
Algebraic Properties of the Cube Attack

Frank-M. Quedenfeld1, Christopher Wolf2

1 University of Kassel, Germany
frank.quedenfeld@mathematik.uni-kassel.de,frank.quedenfeld@googlemail.com

2 Ruhr University Bochum, Germany
Christopher.Wolf@ruhr-uni-bochum.de,chris@Christopher-Wolf.de

Abstract. Cube attacks can be used to analyse and break cryptographic primitives that have an easy
algebraic description. One example for such a primitive is the stream cipher Trivium. In this article
we give a new framework for cubes that are useful in the cryptanalytic context. In addition, we show
how algebraic modelling of a cipher can greatly be improved when taking both cubes and linear equiv-
alences between variables into account. When taking many instances of Trivium, we empirically show
a saturation effect, i.e. the number of variables to model an attack will become constant for a given
number of rounds. Moreover, we show how to systematically find cubes both for general primitives and
also specifically for Trivium. For the latter, we have found all cubes up to round 446 and draw some
conclusions on their evolution between rounds. All techniques in this article are general and can be
applied to any cipher.

Keywords: Trivium, cubes, algebraic modelling, cube testing, similar variables, cube classification

Version: 2013-11-29

1 Introduction

Cube attacks were proposed back in 2008 by Dinur and Shamir in [DS09a]. They can be seen as a
generalization of Lai’s Higher Order Differentials [Lai94] and Vielhaber’s AIDA [Vie07]. Initially,
they were applied against Trivium, one of the stream ciphers in Ecrypt/eSTREAM portfolio 2
(hardware oriented ciphers) [CP08]. Although many cryptanalytic attempts, Trivium is still un-
broken. But even back in their initial paper, the article [DS09a] did put cubes into a much wider
framework to attack any symmetric cryptographic primitive. Consequently, both block ciphers and
hash functions were attacked with cubes in [ADMS09, DS09b, YLWQ09, MS09, Lat09].

Still, cube attacks enjoy most success when applied against stream ciphers. In particular, a
version of the stream cipher Grain-128 [HJMM06], was broken using cube attacks [DAS11]. It
should be noted that Grain-v1 is also part of portfolio 2 of the eSTREAM project. In addition,
a cube attack is able to recover the full key of a 799−round-reduced version of Trivium in about
262 operations [FV13]. When working with cube attacks, Trivium remains the standard test bed
because of its simple and efficient yet secure structure.

In literature, there are different and conflicting definitions of the term “cube”. We mainly follow
the definitions from Dinur and Shamir [DS09a] and only refer the reader to alternative definitions
from [Vie07]. There are further generalizations including testing for cubes with degree two [MS11]
or to test for other properties that are easier to find and help us to distinguish the cipher from
random bit streams [ADMS09]. Cubes were also used to directly lower the degree of the update
function in a cipher [DAS11]. This has greatly improved the efficiency of this attack.

frank.quedenfeld@mathematik.uni-kassel.de, frank.quedenfeld@googlemail.com
Christopher.Wolf@ruhr-uni-bochum.de, chris@Christopher-Wolf.de

1.1 Organization and achievement

In section 2 we classify different types of cubes. In particular, we give a cleaner and more complete
definition of the different variants of cubes than available in contemporary literature. We hope that
this stipulate further research in concrete attacks against concrete stream ciphers. In addition we
introduce new variants of cubes, namely state cubes, factor cubes, and polycubes. State cubes are
cubes in the initialization phase of a cipher while factor cubes replace the cube monomial by a cube
polynomial. This can be viewed as a generalization of Vielhaber’s cancellation attack [Vie08]. In
all cases, we give concrete examples to show their existence. All in all, these new variants become
particularly interesting when combined with a new algebraic modelling technique from section 4.

Algebraic modelling of non-linear ciphers as given in the literature does not achieve its full
potential yet. In [SFP08, T+13, SR12] the algebraic representation of Trivium stays the same as
in [Rad06]. This means that all state bits of one Trivium instance equal exactly one variable, even
after the initilization phase. The model described there can neither handle more than one Trivium
instance nor does it take advantage of cubes within the initialization phase. We introduce new mod-
elling techniques using linear algebra and thus build a more general model of Trivium to overcome
these disadvantages (cf. section 4). Main advantage of our alternative algebraic representation is
the use of several instances of a given cipher. Thus reducing the number of variables and quadratic
monomials, using linear algebra techniques. In addition, we observe a saturation property where
our model does not need more intermediate variables although we increase the number of instances
and hence output bits. The modelling technique presented here is quite general and not limited
to the Trivium cipher. This new algebraic modelling makes direct use of state cubes. We hence
introduce new ways of cube finding in section 5. In a nutshell, we have a deterministic algorithm
that can be used to find all cubes up to a certain round, as opposed to the existing probabilistic
algorithms. Using our implementation of the deterministic algorithm, we can cover all cubes up to
round 446 for output cubes and 397 for state cubes. By restricting our search space in the IV or
key variables, we develop two algorithms that can go up to arbitrary rounds—at the cost of not
finding all available cubes anymore.

The results we achieve with these algorithms are discussed in section 6. In particular, we give
the number of cubes in the output and in the state, the size of the output function in Algebraic
Normal Form or ANF (counted in the overall number of monomials), and also the distribution of
cubes by size. This leads us to formulate a conjecture about the life-cycle of cubes in Trivium.

This article concludes with section 7. In the appendix, we list the number of cubes per round
and dimension in the output up to round 446.

2 An overview of cubes

We discuss now several possible and useful definitions of cubes. Unfortunately, parts of the literature
are not too precise on this topic. Evidently, this makes it difficult to compare results between papers.
We start this section by the most easy definition of cubes. A similar definition has already been
used in the original article [DS09a].

2.1 First glance at cubes

Let B := {0, 1} the field of size 2 and n := nv + nk the total number of variables (n), the number
of IV variables (nv), and the number of key variables (nk). Moreover, we have two distinct sets of

2

variables V := {v1, . . . , vnv} (IV variables) and K := {k1, . . . , knk} (key variables) Based on this
we define the function

f : Bn → B .

We also write f(V,K) (or f(K,V)) to stress on which set of variables we work. We know that there
is a unique algebraic normal form (ANF) over K ∪ V for this function f . Let M ⊂ {µ ⊂ (V ∪K)}
be a set of monomials. By convention, we set xµ :=

∏
a∈µ a and also

∏
∅ := x∅ := 1. Then we can

write the ANF of f as

f(V,K) =
∑
µ∈M

∏
x∈µ

x .

Viewing monomials as sets of variables and and functions as sets of monomials, we also write µ ∈ f
instead of µ ∈M and u ∈ xµ for some variable u ∈ µ.
Let C ⊂ V be a subset of the IV variables and xC :=

∏
a∈C a a monomial. Then we can write

f(V,K) = xCp(K) + r(V,K)

for p(K) a polynomial solely in the key variables K and a residual polynomial r over all variables
V ∪K. If @µ ∈ r : xC |µ, we call C a cube and xC the corresponding cube monomial. If unambitious,
we will also say that xC is a cube for short. In addition, p(K) is called the superpoly of the cube
C. By its very definition, it gives information on the key variables of the function f . We call the
degree deg(p) of the superpoly the key-degree of a cube and the number of elements c := |C| in C
the dimension of the cube. Note that this coincides with the degree of the cube monomial deg(xC)
so we have c=deg(xC). For the k-dimensional cube C let IC be a subset of P(V) including all 2k

vectors from B|C|. In essence, we assign all the possible combinations of 0/1 values to the variables
in C.
In [DS09a] the following observation of the above construction has been proven.

Theorem 1. For any polynomial p and cube C it holds

p(K) =
∑
v∈IC

f(v,K).

Proof. Consider the decomposition f(V,K) = xCp(K) + r(V,K). We first examine an arbitrary
term µ ∈ r(V,K). Since C is a cube we have xC - µ. So there exists at least one IV variable in C
that is missing in µ. As a consequence in

∑
v∈IC f(v,K) it is added an even number of times. As

we work in GF(2), these terms cancel out.
Next we examine the polynomial xCp(K). All vectors v ∈ IC make the monomial xC zero except

the all-one-vector (1, . . . , 1). This implies that the polynomial p(K) appears in the above sum only
once, namely when all variables from xC are set to 1. ut

According to theorem 1, once we have found a superpoly we can add the output of the function f
to obtain its concrete value from the set B. As we know that this value is equal to the value of the
superpoly p, we obtain exactly one equation of key-degree deg(p). Having and solving a full system
of these equations leads to information about the key of the cipher. So the cube attack consists
of two phases: by first finding cubes and consequently superpolys in a given cipher (offline phase)
we are then able to relate these equations to some given output (online phase) and reconstruct
the secret key values by solving the corresponding system of equations. Note: Even if we only
reconstruct a part of the key bits, say 1/2 or even 1/4 of them, we have nevertheless found a valid
cryptographic attack against this cipher when brute-forcing the rest of the key-space.

3

Example 1. Let K := {a, b, c}, V := {α, β, γ} be the sets of key and IV variables, respectively.
Moreover, consider the following function f : K ∪ V → B in algebraic normal form (ANF):

f(K,V) := abα+ aβγ + bβγ + bcα+ bcβ + abcαγ + bc+ a+ b+ βγ + 1

Using the above definition, we have the following superpolys, indexed by IV sets:

IV set superPolys linear

∅ bc+ a+ b+ 1 -
α ab+ bc -
β bc -
αγ abc -
βγ a+ b+ 1 ?

Only the superpoly for the cube βγ is linear and therefore directly usable for a crytanalytic attack.

2.2 Informal treatment

In this chapter we take a look of some special cases when dealing with the cube attack. First, we
look at the degree of the superpoly:

constant cubes: the degree of the superpoly is -1 (negative cube) or 0 (one cube).

linear cubes: the degree of the superpoly is exactly 1.

higher order cubes: the degree of the superpoly is higher than 1.

quadratic cubes: the degree of the superpoly is between 1 and 2.

cubic cubes: the degree of the superpoly is between 1 and 3.

In addition, we can look at the number of free IV variables:

fixed cubes / zero cubes: When we fix all IV variables that are not in a cube, we call it a fixed
cube. If all these variables are fixed to zero, it is a zero cube.

free cubes: In contrast, if all IV variables outside of the cube can take on arbitrary values and
the cube property remains, we call it a free cube.

flexible cubes: All cases in between, i.e. we need to fix some IV variables to arbitrary values to
ensure the cube property, but not all.

Furthermore, instead of looking for cubes in the output of a cipher we can search for cubes in its
update function. These so-called state cubes can be used to simplify the internal state of the
cipher.

From cryptanalysis, we know that setting specific variables or functions to certain values can
drastically reduce the amount of computations we need for a cube attack. This is captioned in the
definition of dynamic cubes.

An alternative way to reduce the workload are mixed cubes. Here, we include parts of the IV
variables into the superpoly.

Another way to reduce the degree of the superpoly is summing up several cubes such that their
high degree monomials cancel out. This is called a polycube.

Another relaxation is the factor cube. Here, we replace the cube monomial by a polynomial.

4

Cube Testers. For the sake of completness we also mention “cube testers” from [ADMS09].
Instead of looking at algebraic, its authors look at statistical properties of cubes. For example, they
are concerned if the output of the superpoly p(K) is actually balanced. As the treatment of cubes
in this article is more algebraically oriented, we not go further in this topic but refer the interested
reader to the original article instead.

2.3 Cubes by degree

Let d be the key-degree of a cube. Then we distinguish the following cases: d = 1: linear cube,
1 ≤ d ≤ 2: quadratic cube, 1 ≤ d ≤ 3: cubic cube, and d ≥ 2: higher order cube. In addition, we
have constant cubes for d ≤ 0. If we need to distinguish between d = 0 and d = −1, we call the
corresponding cubes a one cube or negative cube, respectively.

Example 2. As in example 1, let K := {a, b, c}, V := {α, β, γ} be the sets of key and IV variables,
respectively. In addition, we consider f : K ∪ V → B as

f(K,V) := abα+ aαβ + aβ + aβγ + bβγ + bcα+ bcβ + abcαβ + abcαγ + bc+ a+ 1 + βγ + γ

This leads to the following cubes:

cube superpoly degree classification

∅ bc+ a+ b+ 1 2 quadratic
α ab+ bc 2 quadratic
β bc+ a 1 linear
γ 1 0 constant or one
αβ abc+ a 3 cubic
αγ abc 3 cubic
βγ a+ b+ 1 1 linear
αβγ 0 -1 constant or negativ

As we can see, using the superpolys from the linear cubes alone we cannot determine the values
of all key variables a, b, c. To this aim, we need to combine the linear cubes {β, βγ} with at least
one higher order cube from the set {α, αβ, αγ}. Note that ∅ does not correspond to a cube in the
strict sense. On the other hand, this special case does not do any harm either, so it is included in
our definitions.

While constant cubes do not help to recover specific key bits, they are invariants within the
cipher and can help in algebraically modelling the cipher. By creating more equations, they aid
solving the corresponding system. The name “negative cube” is motivated as it corresponds to a
“monomial not present”, cf. example 2.

In addition, it is debatable if higher order cubes are of real interest for cryptanalysis as solving
quadratic equations is considered to be a hard problem. However, at least for quadratic cubes and
cubic cubes, this should be the case for Trivium as the following numbers show:

(
80
2

)
+ 80 = 3240

and
∑3

i=1

(
80
i

)
= 85, 400. So we need to collect around 3200 linearly independent superpolys of

degree at most 2 and around 85000 superpolys of degree at most 3 to recover all key variables of
Trivium by simple linearization. This does not take into account faster algorithms as F5 that work
quite well for the number of equations close to the above numbers. Hence using them will allow
us to reduce the number of cubes needed even further. In addition, we might combine of linear
equations with quadratic equations. By eliminating variables, we obtain a quadratic system in less
unknowns that is usually easier to solve. Finding actual cubes will be dealt with in Section 5.

5

2.4 Cubes by fixing

The above definition of a cube is a bit misleading as it makes us belief that we are working with
a full polynomial over all variables from K ∪ V here. In reality, this is usually not the case as a
full algebraic description of the function f is far too large to be represented explicitly. In the case
of Trivium, we have plotted the number of monomials in figure 4, cf. Section 6.1 for more details.
Hence it is custom to fix all IV variables from V \C to arbitrary values, in particular to zero. We
capture this (and the other extreme case—no fixing at all) in the following definitions.

Let S ⊂ V be the set of set (fixed) variables, F ⊂ V the set of free variables such that
S ∪ F = V \C, S ∩ F = ∅ and consequently |S| + |F | = |V \C|. Note that this also includes the
two cases S = ∅ or F = ∅. We call f := |F | the degree of freedom of a cube. Moreover we have
α : S → B an assignment of the set variables. If we have a strict ordering of the IV variables, we
can replace the assignment α with a vector a ∈ B|S|. We now restrict the function f according to
this assignment α and obtain

f(α, V,K) = f(a, V,K) = f(F,K) = xCp(K) + r(F,K) .

Note that the definition of a cube is relaxed this way. In particular, assigning the zero-value to a
variable vi removes all monomials µ ∈ f with vi|µ from the restricted function f(F,K). This will
become a central argument in the proofs of Section 5. Based on the above definition, we distinguish
the following cases:

fixed cubes: the degree of freedom is zero, i.e. we have F = ∅, S = V \C, and f = |F | = 0.

zero cubes: as fixed cubes, but additionally the assignment is the all-zero function α : I → 0.

free cubes: here no variable is fixed at all, i.e. we have F = V \C, S = ∅, and f = |V \S|.
flexible cubes: we have 1 ≤ f < |V \S| for the degree of freedom, i.e. we only fix some variables

to arbitrary values and leave the rest untouched.

Example 3. Using the same notation as before, we have K := {a, b, c}, V := {α, β, γ}, F := {β, γ}
and f : K ∪V → B. . Moreover, we consider τ : {α} → 0. Note that we specialize the function from
example 2 in the variable α and obtain

f(K,F) = aβ + aβγ + bβγ + bc+ a+ b+ βγ + 1

This leads to the following cubes:

cube superpoly degree classification

∅ bc+ a+ b+ 1 2 quadratic
β a 1 linear
βγ a+ b+ 1 1 linear

These are clearly less cubes than in examples 1–2. By extending the assignment function τ to
τ : α→ 0, β → 1, γ → 0, we obtain the function f as

f(K, τ) = bc+ b+ 1

By cube-summing over β, we obtain the (linear) superpoly a. This is in line with the results given
in example 1.

6

200 220 240 260 280 300 320 340 360 380

100

101

102

103

Rounds of Trivium

N
u
m

b
er

o
f

cu
b

es
in

th
e

o
u
tp

u
t

Zero Cubes
Free Cubes

Fig. 1. Total number of zero and free cubes in the output of Trivium (rounds 200–365).

Fixing variables. Here we briefly discuss how fixing variables affects the residual polynomial r(V,K).
Let µ be a monomial in r with |µ| ≥ 2. Moreover, we have some variable vi ∈ µ. By setting vi = 0
the monomial µ will vanish. In addition, if µ was the only monomial with xC |µ in r this allows a
new cube C. On the other hand, setting vi = 1 leads to a new (restricted) monomial µ′ := µ\{vi}.
Assume that µ′ is already part of the initial residual polynomial r(V,K). In this case, the newly
generated µ\{vi} will simply cancel out µ′ and hence may foster the existence of another cube. So
both may be useful to generate cubes for a given function f .

We want to stress that flexible cubes are a strictly weaker notion than free cubes: Fixing one
additional variable in a free cube cannot destroy the cube-property. Any free cube is also a fixed
cube for any assignment α over V \C. Similarly, we can start with a flexible cube and fix up to |F |
variables until it becomes as fixed cube (or even a zero cube, if all variables become zero in α).
This can be seen in figure 1 as the number of fixed cubes exceeds the number of free cubes, except
for rare cases where both number are equal.

From a cryptanalytic point of view, fixed/zero cubes are more desirable than free cubes as they
are more frequent than the latter. Consequently, we have a higher probability of finding them.
However, if we want to combine other attacks with cube attacks, free cubes or maybe flexible cubes
are more interesting as we only take away variables from the cube-set C (or S, respectively). All
other variables are still available for some other attack, cf. section 2.6 in the case of dynamic cubes.

2.5 State cubes

Usually cubes are limited to the output of a cipher. This makes it impossible to use them in the
initialisation phase of a cipher. Unfortunately, if we don’t find cube equations in its output, the
attack is useless against this cipher. Still, in practice, we can view the cipher as a white box and

7

consequently taking advantage of its internal structure. We try to capture this with the following
definition.

In this section let V be the space of the possible IV’s, K the key space and S the space of the
states of a cipher. Denote u : V × K × S → S, (I,K, S) 7→ S′ the update funtion of the cipher. A
cube in u or in a part of is called a state cube. They nicely relate to the Higher Order Differentials
from Lai [Lai94].

The main goal of state cubes is to simplify the internal state of a cipher from an attacker’s
point of view. In order to do so we need an algebraic modelling technique for the cipher that allow
us to handle many instances of the cipher and than add some state bits. With this in mind we can
simplify the state of the cipher symbolically. We will discuss this in more length in Section 4. A
concrete example of state cubes is given there as well, cf. example 9.

2.6 Dynamic Cubes

Dynamic cubes were first described in [DAS11] where they were used to break full Grain-128.
Dynamic cubes can be seen as a special case of free cubes. Let S ⊂ V be the set of all fixed
variables in the original cube attack. We take a subset D ⊂ S, called the set of dynamic variables.
They are used to define a function d(V,K) in the public variables and some key variables. Each such
function d is chosen in a way that some state bits cancel out. Alternatively, we can use the function
d to get some information of the cipher that can be used by cube testers. Finding the function
d requires a careful analysis of the internal structure of the cipher under attack. The following
example is taken from [DAS11]. It illustrates the overall idea of dynamic cubes.

Example 4. We consider a polynomial P which is decomposed into P = P1P2 + P3 where P1, P2

and P3 are polynomials over k1, . . . , k5 and v1, . . . , v5 with

P1 := v2v3k1k2k3 + v3v4k1k3 + v2k1 + v5k1 + v1 + v2 + k2 + k3 + k4 + k5 + 1
P3 := v1v4k3k4 + v2k2k3 + v3k1k4 + v4k2k4 + v5k3k5k1k2k4 + v1 + k2 + k4

and P2 is an arbitrary dense polynomial in the variables.
If we can force polynomial P1 to zero than P = P3. From the above definition we see that P1

is a rather simple polynomial. First we set v4 = 0 and make use of the linearity of v1 in P1 by
setting v1 = v2v3k1k2k3 + v2k1 + v5k1 + v2 + k2 + k3 + k4 + k5 + 1. This enforces P1 = 0. During
cube summation the value of v1 will change. This is the difference between dynamic cubes and the
definition of cubes as in Section 2.

Now we guess all values necessary to calculate v1. In particular, these are k1, k1k2k3 and k2 +
k3 + k4 + k5 + 1 (!). Plugging in the for v1 and v4 we get:

P = v2v3k1k2k3 + v2k2k3 + v3k1k4 + v5k3k5 + k1k2k4 + v2k1 + v2 + k3 + k5 + 1 .

So we have a rather easy polynomial to attack with cubes of degree 2 in the IV variables and
degree 3 in the key variables.

8

2.7 Mixed cubes

Until now, we have worked within the framework of cubes. Here, we will provide an alternative, but
nevertheless useful definition from a cryptanalytic point of view. Let O ⊂ V the oracle variables
with O ∩ S = ∅ and a function f of the form

f(V,K) = xCp(K,O) + r(F,K) .

If ∀µ ∈ r : xC 6 |µ we call C a mixed cubes.

At first glance, this definition is not very useful as it mixes IV variables into the key equations
of the superpoly. However, at second glance this changes as we can now reduce the dimension of
the cube C: As long as xC - µ holds for all µ ∈ r, we can readily absorb variables from the set C
into the set O and therefore reduce the cube dimension. In addition, we now have a much better
source of (nonlinear) equations in the key variables: By setting the variables from O to different
values, we obtain different (not linearly dependent) versions of the superpoly p(K,O). Basically,
we can “switch on” different monomials in p(K,O) by setting the corresponding oracle variables
to 1. Furthermore this new definition is less restrictive; consequently, we can expect more possible
cubes and also cubes for a larger number of rounds than for the original definition of a cube.

To reflect this, we also need to change the definition of the key-degree of a mixed cube. It now
becomes the maximal number of key-variables in any monomial in the superpoly p(K,O). Formally:

key-degree(f) := max
α:O→B

{deg(p(K,O)|α)}

Example 5. Consider K := {a, b, c}, V := {α, β, γ} be the sets of key and IV variables, respectively.
In addition, we consider the oracle variables {α, β} and the function f : K ∪ V → B as

f(K,V) := 1 + a+ c+ ab+ αa+ +γa+ γb+ αγ + αγa+ βγb

This leads to the following mixed cubes:

cube superpoly

∅ ab+ a+ c+ 1 + αa
γ a+ b+ α+ αa+ βb

We see that the only “real” cube is γ. In addition, the superpoly corresponds to different equations,
depending on the choice for the IV variables α, β. In particular we have

(β, α) superpoly

(0, 0) a+ b+ c
(0, 1) b+ c+ 1
(1, 0) a+ c
(1, 1) c+ 1

So using p(K, (1, 1)) we can compute the value of the key variable c. Furthermore, using p(K, (0, 1))
and p(K, (1, 0)) yields the values of of the key variable a, b.

Note that the corresponding cube summation does not take 23 = 8 but only 3.2 = 6 values of
the underlying function f .

9

2.8 Polycubes

Until now, cubes were only defined for cube monomials. In this section, we consider a generalization.
Let C = {C1, . . . , Ck} be a set of k cubes with the corresponding superpolys p1(K), . . . , pk(K).
Consider their sum

s(C) :=
∑
i=1

kpi(K) .

We call s(C) a polycube. In particular, for deg(s) = 1, we have a linear polycube.

Example 6. Following the notation of the other examples so far, we investigate the function

f(K,V) := abα+ abβ + aβ + aβγ + bβγ + bcα+ bcβγ + βγ

Among others, this leads to the following cubes:

cube superpoly

α ab+ bc
β ab+ a
βγ bc+ a+ b+ 1

Considering the polycube defined by C = {α, β, βγ}. This leads to the superpoly s(C) = b+1. As its
degree is 1 rather then 2 {βγ, β, α} it is more useful for cryptanalytic attacks than the individual
cubes from C.

While polycubes are much more general than the other cubes treated so far, they are also much
harder to find. For example, the algorithm from Section 3 can easily detect fixed cubes and even
flexible cubes. However, it cannot find polycubes. Hence we have to state it as an open problem to
give an efficient method to extract meaningful polycubes from a given cryptographic primitive, in
particular when it is given in partial ANF (see below). Note that polycubes are a generalization of
the cancellation attack from [Vie08].

2.9 Factor cubes

As before, we ease the restriction that the cube must be a single monomial. Instead of having a
monomial, we use a polynomial σ(C). The defining equation of a cube now becomes

f(K,V) = σ(C)p(K) + r(V,K) .

In a sense, the term σ(C)p(K) “factors out” f(K,V) + r(V,K), hence the name of this cube. In
addition, we require

∑
v∈IC σ(v) = 1 and

∑
v∈IC r(v, V \C,K) = 0. Using the same argument as for

theorem 1, the latter condition becomes @µ ∈ r : xC |µ for a free factor cube and xC 6∈ r for a fixed
factor cube.

While looking strange at first glance, this actually captures all required properties of a cube:
When adding over all possible assignments v ∈ IC , we have exactly one instance of the superpoly
left. All others cancel out. In addition, the residual polynomial r will cancel out, too. Even more
strange, we cannot tell apart the above definition from the initial definition when looking at black box
cubes. From the behaviour of f , we simply cannot distinguish if it splits into a cube monomial xC
and a superpoly p(K) and a residual polynomial r or cube polynomial σ(C) and p, r. Unfortunately,
when computing symbolically (e.g. Section 5), factor cubes are much harder to detect than cubes
based on monomials. In any case, such factor cubes exist as we see in the following example.

10

Example 7. As before, we haveK := {a, b, c} and V := {α, β, γ}. Moreover, we consider the function

f(K,V) := (α+ β + αβ)(a+ b+ 1) + (α+ β + γ)(a+ b+ c)

Using the definition from above we obtain the cube polynomial σ({α, β}) = α + β + αβ, the
superpoly p(K) = a+ b+ 1 and the remainder r(K,V) = (α+ β + γ)(a+ b+ c).

3 Trivium

To demonstrate our framework we use the stream cipher Trivium. It is a well-known hardware
oriented synchronous stream cipher presented in [CP08]. Trivium generates up to 264 keystream
bits from an 80 bit IV and an 80 bit key. The cipher consists of an initialisation or “clocking”
phase of R rounds and a keystream generation phase. There are several ways to describe Trivium—
below we use the most compact one with three quadratic, recursive equations for the state bits and
one linear equation to generate the output. The two only operations in Trivium are addition and
multiplication over GF(2) as this can be implemented extremely efficient in hardware.

Consider three shift registers A := (ai, . . . , ai−92), B := (bi, . . . , bi−83) and C := (ci, . . . , ci−110).
They are called the state of Trivium. The state is initialized with A = (k0, . . . , k79, 0, . . . , 0), B =
(v0, . . . , v79, 0, . . . , 0) and C = (0, . . . , 0, 1, 1, 1). Here (k0, . . . , k79) ∈ B is the key and (v0, . . . , v79) ∈
B is the initialization vector (IV) of Trivium. Recovering the first vector is the prime aim of
attackers. Note that the second vector is actually known to the attacker. In cube attacks, we even
make the assumption that an attacker can fully control the IV used within the cipher and obtain
a stream of output bits for a fixed key and any choice of initialization vector (IV).

The state is updated using to the following recursive definition.

bi := ai−65 + ai−92 + ai−90ai−91 + bi−77
ci := bi−68 + bi−83 + bi−81bi−82 + ci−86
ai := ci−65 + ci−110 + ci−108ci−109 + ai−68

After a clocking phase of R rounds, we additionally produce one bit of output using the function

zi := ci−65 + ci−110 + ai−65 + ai−92 + bi−68 + bi−83 .

Note that the three state update functions correspond to 3 linear feedback shift registers with 5 tap
positions each. Each polynomial is irreducible over GF(2) and hence provides an LFSR of maximal
period. In each LFSR, the second-last term has been replace by a quadratic monomial. This is the
only non-linear component in Trivum. Our results are based on round-reduced versions of Trivium
with special choices of R. Full Trivium uses R = 1152 initialization rounds. Until now, no successful
attack is known against full round Trivium.

There exist further variants of Trivium using two instead of three shift registers [CP08]. They
are called Bivium-A and Bivium-B.

3.1 Brief overview of attacks on Trivium and round-reduced Trivium

We give a brief sketch some of the most important attacks against Trivium. Our aim is to highlight
that Trivium is still secure—despite its simple and elegant design; and the combined effort of the
cryptanalytic community.

11

The attacks from [DS09a, FV13] are both cube attacks. They recover the full key of a 799 round-
reduced variant of Trivium in 262 computations. Nevertheless, more attacks on Trivium are known
so far. In [KMNP11, ADMS09, Sta10] their are some distinguishers attacks based on cube testers
that cover up to 961 rounds but only work in a reduced key space of 226 keys. Time complexity is
225 computations.

Pure algebraic attacks are given in [SFP08, T+13, SR12, Rad06]. They break the both reduced
variants Bivium-A and Bivium-B. They fail for Trivium, even in its round-reduced version. Main
reason is that they all begin their attack after the initialization phase so they are limited to one
instance of Trivium.

Other attacks are not as succesful. For instance [KHK06] contains a linear attack on Trivium
breaking a 288 round-reduced variant with a likelihood of 2−72.

4 Similar variables and state cubes

The cube attack as defined in [DS09a] views the corresponding cipher as a black box. So there is
no chance to take the initialisation phase of a given cipher into account. Thus cubes are limited
to the output of the cipher; consequently, if we do find cubes for the output of the full cipher the
attack fails.

By Kerckhoff’s principle, we actually know which cipher we attacking, so we can overcome this
disadvantage by building a suitable algebraic model. Here we do this exemplary on the stream
cipher Trivium. However, the presented modelling technique is by no means limited to this cipher.

Algebraic attacks in [SFP08, T+13, SR12] are based on the same algebraic representation of
Trivium, namely the one given in [Rad06]. So all state bits of one Trivium instance are set to
symbolic variables after the initilization phase. In the first model they intoduce three new variables
for ai, bi and ci every time the output is generated; we denote the number of output bits by no.
Based on the above defintions, they obtain a sparse quadratic system of equations with 288 + 3∗no
variables and 4 ∗ no equations . In the second model the authors of [Rad06] do not introduce any
intermediate variables. Therefore the equations are of ascending degree in the 288 state bits and
the system of equations becomes dense. Consequently, it is also much harder to solve. All in all
these strategies have limited success as they broke Bivium-A and Bivium-B but did not manage to
break Trivium or even round-reduced versions of Trivium.

Our goal is to use cubes which occur in the state bits of Trivium. Therefore we need an alge-
braic representation that can both handle more than one Trivium instance and is also able to use
information from the internal state.

To this aim, we only use symbolic values of the key variables. Then we update Trivium a number
R of rounds only generating intermediate variables when we need them to bound the degree of the
equations by two. This allows us to generate many Trivium instances with the same key but with
different IV vectors.

The downside of our strategy is the growing number of intermediate variables. Therefore, we
define the relation of similar variables and use linear algebra techniques to minimize the overall
number of variables.

12

4.1 Algebraic representation using similar variables

Let I ⊂ V be a subset of the IV variables. We consider the first no output bits of Trivium instances
that are all defined by the same key and all vectors from IS for some fixed set S, cf. the definition
of IS in section 2.1.

In our approach we set up all Trivium instances with symbolic variables k0, . . . , k79 for the key
and set the IV variables corresponding to vectors in B|S|. Denote the current Trivium instance by
t ∈ N. We initialize these instances for a given number of rounds R and introduce three new variables
every round for the entries at,i, bt,i and ct,i in the three Registers At, Bt and Ct. This produces a
quadratic system with a large amount of variables and monomials. Therefore we introduce some
methods to reduce the number of variables. This reduction of the number of variables and monomials
is important because solving techniques such as Gröbner-bases algorithms depends heavily on the
number of variables. First of all we consider one Trivium instance in the following lemma.

Lemma 1. Let R > 238 and no 6 66. With the algebraic modelling technique described above we
use exactly 3R− 522 intermediate variables to describe one Trivium instance.

Proof. We want to count the intermediate variables generated while modelling one Trivium instance.
To do so we consider the update function

bi = ai−65 + ai−92 + ai−90ai−91 + bi−77
ci = bi−68 + bi−83 + bi−81bi−82 + ci−86
ai = ci−65 + ci−110 + ci−108ci−109 + ai−68

of Trivium. Whenever we would get an equation of total degree greater than two we set the quadratic
equation to a new intermediate variable and continue the calculation with it. Our proof deals with
each register A,B,C one after the other.

At the begining register A is the only one containing symbolic values. In the 13th round the
first quadratic expression b12 = a78 · a79 + · · · = k79 · k78 + · · · is produced. Inspecting the update
equations of Trivium, we see that it takes 82 rounds until it will be multiplied in round 94 with a
linear element in c95 and the first intermediate variable will be introduced. After round 94 we use
one new variable in the register C every round.

We count the intermediate variables in the other registers in an analogous fashion. First we
consider register A. The above mentioned quadratic expression b12 will also be stored in register C
in round 13 + 69 = 82 because of c80 = b12 + · · · . In round 191 this expression will be multiplied
with an linear expression in a189 = c81 · c80 + · · · and we have to introduce a new intermediate
variable in the register A. Thus after round 190 there will be a new variable in register A and C in
each round.

Now we investigate the register B. As mentioned above our quadratic expression b12 will stored
in register C in round 82. After 66 more rounds it is stored in a145 = c80 + · · · . From there it takes
further 91 rounds until a new variable is required in b236 = a146 ·a145 + · · · . So starting in round 239
we will need a new intermediate variable in every register without further reduction techniques.

So all in all, we have the following numbers of intermediate variables ν:

ν = (R− 94) + (R− 190) + (R− 238)
= 3R− 522.

Finally we note that we do not have to introduce new variables while producing the first 66
rounds of output. After the initialization phase we are just interested in output equations. The

13

output function of Trivium

zi = ci−65 + ci−110 + ai−65 + ai−92 + bi−68 + bi−83

is linear and uses at most 66 rounds old state bits. Thus we do not have to clock the registers and
so do not introduce new intermediate varibales if we want no 6 66 output equations. ut

Corollary 1. For 0 6 no 6 66 output bits, we need to compute only R + no − 66 updates of the
state in Trivium.

For the remainder of this section we assume R > 238. Now we take a more general point of view
and introduce similar variables for generalized systems of equations. Nevertheless we will later on
use this observation for a system of many instances of Trivium.

Definition 1. Let R = F2[k0, . . . , k79, y0, y1, . . .] =: F2[K,Y] be the Boolean Polynomial Ring in
the key Variables K and all intermediate variables Y .

We call two intermediate variables yi and yj similar iff yi + yj = p(K,Y \{yi, yj}) where
p(K,Y \{yi, yj}) is a polynomial of degree deg (p) 6 1.

Taking similar variables into account we can save many intermediate variables. Whenever we
want to introduce a new intermediate variable we first test if there exists a similar one. If yes, do
not introduce a new one but use yj + p(K,Y \{yj}) instead.

Furthermore if we have the set F of polynomial equations in R introducing the intermediate
variables, the so-called set of system equations, we can generalize the definition above as follows:

Definition 2. Let R = F2[k0, . . . , k79, y0, y1, . . .] =: F2[K,Y] be the Boolean Polynomial Ring in
the key variables K and all intermediate variables Y . Denote with F the system equations.

Denote by Yk ⊂ Y, Yk 6= ∅ for 1 ≤ k < |Y | the sets of already introduced intermediate variables
up to step k. We call the intermediate variable yi similar to the set F iff there exist a non-empty set
Yk such that yi +

∑
y∈Yk y = p(K, (Y \Yk)\{yi}) where p(K, (Y \Yk)\{yi}) is a polynomial of degree

deg (p) 6 1.

The following example illustrates how we work with similar variables.

Example 8. Consider the equations defining intermediate variables

y0 = k78k79 + k53
y1 = k77k78 + k79 + k52

in the system of equations F . Assume we want to introduce the new intermediate variable

y2 = k79k78 + k78k77 + k5 + k61.

We have y2 = y1 +y0 +k53 +k79 +k52 +k5 +k61. So we do not need y2 and we can go on computing
with y0 and y1 instead. This does not only save us one variable but we also have replaced a quadratic
equation by a (potentially more useful) linear one.

So we can save a lot of intermediate variables using similar variables. This is particularly true
when generating more than only one Trivium instance. Table 1 shows some experimental results
on modelling Trivium for a reduced number of rounds. Here, we have generated 32 instances of
Trivium with 66 output bits.

14

Table 1. R: Number of initial rounds, 3R−522: One instance without similar variables, ν: number
of intermediate variables; the number of output bits is set to 66 and 32 Trivium instances are
generated.

R 3R− 522 ν

400 678 548
450 828 961
500 978 1489
550 1128 3510
600 1278 6557

The first column of Table 1 gives the number of initialization rounds for each Trivium instance.
In the second one we have the number of variables used for one Trivium instance without similar
variables and the number of intermediate variables which are used to describe the whole system is ν.
We see that have greatly decreased the number of variables. Usually we would need 1278∗32 = 40896
variables to model 32 instances 600-round-reduced version of Trivium. We also have produced
66 ∗ 32 = 2112 output equations. The model in [Rad06] can just handle one instance and needs
288 + 3 ∗ 2112 = 6624 variables to produce that amount of output equations. In our model we see
a saturation of the number of variables and monomials. We discuss this point in more depth later
in this article. Thus increasing the number of instances actually increases our advantage, too.

These systems are out of reach for nowadays Gröbner bases implementations like PolyBoRi
[BD09]. The number of variables is simply too high.

We describe algorithm 1. It is used to generate the model outlined above, but is specialized to
Trivium. Algorithm 1 returns a system of equations F that represent T ∈ N instances of Trivium
with R rounds and no 6 66 output. The key variables k0, . . . , k79 are shared among these instances.
However, the IV variables vt,0, . . . , vt,79 are initialized with different values for each individual in-
stance. In the function representation the three shift registers are initialized and output is produced
according to the function updateState for the t instances of Trivium. After setting up the system
F we echelonize it by interpreting it as a matrix with monomials as columns and polynomials as
rows. The echelonized form creates two sets, namely quadratic equations Q and linear equations
L. Using the linear terms from L, we can simplify Q. To this aim, we replace the leading terms
LT(L) of L in Q by their corresponding equations. In doing so we use Degree Reverse Lexicographic
ordering with a round ascending ordering and put key variables first. In this case, echelonizing and
plugging in LT(L) in Q directly makes use of similar variables. This follows as the echelonization
algorithm first puts intermediate variables of higher rounds before those of lower rounds. All linear
relations are then used to produce even more similar variables. insertLinVars is plugging these
linear equations into the rest of the equation system.

Before discussing the running time of the algorithm 1 we note that it can be applied to other
ciphers as well. When other ciphers have a quadratic update function, we can directly apply algo-
rithm 1. Otherwise, we need to take care of the higher degree of the update function.

To evaluate the running time of algorithm 1 we consider the different parts of it. First of all we
take a look at the generation of one Trivium instance. The state will be updated R+no times. Each
time there are 3 multiplications of linear polynomials. So it has time complexity O((R + no) · n2l)
where nl is the maximal number of terms used in a linear polynomial.

15

Algorithm 1 Generating the algebraic representation of Trivium F using similar variables. The
function echelonize echelonize the matrix coresponding to F and insertLinVars plugs the linear
variables into the system F
1: function updateState(k, out):
2: if out = true then
3: F .insert(ci−65 + ci−110 + ai−65 + ai−92 + bi−68 + bi−83)
4: return
5: end if
6: F .insert(at,k +A[0]); F .insert(bt,k +B[0]); F .insert(ct,k + C[0])
7: A[0]← at,k; B[0]← bt,k; C[0]← ct,k
8: for j ← 0 to 91 do
9: A[j+1] = A[j]

10: end for
11: A[0] = ci−65 + ci−110 + ci−108ci−109 + ai−68

12: for j ← 0 to 82 do
13: B[j+1] = B[j]
14: end for
15: B[0] = ai−65 + ai−92 + ai−90ai−91 + bi−77

16: for j ← 0 to 109 do
17: C[j+1] = C[j]
18: end for
19: C[0] = bi−68 + bi−83 + bi−81bi−82 + ci−86

20: return
21:
22: function representation(R,no, t):
23: global F ← ∅
24: for n← 1 to t do
25: global A← (k0, . . . , k79, 0, . . . , 0); B ← (vt,0, . . . , vt,79, 0, . . . , 0); C ← (0, . . . , 0, 1, 1, 1)
26: for k ← 0 to R− 1 do
27: updateState(k, out = false)
28: end for
29: for k ← 1 to no do
30: updateState(k, out = true)
31: end for
32: echelonize(F)
33: insertLinVars(F)
34: end for
35: return F

16

Fig. 2. Saturation of variables; Hamming Weigth against number of variables for R rounds of
Trivium

HW

ν

0 1 2 3 4

1000

2000

3000

4000

5000

R = 500

R = 520

R = 540

R = 560

R = 580

The matrix corresponding to F is an m× n−matrix where n is the number of monomials and
m is the number of equations in F . In the update function there will be at most 3 new equations
per round. After 111 rounds these polynomials consists of 4 monomials each. So there are more
monomials than equations since we have R > 238. As a consequence the running time of step 2 can
be approximated by O(n3). Note that n grows per instance we generate. As we will see below, the
number of variables and monomials saturates.

The function insertLinVars has a running time of O(n2p ·m). We have to insert all m equations
of the system to at most the maximum number of monomials np in one equation in F .

We get an overall running time of O(Tn3) since the echelonization is the most expensive step
and we perform it at most t times.

In practice, this number will be lower. For example, we can use an implemenation of Strassen’s
algorithm So the running time is more likely O(Tn2.7) or O(Tn2) as long as the system F is sparse.

Saturation. We can see in figures 2–3 that similar variables greatly effect the number of variables.
In our experiments we found a saturation of the number of variables and monomials that depends
on the Hamming weight of the IV we are using and on the initialization rounds R.

When generating many instances we take i IV bits and produce the 2i instances corresponding
to all possible vectors from Bi. When generating an instance of high Hamming weight we spend
less variables and monomials than for an instance of low Hamming Weight. When the number of
rounds grows we need to generate more instances to see this effect. We have plotted this effect for
32 instances in figures 2–3, counting both the number of variables and the number of quadratic
monomials.

Figure 2 shows the Hamming weight of the IV against the number of variables ν, starting at
round 500 up to round 580 in steps of 20. Instances with the same Hamming weight yield the same
amount of variables. This amount is lowered when we generate instances with higher Hamming
weight. The saturation of monomials needs a lower Hamming weight of the IV as can be seen in
figure 3. Here, we have started at round 510 and went up to round 590 in steps of 20. It shows

17

Fig. 3. Saturation of monomials; Hamming Weigth against number of quadratic monomials for R
rounds in Trivium

HW

µ

0 1 2 3 4

10000

20000

30000

40000

50000

60000

R = 510

R = 530

R = 550

R = 570

R = 590

Hamming weigth against the number of quadratic monomials µ in F . All in all, the saturation
of monomials is much flatter then the saturation of variables. Note that variables that are not
saturated are found in the linear terms.

This means that at some point we get more system defining equations from the output than new
variables or monomials. So our system gets defined or even overdetermined when we have enough
instances. Note that we did not take the output equations into account yet but only the defining
system itself. The output introduces additional, unknown monomials but no new variables.

4.2 Taking advantage of the white box

With the modelling techniques described above we are able to obtain the symbolic values for any
state bit in any round from any instance of Trivium. This allows us to (cube) sum certain state
bits from different instances to form state cubes (see section 2.5).

First we note that similar variables generate cross references between all instances we produce.
Second, we directly obtain linear equations in the key variables and use them to obtain more similar
variables. Finally, if the number of rounds is low enough, we even get linear equations between the
output and key variables. In this case, we can simplify the system even further.

Now we have access to a full symbolic state so we can add state bits from many instances. This
is one assumption of the cube attack. The second one is the existence of cubes in the state. How
to find cubes is stated in section 5. With these techniques we found many state cubes. Detailed
results are given in section 6.

While cross references coming from similar variables are a good thing, there also is a catch.
In particular, they annihilate state cubes as the corresponding equations will be generated by
similar variables, too. So we can only use state cubes from higher rounds. Still, the advantage using
state cubes is that we can use all of them as they all introduce linear relations between instances.
Moreover, there is no need to find cubes in the output which is the case for the native cube attack.

18

For reference: Until round 699 we have found about 31, 000 state cubes within the first 12 IV
variables. We have used the algorithm from Section 5.4 for this search. Note that state cubes do
not lead to a linear system in the key bits. They establish more cross references between the key
bits and the state bits from initialization rounds. So when we have assembled enough state cubes in
the system F we skip even further initialization rounds. When we have a full representation of the
cipher using algorithm 1 we can use it to generate additional equations from known state cubes.

Example 9. To see that state cubes actually exist, consider

state/round Cube superpoly

b302 v0 k65
a350 v11 k15
b546 v0v1v3v9 k55 + k61
c586 v0v1v2v3v4v5v7v8v9v11 k9
a601 v0v2v3v4v5v6v7v8v9v11 k65

Also these examples are completely arbitrary taken from the list of possible state cubes, they can
be used to illustrate the idea: Take b302. This leads to the equation

b0,302 + b1,302 + k65 = 0

that is valid independent of the choice of k65. By replacing b0,302 and b1,302 with their corresponding
representation in ki, yj , we obtain a new equation that we can add to the overall system F .

5 Cube finding

The main technique for finding cubes in a given cipher is black box polynomial testing. This means we
view the corresponding function as a black box and try to interfere a (partial) ANF and consequently
cube equations. Most successful for this purpose are a random-walk algorithm [DS09a] and its
successor [FV13]. The latter uses additional memory to speed up the computation. For the sake of
simplicity, we only state the former for the case of linear cubes.

Random Walk Algorithm. We start with a random set C ⊂ V and compute the superpoly p(K)
by multivariate polynomial interpolation. There are three possible outcomes: the degree of p(K) is
1. In this case, we output the pair (C, p) as a new cube/superpoly. Alternatively, the degree may
be zero or negative. In this case, the set C was too large and we drop one element from it. If we
cannot compute a linear superpoly, its degree is higher than 1 and we need to add another variable
to the set C. If we do not succeed after a certain number of trials, we restart with a fresh set C.

Unfortunately, the analysis of both algorithms is rather tricky, so we do not know how many /
which type of cubes they will find. Consequently, we cannot make statements like “Trivium does
not have cubes of dimension k in round r” but only “Our algorithm did not find anything (yet)”. In
particular, there is quite some freedom in choosing the “correct” starting set C and also to include
/ drop certain variables which further complicates the situation. This is obviously an obstacle to
develop a full theory of cubes and their existence in cryptographic algorithms.

In addition and to verify the output of the random walk algorithms from above, a probabilistic
linearity test such as [BLR93, JPRZ09] is used. When it outputs not linear, this is correct. In the
other case, the output may be wrong with probability 2−γ for some constant γ ∈ N. In practice,
we have γ = 100 which is reasonably certain for cryptographic applications. To the knowledge of
the authors, there is no deterministic algorithm known to solve this problem.

19

5.1 Polynomial degree testing

As linearity testing and its generalization to higher degree polynomials are an important building
block, we state the degree testing algorithm from [BLR93] both in its generalized form and in
its (easier) linearized form. We start with the latter. Let f(x) : GF (2)n → GF (2) be a Boolean
function. We want to establish with high probability if f is linear, i.e. (1) holds.

∀x, y ∈ GF(2)n : f(x+ y) = f(x) + f(y) + f(0) (1)

If the function f is available in full ANF, this is easy. However, if f is only available in black-
box-access, the problem becomes difficult. A possible way out is the one-sided BLR linearity test
[BLR93]. Here, we evaluate (1) for several, randomly chosen pairs (x, y) ∈R GF(2)n× GF(2)n. If (1)
is violated by at least one pair, we conclude that f is not linear. To confirm that f is indeed linear
with probability 2−s for some certainty level s ∈ N, we need a total of d(4 + 1/4)se repetitions.

Algorithm 2 Compute the degree of a given function f . The degree must be within the set of
target degrees D. Otherwise, return ⊥
1: function addSet(X):
2: if |X| = 0 then
3: return 0
4: end if
5: a = 0
6: for all x ∈ X do
7: a← a+ x
8: end for
9: return a

10:
11: function computeDegree(f,D, s)
12: d← max(D); r ← 0
13: while r <

⌈(
d2d + 1

2d+1

)
s
⌉

do
14: x1, . . . , xd+1 ∈R GF(2)n

15: A = (. . .) {Empty sequence}
16: for all σ ⊂ {1, . . . , d+ 1} do
17: Aσ ← f(addSet({xi : i ∈ σ}))
18: end for
19: D′ ← ∅
20: {Iterate over all potential degrees}
21: for all δ ∈ D do
22: {Iterate over all subsets of length δ}
23: for all s ∈ {b ⊂ {1, . . . , d+ 1} : |b| = δ} do
24: if addSet({Aσ : σ ∈ s}) 6= 0 then
25: D′ ← D′ ∪ {δ} {We found a witness against degree δ}
26: end if
27: end for
28: end for
29: D ← D\D′
30: if |D| = 0 then
31: return ⊥
32: end if
33: d← max(D); r ← r + 1
34: end while
35: return min(D)

20

In a more general framework, i.e. assuming that we want to confirm that f has degree d with
probability 2−s, we need a total of (

d2d +
1

2d+1

)
s

repetitions of the above test. The corresponding lemma and algorithm are given in [JPRZ09].
Instead of stating it here, we further generalize it from degree testing to degree detection, that is,
given a function f we determine its degree within a given range. See algorithm 2 for the pseudo-
code. In particular, linear and quadratic functions (so d = 1, 2) are of high interest to us as they
correspond to linear and quadratic cubes. Although such an algorithm seems to follow directly
from the one given in [JPRZ09], there are some subtilities that allow a considerable speed-up in
practice. In particular, we can save on (expensive) evaluations of the underlying function f by re-
arranging them into different subsets (lines 23–27). This is possible as all values are chosen pairwise
independent.

All in all, the algorithm samples
(

1
d2d+2d+1

)
s(d + 1) random vectors from the vector space

GF(2)n and needs (
(
d2d + 1

2d+1

)
s)2d+1 = O(ds22d+1) evaluations of the underlying function f .

Consequently, it is not suitable to extract the degree of a large number of quadratic or even
cubic cubes. As we will see in Section 5.5, this function is the real bottleneck when searching
for a large number of cubes. So one of our goals is to develop more efficient filters to limit the
use of the above algorithm to the absolute minimum. On the up side, the linearity tester can
readily be parallellized as we can distribute different cubes to different machines with only minimal
communication overhead.

5.2 Basic algorithm

In any case, when looking for cubes we are searching a needle in a hey-stack. Even worse, when using
one of the random walk algorithms, we push the search in a certain direction. Therefore, “real”
cubes might have different properties than the ones we find by these algorithms. To overcome this
problem, we will discuss several algorithms that capture cubes more accurately. In particular, we
have a tighter control over the probability space they operate on, so we can make better funded
claims, e.g. about the distribution of cubes within Trivium.

The first algorithm is rather trivial, but nevertheless useful—both for Trivium up to round
446 (cf. Section 5.5) and also as a building block for further algorithms. In a nutshell, we use
the full ANF of the corresponding function and then apply the corresponding cube criterion from
Section 2. Although we could use any of the above criteria to determine the existence of a cube,
we have specialized the algorithm to the case of linear zero (fixed) cubes as they have the highest
relevance for direct cryptographic attacks. In addition, this eases explanation of the general idea.

The subfunction split is used to separate key variables from IV variables for a given mono-
mial µ. Based on this, we add up all superpolys in lines 5–9. By definition, we only allow superpolys
of degree 1 or lower. These are extracted in line 11.

Correctness. The correctness of the algorithm follows from the definition of fixed linear cubes: Start-
ing with the ANF of f , we regroup all monomials by their IV variables. Adding all key-variables
for a given xC yields the corresponding superpoly (line 7). Excluding the one-monomial ∅ (line 10),
we just need to test which potential superpoly actually has the correct degree (line 11).

The algorithm is illustrated in the following example.

21

Algorithm 3 Directly extracting cubes from a function f , given in Algebraic Normal Form
1: function split(µ) return (µ ∩ V , µ ∩K)
2:
3: function extractCubes(f)
4: superPolys ← (0, . . . , 0); potentialCubes ← ∅
5: for all µ ∈ f do
6: ν, κ← split(µ)
7: superPolysν ← superPolysν + κ
8: potentialCubes.insert(ν)
9: end for

10: potentialCubes ← potentialCubes \{∅}
11: allCubes ← {ν ∈ potentialCubes : superPolysν .degree() = 1}
12: return allCubes

Example 10. Let K := {a, b, c}, V := {α, β, γ} be the sets of key and IV variables, respectively.
Moreover, consider the following function f : K ∪ V → B in algebraic normal form (ANF):

f(K,V) := abα+ aαβ + aβ + aβγ + bβγ + cαβγ + bcα+ abcαβ + abcαγ + bc+ a+ b+ βγ + 1

Using algorithm 3, we have the following superpolys, indexed by IV sets:

IV set ν superPolysν linear

∅ bc+ a+ b+ 1 -
α ab+ bc -
β a ?
αβ a+ abc -
αγ abc -
βγ a+ b+ 1 ?
αβγ c ?

So consequently, our algorithm returns the set {β, βγ, αβγ}. Although not a linear superpoly,
bc + a + 1 is interesting, too. We note that the corresponding cube ν = ∅; by definition, this
corresponds to the monomial 1. It will occur in the cube summation of every other cube. In our
case, this is the ANF of the restricted function f(K, (0, 0, 0)) = bc+ a+ 1. In practice, this special
form of the function f will exist for any given cipher, but has a far too high algebraic degree to be
of practical use. Therefore, we rely on the fact that f(K, (0, 0, 0)) is summed an even number of
times and hence cancels out in the cube sum.

Running time. Its running time is bounded from above by the number of monomials in f and the
length of the longest monomial µ in f . Denote these with |f | and |µ|. Then both the running time
and the memory consumption are in O(|f ||µ|).

To adapt this algorithm to different variants of cubes (cf. Section 2), we can use small modifi-
cations. For example, to deal with higher order cubes, we change the degree condition in line 11; to
allow for free cubes instead of fixed cubes, we need to verify that a potential cube actually contains
all occurrences of its IV variables in the given ANF, i.e. that it is pairwise disjoint with all other
potential cubes. The latter will slightly increase the running time but is still feasible in practice.

22

5.3 Pushing the limit

Up to now, we were dealing with the full ANF of the target function f . For cryptographic algorithms,
this becomes prohibitively expensive as the degree of f (and also the number of monomials) usually
increases exponentially, cf. section 6.1 and in particular figure 4 for the case of Trivium. Note that
this is primarily a concern of the available memory, not so much of the available running time.

A simple but effective trick to reduce memory consumption is to evaluate f in some IV variables
by simply setting them to zero. We denoted the result by f . So instead of using algorithm 3 with the
full function f , we use f as its input. In the remainder of this section we investigate the implications
of this approach.

First, this idea has some similarities to the random walk algorithm. Here, we start at some
random point and evaluate f “around” it. But it also has some advantages over the latter. In
particular, our restriction is independent from the search algorithm so we can better control it.
Consequently, we can easily estimate the number of cubes that should live at the evaluation of f in
a given round, cf. lemma 2. Running the algorithm several times and combining the observations
of several such restrictions increases the accuracy of the prediction. Note that this algorithm is
particularly well suited for fixed cubes. Considering both the search space and the overall space of
IV variables leads to the following lemma:

Lemma 2. Let R be the number of cubes of dimension r ≥ 1 in a function f(K,V). Let f be its
restriction such that we have f(K,V) for V ⊂ V . Then we expect on average a total of

R · (|V |/|V |)r

cubes of dimension r in f .

Proof. For the proof consider some cube C of dimension r and a randomly drawn set V ⊂ V . For
each variable in C we have a probability of |V |/|V | that it is also contained in the set V . As all
these r events are independent, the lemma follows for one cube and consequently for all R cubes
in V .

However, to succeed in practice, we cannot compute the function f and then restrict it. This
is impossible to the memory constraints. But if f is recursively defined, we can do it the other
way around: First assign values to all corresponding variables and then develop f following its
definition. This will lead to the same function f . Note that such a recursive definition exists for
Trivium in particular and also for all relevant cryptographic functions. For example for the AES,
this was made explicit in [MR02, CMR05]. Similar work has been done for Present [Lea10] and
other cryptographic primitives such as SHA-3; for this, we can use the so-called “Keccak-Tools”,
to generate the corresponding equations explicitly, including round reduced SHA-3.

Example 11. Using the same function f as in example 10, we choose V = {β, γ}. Consequently, the
restricted function f becomes:

f(K,V) := aβ + aβγ + bβγ + bc+ a+ b+ 1 + βγ

Using algorithm 3, we have the following superpolys, indexed by IV sets:

IV set ν superPolysν linear

∅ bc+ a+ b+ 1 -
β a ?
βγ a+ b+ 1 ?

23

As expected, the algorithm cannot identify all cubes anymore and the resulting set becomes now
{β, βγ}. By also considering V1 = {α, β} and V2 = {α, γ}, algorithm 3 we would actually find all
cubes up to dimension 2.

Correctness. Using the ANF of the function f for the sake of the argument, we see that restricting
f to some subset V of IV variables will destroy all cubes that contain at least one variable outside
of this set. On the other hand, all cubes that are fully inside the set V will still be found. As this
change does not affect the key variables, all superpolys are untouched. Hence, they will be correctly
identified as linear, quadratic, . . . Using lemma 2 we see that we will only find a fraction of all
possible cubes, namely (|V |/|V |)r for a given cube dimension r.

Running time. Giving an exact formula for the running time of the algorithm presented in this
section is difficult. However, we can use the same argument as for lemma 2 to see that for any
given monomial ν ∈ f we only have a probability of (|V |/|V |)|ν| that this monomial is also present
in f . As in Section 5.2, the running time depends on the length of the largest monomial |µ| and
also the number of monomials in the ANF of the function f , denoted by |f |. More specifically, we
have a running time of O(|µ||f |). As both factors are reduced by at least |V |/|V |, we can expect
a reduction in time and memory in the order of O((|V |/|V |)2). Without having more information
about the actual monomials in f , it is not possible to obtain a more accurate bound. To make
things worse, the polynomials we are dealing with are also structured. In particular this means that
specific subsets of variables can occur much more frequent in the monomials of f than others. So
for some choices of V , our reduction might be much less than expected.

In the case of Trivium, we have replaced the initial function f in 160 variables and (potentially)
up to 2160 monomials by a function f with 80+16=96 key and IV variables. Note that this algorithm
is still fully deterministic but cannot find all possible cubes anymore. As we will see in section 5.5
this is only feasible for small cube dimensions. However, we introduce a cube finding algorithm that
can cover a higher number of rounds in the next section.

5.4 Going probable

Up to now, we have deterministic algorithms that allows us to find cubes for a given function f
or f , respectively. Still, we can increase the number of rounds we cover by further reducing the
number of monomials. As we have dealt with the IV variables in the previous section, we will now

concentrate on the key variables. We denote the result by f(K,V) or simply f . In the case of
Trivium, we have a total of 80 key variables, so we can expect a noticeable gain by reducing them.

Unfortunately, the situation is more complicated than in the previous section. By removing
key variables, we are actually tempering with the superpoly and therefore destroying relevant
information such as its degree. Still, we can construct a tester that will output (with some small
probability ρ) that a given set of IV variabes ν ∈ V in f is not a cube by looking at the corresponding

structure in f . By repeatedly applying this tester on different double-restricted functions f1, f2, . . .
we can turn this into a tester that detects non-cubes with overwhelming probability.

For simplicity, we only deal with linear fixed cubes here. But both constant and higher order
fixed cubes can easily be tested using the very same idea. Before making the algorithm explicit, we
discuss what happens to the original function f(K,V) and its restricted version f(K,V) when also
restricting the set of key variables K to K.

24

Algorithm 4 For a given function f , compute a list of plausible cubes. Parameters are the sub-set
of cubes V , the number of key variables in the test sets κ, and the number of repetitions r.

1: function doubleF(V ,K): return f(V ,K)
2:
3: function plausibleCubes(f , V , κ, r)
4: noCubes← ∅; maybeCubes ← ∅
5: for i← 1 to r do
6: K ∈R {s ⊂ K : |s| = κ} {Get a random subset of size κ} f ← doubleF(V ,K)
7: superPolys ← (0, . . . , 0); potentialCubes ← ∅
8: for all µ ∈ f do
9: ν, κ← split(µ)

10: superPolysν ← superPolysν + κ
11: potentialCubes.insert(ν)
12: end for
13: noCubes ← noCubes ∪ {ν ∈ potentialCubes : superPolysν .degree() > 1}
14: maybeCubes ← (maybeCubes ∪ potentialCubes) \ noCubes
15: end for
16: return maybeCubes

Let p(K)xC be some superpoly and cube in function f . Assuming xC ⊂ V , the superpoly p(K)
becomes p(K). Consequently, some monomials in p(K,V) may be missing in its double-restricted
version. On the other hand, p(K) being of degree 2 or higher is a witness for p(K) being of degree 2
or higher. To see the limits of our algorithm, we consider p(K) be monic and having degree |K|+1.
No choice of K would reveal such a p(K) in p(K). Still—it is the same kind of error as above, so
if p(K) has degree 2 or higher, p(K) is not a superpoly and xC is certainly not a cube. Still, our
algorithm will not detect it. On the other hand, the likelyhood that p(K) has such a structure is
very low, so we can detect this case via the degree testing algorithm from section 5.1.

Example 12. Using the same function f as in example 10 and the two sets K1 := {a, b}, V := {α, β}
of key and IV variables, respectively, we obtain the following function f in ANF:

f(K1, V) = abα+ aαβ + aβ + b+ a+ 1

Using algorithm 4, we have the following superpolys, indexed by IV sets:

IV set ν superPolysν linear

∅ a+ b+ 1 ?
α ab -
β a ?
αβ a ?

We see that all but one set is identified as possible cubes, namely R1 = {∅, β, αβ}. However, consider
the following set of key variables K2 := {b, c} we obtain the new function

f(K2, V) = bβγ + bcα+ bcβ + bc+ a+ b+ βγ + 1

and also the following superpolys

25

IV set ν superPolysν linear

∅ bc+ 1 -
α bc -
β 0 ?
αβ 0 ?

This leads to the new result R2 = {β, αβ} and consequently R = R1 ∩ R2 = {β, αβ}. In order to
obtain the correct output {β}, we would need to consider the monomial abc, too. Assuming that
we cannot develop an ANF with three key variables, we will need to leave this to the degree testing
algorithm 2. Hence, we can use algorithm 4 as a filter to identify potentially interesting regions of
the overall function f .

Correctness. To see the correctness of algorithm 4, we inspect the ANF of a given function f . For
each choice of IV variables V and key variables K, we implicitly set all other variables to zero.
Consider the sets K̃ := K\K, Ṽ := V \V and the partial assignment τ : K̃ ∪ Ṽ → 0 that sets

these variables to zero. So we deal with the function f := f(τ,K, V). All monomials that contain
at least one variable from τ become zero. Consequently, our algorithm will not see them. On the
other hand, superpolys that can be expressed solely with variables from the set K over cubes from
the set V will still be found. Hence, our algorithm is a one-sided tester. The probability can be
computed using the same ideas as in lemma 2.

Running-Time. As in the previous section, it is difficult to give a closed formula for the running time
of the algorithm. However, we can give two sensible bounds on the probability that our algorithm
actually outputs a witness. We first bound this probability from below in (2) and then from above
(3).

First assume that only one coefficient of the superpoly is quadratic, all others are linear. In this
case, we need to cover this monomial with our r sets and obtain

| ∪ri=1 {ab : a, b ∈ Ki}|(|K|
2

) (2)

as lower bound. In theory, we could also assume that p(K) has no quadratic but only one cubic
monomial. In practice, this is very unlikely and was not confirmed in our simulations. Still, from a
purely theoretical point of view, a probability of zero may be justified here: In this case, p(K) has
degree |Ki|+ 1 but no monomials of degree 2, . . . , |Ki|.

On the other hand, we will very likely have a more friendly shape of p(K). Here we assume
that for all monomials in Ki that it being present in p(K) with probability 50%. This corresponds
to the case where f is well developed in these monomials. This is particularly true for small cube
dimensions. Hence we obtain as an upper bound

1−
(

1− |K|+ 1

2|K|

)r
(3)

that a non-linear superpoly is caught by our test. In either case, our practical probability ρ is
bounded by both equations and we obtain

(2) ≤ ρ ≤ (3) .

26

Note that ρ is a function both of the cube dimension |C| as well as for the current round. So ρ
will increase from round to round until we have ρ = (3). On the other hand, increasing the cube
dimension |C| will lead to ρ = (2). Unfortunately, the correct value depends on the overall structure
of f . Hence, the only realistic way to compute the probability ρ in practice is empirically. All in all,
repeating the above test around 80 times gave us a success probability of about ranging from 99%
to 30% that C was actually a cube. As expected, the probability was higher for lower rounds than
for higher rounds. This was verified with the standard cube test from Section 5.1. More importantly,
this cube test has an intrinsic running time of 2|C|, so precomputing plausible candidates C1, . . . is
a good way to find all cubes for a given set of IV variables V and cutting down the running time
of the combined algorithm.

5.5 Practical implementation

All algorithms from this section were implemented as a hybrid programme in both the computer
algebra system Sage [S+13] and the programming language C++; the latter contains the more
time-critical parts such as the cube linearity test. In total, the programm consists of 1500 lines of
Sage code and the C++ part of around 900 lines of C++ code; both counts include comments.

Using the algorithm 4 with parameters |V | = 15, |K| = 6 and 80 iterations per cube, we searched
for cubes up to round 570 in Trivium. For example, in round 550 this took around one hour (AMD
Opteron 6276@2.3GHz).

Verifying all plausible cubes took up to one additional core-month per round. Consequently,
the work was distributed to a cluster with 256 cores and 1TB of RAM. Interestingly, with the
above parameters, we could go on forever as the total number of variables per iteration is only 21.
Alas, from round 570 on, there are no cubes left with 15 or less IV variables. On the other hand,
reducing the number of key bits from 6 to 5 (or even lower) gave us too many false positives that
the algorithm became unusable in practice. Unfortunately, the implementation consumed a lot of
disk space (up to 1.2TB), so we could not increase the number of variables or iterations further.

In contrast, using the exact algorithm 3, we were able to fully cover the first 446 rounds of
Trivium. To this aim, we needed to process a Boolean function with around 50 million monomials.
To put this into perspective: A single state bit in round 399 needs around 2.7 GB of disk space and
consists of about 82 million monomials with a total of 675 million appearances of the 160 variables
from K ∪ V . Unfortunately, Sage and in particular its polynomial package PolyBoRi [BD09] are
not able to deal with these high numbers of monomials / variables, so PolyBoRi repeatedly and
predictably crashed. To conclude: memory was the real bottle neck for this algorithm, not time.
The most promising way seems a full rewrite of the algorithm in C++. This also includes the
development of a more compact representation of the monomials.

Download. Raw data for fixed and free cubes up to round 446 are are available for download at www.
cits.rub.de/imperia/md/content/wolf/cubelistfixed.zip and www.cits.rub.de/imperia/

md/content/wolf/cubelistfree.zip

27

www.cits.rub.de/imperia/md/content/wolf/cubelistfixed.zip
www.cits.rub.de/imperia/md/content/wolf/cubelistfixed.zip
www.cits.rub.de/imperia/md/content/wolf/cubelistfree.zip
www.cits.rub.de/imperia/md/content/wolf/cubelistfree.zip

200 250 300 350 400 450

100

101

102

103

104

105

106

107

108

Rounds of Trivium

N
u
m

b
er

o
f

cu
b

es
in

th
e

o
u
tp

u
t

Cubes
Monomials

Fig. 4. Both the number of cubes and also the total number of monomials in the output function
f(V,K) of Trivium, plotted against the number of rounds.

6 Practical Results on Cubes

We now use the algorithms from the previous section to get some insights on the distribution of
cubes for Trivium. This also serves as a test to see if both definitions and algorithms are actually
useful in practice. All results were obtained on the computing cluster described in Section 5.5.

6.1 Cubes in the output

In figure 4 (cf. also table 2) we see the total number of cubes in the output function

zi = ci−65 + ci−110 + ai−65 + ai−92 + bi−68 + bi−83

of Trivium for 200 ≤ i < 447. Note that values below 200 are of only limited interest and hence
not plotted here. This figure was computed with algorithm 3. Therefore, we know that we have
the exact number of cubes here. Moreover, we have verified for randomly selected cubes that they
actually have the same degree as the superpoly that was output by the algorithm (BLR test). For
comparison, we have also plotted in figure 4 the number of monomials. These monomials are in the
variables from V ∪ K for V = {v0, . . . , v79} and K = {k0, . . . , k79}. In addition, we can see both
the degree of the output function and also the average degree of all monomials in figure 5.

There are two interesting features here: First, the number of cubes increases exponentially.
Secondly, the plot of the number of cubes per round is much more noisy than the corresponding
plot for the number of monomials. All in all, it is very hard to predict the number of cubes for a
given round. In particular, it is not clear from the above curve if the number of cubes will increase
exponentially up to round 1152 or if it will decrease at some state. The latter is justified as the

28

150 200 250 300 350 400 450

2

4

6

8

10

12

14

Rounds of Trivium

D
eg

re
e

o
f

th
e

o
u
tp

u
t

fu
n
ct

io
n

average degree
maximal degree

Fig. 5. Degree of the output function of Trivium.

number of possible monomials is bounded from above by 2|K|+|V |. In the case of Trivium, we have
2160. To this aim, we have a closer look at the actual dimension of cubes, cf. figure 6. Here, we
see the same cubes as in figure 3 but do distinguish them by their dimension. To keep figure 6
readable, we did restrict to dimensions 1, 2, 6, 10 and 11. A list of all cubes by dimension is given in
table 3. First we note that some cube dimensions only occur after a particular round. For example,
we do not have cubes of dimension 10 before round 430 (dimension 11: round 439). This finding
is in line with the overall definition of Trivium: All state bits are initialized with polynomials of
degree -1, 0 or 1. The output function of Trivium does not change this as it only contains addition,
no multiplication. However, the update function of Trivium for each inidividual state contains
exactly one multiplication of two previously computed state bits. Hence, the overall degree of the
corresponding polynomial will most likely increase here and give rise to new (potential) cubes. In
addition we notice that we do not have any cubes of dimension 1 after round 394 and that there
are rounds without cubes of dimension 1 from round 362 onwards. To tackle this question, we have
a closer look how cubes develop in the following section.

Regarding the number of monomials we see the corresponding plot is far smoother and we have
at least an order of magnitude more monomials than cubes for a given round. Even though, giving
a closed formula or even extrapolating is difficult enough.

6.2 Life-cycle of a Cube

For the sake of the argument, we restrict to fixed cubes that have a superpoly of exactly degree 1.
Keep in mind that every cube corresponds to monomials that share the same variables from the
set V . So when viewing a cube from round to round (as in figure 4), we can identify three phases in
the life of such a cube—each corresponding to the existence and non-existence of certain monomials
in the ANF of f :

29

180 200 220 240 260 280 300 320 340 360 380 400 420 440 460

100

101

102

103

104

105

Rounds of Trivium

N
u
m

b
er

o
f

cu
b

es
in

th
e

o
u
tp

u
t

b
y

d
im

en
si

o
n

d=1
d=2
d=6
d=10
d=11

Fig. 6. Number of cubes of dimension d in the output of Trivium, plotted per dimension d =
1, 2, 6, 10, 11 against the number of rounds.

1. Non-existence
2. Creation
3. Destruction

In phase 1, a cube C cannot exist as there is no monomial that contains the corresponding variables
from the set of IV variables V , plus exactly one variable from the set of key variables K. As soon as
this changes, we are in phase 2. Now, we have at least one monomial that is of the form xCki with
ki ∈ K and C ⊂ V . Finally, we may have a monomial of the form xCkikj with 0 ≤ i, j < 80, i 6= j.
This will destroy the cube, and we are in phase 3. Note that any monomial with at least two key
variables will do to destroy the corresponding cube xC . Alternatively, we can use the definitions of
section 2.3 and say that a cube is constant (one or negative) is phase 1, linear in phase 2, and a
higher-order (quadratic, cubic) cube in phase 3. We illustrate this with the following example.

Example 13. Let K := {a, b, c}, V := {α, β} be the sets of key and IV variables, respectively.
Moreover, consider the following function f : K ∪ V → B in algebraic normal form (ANF):

f(K,V) := aα+ cα+ cαβ + bcαβ + a

Using the above definition, we have the following superpolys, indexed by IV sets:

30

IV set superPolys degree

∅ a 1
α a+ c 1
β 0 -1
αβ bc 2

For α, we have a superpoly of exactly degree 1. Hence, this is a cube in phase 2. In contrast, we
do not have a monomial for the potential cube β yet. Hence, this cube is in phase 1. Finally, the
superpoly associated to αβ is of degree 2. Consequently, this is a cube in phase 3.
Now, multiplying f with the function g(K,V) = bα+ β yields

fg = aαβ + aβ + bcα+ bcαβ .

This leads to the corresponding cubes in α, β, αβ, respectively:

IV set superPolys degree

α bc 2
β a 1
αβ bc+ a 2

So the cube α goes from phase 2 to phase 1, the cube β from phase 1 to phase 2 and αβ stays in
phase 3.

Neither from the above example nor from the above definition it is evident that all cubes will go
through the cycle 1→ 2→ 3 without jumping back. In particular, it were possible that (w.l.o.g.) the
two state bits ci−110, ai−65 both contain the same monomial xCki for some C ⊂ V and 0 ≤ i < 80.
By the definition of the output function, they would cancel out so the cube C would go back from
phase 2 to phase 1.

In practice, we encountered such a behaviour in our simulations only very rarely. Moreover,
the very structure of the Trivium update and output functions makes it very difficult to actually
construct such examples.

Conjecture 1. Let C ⊂ V be a set of IV variables for Trivium. Either, C never forms a cube within
Trivium. Alternatively there exists a unique pair Rc, Rd ∈ N with Rc < Rd and Rc being the
maximal and Rd being the minimal number such that for R ∈ N with R < Rc or R > Rd we do not
have a cube for the set C in the output of the corresponding round of Trivium. We call the rounds
r with Rc ≤ r ≤ Rd are called the living room of the cube C.

This conjecture is a direct consequence of the life-cycle described above. It also includes the (rare)
case that a cube directly jumps from phase 1 to phase 3.

6.3 State cubes

As already mentioned in Section 2.5, we conjecture the existence of state cubes. As we see in
figure 7, this is actually correct. Moreover, the total number of state cubes (register A+B+C) is
always higher than the number of cubes in the output for a given round R. Note that figure 7
plots all values from round 150 up to the maximal number we could compute. As the polynomials
associated to state bits are larger than the ones associated to output bits, we only manage 397
rounds for state bits but up to 446 rounds for output bits.

31

150 200 250 300 350 400 450

100

101

102

103

104

105

Rounds of Trivium

N
u
m

b
er

o
f

cu
b

es
Output
State aR

State bR

State cR

Fig. 7. Total number of cubes both in the highest state bit aR, bR, cR and the output, plotted by
round R.

We want to note an interesting connection between output and state cubes. This connection is
only true for ciphers that use a linear output function, e.g. Trivium. More specifically, each cube in
the output must first exist as a cube in the state: As the output function is fully linear, it cannot
create new cubes but only collect cubes found so far in the corresponding state bits. The only
change such a linear output function can do is from phase 2 to phase 3: If one state contains a
linear cube xC and another contains a monomial xC but with a superpoly of higher degree, the
cube xC will vanish in the output.

In addition, the output function depends on state bits from round R−66 or even earlier, so the
number of cubes in the output will simply follow the number of cubes in the state by some delay
factor. As the output function is constructed deliberately irregular, it is not easy to exploit this
delay in practice. Still—in the case of Trivium, finding state cubes helps to find output cube. Alas,
it is difficult to model the cube cancellation mentioned in the previous section, so predicting the
number of cubes for a given round is left as on open problem.

32

7 Conclusions

The contributions of this article are manyfold. Firstly, we have dealt with a thorough analysis of the
different variants of cubes in Section 2. In summary, we have found several interesting dimensions
and put them into one framework:

– The first classification uses the degree of the superpoly. In particular, linear cubes are useful for
cryptanalytic purposes. In some cases, quadratic and maybe cubic cubes are, too. Specifically for
state cubes, constant cubes such as negative or one cubes can help to speed up a cryptanalytic
attack.

– By fixing some IV variables, we have a full continuum of possible cubes, ranging from free
cubes via flexible cubes to fixed, and zero cubes, respectively.

– Taking the internal working of the cipher into account, we have state cubes as internal invariants
of several instances.

– Reducing the overall degree of the superpoly is the aim of dynamic cubes. They were successful
employed against Grain-128.

– A second way to achieve this aim are mixed cubes. Here, we sum over several cubes of higher
key-degree to achieve cubes of lower key-degree.

– Taking mixed cubes one step further, we obtain factor cubes. Interestingly, they cannot be
distinguished from ordinary cubes when using black-box methods such as degree testing (Sec-
tion 5.1).

All these dimensions can be grouped freely, e.g. we can have flexible dynamic cubes as well as
linear free factor state cubes which helps us to develop new and more powerful cube attacks. To
this end, we have developed an algebraic modelling technique in Section 4. Using both state
cubes and similar variables, we considerably reduced the amount of intermediate variables needed
in the modelling of Trivium. In particular, we have empirically found a saturation both for variables
and monomials. The corresponding algorithm is generic and can also be applied to other ciphers.
We are confident that they will also show a saturation effect, although further research is needed to
confirm this. In addition, our algebraic modelling greatly benefits from the existence of state cubes
in Trivium. We have seen in section 6.3 and in particular figure 7 that plenty exist in Trivium.

Various algorithms to find cubes and identify their degree are discussed in section 5. The
degree identification algorithm uses black-box access to a given Boolean function f . In contrast, the
other algorithms from this section use access to the algebraic normal form of a full or restricted
version of this Boolean function f . In contrast to previously known algorithms such as random
walk, this allows a precise calculation of the number of cubes up to a certain round. Depending on
the algorithm we use, our implementation can handle up to 446 or 570 rounds, respectively.

These algorithms were then used to explore specific properties of Trivium in Section 6.
In particular, we have presented for the first time the exact number of cubes up to round 446,
cf. figure 4 and table 2. This will hopefully better our understanding of both the strengths and the
limitations of cube attacks. To this aim, we have also given a detailed list of cubes per dimension
in figure 6 and table 3, respectively. Based on these findings, we have developed a theory of the
life-cycle of cubes and made the connection between state cubes and output cubes explicit.

All in all, the aim of this article was to present a coherent theory of cubes, show that it has
applications in practice and shine light on the structure of Trivium. While this was successful to
some extent, there are still open questions that need to be addressed. Firstly, we cannot efficiently
test of some of the cube properties such as polycubes or factor cubes. Here, a deeper understanding

33

of the corresponding algorithms are needed. Secondly, finding a full list of cubes up to a given
dimension is currently seriously limited by our implementation. Doing a full implementation could
raise the bar here. Thirdly, the algebraic modelling could be aided by a specific equation solving
algorithm. Finally, predicting the number of cubes (and also their dimension) for higher rounds
would be beneficial.

Acknowledgements

The first author wants to thank Wolfram Koepf (Kassel) for fruitful discussions and guidance. The
second author gratefully acknowledges an Emmy Noether Grant of the Deutsche Forschungsgemein-
schaft (DFG). In addition, the authors want to thank Saqib Kakvi (Bochum) for helpful remarks
and Marina Efimenko (Bochum) for help with table 3.

References

[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube Testers and Key Recovery
Attacks on Reduced-Round MD6 and Trivium. In FSE, pages 1–22, 2009.

[BD09] Michael Brickenstein and Alexander Dreyer. PolyBoRi: A framework for Groebner-basis computa-
tions with Boolean polynomials. Journal of Symbolic Computation, 44(9):1326 – 1345, 2009. Effective
Methods in Algebraic Geometry.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-Testing/Correcting with Applications to
Numerical Problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[CMR05] Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. Small scale variants of the aes. In FSE, volume
3557 of Lecture Notes in Computer Science, pages 145–162. Henri Gilbert and Helena Handschuh,
editors, Springer, 2005. ISBN 3-540-26541-4.

[CP08] C. De Cannire and B. Prenel. Trivium. In New Stream Cipher Designs, volume 4986 of LNCS, pages
84–97. Springer, 2008.

[DAS11] Itai Dinur and Adi Adi Shamir. Breaking Grain-128 with Dynamic Cube Attacks. In 18th International
Workshop Fast Software Encryption, FSE 2011, volume 6733, pages 167–187. Springer, 2011.

[DS09a] I. Dinur and A. Shamir. Cube Attacks on tweakable black box polynomials. In EUROCRYPT. Lecture
Notes in Computer Science, volume 5479, pages 278–299. Springer, 2009.

[DS09b] Itai Dinur and Adi Shamir. Side Channel Cube Attacks on Block Ciphers. Cryptology ePrint Archive,
Report 2009/127, 2009. http://eprint.iacr.org/2009/127/, 15 pages.

[FV13] P.A. Fouque and T. Vannet. Improving Key Recovery to 784 and 799 rounds of Trivium using Optimized
Cube Attacks. FSE 2013, Fast Software Encryption, pp, 2013.

[HJMM06] M. Hell, T. Johannson, A. Maximov, and W. Meier. A stream cipher proposal: Grain-128. In IEEE
International Symposium on Information Theory (ISIT 2006), 2006.

[JPRZ09] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing low-degree polyno-
mials over prime fields. In Random Struct. Algorithms, pages 163–193, 2009. http://www.cs.utexas.

edu/~diz/pubs/low_deg_test.pdf.

[KHK06] Shahram Khazaei, Mahdi M. Hasanzadeh, and Mohammad S. Kiaei. Linear Sequential Circuit Ap-
proximation of Grain and Trivium Stream Ciphers. Cryptology ePrint Archive, Report 2006/141, 2006.
http://eprint.iacr.org/2006/141/.

[KMNP11] Simon Knellwolf, Willi Meier, and Maŕıa Naya-Plasencia. Conditional Differential Cryptanalysis of
Trivium and KATAN. In Selected Areas in Cryptography, pages 200–212, 2011.

[Lai94] X. Lai. Higher order derivatives and differential cryptanalysis. In Symposium on Communication,
Coding and Cryptography in honor of James L. Massey on the occasion of his 60th birthday, pages
227–233, 1994.

[Lat09] Joel Lathrop. Cube Attack on Cryptographic Hash Functions, 2009. Master thesis; Rochester Institute
of Technology.

[Lea10] Gregor Leander. Small scale variants of the block cipher Present. Cryptology ePrint Archive, Report
2010/143, 2010.

34

http://eprint.iacr.org/2009/127/
http://www.cs.utexas.edu/~diz/pubs/low_deg_test.pdf
http://www.cs.utexas.edu/~diz/pubs/low_deg_test.pdf
http://eprint.iacr.org/2006/141/

[MR02] Sean Murphy and Matthew J.B. Robshaw. Essential algebraic structure within the AES. In Advances
in Cryptology — CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 1–16. Moti
Yung, editor, Springer, 2002.

[MS09] Piotr Mroczkowski and Janusz Szmidt. Cube Attack on Courtois Toy Cipher. Cryptology ePrint
Archive, Report 2009/497, 2009. http://eprint.iacr.org/2009/497/.

[MS11] Piotr Mroczkowski and Janusz Szmidt. Corrigendum to: The Cube Attack on Stream Cipher Trivium
and Quadraticity Tests. Cryptology ePrint Archive, Report 2011/032, 2011. http://eprint.iacr.

org/2011/032/.
[Rad06] H. Raddum. Cryptanalytic results on Trivium. http://www.ecrypt.eu.org/stream/triviump3.html,

2006.
[S+13] W. A. Stein et al. Sage Mathematics Software (Version 5.7). The Sage Development Team, 2013.

http://www.sagemath.org.
[SFP08] Ilaria Simonetti, Jean-Charles Faugre, and Ludovic Perret. Algebraic Attack Against Trivium. In First

International Conference on Symbolic Computation and Cryptography, SCC 08, LMIB, pages 95–102,
Beijing, China, April 2008. http://www-polsys.lip6.fr/~jcf/Papers/SCC08c.pdf.

[SR12] T.E. Schilling and H. Raddum. Analysis of Trivium using compressed right hand side equations. In
Information Security and Cryptology. Lecture Notes in Computer Science, volume 7259, pages 18–32.
Springer, 2012.

[Sta10] Paul Stankovski. Greedy Distinguishers and Nonrandomness Detectors. In INDOCRYPT, pages 210–
226, 2010.

[T+13] S. Teo et al. Algebraic analysis of Trivium-like ciphers, 2013. http://www.eprint.iacr.org/2013/240.pdf.
[Vie07] Michael Vielhaber. Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential Attack. Cryptology

ePrint Archive, Report 2007/413, 2007. http://eprint.iacr.org/2007/413/.
[Vie08] Michael Vielhaber. TRIVIUM’s output partially autocancels. Cryptology ePrint Archive, Report

2008/377, 2008. http://eprint.iacr.org/2008/377/.
[YLWQ09] Lin Yang, Lin, Meiqin Wang, and Siyuan Qiao. Side Channel Cube Attack on PRESENT. In Proceedings

of the 8th International Conference on Cryptology and Network Security, CANS ’09, pages 379–391,
Berlin, Heidelberg, 2009. Springer-Verlag.

35

http://eprint.iacr.org/2009/497/
http://eprint.iacr.org/2011/032/
http://eprint.iacr.org/2011/032/
http://www-polsys.lip6.fr/~jcf/Papers/SCC08c.pdf
http://eprint.iacr.org/2007/413/
http://eprint.iacr.org/2008/377/

A Full list of output cubes

Table 2. Number of all cubes (#) in the output of Trivium from round R=200 to 446.

R # R # R # R # R # R # R #

200: 2 201: 2 202: 2 203: 2 204: 2 205: 2 206: 1
215: 1 216: 2 217: 2 218: 2 219: 2 220: 2 221: 2
222: 2 223: 2 224: 2 225: 2 226: 2 227: 2 228: 2

229: 2 230: 3 231: 5 232: 6 233: 6 234: 6 235: 6
236: 7 237: 8 238: 8 239: 8 240: 8 241: 8 242: 9
243: 10 244: 10 245: 14 246: 19 247: 20 248: 19 249: 18

250: 18 251: 18 252: 18 253: 18 254: 17 255: 16 256: 16
257: 13 258: 12 259: 16 260: 17 261: 17 262: 17 263: 19
264: 21 265: 21 266: 23 267: 27 268: 29 269: 29 270: 24

271: 15 272: 15 273: 19 274: 24 275: 30 276: 33 277: 34
278: 34 279: 34 280: 34 281: 35 282: 36 283: 36 284: 34
285: 34 286: 38 287: 40 288: 41 289: 46 290: 53 291: 57

292: 58 293: 60 294: 63 295: 65 296: 65 297: 61 298: 52
299: 50 300: 49 301: 50 302: 51 303: 50 304: 50 305: 50
306: 54 307: 61 308: 52 309: 62 310: 106 311: 134 312: 146

313: 152 314: 155 315: 159 316: 160 317: 162 318: 166 319: 168
320: 168 321: 150 322: 114 323: 86 324: 92 325: 128 326: 152
327: 163 328: 193 329: 233 330: 255 331: 261 332: 263 333: 267

334: 269 335: 269 336: 250 337: 216 338: 201 339: 238 340: 315
341: 358 342: 374 343: 407 344: 440 345: 462 346: 477 347: 481
348: 482 349: 482 350: 511 351: 505 352: 499 353: 729 354: 1,083

355: 1,364 356: 1,552 357: 1,680 358: 1,821 359: 1,880 360: 1,946 361: 2,110
362: 2,290 363: 2,542 364: 2,611 365: 2,248 366: 1,824 367: 1,646 368: 1,729
369: 1,805 370: 1,826 371: 1,862 372: 1,976 373: 2,129 374: 2,208 375: 2,229

376: 2,217 377: 2,272 378: 2,454 379: 2,479 380: 2,202 381: 1,958 382: 1,880
383: 1,855 384: 1,962 385: 2,294 386: 2,442 387: 2,283 388: 2,609 389: 4,252
390: 5,361 391: 5,101 392: 4,788 393: 5,426 394: 7,140 395: 8,160 396: 8,604

397: 9,727 398: 10,855 399: 11,488 400: 10,891 401: 8,879 402: 7,130 403: 6,618
404: 6,643 405: 5,778 406: 4,662 407: 5,682 408: 7,358 409: 7,924 410: 8,039
411: 8,634 412: 9,878 413: 10,531 414: 11,126 415: 12,978 416: 14,946 417: 15,760

418: 15,859 419: 16,847 420: 19,430 421: 22,250 422: 26,575 423: 32,536 424: 37,681
425: 40,997 426: 42,391 427: 43,025 428: 44,104 429: 46,352 430: 45,641 431: 42,639
432: 50,108 433: 65,663 434: 73,800 435: 72,340 436: 74,086 437: 90,529 438: 111,375

439: 134,302 440: 170,820 441: 215,812 442: 252,203 443: 257,132 444: 199,296 445: 121,891
446: 73,540

36

B Output cubes by dimension

Table 3: Number of cubes per dimension in the output of Triv-
ium from round R=200 to 446. Cells with a dot (’.’) indicate
no cubes cubes for this round/dimension.

Round sum 1 2 3 4 5 6 7 8 9 10 11

200 2 2
201 2 2
202 2 2

203 2 2
204 2 2
205 2 2

206 1 1
215 1 1
216 2 2

217 2 2
218 2 2
219 2 2

220 2 2
221 2 2
222 2 2

223 2 2
224 2 2
225 2 2

226 2 2
227 2 2
228 2 2

229 2 2
230 3 2 1
231 5 3 2

232 6 4 2
233 6 4 2
234 6 4 2

235 6 4 2
236 7 5 2
237 8 6 2

238 8 6 2
239 8 6 2
240 8 6 2

241 8 6 2
242 9 7 2
243 10 8 2

244 10 8 2
245 14 10 4
246 19 13 6

247 20 14 6
248 19 13 6
249 18 12 6

250 18 12 6
251 18 12 6
252 18 12 6

253 18 12 6

Continued on next page

37

Table 3 – continued from previous page

Round sum 1 2 3 4 5 6 7 8 9 10 11

254 17 11 6
255 16 10 6

256 16 10 6
257 13 8 5
258 12 6 6

259 16 6 10
260 17 6 11
261 17 6 11

262 17 6 11
263 19 6 13
264 21 6 15

265 21 6 15
266 23 6 15 2
267 27 6 17 4

268 29 6 19 4
269 29 6 19 4
270 24 6 15 3

271 15 6 8 1
272 15 8 7
273 19 10 8 1

274 24 10 10 4
275 30 10 13 7
276 33 11 14 8

277 34 12 14 8
278 34 12 14 8
279 34 12 14 8

280 34 12 14 8
281 35 13 14 8
282 36 14 14 8

283 36 14 14 8
284 34 13 13 8
285 34 12 14 8

286 38 12 18 8
287 40 12 20 8
288 41 12 20 9

289 46 12 22 12
290 53 11 27 15
291 57 11 30 16

292 58 12 30 16
293 60 12 30 18
294 63 11 32 20

295 65 11 34 20
296 65 10 35 20
297 61 10 32 19

298 52 11 24 17
299 50 12 22 16
300 49 10 23 16

301 50 11 23 16
302 51 12 23 16
303 50 11 23 16

304 50 11 23 16
305 50 11 23 16

Continued on next page

38

Table 3 – continued from previous page

Round sum 1 2 3 4 5 6 7 8 9 10 11

306 54 11 26 17

307 61 11 31 19
308 52 7 29 16
309 62 4 31 22 5

310 106 4 47 40 15
311 134 3 59 51 21
312 146 3 64 56 23

313 152 3 68 58 23
314 155 3 71 58 23
315 159 4 74 58 23

316 160 5 74 58 23
317 162 5 74 60 23
318 166 5 76 62 23

319 168 5 78 62 23
320 168 5 78 62 23
321 150 5 70 56 19

322 114 5 54 44 11
323 86 3 42 34 7
324 92 2 44 35 11

325 128 3 55 49 21
326 152 2 63 60 27
327 163 1 67 62 31 2

328 193 1 67 70 47 8
329 233 2 70 82 65 14
330 255 3 77 88 71 16

331 261 3 81 90 71 16
332 263 3 81 92 71 16
333 267 3 83 94 71 16

334 269 3 85 94 71 16
335 269 3 85 94 71 16
336 250 3 76 88 67 16

337 216 3 62 76 59 16
338 201 4 56 70 55 16
339 238 5 72 86 59 16

340 315 5 104 122 68 16
341 358 4 120 144 74 16
342 374 4 127 147 78 18

343 407 4 130 155 94 24
344 440 2 129 167 112 30
345 462 1 137 174 118 32

346 477 1 148 178 118 32
347 481 1 151 179 118 32
348 482 1 152 179 118 32

349 482 1 152 179 118 32
350 511 1 157 192 125 36
351 505 1 150 190 124 40

352 499 1 129 181 132 52 4
353 729 1 124 253 220 111 20
354 1,083 1 141 358 346 192 45

355 1,364 1 171 434 438 251 69
356 1,552 1 191 484 500 291 85
357 1,680 1 198 525 551 316 89

Continued on next page

39

Table 3 – continued from previous page

Round sum 1 2 3 4 5 6 7 8 9 10 11

358 1,821 1 198 585 610 338 89
359 1,880 1 191 613 634 352 89
360 1,946 1 191 621 664 372 97

361 2,110 1 193 655 733 415 113
362 2,290 . 193 711 810 455 121
363 2,542 . 210 776 904 519 133

364 2,611 . 217 753 923 565 153
365 2,248 . 207 582 789 517 153
366 1,824 1 180 425 633 444 141

367 1,646 2 154 364 567 422 137
368 1,729 1 148 407 595 441 137
369 1,805 . 142 441 624 461 137

370 1,826 . 140 447 637 465 137
371 1,862 . 144 459 649 473 137
372 1,976 . 157 502 689 491 137

373 2,129 . 172 559 748 513 137
374 2,208 . 169 595 780 527 137
375 2,229 . 171 618 796 511 133

376 2,217 . 186 643 797 466 125
377 2,272 . 195 685 824 447 121
378 2,454 . 207 756 897 473 121

379 2,479 . 221 770 908 463 117
380 2,202 . 234 663 802 398 105
381 1,958 . 253 577 698 337 93

382 1,880 . 264 556 656 315 89
383 1,855 . 252 551 649 314 89
384 1,962 . 220 552 697 384 109

385 2,294 . 214 594 822 515 149
386 2,442 . 208 610 878 577 169
387 2,283 . 180 519 768 575 221 20

388 2,609 . 101 407 776 818 421 86
389 4,252 . 72 570 1,210 1,434 771 195
390 5,361 . 61 711 1,518 1,836 977 258

391 5,101 . 47 633 1,385 1,781 985 270
392 4,788 . 44 577 1,266 1,678 953 270
393 5,426 1 65 662 1,463 1,890 1,055 290

394 7,140 1 93 937 2,014 2,458 1,307 330
395 8,160 . 95 1,114 2,359 2,790 1,452 350
396 8,604 . 115 1,162 2,468 2,926 1,551 382

397 9,727 . 127 1,271 2,769 3,295 1,803 462
398 10,855 . 121 1,413 3,117 3,671 2,007 526
399 11,488 . 114 1,522 3,337 3,873 2,100 542

400 10,891 . 131 1,467 3,178 3,636 1,979 500
401 8,879 . 147 1,250 2,650 2,910 1,567 355
402 7,130 . 151 1,057 2,200 2,290 1,204 228

403 6,618 . 145 1,017 2,071 2,100 1,093 192
404 6,643 . 151 1,029 2,074 2,104 1,093 192
405 5,778 . 155 912 1,799 1,809 939 164

406 4,662 . 154 708 1,377 1,432 827 164
407 5,682 . 160 667 1,485 1,800 1,266 304
408 7,358 . 162 751 1,851 2,385 1,765 444

409 7,924 . 151 800 2,017 2,593 1,891 472

Continued on next page

40

Table 3 – continued from previous page

Round sum 1 2 3 4 5 6 7 8 9 10 11

410 8,039 . 151 811 2,061 2,639 1,905 472
411 8,634 . 154 815 2,182 2,854 2,101 528

412 9,878 . 159 863 2,444 3,283 2,489 640
413 10,531 . 153 902 2,592 3,503 2,685 696
414 11,126 . 143 907 2,611 3,621 2,896 892 56 . . .

415 12,978 . 141 956 2,792 4,070 3,515 1,336 168 . . .
416 14,946 . 127 1,060 3,139 4,636 4,116 1,644 224 . . .
417 15,760 . 119 1,166 3,355 4,881 4,315 1,700 224 . . .

418 15,859 . 102 1,305 3,683 4,962 4,073 1,538 196 . . .
419 16,847 . 83 1,562 4,367 5,505 3,884 1,297 149 . . .
420 19,430 . 76 1,879 5,226 6,702 4,262 1,187 98 . . .

421 22,250 . 69 2,040 5,922 7,810 4,912 1,360 133 4 . .
422 26,575 . 65 2,244 6,591 8,992 6,121 2,166 378 18 . .
423 32,536 . 77 2,430 7,279 10,491 7,981 3,471 765 42 . .

424 37,681 . 84 2,572 7,944 11,933 9,588 4,467 1,035 58 . .
425 40,997 . 87 2,697 8,609 13,096 10,480 4,847 1,119 62 . .
426 42,391 . 87 2,820 8,999 13,616 10,764 4,916 1,127 62 . .

427 43,025 . 84 2,975 9,259 13,798 10,804 4,916 1,127 62 . .
428 44,104 . 77 3,013 9,360 14,023 11,140 5,171 1,242 78 . .
429 46,352 . 76 3,055 9,590 14,575 11,836 5,654 1,456 110 . .

430 45,641 . 76 2,892 9,124 13,955 11,643 5,925 1,765 245 16 .
431 42,639 . 72 2,333 7,471 11,783 10,964 6,667 2,657 632 60 .
432 50,108 . 71 1,810 6,525 12,066 13,739 9,747 4,642 1,320 188 .

433 65,663 . 66 1,521 6,773 14,770 19,071 14,182 6,990 1,970 320 .
434 73,800 . 70 1,614 7,463 17,174 22,064 15,920 7,382 1,849 264 .
435 72,340 . 53 1,613 7,607 17,556 21,923 15,185 6,660 1,535 208 .

436 74,086 . 36 1,431 7,489 17,668 22,754 15,896 6,996 1,596 220 .
437 90,529 . 23 1,361 7,897 20,452 27,861 20,700 9,533 2,366 336 .
438 111,375 . 22 1,409 9,080 24,916 34,474 25,938 12,073 3,035 428 .

439 134,302 . 26 1,674 10,749 29,387 41,016 31,596 15,086 4,081 659 28
440 170,820 . 24 1,910 11,979 34,283 50,293 41,713 21,936 7,081 1,457 144
441 215,812 . 22 1,984 13,178 39,988 62,251 54,876 30,442 10,570 2,265 236

442 252,203 . 24 1,952 14,055 45,042 72,702 65,772 36,918 12,818 2,656 264
443 257,132 . 25 2,000 14,300 46,033 74,596 67,334 37,404 12,684 2,516 240
444 199,296 . 24 2,009 12,509 37,198 57,654 51,007 27,737 9,197 1,789 172

445 121,891 . 23 1,983 10,040 25,116 34,924 29,299 15,052 4,608 778 68
446 73,540 . 23 2,042 8,511 17,585 20,606 15,487 7,169 1,879 222 16

41

	Algebraic Properties of the Cube Attack
	Frank-M. Quedenfeld , Christopher Wolf

