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Abstract. Online ciphers encrypt an arbitrary number of plaintext blocks and output
ciphertext blocks which only depend on the preceding plaintext blocks. All online ciphers
proposed so far are essentially serial, which significantly limits their performance on parallel
architectures such as modern general-purpose CPUs or dedicated hardware. We propose
the first parallelizable online cipher, COPE. It performs two calls to the underlying block
cipher per plaintext block and is fully parallelizable in both encryption and decryption.
COPE is proven secure against chosen-plaintext attacks assuming the underlying block
cipher is a strong PRP. We then extend COPE to create COPA, the first parallelizable,
online authenticated cipher with nonce-misuse resistance. COPA only requires two extra
block cipher calls to provide integrity. The privacy and integrity of the scheme is proven
secure assuming the underlying block cipher is a strong PRP. Our implementation with Intel
AES-NI on a Sandy Bridge CPU architecture shows that both COPE and COPA are about
5 times faster than their closest competition: TC1, TC3, and McOE-G. This high factor
of advantage emphasizes the paramount role of parallelizability on up-to-date computing
platforms.

Keywords: Block cipher, tweakable cipher, online cipher, authenticated encryption, nonce-
misuse resistance, parallelizability, AES

1 Introduction

Online ciphers. A cipher which takes input of arbitrary length is said to be an online

cipher if it can output ciphertext blocks as it is receiving the plaintext blocks. Specifically,
the ith ciphertext block should only depend on the key and the first i plaintext blocks. This
desirable functionality known more generally as online data processing is characteristic
for other cryptographic primitives such as standard encryption schemes like CTR, CBC,
OFB, and CFB.

The first theoretical treatment of online ciphers was put forward by Bellare, Boldyreva,
Knudsen, and Namprempre [3]. They introduce the online ciphers HCBC1 and HCBC2,
both of which require the use of two keys, one for the underlying block cipher and the other
for the almost-xor-universal hash family [32]. Subsequently, Nandi [29] proposed two more
efficient online ciphers MHCBC and MCBC. MHCBC improves upon HCBC2 by using a
smaller hashing key with a finite field multiplication as universal hash function, whereas
MCBC does not even require a universal hash function, thus needing only one block cipher
key and calling the block cipher twice per plaintext block. Rogaway and Zhang in [35]
recast the formalism of Bellare et al. [3] in terms of tweakable block ciphers [22] and
provide three generalizations of the previous online ciphers: TC1, TC2, and TC3.

⋆ An extended abstract of this paper will appear at ASIACRYPT 2013.



Authenticated encryption from online ciphers. While online AE schemes are not
a novelty5, presently we are aware of only one family of online and misuse-resistant AE
schemes, McOE [11]. McOE makes use of the online cipher TC3 [35] to build its general
structure and adds two calls to the tweakable cipher to achieve authenticity. To pro-
cess messages of arbitrary lengths, McOE applies a tag splitting method, similar to the
ciphertext stealing method [9].

Bellare et al. [3] give a few generic transformations to turn an online cipher into a
secure authenticated encryption scheme.

Problem statement. All existing online ciphers are highly sequential and none of them
offer any possibility for parallelizing the computation between distinct block cipher calls.
The only exception can be seen in TC1, which allows parallelization only in decryption
but not in encryption. As a consequence, the McOE AE schemes are not parallelizable
either, due to the fact that they are based on existing online ciphers.

At the same time, in the overwhelming majority of cases in practice, the underlying
cipher is AES which is very well parallelizable on many platforms. Parallelization is a
rather inherent feature of hardware implementations, both in ASIC and FPGA. Also in
general-purpose software, parallelizable encryption algorithms have profited in terms of
performance due to the bitslice approach for a long time already [26,5,18]. However, with
the introduction of the hardware supported AES by Intel in general-purpose x86 CPUs as
an instruction set AES-NI in Intel Westmere, Sandy Bridge, and Ivy Bridge — followed by
the AMD adoption of AES-NI in AMD Bulldozer and Piledriver — the parallelizability of
the AES modes of operation has become of truly paramount importance. With AES-NI,
using a parallelizable mode of operation enables performance advantages of a factor 3
and higher — see, for instance, the case of the (serial) CBC encryption vs (parallel) CBC
decryption [1].

Our contributions. We present the first parallelizable online cipher, COPE, and the
first parallelizable online authenticated encryption scheme with nonce-misuse resistance,
COPA.

COPE: Our novel design is illustrated in Fig. 1. To process a single plaintext block two
block cipher calls are required. A secret mask (tweak) is applied to the plaintext block
and used as input to the first block cipher call. Then the output of the second block
cipher call is masked again to produce the ciphertext block.
By introducing dummy masks, each block cipher call can be viewed as an instance of
the XEX construction [33], which uses the so-called “doubling” mask generation. Our
basic design only deals with message lengths that are a multiple of the block length. In
order to handle messages of arbitrary lengths we use the technique prescribed in the
XLS domain extender by Ristenpart et al. in [31]. In contrast with previous designs,
our scheme only uses a single key and a single cryptographic primitive, namely a block
cipher.
COPE is proven IND-CPA up to the birthday bound of n/2-bit security, where n
denotes the block size of the underlying block cipher.

COPA: We transform COPE to support authentication, while maintaining paralleliz-
ability. The modifications are limited to computing an XOR sum of the plaintext data
and using two extra block cipher calls; these can be seen in Fig. 2. The scheme also

5 Examples of online AE schemes are abundant, including CCFB [24], CHM [15], CIP [16], CWC [19],
EAX [4], GCM [27], IACBC [17], IAPM [17], XCBC [12], RPC [7], TAE [23], and OCB1-3 [34,33,21].
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supports associated data in a way similar to how PMAC1 [33] operates. The privacy
and integrity of COPA are proven up to the birthday bound.

To illustrate the impact of the parallelizability of our online schemes, we implement them
with AES-NI on an Intel Sandy Brigde processor. We systematically compare the perfor-
mance we attain with the online ciphers TC1, TC3, and MCBC as well as the online AE
scheme McOE-G when instantiated with the AES. When compared to these closest online
competitors, which are all explicitly not parallelizable, our modes provide performance
improvements between a factor of 4.5 and 5, being below 2 cycles per byte on a single
core. We expect almost a linear speed-up when several cores are available.

Organization of the paper. The remainder of the paper is organized as follows. We
recall the necessary background on block ciphers in Section 2. Section 3 provides the
specification of our new parallel modes. Sections 4 and 5 deal with the security proofs.
Section 6 gives AES-NI implementations of our modes along with a systematic comparison
to the state-of-the-art schemes. We conclude in Section 7.

2 Preliminaries

In this section we give syntax definitions and security notions of block ciphers and tweak-
able ciphers. In particular, we review the XE and XEX constructions by Rogaway [33],
which provides us with an efficient way of making tweakable ciphers from an ordinary
block cipher. These constructions of tweakable ciphers form the basis for COPE and
COPA.

2.1 Block Ciphers

A block cipher E : K × {0, 1}n → {0, 1}n is a function that takes as input a key k ∈ K
and a plaintext M ∈ {0, 1}n, and produces a ciphertext C = E(k,M). We sometimes
write Ek(·) = E(k, ·). For a fixed key k, a block cipher is a permutation on n bits, and
we denote the inverse permutation (decryption function) by E−1

k .

Let Perm(n) be the set of all permutations on n bits. When writing x
$

← X for some
finite set X we mean that x is sampled uniformly from X. We write Pr

[
A

∣∣ B
]

to denote
the probability of event A given B.

Definition 1. Let E be a block cipher. The prp±1 advantage of a distinguisher D is

defined as

Advprp±1
E (D) =

∣∣∣∣Pr
k

[
DEk,E−1

k = 1
]
− Pr

π

[
Dπ,π−1

= 1
]∣∣∣∣ .

Here, D is a distinguisher with oracle access to either (Ek, E
−1
k ) or (π, π−1). The probabili-

ties are taken over k
$

← K, π
$

← Perm(n) and random coins of D, if any. By Advprp±1
E (t, q)

we denote the maximum advantage taken over all distinguishers that run in time t and

make q queries.

We shall also write E±1
k for (Ek, E

−1
k ). Similarly, π±1 means (π, π−1), and so on.
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2.2 Binary Fields

The set {0, 1}n of bit strings can be considered as the finite field GF(2n) consisting of
2n elements. To do this, we represent an element of GF(2n) as a polynomial over the
field GF(2) of degree less than n. A string an−1an−2 · · · a1a0 ∈ {0, 1}

n corresponds to the
polynomial an−1x

n−1 + an−2x
n−2 + · · · + a1x + a0 ∈ GF(2n). The addition in the field

is just the addition of polynomials over GF(2) (that is, bitwise XOR, denoted by ⊕).
To define multiplication in the field, we fix an irreducible polynomial f(x) of degree n
over the field GF(2). Given two elements a(x), b(x) ∈ GF(2n), their product is defined as
a(x)b(x) mod f(x)—polynomial multiplication over the field GF(2) reduced modulo f(x).
We simply write a(x)b(x) and a(x) · b(x) to mean the product in the field GF(2n).

The set {0, 1}n can be also regarded as a set of integers ranging from 0 through 2n−1.
A string an−1an−2 · · · a1a0 ∈ {0, 1}

n corresponds to the integer an−12
n−1 + an−22

n−2 +
· · ·+ a12 + a0 ∈ [0, 2n− 1]. We often write elements of GF(2n) as integers, based on these
conversions. So, for example, “2” means x, “3” means x + 1, and “7” means x2 + x + 1.
When we write multiplications such as 2 · 3 and 72, we mean those in the field GF(2n).

2.3 XE and XEX Constructions of Tweakable Ciphers

Given a block cipher E : K×{0, 1}n → {0, 1}n and a secret mask ∆ ∈ {0, 1}n, the ciphers

E′
k,∆(x)

def
= Ek(x⊕∆) or E

′
k,∆(x)

def
= Ek(x⊕∆)⊕∆

behave like another block cipher independent of Ek (up to some bound). In the case of
E′

k,∆, adversaries are allowed to make only forward queries, whereas E
′
k,∆ accepts both

encryption and decryption queries. Now consider a set of secret masks {∆i}i∈T , where
∆i and ∆j may not be necessarily independent. An index i ∈ T is called a tweak, which

is not secret. We obtain a tweakable cipher Ẽ : K × T × {0, 1}n → {0, 1}n by defining

Ẽk,i
def
= E′

k,∆i
, and similarly Ẽk,i. We consider Ẽk,i and Ẽk,j together, where i ∈ T0, j ∈ T1

and T0 ∩ T1 = ∅.

Definition 2. Let Ẽ, Ẽ be tweakable ciphers. The twk advantage of a distinguisher D is

defined as

Advtwk
eE, eE

(D) =
∣∣∣Pr

k

[
D

eEk,i, eE
±1

k,j = 1
]
− Pr

πi,πj

[
Dπi,π

±1

j = 1
]∣∣∣ .

Here, D is a distinguisher with oracle access to a series of permutations. The tweaks run

over i ∈ T0 and j ∈ T1 where T0 ∩ T1 = ∅. By Advtwk
eE, eE

(t, q) we denote the maximum

advantage taken over all distinguishers that run in time t and make q queries in total.

The doubling method [33] enables us to produce many different values of the mask ∆

from just one secret value L
def
= Ek(0). Namely, the masks are produced as ∆ = 2α3β7γL

for varying indices of α, β and γ. To do this, we need to choose our irreducible polyno-
mial f(x) carefully. First, f(x) needs to be primitive, meaning that 2 generates the whole
multiplicative group. Second, we make sure that log2 3 and log2 7 are both “huge.” Third,
we check if log2 3 and log2 7 are “apart enough” (modulo 2n − 1). We impose these con-
ditions to ensure that values 2α3β7γ do not collide or become equal to 1. For example,
when n = 128, the irreducible polynomial f(x) = x128 + x7 + x2 + x + 1 satisfies these
requirements, making values 2α3β7γ all distinct and not equal to 1 for α ∈ [−2108, 2108]
and β, γ ∈ [−27, 27] [33], except for (α, β, γ) = (0, 0, 0). So we obtain tweakable ciphers
Ẽk,αβγ and Ẽk,αβγ .
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Lemma 1 (XE and XEX [33]). Let T0,T1 = {(α, β, γ)} be two sets of integer triples

such that 2α3β7γ are all distinct and not equal to 1, in particular T0 ∩ T1 = ∅. Then the

permutations {Ẽk,αβγ

}
T0
∪

{
Ẽ

±1

k,αβγ

}
T1

are indistinguishable from independently random

permutations
{
παβγ

}
T0
∪

{
π
±1
αβγ

}
T1

. Specifically, for given t, q, there exists a t′ ≈ t such

that

Advtwk
eE, eE

(t, q) ≤
9.5q2

2n
+ Advprp±1

E (t′, 2q).

3 COPE and COPA: Design and Specification

We define COPE and COPA. COPE is an online cipher secure against chosen plaintext
attacks. COPE makes two calls to the underlying block cipher per message block. COPA
is an authenticated online cipher that builds on COPE. The additional cost of producing a
tag is kept minimal—a message checksum and two extra block cipher calls. COPA accepts
associated data input.

In this section we assume that the message length is a positive multiple of n. The
length of associated data can be fractional. In App. A we show how to handle fractional
messages with COPE and COPA. At the end of this section we give the design rationale
for our constructions, explaining our choice of operations.

3.1 COPE Definition

Let E : K×{0, 1}n → {0, 1}n be an n-bit block cipher, and denote L
def
= Ek(0). The encryp-

tion and decryption procedures of the COPE online cipher on a message M [1]M [2] · · ·M [d]
of d n-bit blocks and on a ciphertext C[1]C[2] · · ·C[d] are then defined as:

COPE-Encrypt E [E]:
V [0]← L,∆0 ← 3L,∆1 ← 2L
for i = 1, . . . , d do

V [i]← Ek

(
M [i]⊕∆0

)
⊕ V [i− 1]

C[i]← Ek

(
V [i]

)
⊕∆1

∆0 ← 2∆0,∆1 ← 2∆1

end for

COPE-Decrypt E−1[E]:
V [0]← L,∆0 ← 3L,∆1 ← 2L
for i = 1, . . . , d do

V [i]← E−1
k

(
C[i]⊕∆1

)

M [i]← E−1
k

(
V [i]⊕ V [i− 1]

)
⊕∆0

∆0 ← 2∆0,∆1 ← 2∆1

end for

In words, each message block M [i] is XOR-ed with the mask 2i−13L and processed by a
call to Ek. The encrypted value is then chained by XOR with the previous V [i− 1], resp.
with L for the first block. The ciphertexts are then formed by processing the intermediate
values through a second call to Ek and XOR with the mask 2iL. The encryption operation
is illustrated in Fig. 1.

3.2 COPA Definition

The core of the authenticated online cipher COPA is identical to COPE. The only differ-
ences are that first, an authentication tag T is generated after the COPE cipher invoca-
tion, and second, that associated data (if any) is processed before the cipher iteration to
produce a value V that is XOR-ed into the first intermediate block chaining (see Fig. 1):

V [0]← V ⊕L. If there is no associated data, then we set V
def
= 0. The tag T is computed

by keeping a XOR checksum of the message blocks Σ
def
= M [1]⊕· · ·⊕M [d] and computing

T ← Ek

(
Ek(Σ ⊕ 2d−132L)⊕ S

)
⊕ 2d−17L,
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Fig. 1: Online cipher COPE. Set V
def
= 0 for COPE. Variable S will be used later by

COPA.

(a) Tag generation (b) Processing of associated data

Fig. 2: Authenticated online cipher COPA: tag generation and processing of associated
data.

with S
def
= V [d] denoting the last intermediate value in COPE’s block chaining, as in

Fig. 1. The tag computation is illustrated in Fig. 2a. The value V is generated as follows:
any associated data A[1], . . . , A[a] is padded (if not a multiple of n bits) by a one and
as many zeroes as necessary to obtain a multiple of the block size n. These blocks are
then processed by a PMAC1-like [33] iteration as illustrated in Fig. 2b. Here, the block
“A[a]10∗” replaces the block “A[a]” if A[a] itself is not n bits. Tag verification occurs by
checking if

S ⊕ Ek(Σ ⊕ 2d−132L) = E−1
k (T ⊕ 2d−17L),

where the tag is rejected if the equality is not true.

3.3 COPE and COPA for Arbitrary-Length Messages

We explain how to extend our schemes to accept “fractional” messages M in App. A. Here
the length |M | is not necessarily a positive multiple of the block size n. Note that simply
using 10∗ padding to M would result in ciphertext expansion. The methods described in
App. A avoid such expansion with minimal loss of efficiency.
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3.4 Design Rationale

We explain the choices we made while designing COPE and COPA. Namely, we explain
why COPE and COPA are entirely based on block ciphers with doubling masks.

One could combine universal hashing with a block cipher to design an AE scheme.
Indeed, McOE-G [11] follows this approach. However, we decided to avoid the use of
universal hashing, for three reasons. First, the use of universal hashing would result in
additional implementation cost, in particular with hardware. Second, recent study shows
that there is an issue of weak keys with polynomial-based hashing [30]. Third, on the
latest Intel CPUs, one call of AES is faster than one multiplication over the finite field
GF(2128), which is an operation used for polynomial-based hashing.

There has been discussion of whether one should use the doubling method or Gray
code to produce tweak masks. We decided to use doubling, for three reasons. First, dou-
bling provides us with the framework of XE and XEX constructions, which makes our
constructions and proofs simple and easy to analyze. Neither our constructions nor our
proofs can be directly translated into a Gray code version, as it is not immediately clear
which masks we should use for the construction to make the proof work. Second, although
it was reported that Gray code performs better than doubling on Intel CPUs [21], recent
study shows that the doubling method can be implemented equally efficiently [2]. Third,
the speedup of Gray code mask generation requires precomputation and memory, whereas
doubling does not.

4 Privacy Proof of COPE

This section is devoted to proving the security of COPE. We prove that COPE is secure
against chosen-plaintext attacks with respect to privacy (IND-CPA).

4.1 Security Definition of Online Ciphers

We use the security definition of online ciphers from Rogaway and Zhang [35]. Let
({0, 1}n)+ denote the set of strings whose length is a positive multiple of n bits and
is at most 2n · n bits. An online cipher E : K × ({0, 1}n)+ → ({0, 1}n)+ is a function
such that it is a permutation on every block of n bits, having the additional feature
that the outputs are the same for a common prefix. In other words, the first |M | bits
of Ek

(
M‖N

)
and Ek

(
M‖N ′

)
are the same for any M,N,N ′ ∈ ({0, 1}n)+. So an online

cipher Ek yields a permutation of i-th blocks, where the permutation is determined by
the prefix (i.e. the first i − 1 blocks). Let OPerm(n) be the set of all such permutations
π : ({0, 1}n)+ → ({0, 1}n)+.

Definition 3. Let E be an online cipher. The IND-CPA advantage of a distinguisher D
is defined as

Advcpa
E

(D) =

∣∣∣∣Pr
k

[
DEk = 1

]
− Pr

π

[
Dπ = 1

]∣∣∣∣ .

Here, D is a distinguisher with oracle access to either Ek or π. The probabilities are taken

over k
$

← K, π
$

← OPerm(n) and random coins of D, if any. By Advcpa
E

(t, q, σ, ℓ) we

denote the maximum advantage taken over all distinguishers that run in time t and make

q queries, each of length at most ℓ blocks, and of total length at most σ blocks.
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Fig. 3: IND-CPA proofs of COPE: introducing dummy masks rewriting the scheme in
terms of XEX.

4.2 IND-CPA Proof of COPE

We now prove the IND-CPA security of COPE.

Theorem 1. Let E [E] denote COPE, where E is the underlying block cipher. We have

Advcpa
E[E](t, q, σ, ℓ) ≤

38σ2

2n
+ Advprp±1

E (t′, 4σ) +
(ℓ + 1)(q − 1)2

2n
,

where t′ ≈ t.

The proof consists of two steps. First, we rewrite COPE in terms of XEX constructions.6

Then by Lem. 1 we can replace our block cipher calls with random permutations. Second,
we show that COPE (now calling random permutations) behaves exactly the same as
the ideal functionality, as long as certain “bad” events do not occur. These events are
collisions of state values, and the proof amounts to evaluating the probabilities of these
events.

Rewriting with Tweakable Ciphers. We introduce dummy masks to the state values,
as shown in Fig. 3. In this way we have rewritten COPE in terms of XEX construction.
Namely, the block cipher calls in the upper layer are now Ẽk,α−1,1,0 and those in the lower

layer Ẽk,α,0,0. Note that the “L” initially XORed to the state now disappears.
We use Lem. 1 to replace the block cipher calls in the upper layer with random

permutations πα−1,1,0 and those in the lower layer with πα,0,0 (for α = 1, 2, . . .). Such a
replacement costs us

9.5 · (2σ)2

2n
+ Advprp±1

E (t′, 2 · 2σ) =
38σ2

2n
+ Advprp±1

E (t′, 4σ),

by Lem. 1. We write E [π] to denote the COPE scheme making calls to independent
random permutations παβγ rather than to a block cipher.

Bounding Collision Probabilities. We bound the indistinguishability advantage by

a collision probability. To do this, define variables V [α] of state values as V [α]
def
=⊕α

i=1 πi−1,1,0

(
M [i]

)
which is also equal to π

−1
α,0,0

(
C[α]

)
.

We look for collisions of these variables. Here by a “collision” roughly we mean the
same value of V [α] coming from different prefixes M [1]M [2] · · ·M [α] and M ′[1]M ′[2] · · ·M ′[α],

6 The reason why our IND-CPA COPE is based on XEX constructions, and not on XEs, is because our
COPA, which gives decryption oracle access to adversaries, builds upon COPE.
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for some α. More precisely, we have a collision of V [α] = V ′[α] if we have V [α − 1] 6=
V ′[α − 1] and V [α] = V ′[α], which implies we must have M [α] 6= M ′[α] and also
M [i] 6= M ′[i] for some i < α. Let C denote the event that a collision of V [α] occurs for
some α.

Claim. Unless C occurs, E [π] is indistinguishable from the ideal functionality.

Proof. Under the condition ¬C, every time we have a new prefix M [1]M [2] · · ·M [α], we
get a new value V [α], which gives us a fresh random value (up to permutation) C[α]. This
is exactly the behavior of the ideal oracle. ⊓⊔

So it remains to evaluate Pr
[
C

]
. Note that a technicality is involved here: in the h-th

query (1 ≤ h ≤ q), the α-th value V [α] (1 ≤ α ≤ ℓ) may be constructed out of α
“old” permutation evaluations only, and we cannot simply bound the probability C as

ℓ

(
q

2

)
times the probability that a certain V [α] hits an older value. Instead, a slightly

more involved approach is needed. Let D denote the distinguisher, making q queries, each
query being at most ℓ blocks. We shall construct an adversary D′ which makes two queries
in a non-adaptive way and tries to set C, as follows: D′ first picks at random a pair (i, j)
such that 1 ≤ i < j ≤ q. Then D′ runs D, answering its queries with random (up to prefix
and up to permutation) strings. When D makes the j-th query Mj , D

′ stops, and makes
two queries, Mi (the i-th query) and Mj.

Claim. We have Pr
[
DE[π] sets C

]
≤ (q − 1)2 Pr

[
D′E[π] sets C

]
.

Proof. We divide C into disjoint events Ch for h = 2, 3, . . . , q, where Ch is the event that
at the h-th query a collision occurs for the first time. Under the event Ch and j = h, D′

perfectly simulates the game for D. Moreover, the event Ch is independent of the values
returned by the oracle so far. Therefore,

Pr
[
D′ sets C

]
=

q∑

h=2

q∑

i∗=1

Pr
[
(i = i∗) ∧ (j = h) ∧ (D sets Ch with i∗)

]
(1)

=

q∑

h=2

q∑

i∗=1

Pr
[
(i = i∗) ∧ (j = h)

]
· Pr

[
D sets Ch with i∗

]
(2)

≥

q∑

h=2

1

(h− 1)(q − 1)
· Pr

[
D sets Ch

]
(3)

≥
1

(q − 1)2
·

q∑

h=2

Pr
[
D sets Ch

]
(4)

=
1

(q − 1)2
· Pr

[
D sets C

]
(5)

⊓⊔

Claim. We have Pr[D′E[π] sets C ] ≤ (ℓ + 1)/2n.

Proof. Recall that D′ is non-adaptive. Let us denote the two queries by M = M [1]M [2] · · ·
and M ′ = M ′[1]M ′[2] · · · . We perform lazy sampling of the random permutations πα−1,1,0.
We first sample the points M [1],M [2], . . .. We then sample the points M ′[α] where
M ′[α] 6= M [α]. There are at most ℓ such points, as the length of a message is at most
ℓ blocks. Each time we sample a point M ′[α], there is a chance that C gets set. The
points are sampled from the set of 2n − 1 values (the remaining after having sampled
M [1],M [2], . . .). Therefore, Pr[D′ sets C ] ≤ ℓ · 1/(2n − 1) ≤ (ℓ + 1)/2n. ⊓⊔
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5 Privacy and Integrity Proofs of COPA

COPA takes as inputs (optional) associated data A ∈ {0, 1}∗ and a message M ∈
({0, 1}n)+ to return a pair made up of a ciphertext C ∈ ({0, 1}n)+ and a tag T ∈
{0, 1}n, as (C, T ) ← Ek(A,M) (the fractional case requires only syntactical modifica-
tion of the respective domain and range sizes). The decryption/verification algorithm
D takes as input associated data A ∈ ({0, 1}n)+, a ciphertext C ∈ ({0, 1}n)+, and a
tag T ∈ {0, 1}n to output either a message M ∈ ({0, 1}n)+ or the reject symbol ⊥, as
M/⊥ ← Dk(A,C, T ). Correctness of decryption/verification has to be satisfied, or for
a valid (A,M) encrypted/authenticated to (C, T ) ← Ek(A,M), under the same k the
decryption/verification always outputs the correct (A,M), and not ⊥.

5.1 Security Definition of Authenticated Online Ciphers

Also for authenticated online ciphers, we use the IND-CPA security advantage of Def. 3,
except that the ideal encryption oracle now has an additional random function that maps
{0, 1}∗ × ({0, 1}n)+ to {0, 1}n, corresponding to (A,M) 7→ T .

We use the notion of integrity of authenticated encryption schemes from Fleischmann
et al. [11]. By ⊥, we denote a function that returns ⊥ on every input.

Definition 4. Let E be an online cipher. The integrity advantage of a distinguisher D is

defined as

Advint
E (D) =

∣∣∣∣Pr
k

[
DE

±1

k = 1
]
− Pr

k

[
DEk,⊥ = 1

]∣∣∣∣ .

Here, D is a distinguisher with oracle access to either (Ek, E
−1
k ) or (Ek,⊥). To avoid a

trivial win, we assume that the distinguisher does not make a query (A,C, T ) if it has

made a query (A,M) to the encryption oracle and obtained (C, T ) from the oracle. By

Advint
E (t, q, σ, ℓ) we denote the maximum advantage taken over all distinguishers that run

in time t and make q queries, each of length at most ℓ blocks, and of total length at most

σ blocks.

5.2 Privacy of COPA

We now prove the IND-CPA security of COPA.

Theorem 2. Let E [E] denote COPA, where E is the underlying block cipher. We have

Advcpa
E[E](t, q, σ, ℓ) ≤

39(σ + q)2

2n
+ Advprp±1

E (t′, 4(σ + q)) +
(ℓ + 2)(q − 1)2

2n
,

where t′ ≈ t.

The IND-CPA security analysis of COPE carries over, with only minor modifications.
First, we introduce dummy masks in a similar way (to the encryption part), and replace
all XE (in the associated-data part) and XEX constructions by random permutations.
This replacement costs us

9.5 · (2σ + 2q)2

2n
+ Advprp±1

E (t′, 2 · 2(σ + q)) =
38(σ + q)2

2n
+ Advprp±1

E (t′, 4(σ + q)).

The difference lies in the fact that per query two more block cipher evaluations are made
for the derivation of the tag. Write E [π,π] to denote the COPA scheme calling random
permutations instead of a block cipher.
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Next, we again use the collision event C, but introduce two more events. One is A,
which is the event that we have a collision of V for two different associated data. Recall
that for A = ∅, we have V = 0. The other is T, which is the event that we have a collision
of tag values for messages of the same length (or more precisely, a collision of input values
to a random permutation that produces tags).

Claim. Unless A ∨ C ∨T occurs, E [π,π] is indistinguishable from the ideal functionality.

Proof. Under the condition ¬A∧¬C, every time we have a new prefix AM [1]M [2] · · ·M [α],
we get a new value V [α], which gives us a fresh random value (up to permutation) C[α].
This is exactly the behavior of the ideal oracle. Similarly, given ¬T, also the tag values
are always new, unless in the trivial case (A,M) has been queried before. ⊓⊔

Lemma 2 (PMAC1, [33]). The function H[π] : {0, 1}∗ → {0, 1}n (A 7→ V ) is indis-

tinguishable from a random function Φ : {0, 1}∗ → {0, 1}n. Specifically, the distinguishing

advantage (defined accordingly, only forward queries) is at most σ2/2n. Here, {0, 1}∗ de-

notes the set of strings whose length is at most 2n · n bits.

So now we replace XE and XEX constructions with random permutations and H[π] with
a random function Φ. Denote the scheme by E [Φ,π]. Then we have the following.

Claim. We have Pr
[
DE[Φ,π] sets A

]
≤ q2/2n.

Proof. This is just a collision probability of a random function Φ plus the probability of
Φ hitting 0, which is at most 0.5q(q − 1)/2n + q/2n = 0.5q(q + 1)/2n ≤ q2/2n. ⊓⊔

Claim. We have Pr
[
DE[Φ,π] sets C ∨T

∣∣ ¬A
]
≤ (ℓ + 2)(q − 1)2/2n.

Proof. The proof is exactly the same as in the proof of Thm. 1, except that the length of
the message is now one block longer due to the tag generation. ⊓⊔

5.3 Integrity of COPA

The integrity proof of COPA is more involved than the privacy proofs. We prove the
following theorem:

Theorem 3. Let E [E] denote COPA, where E is the underlying block cipher. We have

Advint
E[E](t, q, σ, ℓ) ≤

39(σ + q)2

2n
+ Advprp±1

E (t′, 4(σ + q)) +
(ℓ + 2)(q − 1)2

2n
+

2q

2n
,

where t′ ≈ t.

Let F denote the event that the decryption oracle E−1
k returns something other than ⊥.

Clearly the two games are the same as long as the event F does not occur, so we have

Pr
[
DE

±1

k = 1
]
− Pr

[
DEk,⊥ = 1

]
≤ Pr

[
DE

±1

k sets F
]
.

In the rest of this section we shall bound this probability. First, as usual, we replace
block cipher calls with random permutations π,π. Then we replace the PMAC1 part of
processing associated data with a random function Φ. These all together cost us (cf. the
proof of Thm. 2)

38(σ + q)2

2n
+

σ2

2n
+ Advprp±1

E (t′, 4(σ + q)).
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Removing “Privacy Part.” Define events A, C and T as we have done in the privacy
proof of Thm. 2. Note that these events are defined in terms of variables V [α], where we

also define V [0]
def
= V and V ′[α + 1] the input value to the block cipher that produces a

tag. We define these values as being set only by the queries to the encryption oracle E .
We do not let queries to the decryption oracle E−1 affect variables V [·], V ′[·], whether or

not it returns a message or ⊥. Set E
def
= A ∨ C ∨ T.

Next we define similar events A
′, C′ and T

′. These are exactly the same as the previous
ones, except that now we consider only those events (i.e. collisions of V [·] or V ′[·]) that

occur prior to a forgery (that is, under the condition ¬F). Again, set E
′ def

= A
′ ∨ C

′ ∨ T
′.

When we consider event F, we would like to assume that we are under the condi-
tion ¬E′, meaning that the encryption oracle E has behaved ideally so far (till forgery).
To do this, we use the inequality

Pr
[
DE±1[Φ,π] sets F

]
≤ Pr

[
DE±1[Φ,π] sets F

∣∣ ¬E′
]
+ Pr

[
DE±1[Φ,π] sets E

′
]
.

We shall construct a distinguisher D′ that breaks the privacy of the encryption oracle E .
The distinguisher D′ uses D, and the query complexity of D′ is at most that of D. Specifi-
cally, D′ starts running D, answering E-queries using its E oracle, and whenever D makes
a query to the decryption oracle E−1, D′ replies with a ⊥.

Claim. We have Pr
[
DE±1[Φ,π] sets E

′
]
≤ q2/2n + (ℓ + 2)(q − 1)2/2n.

Proof. Note that if DE±1

sets E
′, then till this event D′ simulates the environment of D

correctly. Hence we get Pr
[
DE±1

sets E
′
]
≤ Pr

[
D′E sets E

]
, which is less than q2/2n +

(ℓ + 2)(q − 1)2/2n as shown in the privacy proof. ⊓⊔

Passing to a Single-Query Adversary. So it remains to evaluate the probability that
D sets F under the condition ¬E′. We shall construct a forger D1 from D. The forger
D1 makes multiple queries to the encryption oracle E but makes only one query to the
decryption oracle E−1 at the end of its run. We define D1 as follows: it chooses a random
index i ∈ [1, q]. It then runs D, answering its E-queries using the E oracle of D1 and
answering the queries to the decryption oracle E−1 with ⊥. When D makes the i-th query
(A⋆, C⋆, T ⋆) to the decryption oracle, D1 outputs the query (A⋆, C⋆, T ⋆) and stops (or
more precisely, makes that query to the decryption oracle E−1 and stops.)

Claim. We have Pr
[
DE±1[Φ,π] sets F

∣∣ ¬E′
]
≤ q Pr

[
D

E±1[Φ,π]
1 sets F

∣∣ ¬E′
]
.

Proof. Let Fh denote the event that at the h-th query the decryption oracle E−1 returns
something other than ⊥ for the first time; that is, the oracle has returned only ⊥ so
far. Clearly these are disjoint events, and we have F =

∨q
h=1 Fh. Then, under the events

¬E′ and i = h, the forger D1 correctly simulates the game of D. Therefore, we get
Pr

[
DE±1

1 sets F
∣∣ ¬E′

]
≥ Pr

[
(i = h) ∧DE±1

sets F
∣∣ ¬E′

]
≥ (1/q) Pr

[
DE±1

sets F
∣∣ ¬E′

]
.
⊓⊔

Evaluating Forgery Probabilities. Let (A⋆, C⋆, T ⋆) denote the (non-trivial) query
made by D1 to the decryption oracle E−1[Φ,π]. We shall evaluate the probability that
this would make E−1 return something other than ⊥. To evaluate the probability, we shall
consider the following cases.

– A⋆ or T ⋆ is new, or C⋆ contains a new block.

12



• A⋆ is new. If A⋆ is new, then it means that it triggers the random function Φ and
yields a fresh random value V ← Φ(A⋆). This value is XORed to the value that is
input to the block cipher to produce the tag, which must be equal to T ⋆. All other
values XORed to the value are independent of V . Hence, regardless of the values
C⋆, T ⋆, the probability of such an event is at most 1/2n.

• A⋆ is not new, but C⋆ contains a new block. Let C⋆[α] be one of the new blocks.
The decryption invokes π

−1
α,0,0

(
C⋆[α]

)
, which is sampled from the set of at least

2n− q points. Therefore, the probability of a forgery is at most 1/(2n− q) ≤ 2/2n,
assuming q ≤ 2n−1.

• A⋆ is not new, C⋆ does not contains a new block, but T ⋆ is new. This is similar
to the previous case. This would trigger a fresh point of π

−1
d⋆−1,0,1(T

⋆), where d⋆

denotes the number of blocks in the message M⋆. The point is sampled from the
set of at least 2n − q points. Therefore, the probability of a forgery is at most
1/(2n − q) ≤ 2/2n.

To summarize this case, the probability is at most max{1, 2, 2}/2n = 2/2n.

– A⋆ and T ⋆ are old, and C⋆ consists of old blocks. To handle this case, we intro-
duce some notation. For the query (A⋆, C⋆, T ⋆) in question, divide C⋆ into blocks as

C⋆[1]C⋆[2] · · ·C⋆[d⋆]← C⋆ and define C⋆[0]
def
= A⋆ and C⋆[d⋆ +1]

def
= T . We then focus

on a pair of adjacent “blocks”
(
C⋆[α − 1], C⋆[α]

)
for α = 1, 2, . . . , d⋆ + 1. We call a

pair old if it (as a pair) has already appeared in some previous query made to the
encryption oracle E and in the corresponding value returned by the oracle. That is,
if D has made a query (A′,M ′) to the oracle and got (C ′, T ′) back, then we check if
the pair in question

(
C⋆[α − 1], C⋆[α]

)
is contained in (A′, C ′, T ′)—that is, we check

if
(
C⋆[α− 1], C⋆[α]

)
=

(
C ′[α− 1], C ′[α]

)
holds, where C ′[0] and C ′[d′ + 1] are defined

similarly. We do this for all previous queries. We call the pair
(
C⋆[α− 1], C⋆[α]

)
new

otherwise.

Claim. The query (A⋆, C⋆, T ⋆) always contains a new pair.

Proof. If (A⋆, C⋆, T ⋆) contains no new pairs, then, given the non-triviality of the query,
we must have observed a collision, contradicting with the assumption ¬E′. ⊓⊔

We now make a distinction among new pairs
(
C⋆[α−1], C⋆[α]

)
based on the decrypted

message block M⋆[α] from the two adjacent ciphertext blocks. We say that a pair is
collapsing if there exists a previous query (A′,M ′) made by D to the encryption oracle
E such that M ′[α] = M⋆[α].

• There exists a new pair
(
C⋆[α− 1], C⋆[α]

)
that is not collapsing. This case means

that we trigger a random sampling of π
−1
α,1,0 to compute M⋆[α]. Then, note that

the value Σ⋆ = M⋆[1] ⊕M⋆[2] ⊕ · · · ⊕M⋆[d⋆] is already uniquely determined by
the values C⋆[d⋆] and T ⋆ (via Fig. 2a). There are at least 2n − q possible values
for M⋆[α], and the message blocks must sum up to this particular value Σ⋆, which
happens with a probability at most 1/(2n − q) ≤ 2/2n.

• All new pairs in (A⋆, C⋆, T ⋆) are collapsing. This final case is quite different from
the previous ones above, as we do not have any fresh sampling of permutations
π
±1
α,β,γ or the random function Φ in evaluating E−1[Φ,π](A⋆, C⋆, T ⋆). To tackle this

case, we shall convert this forgery game into one where the adversary D◦ tries to
find multiple collisions by outputting the following set of values, without making
any query to the oracles:

1. r ∈ [1, ℓ],
2. 1 ≤ α1 < α2 < · · · < αr ≤ ℓ + 1,
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3. (A1,M1), (A2,M2), . . ., (Ar,Mr), and
4. (A′

1,M
′
1), (A′

2,M
′
2), . . ., (A′

r,M
′
r).

The adversary D◦ “wins” if the submitted values form a multi-collision in the
following sense: (Ai,Mi) and (A′

i,M
′
i) collides at the αi-th block, for all i ∈ [1, r].

The adversary D◦ runs D1, simulating the E oracle with an ideal functionality.
Note that this simulation is correct under the condition ¬E′. When D1 outputs
(A⋆, C⋆, T ⋆), D◦ first checks for new pairs contained in it. Let 1 ≤ α1 < α2 <
· · · < αr ≤ ℓ + 1 be the positions of new pairs. Then D◦ checks the history of
values (C, T ) that it returned. Note that under ¬E′, a block C⋆[α] determines a
unique prefix AM . We choose (Ai,Mi) to be the prefix determined by C⋆[αi]. To
choose (A′

i,M
′
i), let A′

iM
′′ be the prefix determined by C⋆[αi−1]. Then D◦ chooses

randomly, from the previously queried values, a message block M [α] 6= Mi[α]. Set

M ′
i

def
= M ′′M [α]. The adversary D◦ does this for i = 1, 2, . . . except for the last

block.* If αr < d⋆ +1, then we know the message checksum Σ⋆ = M⋆[1]⊕· · ·⊕M⋆[d⋆],
so D◦ does not have to guess the value of M ′

αr
[αr].* If αr = d⋆ + 1, then we simply set the last input value to be the checksum of

all previous (guessed) message blocks.

Now we observe that as long as all the guesses of the message blocks are correct,
D◦ wins if D1 succeeds in forgery of this type. It should be noted that the values
returned by E are independent of the success probabilities in question, under the
event ¬E′. Therefore, for a fixed r,

Pr
[
D◦ wins

∣∣ r
]
≥

1

q − 1
·· · ··

1

q − 1
Pr

[
D1 forges

∣∣ r
]

=
1

(q − 1)r−1
Pr

[
D1 forges

∣∣ r
]
.

We then calculate Pr
[
D◦ wins

∣∣ r
]
. We do this by lazy sampling of the permuta-

tions, and we see that, for a fixed r,

Pr
[
D◦ wins

∣∣ r
]
≤

1

2n − 1
·

1

2n − 1
· · · · ·

1

2n − 1
=

1

(2n − 1)r
.

Hence by varying r we get in total

Pr
[
D1 forges

]
≤

ℓ∑

i=1

(q − 1)i−1

(2n − 1)i
Pr[i = r] ≤

1

(2n − 1)

ℓ∑

i=1

Pr[i = r] =
1

(2n − 1)
≤

2

2n
.

Overall, the forgery probability of D1 is bounded by max{2, 2, 2}/2n = 2/2n.

6 Efficient Parallel Implementation

6.1 The Setting

In this section, we discuss implementation characteristics of COPE and COPA. We
present experimental measurements for our high-performance software implementations
with AES-NI. We compare the performance of COPE and COPA to that of its closest
competitors.
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6.2 The setting

We compare our schemes to some prominent existing online ciphers: TC1 and TC3 [35]
being the most efficient previous schemes; and MCBC [29] as a representative for a scheme
relying only on block cipher invocations (as opposed to tweakable block ciphers or univer-
sal hashing). The modes HCBC1 and MHCBC are implicitly covered by TC1 and TC3,
and HCBC2 has a performance inferior to TC3.

For the case of authenticated online ciphers, we exclude modes of operation and ded-
icated designs that are based on a nonce and rely on its non-reuse (e.g., GCM [27],
OCB [21], ALE [6], and AEGIS [37]). Therefore, we compare our COPA design to the
McOE family of authenticated encryption algorithms [11], which, to the best of our knowl-
edge, is the only other online scheme not relying on the non-reuse of a nonce. We focus
on the McOE-G instance, since McOE-X itself is not secure [28], featuring a key recovery
with birthday complexity.

For the concrete instantiation of all schemes, we use the AES-128 [10] as the un-
derlying block cipher, and multiplication in GF(2128) as an almost XOR-universal hash
function [20]. As target platform for the implementations, we chose the recent genera-
tion of Intel microprocessors (Westmere or later) which support the AES-NI instruction
set [13] and carryless multiplication [14].

6.3 Implementation characteristics of COPE and COPA

The online modes proposed in this paper can utilize parallelized execution of block cipher
calls in two ways: for messages longer than one block, the encryptions of subsequent
message blocks can be carried out independently of each other once the respective masks
have been XORed. The same holds for the second series of block cipher calls, once the
chaining XORs have been executed.

This parallelism can be exploited in a single-core scenario by pipelining the block
cipher rounds for several consecutive block cipher invocations. Similarly, these invocations
can be processed independently by multiple threads, with the recombination being the
computation of the chaining. Note that both scenarios can be combined when multiple
cores with pipelined block cipher calls are available, which is typically the case for Intel’s
AES-NI architecture.

On the recent Sandy and Ivy Bridge platforms, the AES round function can be com-
puted at a latency of 8 cycles with a throughput of 1 cycle. Consequently, to fully utilize
the pipeline, our implementation issues 8 AES round function evaluations on the next
8 consecutive blocks (independent data and same key). The tweak masks are computed
using dedicated multiplication routines for 2α, 3β and 7γ ∈ GF(2128). By contrast, the
general GF(2128) multiplication needed for TC1, TC3, and McOE-G is implemented using
the PCLMULQDQ carryless multiplication instruction followed by modular reduction. The
parallel implementation of the core part of our schemes’ encryption routine is illustrated
in App. C.

6.4 Performance measurements

We provide performance data for the (authenticated) encryption of messages of length
16 · 2b bytes, with 3 ≤ b ≤ 10. The performance of AES-CTR is provided as a reference
point. All measurements were taken on a single core of an Intel Core i5-2520M CPU
at 2500 MHz, averaged over 500000 repetitions, processing one message at a time. Our
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Table 1: Software performance of (authenticated) online ciphers based on the AES on the
Intel Sandy Bridge platform (AES-NI). All numbers are given in cycles per byte (cpb).

message length (bytes)

Algorithm 128 256 512 1024 2048 4096 8192

CTR 1.74 1.27 1.05 0.93 0.86 0.83 0.82
TC1 9.00 8.75 8.65 8.60 8.56 8.56 8.56
TC3 9.08 8.82 8.72 8.67 8.63 8.63 8.62
MCBC 11.66 11.00 10.68 10.52 10.44 10.40 10.38
COPE 2.56 2.08 1.89 1.78 1.72 1.70 1.69

McOE-G 10.85 9.73 9.14 8.90 8.74 8.69 8.66
COPA 3.78 2.85 2.31 2.06 1.94 1.88 1.85

findings are summarized in Table 1 and illustrated in Fig. 4 in App. B. All numbers are
given in cycles per byte (cpb).

One can observe that for all message lengths, the parallelizability of the proposed
schemes results in speed-ups of factor 4.5 − 5 in comparison to the existing modes, at
least for somewhat longer messages. By fully utilizing the pipeline, our schemes are only
marginally slower than two times AES-CTR, which implies that the overhead imposed by
the computation of the masks and the chaining is kept at a minimum. The authenticated
mode COPA carries the additional overhead of two more AES calls plus field arithmetic for
finalization, but this quickly becomes insignificant as the message length increases. Note,
however, that some constant overhead in comparison to the unauthenticated mode remains
even for very long messages: this can be attributed to the fact that the computation of
the checksum does not allow overwriting the message blocks, leading to increased register
pressure. We also note that with the availability of carryless multiplication, TC1 and TC3
can be implemented more efficiently than the purely block cipher-based MCBC which was
created with the goal to improve performance by avoiding field arithmetic.

The performance of our parallelizable schemes COPE and COPA can be further im-
proved by utilizing multiple cores. Our implementation of multithreaded encryption con-
firms the intuition that one can expect a nearly linear speedup when using multiple cores
for computing our schemes (i.e., the cost is < 1 cpb for two cores and so on).

7 Conclusion

By presenting COPE, our work provides the first solution for a parallelizable online cipher.
Building on COPE, we go on to construct COPA, the first parallelizable and nonce-
misuse resistant online authenticated encryption scheme. Our implementations of COPE
and COPA with Intel AES-NI on a Sandy Bridge processor architecture benefit strongly
from the parallelism, which gives us speed-ups of about factor 5 in comparison to existing
(serial) online ciphers TC1, TC3, MCBC and the online AE scheme McOE-G.

Our designs additionally employ only a single key and use only a block cipher as a
building block—as opposed to tweakable block ciphers or universal hash functions. We
prove that our cipher COPE is an IND-CPA secure online permutation. The privacy
result is also carried over to COPA. The integrity proof of COPA uses a technique of
converting a forgery to a set of multiple collisions. It seems that the technique has not
been used before by security proofs of parallelizable authenticated encryption mode or
message authentication code. The technique may be applicable to other new types of
parallelizable modes of operation. We leave it as an interesting open problem to construct
a scheme with less primitive calls but with comparable security guarantees.
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A Handling Arbitrary-Length Messages

The problem of fractional messages with (authenticated) online ciphers has been treated
by TC1-3 [35] and by McOE [11]. TC1-3 utilizes constructions of variable-input-length

(VIL) tweakable ciphers. McOE does a trick they call “tag splitting.” Our methods are
similar to these and efficient but differ in detail.

A.1 COPE for Arbitrary-Length Messages

Our solution relies on the XLS construction [31] of VIL tweakable ciphers. XLS makes
only three block-cipher calls and requires only simple bit operations outside block-cipher
calls.

Let Ẽ : K×T ×{0, 1}n → {0, 1}n be a tweakable cipher and E : K′×{0, 1}n → {0, 1}n

a block cipher. Then XLS[Ẽ, E] yields a VIL permutation on {0, 1}n+∗, the set of string
whose length is between n bits and 2n− 1 bits. Specifically, we get XLS[Ẽ, E] : K×K′ ×
T ×{0, 1}n+∗ → {0, 1}n+∗. Using appropriate choice of (α, β, γ), we can realize the ciphers
used in XLS by the underlying block cipher in COPE encryption scheme E , dependent on
the message length d. So we write XLSk,d to denote the XLS invocation in COPE.

Let M be a message of at least n bits. Divide it into blocks as M [1]M [2] · · ·M [d −
1]M [d] ← M , and assume that we have 1 ≤

∣∣M [d]
∣∣ ≤ n − 1. Then we can define C ←

Ek(M) as

C[1]C[2] · · ·C[d− 2], S ← Ek
(
M [1]M [2] · · ·M [d− 2]

)
(let Ek output S for now)

C[d− 1]C[d]← XLSk,d

(
(M [d− 1]⊕ S)‖M [d]

)

C ← C[1]C[2] · · ·C[d].

The IND-CPA proof of COPE carries over with minor modifications. Note that we have
to “wait” the processing of M [d−1] till receiving M [d] (or “redo” after receiving), making
the scheme less online. Yet, we make only three calls to the block cipher to process these
two blocks.

We require |M | ≥ n. As pointed out by [35], it seems a challenging problem to handle
the case |M | < n with encryption-only online ciphers in a secure manner.

A.2 COPA for Arbitrary-Length Messages

There are solutions of arbitrary-length messages for COPA also. This time we can take
the advantage of the tag to handle even the case |M | < n. The solution for the case
|M | > n also becomes more efficient owing to the presence of tags.

Tag Splitting for |M | < n. We can do a trick similar to tag splitting [11] if |M | < n.
We first choose appropriate parameters (α, β, γ) to make it independent of the ordinary
COPA encryption algorithm E . Write it E∗k (which will be used only for fractional one-
block messages). Given M such that |M | = s < n, we can define (C, T )← Ek(M) as

(C ′, T ′)← E∗k
(
M10∗

)

C ← ⌈C ′⌉s (leftmost s bits)

T ← ⌊C ′⌋n−s⌈T
′⌉s.

One can directly verify the security of this extension. Note that the integrity relies on the
10∗ padding as well as on the “partial” tag ⌈T ′⌉s.
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XLS for |M | > n. Our solution for this case is similar to that of COPE but is more
efficient, in that COPA still remains fully online. Again, let M be a message whose length
is more than n bits. Divide it into blocks as M [1]M [2] · · ·M [d−1]M [d] ←M , and assume
that we have 1 ≤

∣∣M [d]
∣∣ ≤ n− 1. Then we can define (C, T )← Ek(M) as

(C ′, T ′)← Ek
(
M [1]M [2] · · ·M [d− 1]

)

C[d]T ← XLSk,d

(
M [d]T ′

)

C ← C ′C[d],

where XLSk,d is defined similarly to the case of COPE. Given the security of COPA and
XLS, it is straightforward to verify that this extension is also secure.

B Illustration of software performance

The software performance of the proposed schemes in comparison to other (authenticated)
online ciphers is illustrated in Fig. 4.
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Fig. 4: Software performance of the proposed COPE and COPA and other (authenticated)
online ciphers for different message lengths on Intel Sandy Bridge (AES-NI).

C Parallel implementation on Intel Sandy Bridge

The core of the encryption routine of both proposed schemes consists of processing mes-
sage blocks with AES invocations and calculating the tweak masks and the chaining.
This is done in an 8x parallel fashion in order to optimally utilize the pipeline. Note also
that we use the AVX instruction set which in particular allows two source operands per
instruction. See the following pseudocode (in two-column format):
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# initialize Lup with 3*L

# initialize Ldown with 2*L

loop:

# ... load next 8 blocks into xmm0, xmm7

# prepare next 8 upper masks:

vmovdqa Lup, xmm8

gf128_mul2 xmm8 xmm9

gf128_mul2 xmm9 xmm10

gf128_mul2 xmm10 xmm11

gf128_mul2 xmm11 xmm12

gf128_mul2 xmm12 xmm13

gf128_mul2 xmm13 xmm14

gf128_mul2 xmm14 xmm15

# xor mask and first round key:

vpxor expkey, xmm8, xmm0

vpxor expkey, xmm9, xmm1

vpxor expkey, xmm10, xmm2

vpxor expkey, xmm11, xmm3

vpxor expkey, xmm12, xmm4

vpxor expkey, xmm13, xmm5

vpxor expkey, xmm14, xmm6

vpxor expkey, xmm15, xmm7

# AES rounds:

vpmovdqa expkey+16, xmm10

vaesenc xmm10, xmm0, xmm0

vaesenc xmm10, xmm1, xmm1

vaesenc xmm10, xmm2, xmm2

vaesenc xmm10, xmm3, xmm3

vaesenc xmm10, xmm4, xmm4

vaesenc xmm10, xmm5, xmm5

vaesenc xmm10, xmm6, xmm6

vaesenc xmm10, xmm7, xmm7

# ... repeat the above 8 times ...

# ... last AES round analogously ...

# prepare next upper mask:

gf128_mul2 xmm15 Lup

# do the block chaining:

vpxor lastblock, xmm0, xmm0

vpxor xmm0, xmm1, xmm1

vpxor xmm1, xmm2, xmm2

vpxor xmm2, xmm3, xmm3

vpxor xmm3, xmm4, xmm4

vpxor xmm4, xmm5, xmm5

vpxor xmm5, xmm6, xmm6

vpxor xmm6, xmm7, xmm7

vmovdqa xmm7, lastblock

# ... repeat the above

# for the second block cipher call ...

# ... store xmm0..xmm7 to memory

jmp loop

subroutine gf128_mul2(in, out)

vpslldq $8, in, out

vpsllq $1, in, tmp

vpsrlq $63, out, out

vpor out, tmp, out

vpextrq $1, in, r15

testq r15, r15

jns .exit

vpxor REDPOLY, out, out

.exit:

ret
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