event at least one of the a consistent pairs is
invalid in Game 1. By a union bound, we have Pr [Bad] ≤ a

qd
≤ h+u

qd
.

If Bad does not happen, all the consistent responses are also valid responses. Then the Extractor can
get at least uε valid challenge/response pairs through interacting with P̃ε, and it is able to use the uε
valid pairs to extract the original file M as follows.

The Extractor filters the output of the u executions of Interaction Protocol, and only records the output
of successful executions. Let S denote a set, X be a binary variable, and Vi denote a vector space over
Fq generated by the vector chi = (vi1, vi2, · · · , viw). Let V1 + V2 = {x + y | x ∈ V1, y ∈ V2} denote the
sum of two vector spaces V1 and V2. The Extractor works as follows.

Extractor(pp, sk, P̃ε)
Step 1. Collect enough valid consistent challenge/response pairs:

S ← ∅; V ← ∅; X ← 0; b = 0;
for i = 1 to u do

output← Interaction(P̃ε(pp, ·)� V(sk, pp));
if output 6= ⊥

parse output as (chi, rei);
Vi ← 〈chi〉 (Vi is the vector space generated by chi);
if Vi * V

V ← V + Vi; b← b+ 1; S ← S ∪ {(chi, rei)};
if b = w

X = 1; Return(X,S);
end if

end if
end if

end for
Return(X,S).

Step 2. Solve a system of linear equations to recover M∗, and decode M∗ to get M .

In the algorithm, S collects (chi, rei) with independent vector chi, b records the number of independent
chi in S, while X denotes whether the challenge vectors in S spans the whole space, i.e, there exists w
independent challenge vectors in S. If X = 1, the w independent challenge vectors in S determine a
non-singular matrix of w by w, and the Extractor can recover the encoded file M∗ with the corresponding
rei, as will show later in the proof.

Among the u executions of the Interaction Protocol, an ε fraction of queries are given valid responses.
Each valid response is helpless (Vi ⊆ V) with probability at most 1/q. Therefore, there remains at least
an ε−1/q fraction of challenges are helpful to the Extractor. Now we will prove that X = 1 happens with
overwhelming probability.

In i-th loop, i = 1, · · · , u, define a binary variable

Yi =

{
1 , if output 6= ⊥ ∧ Vi * V ;
0 , otherwise.

Then we have {
Pr [Yi = 0 | Y1, Y2, · · · , Yi−1] ≤ 1− ε+ 1

q ;

Pr [Yi = 1 | Y1, Y2, · · · , Yi−1] ≥ ε− 1
q .

Define a new binary variable Zi (for i = 1, 2, · · · , u) with independent identical probability distribution{
Pr [Zi = 0] = 1− ε+ 1

q ;

Pr [Zi = 1] = ε− 1
q .

19

It is easy to see that Pr [
∑u
i=1 Yi < w] ≤ Pr [

∑u
i=1 Zi < w]. Consequently, using the Chernoff bound

and u = wλ
ε−1/q , we get

Pr [X = 0] =Pr

[
u∑
i=1

Yi < w

]
≤ Pr

[
u∑
i=1

Zi < w

]
≤ Pr

[
u∑
i=1

Zi ≤ (1− (1− 1/λ))wλ

]
≤e− 1

2 (1−1/λ)
2wλ ≤ e− 1

8wλ.

Hence, with probability at least 1 − e−
1
8wλ, the set S collects w valid pairs (chik , reik) for k =

1, 2, · · · , w, and chi1 , chi2 , · · · , chiw are independent. In this case, the Extractor will extract blocks of
M∗ by solving a system of linear equations as follows.

Let chik = (vik1, vik2, · · · , vikw) be the challenge vector, and reik = (c̄ik1, c̄ik2, · · · , c̄ikn, σ̄̄σ̄σik) be the

corresponding valid response, for k = 1, 2, · · · , w. Then c̄ikj =
w∑
s=1

viks ◦ csj , 1 ≤ k ≤ w, 1 ≤ j ≤ n.

When considering csj = (c
(1)
sj , c

(2)
sj , · · · , c

(t)
sj)T and c̄ikj = (c̄

(1)
ikj
, c̄

(2)
ikj
, · · · , c̄(t)ikj)

T , 1 ≤ k ≤ w, 1 ≤ j ≤ n,

as vectors of dim t over Fq, we have c̄
(l)
ikj

=
w∑
s=1

viks · c
(l)
sj , for 1 ≤ k ≤ w, 1 ≤ j ≤ n, 1 ≤ l ≤ t.

For l = 1, · · · , t, with
c
(l)
11 c

(l)
12 · · · c

(l)
1n

c
(l)
21 c

(l)
22 · · · c

(l)
2n

...
...

...

c
(l)
w1 c

(l)
w2 · · · c

(l)
wn

 =

vi11 vi12 · · · vi1w
vi21 vi22 · · · vi2w

...
...

...
viw1 viw2 · · · viww

−1

·

c̄
(l)
i11

c̄
(l)
i12

· · · c̄
(l)
i1n

c̄
(l)
i21

c̄
(l)
i22

· · · c̄
(l)
i2n

...
...

...

c̄
(l)
iw1 c̄

(l)
iw2 · · · c̄

(l)
iwn

 ,

data (C1, C2, · · · , Cw) is recovered and the original file M = (M1,M2, · · · ,Mw) can be extracted with
GabiDecode algorithm Mi ← GabiDecode(Ci,Hn×(n−k)).

Concluding the above comments, we have

Pr [Fail1] =Pr [Fail1 | Bad] Pr [Bad] + Pr [Fail1 | ¬Bad] Pr [¬Bad] ≤ Pr [Bad] + Pr [Fail1 | ¬Bad]

≤h+ u

qd
+ e−

1
8wλ =

h+ wλ/(ε− 1/q)

qd
+ e−

1
8wλ.

(15)

Combining (15) with (14), the Extractor fails to extract the original file with probability at most

Pr [Fail0] ≤ AdvPRF(λ) + h+wλ/(ε−1/q)
qd

+ e−
1
8wλ, which is negligible since h+ wλ

ε−1/q is polynomial in λ and

d = n− k + 1 = Ω(λ). tu

7 Self-Audit & Error-Correction of the Storage Provider

To provide dependable data storage service, another requirement for the storage provider is to recover
the data from data losses or corruption due to hardware failure or external threats. This involves the
provider’s capability of detecting and correcting errors in the data.

The MRD code used in the PoDP/PoR scheme makes it convenient for the storage provider to audit
itself: to determine the existence of errors, locate the errors and finally correct the errors.

Self-Audit & Error-Correction of the Storage Provider

1. (v1, v2, · · · , vw)← (Fq)w;

2. Parse the file M∗ block-wise as M∗ = (C1||σσσ1, C2||σσσ2, · · · , Cw||σσσw)
T

, where Ci is a t × n matrix
over Fq, i = 1, 2, · · · , w;

3. S ← ∅; a = 1; b = w; ~v = (v1, v2, · · · , vw);

20

4. BinarySearch(a, b,M∗, ~v)

{ C̄ =
∑b
i=a vi ◦ Ci;

if C̄ is not a MRD codeword

if a 6= b

f = d b2e;
BinarySearch(a, f,M∗, ~v);

BinarySearch(f + 1, b,M∗, ~v);

else S ← S ∪ {Ca}
end if

end if }

5. If S = ∅, output (“Success”), otherwise for each element C̃i ∈ S, do error-correction to recover the
original MRD codeword Ci.

In the above algorithm, set S records the corrupted MRD codewords.
Due to the linearity of the MRD codes, linear combinations of codewords remains to be MRD code-

words. The storage provider is able to audit the storage himself by checking whether a random linear
combination of codewords is still a codewords, rather than checking each codeword one by one. This
greatly reduces the computational complexity of the storage provider. If the linear combination is not
a MRD codeword, the provider will use binary search to locate the corrupted codewords, and it needs
only logw searches to locate one corrupted codewords. According to the property of MRD codes, it can
correct x-fold row erasures, y-fold column erasures, and z-fold rank errors in C̃i simultaneously, provided
that x+ y + 2z ≤ d− 1, where d is the minimum rank distance of the MRD Code.

8 Conclusion

In this paper, we propose a PoDP/PoR scheme based on MRD codes. The MRD codes helps in three
ways. Firstly, the MRD code can be applied over small field, and that help the storage provider efficiently
computes responses in an audit. As to the binary field, the computation can be as simple as XOR.
Secondly, the rank property of the MRD codewords helps the security proof of the PoDP/PoR scheme.
When one or more blocks are missing, the storage provider can forge a response which passes the client’s
verification with negligible probability, and this helps to prove the unforgeability of the PoDP/PoR
scheme. Even if the storage provider knows a correct response with respect to a challenge, it still
cannot forge a different response to pass the client verification. This helps to prove the soundness of the
PoDP/PoR scheme. Finally, the error correction ability of MRD code helps the storage provider audit
itself to find errors and correct them among the stored data.

References

[1] G. Maximilien, Y. Zhiyuan. Properties of Codes with the Rank Metric[J]. Arxiv preprint cs/0610099,
2006.

[2] R. M. Roth, Maximum-Rank Array Codes and Their Application to Crisscross Error Correction[J].
Information Theory, IEEE Transactions on, Mar 1991, 32(2): 328-336.

[3] Gabidulin E M. Theory of code with maximum rank distance[J]. Problems of Information Transmis-
sion, 1985, 21(1): 1-12.

[4] P. Delsarte, Bilinear Forms over a Finite Field with Applications to Coding Theory[J]. Journal of
Combinatorial Theory, Series A, 1978, 25(3): 226-241.

[5] Y. Deswarte, J.-J. Quisquater, and A. Saidane. Remote Integrity Checking. In Proc. of Conference
on Integrity and Internal Control in Information Systems (IICIS03), November 2003.

21

[6] Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z. and Song, D. (2007)
Provable data possession at untrusted stores. In: De Capitani di Vimercati, S., Syverson, P. (eds.)
CCS ’07 Proceedings of the 14th ACM conference on Computer and communications security, 598-
609. ACM Press, New York.

[7] Dodis, Y., Vadhan S. and Wichs, D. (2009) Proofs of retrievability via hardness amplification,
Theory of Cryptography, LNCS 5444, 109-127.

[8] FILHO, D. and BARRETO, P. (2006) Demonstrating data possession and uncheatable data transfer.
Cryptology ePrint Archive, Report 2006/150, http://eprint.iacr.org/

[9] E. M. Gabidulin, N. I. Pilipchuk, Error and erasure correcting algorithms for rank codes, Des. Codes
Cryptogr. (2008) 49: 105-122.

[10] Juels, A. and Kaliski, B. (2007) PORs: proofs of retrievability for large files. In: De Capitani di
Vimercati, S., Syverson, P. (eds.) Proceedings of CCS 2007. 584-597. ACM Press, New York.

[11] Naor, M. and Rothblum, G. (2005) The complexity of online memory checking. In: Tardos, E. (ed.)
Proceedings of FOCS 2005. 573-584. IEEE Computer Society, Los Alamitos.

[12] Shoup, V. Sequences of games: a tool for taming complexity in security proofs. IACR Cryptology
ePrint Archive 2004: 332 (2004).

[13] Schwarz, T. and Miller, E. (2006) Store, forget, and check: Using algebraic signatures to check
remotely administered storage. In: Ahamad, M., Rodrigues, L. (eds.) Proceedings of ICDCS 2006.
12-12. IEEE Computer Society, Los Alamitos.

[14] Shacham, H. and Waters, B. (2008) Compact proofs of retrievability. In Proceedings of Asiacrypt
2008, LNCS 5350, 90-107. Springer-Verlag.

[15] H. Wang, C. Xing, and R. Safavi-Naini, Linear Authentication Codes: Bounds and Constructions,
IEEE Transactions On Information Theory, Vol. 49, No. 4, pp. 866-872, April 2003.

[16] Wang, C., Wang, Q., Ren, K., Cao, N., and Lou, W (2012), Toward Secure and Dependable Storage
Services in Cloud Computing, IEEE Transactions on Services Computing, Vol. 5 , Issue. 2, pp.
220-232.

[17] Wachter, A., Sidorenko, A., Bossert, M., A Fast Linearized Euclidean Algorithm for Decoding
Gabidulin Codes, In Twelfth International Workshop on Algebraic and Combinatorial Coding The-
ory (ACCT 2010), pp. 298-303, September 2010.

22

