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Abstract

Cryptographic protocols are commonly designed and their security proven under the
assumption that the protocol parties have access to perfect (uniform) randomness. Actually
deployed physical randomness sources often fall short in meeting this assumption, but
instead provide only a steady stream of bits with certain high entropy. Trying to ground
cryptographic constructions on such imperfect, weaker sources of randomness has thus far
mostly given rise to a multitude of impossibility results, including the impossibility to
construct provably secure encryption, commitments, secret sharing, and zero-knowledge
proofs based solely on a weak source. More generally, indistinguishability-based properties
break down for such weak sources.

In this paper, we show that the loss of security induced by using a weak source can be
meaningfully quantified if the source is bounded, e.g., for the well-studied Santha-Vazirani
(SV) sources. The quantification relies on a novel relaxation of indistinguishability by a
quantitative parameter. We call the resulting notion differential indistinguishability in
order to reflect its structural similarity to differential privacy. More concretely, we prove
that indistinguishability with uniform randomness implies differential indistinguishability
with weak randomness. We show that if the amount of weak randomness is limited (e.g.,
by using it only to seed a PRG), all cryptographic primitives and protocols still achieve
differential indistinguishability. Moreover, we demonstrate that a nested composition of
primitives can achieve better differential indistinguishability guarantees (in terms of the
quantitative parameter) than the individual primitives.

Keywords: indistinguishability, randomness, weak sources, differential privacy, pseudorandom gener-
ators, nested composition, Santha-Vazirani sources
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1 Introduction
Cryptographic protocols are commonly designed and their security proven under the assump-
tion that the protocol parties have access to perfect, i.e., uniform, randomness. Actual physical
randomness sources that cryptographic implementations rely on however rarely meet this
assumption: instead of providing uniform randomness, they provide only a stream of bits
with a certain high amount of entropy. Moreover, these so-called weak sources, such as the
Santha-Vazirani (SV) sources [35], are often non-extractable [16,35], i.e., it is computationally
infeasible to extract more than a super-logarithmic amount of (almost) uniform randomness
from them.

There have been several attempts to bridge this gap, i.e., to ground the security guarantees
of cryptographic protocols on such weak sources. As soon as indistinguishability-based secrecy
properties are being desired, however, this line of research has mostly given rise to a multitude
of impossibility results [7,16,32], only complemented by a few constructive results if additional
assumptions are being imposed. For instance, encryption can be realized using weak sources, if
one imposes strong assumptions on the entropy of encrypted messages [5], or if the weak source
is restricted to the key generation algorithm and a perfect source is available for the actual
encryption algorithm [19]. The plurality of impossibility results in this area, as well as the
absence of comprehensive constructive results, indicates that traditional indistinguishability-
based secrecy notions fall short in capturing the impact of weak randomness on cryptography.
This constitutes an unsatisfactory situation, with several open questions looking for an answer:

• Is it possible to quantify the secrecy loss of cryptographic operations and primitives, if
a weak source (such as an SV source) is being used?

• Do these quantitative guarantees require new constructions, or do they apply to existing
schemes?

• Given that these quantitative guarantees are necessarily weaker than traditional crypto-
graphic guarantees, under which assumptions do they still provide reasonable security
guarantees?

• How do these guarantees change when individual primitives are being composed to
larger cryptographic protocols? In situations where the security guarantees for those
cryptographic protocols are not reasonable, can we find techniques to improve the
guarantees?

In this paper we address all of these questions.

1.1 Our Contributions

Relaxing Indistinguishability to Quantify the Secrecy Loss. We derive quantitative
guarantees for all indistinguishability-based cryptographic constructions that are used with
arbitrary weak sources that are additionally bounded in the following sense: in addition to
imposing an upper bound on the probability of each individual bitstring (i.e., requiring a
sufficiently high min-entropy), one additionally imposes a lower bound on these probabilities.
These bounded weak sources include SV sources [35] and resemble balanced sources [25].
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To quantify the secrecy loss that weak randomness imposes on cryptography, we define
differential indistinguishability, a quantitative relaxation of cryptographic indistinguishability
in the spirit of differential privacy [20, 33] and pseudodensity [34]. The necessity of a new,
relaxed notion arises from the impossibility result of Dodis et al. [16] who showed that
whenever only weak sources of randomness are available, traditional indistinguishability
is provably impossible for cryptographic primitives that have a secrecy requirement, e.g.,
encryption, commitments, and zero-knowledge proofs. More concretely, one cannot ensure
that the advantage in distinguishing two challenger machines X0 and X1 is negligible for
every probabilistic polynomial-time adversary. However, it might still be the case that no
adversary has a non-negligible advantage in breaking the security entirely, e.g., by reaching
a state in which it is certain whether it interacts with X0 or X1. The notion of differential
indistinguishability consequently aims at quantifying the resulting loss of secrecy without
overestimating the adversary’s power to break the scheme entirely: Two games, i.e., interactions
with two machines X0 and X1, are (ε, δ)-differentially indistinguishable if for all interactive
distinguisher machines A, the output probabilities for all outputs x are related by

Pr [〈A|X0〉 = x] ≤ 2ε · Pr [〈A|X1〉 = x] + δ,

where x is a possible output of A.1 Here ε ≥ 0 is a reasonably small constant or a decreasing
function such as 1/p(·) for a polynomial p. We allow only a negligible function for δ, which
corresponds to a negligible probability to break the security of the scheme entirely. Differential
indistinguishability thus offers quantitative parameters to reason about the loss of secrecy
incurred by the use of imperfect randomness.

Guarantees for Cryptographic Primitives Using Weak Sources. As our main con-
tribution we show that traditional indistinguishability (given a uniform randomness source)
suffices to guarantee differential indistinguishability if the uniform source is replaced by an
arbitrary bounded weak source. This result immediately entails meaningful quantitative lower
security bounds in cases where indistinguishability-based definitions are provably impossible
to achieve [16]. In particular, there is no need for new cryptographic constructions for any of
the existing primitives whose security is defined and proven by means of indistinguishability,
including simulator-based notions, provided that the amount of used imperfect randomness is
bounded. Moreover, we show that if the bounded weak randomness is used only to seed a
secure PRG, differential indistinguishability suffers only a negligible quantitative (additional)
security loss under composition – just as traditional indistinguishability.

Technically, Theorem 3.1 states that the interactions with two machines X0 and X1 are
differentially indistinguishable for bounded weak distributions if they are indistinguishable for
the uniform distribution. These machines X0 and X1 can then be instantiated by arbitrary
challenger machines to immediately derive results for cryptographic notions. Theorem 3.1
comprises arbitrary classes of adversaries and thus covers information-theoretical and compu-
tational indistinguishability. To derive quantitative guarantees, the theorem only imposes
the requirement that the entropy of the bounded weak randomness used by the primitive or
protocol is bounded in terms of the security parameter. Thus all existing primitives that use a
bounded amount of randomness can immediately be analyzed and their secrecy loss quantified
by an additional multiplicative factor that only depends on the quality of the random source.

1In contrast to differential privacy and pseudodensity, we use 2 instead of e as a base for the exponential
function, because the base 2 fits standard definitions of entropy better.
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Nested Composability and Connection to Differential Privacy. We show that a
nested composition of primitives can achieve better differential indistinguishability guarantees
(in terms of the quantitative parameter) than the individual primitives. In such cases the multi-
plicative factor might improve significantly. As an example, we show that given an (information-
theoretically) ε-differentially hiding commitment scheme C, the nested composition of C (on
independent random sources) is ε′-differentially hiding, where ε′ = log((2ε+1)/2) ≈ ε/2. This
result constitutes a first step towards deriving a general toolset of techniques for quantitatively
improving differential indistinguishability guarantees by means of composition. Moreover, we
analyze the relation between differential indistinguishability and the well-studied notion of
differential privacy [20,33], especially in terms of composition. Similar to the privacy loss in
differential privacy when the privacy of several users is analyzed, differential indistinguishabil-
ity suffers from a commensurate loss of entropy, which consequently leads to a secrecy loss in
cases where several users use weak, potentially even dependent randomness. This relation is of
particular interest in scenarios in which the users are not aware of using imperfect randomness
and thus fail to deploy existing methods [13,26,28] to improve their randomness using multiple
sources.

1.2 Related Work

The effect of imperfect randomness on traditional cryptography is well-studied. On the
negative side, several papers demonstrate the inherent limitations of indistinguishability-based
cryptographic guarantees with imperfect randomness [1, 7, 16, 17]. Remarkably, Dodis et
al. [16] show that traditional indistinguishability required for encryption, commitments, secret
sharing, and zero-knowledge cannot be realized if a bounded weak source is used, which
constitutes the main motivation for our work. More precisely, they prove that no protocol for
any of these primitives can be secure against certain block sources, which include bounded
weak sources. These sources sample blocks (i.e., several bits at once) that are 1/poly(k) close
to the uniform distribution [12, 16, 35] for an arbitrary polynomial, where k is the security
parameter.

This impossibility result has been refined and generalized over the last few years. Dodis,
Pietrzak, and Przydatek [17] prove that when using imperfect randomness, secure encryption
implies secure (2, 2)-secret sharing; however, the converse does not hold. Bosley and Dodis [7]
show that information-theoretically secure encryption of more than log(n) bits is possible only
if more than log(n) almost-uniform bits can be extracted from the source in the first place. In
the universal composability (UC) setting [10], Canetti, Pass, and Shelat [11] show that even
for (sampleable) sources for which a deterministic extractor exists, UC-secure commitments
are not possible. Instead, they present a UC-secure commitment scheme assuming a collision-
resistant hash function, a dense cryptosystem, and a one-way function (with sub-exponential
hardness) while requiring access to O(1) instances of a gray-box source with sufficient entropy.
Austrin et. al. [1] refined the impossibility result by Dodis et. al. [16] to show that it holds
even when the adversary that tampers with the SV source is required to be efficient. Recently,
Dodis and Yao [18] proposed a novel classification of random sources that groups them into
“separable” and “expressive” sources. They apply their notions to rule out even one-bit
encryption, commitment, and zero-knowledge proofs for many weak sources. Moreover, they
show the existence of deterministic bit-extractors for all sources that allow bit-encryptions,
bit-commitments or secret sharing.
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On the positive side, one line of research examines the extraction of (almost) perfect
randomness from several kinds of imperfect randomness sources [6, 12, 13, 28, 36, 38]. However,
extraction generally requires the source to have a certain degree of independence, whereas
the only main requirement for bounded weak sources is to provide some entropy. Aiming
at particular applications, some works have shown that a few primitives can be securely
instantiated even if only imperfect randomness is available [1, 15, 16, 24, 27]. Dodis et al. [16]
prove that signatures can be successfully instantiated using a block source instead of uniform
randomness. Goldwasser, Sudan, and Vaikuntanathan [24] show that Byzantine agreement
is possible for some suitable imperfect randomness. Dodis et al. [15] prove that differential
privacy of statistical queries can be preserved even when the noise is generated using an
imperfect random source. In particular, they ask the interesting question of whether or not
differential privacy is possible if no uniform randomness is available, and give a positive answer
for SV sources by presenting a γ-differentially private algorithm that works on these sources.
Relevant to our observations, they note that traditional indistinguishability-based privacy is a
stronger notion as compared to, e.g., unforgeability. A multiplicative factor, in the similar
spirit as in this work, has also been used to achieve a specialized relaxation of semantic security
in the presence of efficient adversaries that may tamper with an SV source [1, App B.4].
Moreover, such a factor has proven useful for a security analysis of anonymous communication
protocols [2, 3].

Most closely related to our work, Dodis and Yu [19] show that for all unpredictability-based
primitives as well as for a class of restricted indistinguishability-based primitives, randomness
sources with high min-entropy suffice to guarantee security whenever a uniform random
source already guarantees security. While this is related to our result for unpredictability-
based primitives (Corollary 3.4), Dodis and Yu establish a traditional indistinguishability
guarantee (i.e., ε = 0) for a restricted class of indistinguishability-based primitives under
weaker assumptions on the randomness source, clearly surpassing our results in these cases.
However, the imposed gray-box requirements on indistinguishability games rule out many
common and interesting cases. In particular, their analysis applies only to scenarios in
which imperfect randomness is used at the beginning of a game, i.e., typically as input to
a key generation algorithm. This leads to the observation that, e.g., for encryption, their
result is restricted to imperfectly generated keys, and does not take care of the case where
the encryption algorithm has access only to imperfect randomness.2 In contrast, while our
method provides only a differential guarantee, it is capable of obliviously analyzing essentially
all indistinguishability games that make use of imperfect randomness, without imposing
restrictions on the usage of this imperfect randomness. We refer to Section 6.2 for a more
thorough analysis of our requirements on randomness and the possible results.

Kamara and Katz [27] propose a notion of security for symmetric-key encryption that is able
to cope with imperfect randomness. However, their notion applies only if the challenge messages
are encrypted using uniform randomness. While we consider their approach orthogonal to
ours, it turns out that a combination with our approach is possible. In the public-key setting,
Bellare et al. [5] define and realize the notion of hedged public-key encryption, which provides
secrecy guarantees even in the case of randomness failures, as long as the encrypted message

2We note that this restriction cannot be circumvented by storing enough imperfect randomness at the
beginning of the game in order to use it later during encryption. This approach would require the challenger to
remember what parts of the stored randomness have already been used, which is implicitly excluded in [19].
We refer to Section 4.1 for a discussion.
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has enough entropy.
Finally, Brandao et al. [9] show that in the quantum setting, single sources of SV random-

ness can be improved, where the running time is polynomial in the inverse distance to the
uniform distribution. This result indicates that SV sources that are 1/poly(k) close to the
uniform distribution for some polynomial and the security parameter k might be a reasonable
assumption for cryptography in general.

Organization. The rest of the paper is organized as follows: We recall important con-
cepts and introduce our notation in Section 2. We define differential indistinguishability
and present our main results in Section 3. We then demonstrate the utility of differential
indistinguishability to public-key encryption, commitments and zero-knowledge proofs with
bounded weak randomness in Section 4. We study general as well as nested composability
of differentially indistinguishable primitives in Section 5. Finally, we interpret and analyze
differential indistinguishability in Section 6, and discuss possible future directions in Section 7.

2 Preliminaries and Notation
We denote sampling an element r from a distribution D by r ← D. The probability of the
event F (r), where r is sampled from the distribution D, is denoted by Pr [F (r) | r ← D] or
more compactly by Pr [F (D)]. To keep the notation simple, we write fk for the value of a
function f(·) applied to k, where k is typically the security parameter. We drop the explicit
dependence of parameters and security bounds (α, β, ε, γ) on k whenever it is clear from
the context. We denote by {Dk}k∈N a family of distributions such that for each k ∈ N the
distribution Dk samples elements from {0, 1}k. In particular, {Uk}k∈N is the family of uniform
distributions, where Uk is the uniform distribution over {0, 1}k.

Throughout the paper we consider (possibly interactive) Turing machines X that always
have implicitly access to a random tape with an infinite sequence of uniformly distributed
random bits, even if the machines get an additional input drawn from some random source.
Unless we mention that they run in probabilistic polynomial time (ppt) in the length of their
first input, those machines are not bounded. The distribution on the outputs of X when run
on input x is denoted by X(x). Similarly, we write 〈X(x)|Y(y)〉 to denote the distribution on
the output of the machine X on input x in an interaction with the machine Y on input y. We
write log := log2 for the logarithm to base 2.

Randomness Sources. In addition to the commonly used min-entropy, we make use of a
symmetrically defined counterpart, coined max-entropy [25].

Definition 2.1. We use the following entropy measures for a distribution D over the set S:

• The min-entropy of D is Hmin(D) ··= minx∈S(− log Pr[D = x]);

• The max-entropy of D is Hmax(D) ··= maxx∈S(− log Pr[D = x]).

These entropy measures allow us to define bounded weak sources, which must additionally
provide a certain amount of max-entropy in comparison to weak sources.

Definition 2.2. A family of distributions {Dn}n∈N, each over the set {0, 1}n of bitstrings
of length n, is a (α, β)-bounded weak source, if every Dn satisfies the following entropy
requirements:
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(i) Dn has min-entropy at least n− α, and

(ii) Dn has max-entropy at most n+ β.

If a family of distributions {Dn}n∈N satisfies only requirement (i), but not requirement (ii),
we call it an α-weak source (or a min-entropy source) instead.

The following generalization of Santha-Vazirani (SV) sources [35] to block sources [12, 16] is a
special case of (α, β)-bounded weak sources. Block sources are well-suited to describe both
physical random sources as well as certain random sources that have been “tampered with”
by an adversary [1].

Definition 2.3 (SV Block Source) A tuple of distributions D = (D1, . . . , Dt), each over the
set {0, 1}n of bitstrings of length n, is (n, γ)-Santha-Vazirani (SV) (for 0 < γ < 1) if for all
0 ≤ i ≤ t and for all x1, . . . , xi ∈ {0, 1}n,

(1− γ) · 2−n ≤ Pr
[
Di = xi

∣∣∣ x1 ← D1, . . . , xi−1 ← Di−1
]
≤ (1 + γ) · 2−n.

The original SV sources are a special case of Definition 2.3 that arises for n = 1. Every
(n, γ)-SV block source over {0, 1}tn is an (α, β)-bounded weak source where α = t · log(1 + γ)
and β = −t · log(1− γ).

Remark 2.1. Our complete analysis is also possible for sources that are only statistically
close to (α, β)-bounded weak sources such as sources in [25] that have a limited number of
outliers. We refer to Appendix B for both definitions and results for such sources.

3 Main Results
In this section we present our main results, which can be applied to a variety of cryptographic
notions.

3.1 Differential Indistinguishability

Traditional cryptography defines two machines X0 and X1 to be indistinguishable for a certain
class of distinguishers A if no distinguisher A ∈ A in this class is able to notice a difference
between an interaction with X0 and an interaction with X1. Formally, the concept of “noticing
a difference” is captured by requiring that any possible view of a distinguisher is (almost)
equally likely for both X0 and X1, i.e., the difference between the probability that A outputs
any given view in the interaction with X0 and the probability that A outputs the same view in
the interaction with X1 is negligible. We consider a variant of indistinguishability that allows
these probabilities to be also related by a multiplicative factor 2ε > 1, similar to the concept
of mutual pseudodensity [34] and differential privacy [20,33].

Definition 3.1 (Differential Indistinguishability) Two probabilistic machines X0 and X1
are (ε,δ)-differentially indistinguishable for a distribution {D`}`∈N over {0, 1}` for a positive
polynomial ` and a class A of adversaries (probabilistic machines) if for all A ∈ A, for all
sufficiently large k, for all possible outputs x of A, and for all b ∈ {0, 1},

Pr
[〈

A(1k)
∣∣∣Xb(1k, D`)

〉
= x

]
≤ 2ε Pr

[〈
A(1k)

∣∣∣X1−b(1k, D`)
〉

= x
]

+ δk.
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This definition allows to express many of the traditional cryptographic indistinguishability
notions [23, 29]. We discuss the impact of the multiplicative factor, that can (and must)
be interpreted carefully, in Section 6. For the traditional case of ε = 0 we speak of δ-
indistinguishability. The definition covers interactive and non-interactive notions, as well
as simulation-based notions. For information-theoretic indistinguishability, the class of
adversaries is the class A∞ of all probabilistic (possibly unbounded) machines and we have
δ = 0.3 Statistical indistinguishability can be expressed with the same class of adversaries
for δ > 0. Cryptographic (computational) indistinguishability can be achieved with the class
Appt of ppt machines with δ being a negligible function.4

3.2 Main Theorem

Traditional indistinguishability for uniform randomness directly implies differential indistin-
guishability for (α, β)-bounded weak sources. This is captured by the following theorem. It
allows us to easily give guarantees for cryptographic primitives whenever their security notions
can be expressed in terms of Definition 3.1.

Theorem 3.1. If two probabilistic machines X0 and X1 are δ-indistinguishable for a class of
probabilistic machines A and the family of uniform sources {Un}n∈N over {0, 1}n, then X0
and X1 are also (α+ β, 2α · δ)-differentially indistinguishable for A and any (α, β)-bounded
weak source over {0, 1}n.

Proof. We show the theorem by first proving a technical lemma about bounded weak distribu-
tions: Even though an (α, β)-bounded weak distribution is not negligibly close to a uniform
distribution, the parameters α and β give a bound on the discrepancy between the uniform
distribution and the bounded weak distribution.

Lemma 3.2. Let {Dn}n∈N be an (α, β)-bounded weak source over {0, 1}n and let {Un}n∈N
be a family of uniform sources over {0, 1}n. For all probabilistic machines A, for all k ∈ N
and for all possible outputs x of A,

Pr
[
A(1k, Dn) = x

]
≤ 2α Pr

[
A(1k, Un) = x

]
(a)

and Pr
[
A(1k, Un) = x

]
≤ 2β Pr

[
A(1k, Dn) = x

]
. (b)

Proof. Let {Dn}n∈N be an (α, β)-bounded weak distribution over {0, 1}n. By Definition 2.2,
Dn has min-entropy at least n− α and max-entropy at most n+ β. We start with (a). For
all values r0 ∈ {0, 1}n,

log
(Pr [Dn = r0]

Pr [Un = r0]

)
= log (Pr [Dn = r0])− log

(
2−n

)
≤ − min

y∈{0,1}n
(− log (Pr [Dn = y]))− log

(
2−n

)
≤ − (n− α) + n = α.

3We additionally drop the formulation “for sufficiently large k” in the case of information-theoretic security.
4Note that this is equivalent to requiring a negligible function for every adversary. [4]
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Using this inequality we can show (a) as follows. For all possible outputs x of A,

Pr
[
A(1k, Dn) = x

]
=

∑
r0∈{0,1}n

Pr
[
A(1k, r0) = x

]
Pr [Dn = r0]

≤
∑

r0∈{0,1}n

Pr
[
A(1k, r0) = x

]
· 2α · Pr [Un = r0]

≤ 2α Pr
[
A(1k, Un) = x

]
.

This shows (a). For (b), note that for all values r0 ∈ {0, 1}n, the probability Pr [Dn = r0] is
strictly larger than zero because β <∞. For all values r0 ∈ {0, 1}n,

log
(Pr [Un = r0]

Pr [Dn = r0]

)
= log

(
2−n

)
− log (Pr [Dn = r0])

≤ log
(
2−n

)
+ max
y∈{0,1}n

(− log (Pr [Dn = y]))

≤ −n+ (n+ β) = β.

Using this equation we can show (b) as follows. For all possible outputs x of A,

Pr
[
A(1k, Un) = x

]
=

∑
r0∈{0,1}n

Pr
[
A(1k, r0) = x

]
Pr [Un = r0]

≤
∑

r0∈{0,1}n

Pr
[
A(1k, r0) = x

]
· 2β · Pr [Dn = r0]

≤ 2β Pr
[
A(1k, Dn) = x

]
.

This completes the proof of Lemma 3.2.

Now we use the lemma to prove our main theorem. Let {Dn}n∈N be an (α, β)-bounded weak
source, and {Un}n∈N be the uniform source, both over {0, 1}n. Furthermore, let X0, X1 be
probabilistic (not necessarily polynomially bounded) machines, and let A ∈ A be an adversary
machine such that for a function δ,

Pr
[〈

A(1k)
∣∣∣X0(1k, Un)

〉
= x

]
≤ Pr

[〈
A(1k)

∣∣∣X1(1k, Un)
〉

= x
]

+ δ.

Using Lemma 3.2, we show that A behaves similarly on Dn, as otherwise a machine that
simulates

〈
A(1k)

∣∣∣X0(1k, r)
〉
(or

〈
A(1k)

∣∣∣X1(1k, r)
〉
) could distinguish {Dn}n∈N and {Un}n∈N.

Pr
[〈

A(1k)
∣∣∣X0(1k, Dn)

〉
= x

]
≤ 2α Pr

[〈
A(1k)

∣∣∣X0(1k, Un)
〉

= x
]

(1)

≤ 2α Pr
[〈

A(1k)
∣∣∣X1(1k, Un)

〉
= x

]
+ 2α · δ (2)

≤ 2α+β Pr
[〈

A(1k)
∣∣∣X1(1k, Dn)

〉
= x

]
+ 2α · δ (3)

Here, inequalities (1) and (3) follow from inequalities (a) and (b) in Lemma 3.2, respectively.
The remaining inequality (2) holds by assumption.
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Recall that every (n, γ)-SV block source over {0, 1}tn (Definition 2.3) is an (α, β)-bounded
weak source where α = t · log(1 + γ) and β = −t · log(1 − γ). With γ < 1/2, it holds that
β ≤ 2tγ and α ≤ 2tγ. Thus, we can instantiate Theorem 3.1 for SV block sources as follows:

Corollary 3.3. If two probabilistic machines X0 and X1 are δ-indistinguishable for a class
of probabilistic machines A and the family of uniform sources {Unt}nt∈N over {0, 1}nt, then
X0 and X1 are also (ε, 2εδ)-differentially indistinguishable for A and any family of (n, γ)-SV
block sources {Dnt}nt∈N over {0, 1}tn with γ ≤ 1

2 , where ε = γ · 4t.

Remark 3.1. Lemma 3.2 can also be interesting for sources with unbounded max-entropy.
In this case, β is infinitely large and consequently, inequality (b) does not yield interesting
guarantees anymore. However, for restricting undesirable events that are not based on indis-
tinguishability, inequality (a) suffices, which is in line with the results of Dodis and Yu [19].
We refer to Section 3.3 for a discussion.

Intuition on the Counter Direction of Theorem 3.1. Differential privacy [20] quantifies
the privacy provided by database query mechanisms: Intuitively, differential privacy requires
that the output of a query mechanism should not allow to distinguish similar databases better
than with a small multiplicative factor. Differentially private mechanisms are an intuitive
example that shows why the counter direction of Theorem 3.1 does not hold. If a mechanism
is differentially private, it is not necessarily computationally or even information-theoretically
indistinguishable, as that would conflict with a reasonably high utility. Such a mechanism
might reach a given value for ε when using imperfect randomness [15]. However, this does
not imply that with access to uniform randomness, the mechanism is δ-indistinguishable for
neighboring databases and a negligible function δ.

3.3 Unpredictability

So far we only considered the effect of (bounded) weak randomness on cryptographic in-
distinguishability notions. The security games for notions such as the binding property of
commitments, unforgeability of signatures and message authentication codes, or guessing
the key of an encryption scheme do not require indistinguishability. Instead, the adversary
typically has to predict a particular bitstring, which should only be possible with negligi-
ble probability. It is well-known that such unpredictability (or unbreakability) notions are
achievable even if an α-weak source is employed [14,16,19,30].

We further analyze how imperfect randomness influences the probability for guessing a
whole bitstring, e.g., for breaking the binding property of a commitment. The corresponding
security definitions typically require that no adversary has more than a negligible chance to
reach a certain bad event. We generalize the intuition of breaking a scheme by dividing a
game Z into two parts. The “normal game” Z0 and a judge Z1 that decides whether or not a
given string constitutes a break of the scheme.

Definition 3.2 (Unpredictability) Let Z = (Z0,Z1) be a probabilistic machine that may keep
state. We say that Z is δ-unpredictable for a class A of adversaries and for a distribution
{Dn}n∈N, if for all A ∈ A and for sufficiently large k,

Pr
[
Z1(a) = 1

∣∣∣ 〈A(1k)
∣∣∣Z0(1k, Dn)

〉
= a

]
≤ δ.
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We show that for all games that can be described as a unpredictability game and for which the
probability to win is negligible under uniform randomness, the probability is still negligible if
an α-weak source is used. We notice that min-entropy suffices for this result. We stress that
this result is in line with the results of Dodis and Yu [19].

Corollary 3.4. If a probabilistic machine Z = (Z0,Z1) that may keep state is δ-unpredictable
for a class of probabilistic machines A and consumes at most n bits of uniform randomness,
then Z is (2αδ)-unpredictable for A for any α-weak source {Dn}n∈N.

Proof. We reduce this corollary to Lemma 3.2 as follows: Let Z = (Z0,Z1) be a probabilistic
(not necessarily polynomially bounded) machine that may keep state. Given any adversary
A ∈ A, we construct a probabilistic machine B on input r ∈ {0, 1}n as follows. B simulates
the interaction between A and Z0(1k, r), yields an output a and simulates Z1 on a. If Z0 keeps
state for Z1, B also simulates this behavior. It holds that

Pr
[
Z1(a) = 1

∣∣∣ a← 〈
A(1k)

∣∣∣Z0(1k, Dn)
〉]

= Pr
[
B(1k, Dn) = 1

]
≤ 2α Pr

[
B(1k, Un) = 1

]
(4)

= 2α Pr
[
Z1(a) = 1

∣∣∣ a← 〈
A(1k)

∣∣∣Z0(1k, Un)
〉]

≤ 2α δ, (5)

where inequality (4) follows from Lemma 3.2 and inequality (5) holds by assumption.

3.4 Computational Differential Indistinguishability Guarantees

In the computational setting where adversaries are ppt machines, we can achieve a stronger
result: If we rely on a pseudorandom generator (PRG), we can expand a short seed from a
randomness source to polynomially many bits of pseudorandomness. This well-known property
is especially interesting here, as it allows us to apply Theorem 3.1 in a much broader form:
Virtually every classically secure protocol is differentially secure when only a short random
seed has been drawn from a bounded weak source and then expanded via a PRG, as this puts
a limit on the entropy loss imposed by the actual bounded weak source. We formalize this
observation in the following corollary, which is central to our work.

Corollary 3.5. If two probabilistic machines X0 and X1 are δ-indistinguishable for a class of
ppt machines A and uniform randomness, then X0 and X1 are also (α+β, 2α · δ)-differentially
indistinguishable for A if they draw their randomness from a PRG that is seeded with a
(α, β)-bounded weak source.

Proof sketch. As an intermediate step we consider the machines with a PRG that is seeded
with an uniformly random bitstring. Since the adversary is a ppt machine, it cannot distinguish
the scenario with the PRG from the scenario where uniform randomness is used. Then we
apply Theorem 3.1 to directly yield this result.

The above corollary also gives guarantees for protocols and security proofs in which the
amount of necessary randomness can be influenced by the adversary, e.g., by sending requests
to the machine.
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4 Application to Cryptographic Primitives
In this section we instantiate differential indistinguishability with several secrecy definitions,
such as indistinguishability under chosen ciphertext attacks for public-key encryption schemes,
hiding for commitments, and zero-knowledge for proof systems. These definitions serve as
examples for how to instantiate the notion and how to apply our main results to quantify
the secrecy loss. For each of the examples, we demonstrate the applicability of our results by
proving that the considered primitives achieve differential indistinguishability if they are used
with bounded weak sources.

4.1 Public-Key Encryption

For PKE, standard security definitions, e.g., indistinguishability under adaptive chosen ci-
phertext attack (IND-CCA) [23] can naturally be relaxed to use differential indistinguishability
instead of traditional indistinguishability.

Definition 4.1 ((ε, δ)-DIF-IND-CCA) A pair A = (A0,A1) of ppt oracle machines is an
IND-CCA adversary if A0 outputs two messages x0, x1 of the same length together with a state
s, A1 outputs a bit, and both A0 and A1 have access to decryption oracles as defined below. A
PKE scheme E = (Gen,Enc,Dec) has (ε, δ)-differentially indistinguishable encryptions under
adaptive chosen ciphertext attack for a randomness source {Dn}n∈N if for all IND-CCA
adversaries and for all sufficiently large k and bitstrings z of polynomial length in k, it holds
that Pr

[
P(0)
k,z = 1

]
< 2ε Pr

[
P(1)
k,z = 1

]
+ δ, where P (i)

k,z is the following probabilistic machine:

P(i)
k,z
··= (e, d)← Gen(1k)

((x0, x1), s)← ADec(d,·)
0 (1k, e, z)

r ← Dn

c← Enc(e, xi; r)

return ADecc(d,·)
1 (1k, s, c)

Here, Decc(d, ·) denotes a decryption oracle that answers on all ciphertexts except for c, where
it returns an error symbol ⊥. The randomness used by the encryption algorithm Enc is drawn
from Dn.

Note that (0, δ)-DIF-IND-CCA security is equivalent to traditional δ-IND-CCA security.

Encryption with Imperfect Randomness. Both the encryption algorithm and the key
generation algorithm require randomness. Dodis and Yu [19] show that even if weak sources are
used for the key generation of IND-CCA secure encryption schemes, the security is preserved.
However, this result does not apply when imperfect randomness is used by the encryption
algorithm. The next theorem, an application of Theorem 3.1, quantifies the secrecy loss
whenever the encryption algorithm has only access to an (α, β)-bounded weak source.

Theorem 4.1. Let E = (Gen,Enc,Dec) be any PKE scheme that is δ-IND-CCA secure under
the assumption that Enc consumes at most n bits of uniform randomness. Then E is (α+β, 2αδ)-
DIF-IND-CCA secure if Enc uses an (α, β)-bounded weak source {Dn}n∈N instead of a uniform
source.
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Proof. Let E = (Gen,Enc,Dec) be a public-key encryption scheme, let Appt be the class of
ppt machines, and let {Dn}n∈N be an (α, β)-bounded weak source. To simplify the notation
we write P (b,r)

k,z for simulating P (b)
k,z and using r ∈ {0, 1}n as the randomness for Enc. Let

X0(1k, r) ··= P
(0,r)
k,z and X1 ··= P

(1,r)
k,z with the modification that X0 and X1 additionally provide

a decryption oracle (as defined in Definition 4.1) to the adversary. Observe that by our
definition of X0 and X1, the following two statements hold:

(i) X0(1k, Un) and X1(1k, Un) are indistinguishable for the class Appt of adversaries if and
only if E is IND-CCA.

(ii) X0(1k, Dn) and X1(1k, Dn) are (ε, δ)-differential indistinguishability for the class Appt of
adversaries if and only if E is (ε, δ)-DIF-IND-CCA for {Dn}n∈N.

Thus, the claim follows immediately from Theorem 3.1.

Discussion. Theorem 4.1 enables us to provide meaningful guarantees if an IND-CCA secure
encryption scheme relies on an imperfect randomness, as long as the randomness used to
encrypt the ciphertext in question is drawn from a bounded weak source. If an encryption
scheme is (ε,δ)-DIF-IND-CCA secure, the adversary may learn that the probability that a
ciphertext contains a particular message m0 is 2ε times higher than the probability that it
contains another message m1. However, if ε is reasonably small, e.g., ε = 0.001 (and thus
2ε ≈ 1.001), both m0 and m1 are a plausible content of the ciphertext. In particular, the
adversary cannot reasonably believe or even convince a third party that m0 is the value that
has been encrypted. Moreover, the encryptor retains (a weak form of) deniability: She could
indeed have encrypted any message.

Imperfect Randomness in Both Key Generation and Encryption. Our results also
enable us to give a differential indistinguishability guarantee in the case when both the key
generation algorithm Gen and the encryption algorithm Enc make use of a bounded weak source.
If a PRG was used, seeded by a bounded weak random source, then we can immediately apply
Corollary 3.5 to derive a differential indistinguishability guarantee. In contrast to the result of
Dodis and Yu that requires the encryption scheme to be simulatable as defined by [19], which
excludes, e.g., stateful schemes, we do not require any such structural property of the scheme.5
If, for some reason, no PRG was used, one can still apply Theorem 3.1, but will naturally
yield weaker guarantees, as the combined randomness of Gen and Enc needs to be taken into
account (and moreover the security loss under composition is significant, as discussed below).

Multiple Encryptions. Theorem 4.1 states a guarantee only for a single encryption
(namely the encryption of one challenge message). However, it can be extended to the
encryption of a message vector. In particular, if a PRG is used (and thus the amount of
bounded weak randomness is limited to the seed of the PRG), Corollary 3.5 yields immediately
an differential indistinguishability guarantee with ε being independent of the number of
encrypted messages. If however, the encryption algorithm Enc is run several times with (fresh)
imperfect randomness, the entropy loss of the randomness can increase linearly in the number

5We discuss simulatability as well as the relation between our result and the result by Dodis and Yu [19] in
Section 6.2.
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of messages in the vector for SV block sources, and consequently, ε increases significantly.
We refer to Section 5.1 for a detailed discussion about this type of composition.

Other Security Definitions. Although we focus on IND-CCA security for PKE in this
section, the broad applicability of Theorem 3.1 allows to handle other security definitions such
as security under chosen plaintext attack (IND-CPA) similarly. The approach for presenting a
differential indistinguishability guarantee for such notions is exactly as the approach exemplified
here.

4.2 Commitments

A non-interactive commitment scheme C consists of a three algorithms Setup, Commit, and
Open. The Setup algorithm is run by a recipient6 and outputs public parameters pp. A sender
runs the Commit algorithm, which takes as input the public parameters pp and a message
m in the message spaceM. It outputs a commitment com as well as opening information
op. Correspondingly, the recipient runs the Open algorithm that takes as input the public
parameters pp, the commitment com and the opening information op. It outputs the message
m that has been committed to, or ⊥ if op is not valid opening information for the commitment
com under the public parameters pp.

A commitment scheme is information-theoretically hiding if the recipient, given only the
public parameters pp and the commitment com, cannot determine any information about the
message m. We relax this notion to a general hiding notion that allows for a multiplicative
secrecy loss.

Definition 4.2 (ε-Differentially Hiding Commitment Scheme) A non-interactive commitment
scheme C = (Setup,Commit,Open) over a message space M is information-theoretically ε-
differentially hiding for a random source {Dn}n∈N, if for all adversaries A ∈ A, for all pairs
of messages m0,m1 ∈M of the same length, and for all bitstrings pp (that represent public
parameters),

Pr [A(Commit(pp,m0)) = 1] ≤ 2ε Pr [A(Commit(pp,m1)) = 1] .

For ε = 0 and a uniform random source this is a standard definition for information-theoretically
hiding commitments.

With the notion of differential hiding at hand, we can provide a quantitative guarantee on
the security of a information-theoretically hiding commitment scheme if it is used with an
(α, β)-bounded weak source.

Theorem 4.2. Let C = (Setup,Commit,Open) be a non-interactive commitment scheme over
a message spaceM that is information-theoretically hiding (i.e., 0-hiding) as in Definition 4.2
in which Commit uses n bits of uniform randomness. C is (α + β)-differentially hiding if
Commit uses an (α, β)-bounded weak source {Dn}n∈N instead of a uniform source.

6The results in this section do not depend on this particular model. We restrict our attention to information-
theoretically hiding commitment schemes to be consistent with the model considered in Section 5.2. Conse-
quently, we stick to the strong scenario, in which the hiding property holds for all possible public parameters,
even for maliciously generated ones. We stress that the analysis in this section is analogously possible for
different models as well, e.g., for the “public parameter model“, in which the Setup algorithm is run by a
trusted third party.
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We refer to Appendix A.1 for a proof.

Other Definitions and Multiple Commitments. Essentially the same analysis can be
carried out for statistically hiding and computationally hiding commitments with the difference
that in the former case, we introduce an additive negligible value δ on the right hand side
of Definition 4.2, in the latter case we further only consider ppt adversaries. Furthermore,
a similar analysis is applicable to interactive commitment schemes. Theorem 4.2 presents
guarantees for single commitments. However, if the adversary is ppt and if the bounded
weak randomness was only used to seed a PRG, then by using Corollary 3.5 instead of
Theorem 3.1 we can give a (computational) ε-differentially hiding guarantee for polynomially
many commitments for ε = α+ β.

Binding Property with Imperfect Randomness. Whenever Theorem 4.2 is used to
show a scheme to be ε-differentially hiding for an (α, β)-bounded weak source, the binding
property is preserved (with a constant factor of 2α), if the receiver uses an (α, β)-bounded
weak source, which is in line with the results by Dodis and Yu [19]. The reason is that binding
is an “unpredictability property” as discussed in Section 3.3.

4.3 Zero-Knowledge Proofs

Our method also allows for relaxing traditional definitions based on the simulation paradigm,
e.g., zero-knowledge (ZK) proofs. The relaxation applies to the indistinguishability of real
views and simulated views: An (ε, δ)-ZK proof system is differentially secure in the sense that
the output of a simulator is almost indistinguishable, i.e., (ε, δ)-differential indistinguishability,
from the output of a verifier interacting with the real prover. In other words, a distinguisher
with access to the output of the verifier can have only a small multiplicative advantage
(quantified by ε) in guessing that an interaction with the real prover has been taken place, i.e.,
that new knowledge could have been learned at all. For sufficiently small values of ε, such a
guess is not convincing at all. For a malicious verifier, that means that everything that has
been learned about the witness could have been learned from the simulator with almost the
same probability.

An interactive proof system P = (P,V) for an NP-language L is a pair of ppt machines P
and V that both run on the same input x ∈ L. The prover P gets a witness w from the set
W (x) of witnesses for x as additional input, whereas the verifier V gets an auxiliary string z,
capturing previous knowledge.

Definition 4.3 ((ε, δ)-Differential Zero-Knowledge7) A proof system P = (P,V) is (ε, δ)-
differentially zero-knowledge for a randomness source {Dn}n∈N if for every ppt verifier machine
V∗, there is a ppt machine S (the simulator) such that the following distribution ensembles
are (ε, δ)-differentially indistinguishable in |x| for all ppt adversaries:

(i) {〈V∗(x, z)|P (x,w,Dn)〉}x∈L,z∈{0,1}∗ (i.e., the output of V∗ for arbitrary w ∈W (x))

(ii) {S(x, z)}x∈L,z∈{0,1}∗

For ε = 0 and a negligible function δ, this is the definition of computational ZK [23].
7Note that this definition is distinct from ε-knowledge [21], which allows the probabilities of the output bits

of a distinguisher to be related by a non-negligible additive value.
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Theorem 4.3. Let P = (P,V) be any proof system that is computationally ZK (i.e., (0, δ)-ZK
for negligible δ) and requires the prover to use n bits of uniform randomness. P is (α+β, 2αδ)-
differentially ZK if the prover P uses an (α, β)-bounded weak randomness source {Dn}n∈N
instead of a uniform randomness source.

We refer to Appendix A.2 for a proof. Note that Theorem 4.3 includes ZK proofs of knowledge,
because they do not differ from proofs of existence in the ZK property (but only in the
existence of an extractor).

Soundness. The soundness property is preserved if the proof system uses a weak source
instead of uniform randomness, similar to the binding property of commitments, which we
discuss in Section 4.2.

Randomness Source of the Simulator. Definition 4.3 assumes that the simulator has
access to uniform randomness. The intuition behind the definition of ZK is that everything
that is generated from an interaction with the prover could have been generated without any
interaction, using the simulator. Under the assumption that uniform randomness is available
in general, but the prover does not use it, the same intuition applies if we allow the simulator
to access uniform randomness.

Non-interactive Zero-Knowledge Proofs. Similar to interactive zero-knowledge proofs
(Section 4.3), a differential relaxation is also possible for the security definition of non-
interactive zero-knowledge proofs. In particular, we consider the case that not only the prover
uses a bounded weak source but also the common random string (CRS) is generated by a
bounded weak source.

Definition 4.4 (Non-interactive (ε, δ)-Differential Zero-Knowledge) A non-interactive proof
system P = (P,V) is single-theorem adaptive (ε, δ)-differential zero-knowledge for a random-
ness source {Dn}n∈N if there exists a polynomially bounded simulator machine S = (S1,S2)
such that for every function F (which is supposed to get the CRS σ and select a statement
x and a witness w ∈ W (x) adaptively) the following two ensembles are (ε, δ)-differentially
indistinguishable.

(i) {(σ, F (σ), π) | π ← P(x,w; r), (x,w)← F (σ), (σ, r)← Dn}k∈N

(ii)
{

(σ, F (σ), π)
∣∣∣ π ← S2(x, s), (x,w)← F (σ), (σ, s)← S1(1k)

}
k∈N

Note that both the CRS σ and the randomness r used by the prover are drawn from Dn. For
the sake of simplicity, we consider an adaptive single-theorem definition, i.e., the CRS can
only be used once. Additionally, we do not consider auxiliary input that is available to the
adversary. It is straight-forward to extend our results to a variant with auxiliary input as
well as to the multi-theorem setting. In the latter, the security guarantees decrease similar as
described in Section 5.1 if the prover (aside from the CRS) uses imperfect randomness.

Theorem 4.4. Let P = (P,V) be a single-theorem adaptive non-interactive proof system
that is δ-zero-knowledge if the prover and the generation of the CRS together require at most
n bits of uniform randomness. Then P is (α + β, 2αδ)-differential zero-knowledge, if an
(α, β)-bounded weak source {Dn}n∈N is used instead of a uniform source.
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The proof is analogous to the proof of Theorem 4.3 in Appendix A.2.
Note that Theorem 4.4 also covers the case that the sources of the prover and of the

trusted party that generates the CRS are independent because the combination of sources
can be considered as one single source.

5 Composability
We analyze the composability of differential indistinguishability in several scenarios. First, we
obtain a general composability result that comes, similar to the composability of differential
privacy, with a loss of secrecy. Second, we demonstrate that the secrecy can however improve,
if several differentially indistinguishable primitives that use independent randomness sources
are composed in a nested manner.

5.1 General Composability

Traditional indistinguishability with a negligible function δ and ε = 0 allows for polynomially
many compositions as a polynomial factor for the advantage of an adversary that might come
from from seeing multiple samples does not help the adversary substantially (the advantage
remains negligible). This is not true for differential indistinguishability in general, because the
(non-negligible) multiplicative factors can, under certain conditions, be accumulated as well.

For individual users we have shown that sequential composition of one or more primitives
is possible without an (additional) loss of secrecy if a PRG is used (Corollary 3.5). If,
however, several users within a protocol use imperfect randomness, the secrecy can degrade.
Interestingly, we can give a bound on the loss of secrecy that is similar to the composition
that occurs for differential privacy. We formalize a very general composition lemma that we
can instantiate to cope with several situations.

Lemma 5.1. Let A be a class of adversaries. If X0 and X1 are (ε, δ)-differentially indistin-
guishable for A, and X1 and X2 are (ε′, δ′)-differentially indistinguishable for A, then X0 and
X2 are (ε′′, δ′′)-differentially indistinguishable for A where ε′′ = ε+ ε′ and δ′′ = 2ε′δ + 2εδ′.

We refer to Appendix A.3 for a proof.
A direct application of the lemma is the above described scenario in which multiple users

(sequentially or concurrently) contribute to a protocol and use bad randomness. In this case,
the machine X1 can express an intermediate scenario that is used in a straightforward hybrid
argument, where for two users X1 is the only hybrid. Moreover, the lemma is applicable to
scenarios where an individual user draws from a random source several times (for several
primitives or protocols) instead of using a PRG, and also to compositions of differential
indistinguishability guarantees in information-theoretical settings, where a PRG cannot be
employed in the first place.

5.2 Nested Composability

In this section we consider in particular nested compositions of cryptographic primitives that
use independent randomness. An example is committing on a message using one randomness
source, and committing on the resulting commitment using a different independent randomness
source. While this particular example might be unrealistic in the setting of interactive protocols,
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our analysis demonstrates that it is an interesting scenario from a theoretic point of view. We
first formally define nested composition.

Definition 5.1 (Nested Composition) Let P be an interactive machine that outputs a bitstring
in a message spaceM. Furthermore, let {Qx}x∈M be a family of interactive machines indexed
by input bitstrings inM. The composed machine Q ◦ P is the machine that first runs P and,
after P has terminated with output x, runs Qx (with randomness that is independent of the
randomness of P). The output of Q ◦ P is the output of Qx. Given a two-part adversary
(A,B), which may keep state, we write 〈Q ◦ P|B ◦ A〉 for the interaction between Q ◦ P and the
two-part adversary. In this interaction, A interacts with P. When P terminates, Q is informed
about the termination and may output a bitstring that is passed to B, which then interacts
with Q. The output of 〈Q ◦ P|B ◦ A〉 is the output of B.

Intuitively, as two hiding operations have been performed, they should hide the message better
than only a single one. However, if two commitments make use of imperfect randomness, the
overall amount of used imperfect randomness is higher than for an individual commitment.
Consequently, the secrecy (measured in terms of the multiplicative factor 2ε) that Theorem 3.1
can guarantee for the nested commitments is worse than that of any individual commitment
alone, which is in line with Lemma 5.1 from the previous subsection. We analyze this
discrepancy and find that in such a case our intuition can prevail over our general composition
result, as the following theorem shows.8

Theorem 5.2. Let P0 and P1 be interactive machines that output bitstrings of the same
length in a message spaceM. Furthermore, let {Qx}x∈M be a family of interactive machines
indexed by input bitstrings inM.

If P0 and P1 are (εP, 0)-differentially indistinguishable for the class A∞ of all probabilistic,
not necessarily bounded adversaries and if for all bitstrings x0, x1 ∈M of the same length, Qx0

and Qx1 are (εQ, 0)-differentially indistinguishable for A∞, then for every two-part adversary
(A,B) ∈ A2

∞ (that may pass state from A to B), the composed machines Q ◦ P0 and Q ◦ P1 are
(ε, 0)-differentially indistinguishable with

ε = log
(

2εP+εQ + min{2εP , 2εQ}
2εP + 2εQ

)
.

In particular, if εP = εQ =·· ε′, then ε = log
(

2ε′+1
2

)
≈ ε′/2.

To prove this theorem, we prove the following technical claim first:

Claim 5.3. Let P0 and P1 be interactive machines that output bitstrings of the same length
in a message spaceM, and let {Qx}x∈M be a family of interactive machines indexed by inputs
bitstring inM. Furthermore, let A∞ be the class of all probabilistic, not necessarily bounded
adversaries. If the outputs of P0 and P1 are (εP, 0)-differentially indistinguishable for A∞,

8Note that in such situations our intuition is also backed by the fact that there are techniques for extracting
randomness from the two independent sources directly [31, 37]. However, in this section, our goal is not to
modify the randomness, but simply to analyze the impact of the nested composition.
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there exists a value P̂ ∈ [0, 1] such that for all bitstrings y and for all two-part adversaries
(A,B) ∈ A2

∞ (that may pass a state s from A to B),∑
s,x

Pr [〈B(s)|Qx〉 = y] · Pr [〈A|P0〉 = (s, x)] ≤ Q̂ · P̂ + Q̌ ·
(
1− P̂

)
(a)

∑
s,x

Pr [〈B(s)|Qx〉 = y] · Pr [〈A|P1〉 = (s, x)] ≥ Q̂ · P̌ + Q̌ ·
(
1− P̌

)
(b)

where P̌ ··= P̂ /2εP, Q̂ ··= max
s,x

Pr [〈B(s)|Qx〉 = y], and Q̌ ··= min
s,x

Pr [〈B(s)|Qx〉 = y].

Proof. Let P s,x
0 ··= Pr [〈A|P0〉 = (s, x)], and P s,x

1 ··= Pr [〈A|P1〉 = (s, x)]. If Q̂ = Q̌, then
P̂ ··= P s,x

0 fulfills both inequalities. If Q̂ 6= Q̌, define

P̂ ··=
∑

s,xQ
y
s,xP

s,x
0 − Q̌

Q̂− Q̌
.

For inequality (a), we have∑
s,x

Qys,xP
s,x
0 = Q̂ · P̂ + Q̌ ·

(
1− P̂

)

= Q̂ ·
∑

s,xQ
y
s,xP

s,x
0 − Q̌

Q̂− Q̌
+ Q̌ ·

(
1−

∑
s,xQ

y
s,xP

s,x
0 − Q̌

Q̂− Q̌

)

= (Q̂− Q̌) ·
∑

s,xQ
y
s,xP

s,x
0 − Q̌

Q̂− Q̌
+ Q̌

=
∑
s,x

Qys,xP
s,x
0 − Q̌+ Q̌.

For inequality (b), the difference between the left hand side and the right hand side is

∑
s,x

Qys,xP
s,x
1 − Q̂ ·

(∑
s,xQ

y
s,xP

s,x
0 − Q̌

2εP · (Q̂− Q̌)

)
− Q̌ ·

(
1−

∑
s,xQ

y
s,xP

s,x
0 − Q̌

2εP · (Q̂− Q̌)

)

=
∑
s,x

Qys,xP
s,x
1 − 1

2εP
·
(∑

s,x
Qys,xP

s,x
0 − Q̌

)
− Q̌

=
∑
s,x

Qys,xP
s,x
1 − 1

2εP
·
(∑

s,x
Qys,xP

s,x
0 −

∑
s,x

Q̌xP s,x
0

)
−
∑
s,x

Q̌P s,x
1

=
∑
s,x

(
Qys,x − Q̌

)
·
(
P s,x

1 − 1
2εP

P s,x
0

)
≥ 0.

The inequality in the last line holds, because P s,x
0 ≤ 2εP · P s,x

1 due to the differential indistin-
guishability of P0 and P1, as well as Qys,x ≥ Q̌.

We will use this technical claim to prove Theorem 5.2.
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Proof of Theorem 5.2. Let (A,B) ∈ A2
∞ be given. Let y ∈ {0, 1}∗. Furthermore, let Q̂, Q̌, P̂

and P̌ be as in Claim 5.3. Again, let Qys,x ··= Pr [〈B|Qx〉 = y)], P s,x
0 ··= Pr [〈A|P0〉 = (s, x)],

and let additionally P s,x
1 ··= Pr [〈A|P1〉 = (s, x)].

For all s and for all x, P s,x
0 = 0 is equivalent to P s,x

1 = 0, because P0 and P1 are (εP, 0)-
differentially indistinguishable. Similarly, Q̌ = 0 is equivalent to Q̂ = 0, as Qx0 and Qx1 are
(εQ, 0)-differentially indistinguishable for all x0, x1 ∈ M of the same length. If Q̌ = Q̂ = 0,
then

∑
s,xQ

y
s,xP

s,x
1 = 0 =

∑
s,xQ

y
s,xP

s,x
0 , which concludes the proof in this case.

Otherwise, let a ··= 2εP and b ··= Q̂/Q̌.9 Moreover, as Q̌ > 0, we have for all s and all x
that Qys,x > 0 and consequently

∑
s,xQ

y
s,xP

s,x
1 > 0. Furthermore,

∑
s,xQ

y
s,xP

s,x
0∑

s,xQ
y
s,xP

s,x
1
≤
Q̂ · P̂ + Q̌ ·

(
1− P̂

)
Q̂ · P̌ + Q̌ ·

(
1− P̌

) (6)

= aQ̂P̂ + aQ̌− aQ̌P̂ + abQ̂P̌ + Q̂− Q̂P̂(
Q̂ · P̌ + Q̌ ·

(
1− P̌

))
(a+ b)

= abQ̂P̌ + abQ̌(1− P̌ ) + aQ̂P̂ + aQ̌− aQ̌P̂ + Q̂− aQ̂(
Q̂ · P̌ + Q̌ ·

(
1− P̌

))
(a+ b)

= ab+ min{a, b}
a+ b

+ a(1− P̂ )(Q̌− Q̂) + Q̂−min{a, b}(Q̂P̌ − Q̌(1− P̌ ))(
Q̂ · P̌ + Q̌ ·

(
1− P̌

))
(a+ b)

, (7)

where inequality (6) follows from Claim 5.3. The first fraction on the right hand side of (7)
is the bound that we would like to demonstrate. It remains to show that second fraction is
smaller or equal to zero. Its denominator is clearly positive. In the case “min{a, b} = b”, the
enumerator is

a(1− P̂ )(Q̌− Q̂) + Q̂−min{a, b}(Q̂P̌ − Q̌(1− P̌ )) = a(Q̌− Q̂)(1− P̂ ) + b(Q̌− Q̂)P̌ ≤ 0,

because Q̂ ≥ Q̌ by definition. In the remaining case “min{a, b} = a”, an analogous calculation
demonstrates that the second fraction is non-positive. This concludes the proof.

Nested Composition of Information-Theoretically Hiding Commitment Schemes.
As a simple illustrative example, we consider a nested application of two information-
theoretically hiding commitment schemes, which together form a new information-theoretically
hiding commitment scheme. In particular, we assume that both schemes are only (ε, 0)-
differentially indistinguishable due to their usage of imperfect randomness. However, the
schemes have access to independent randomness sources. The composition of two commitment
schemes is defined as follows; we refer to Section 4.2 for a detailed definition of non-interactive
commit schemes and their hiding property.

Definition 5.2. Let C1 = (Setup1,Commit1,Open1) and C2 = (Setup2,Commit2,Open2) be
two non-interactive commitment schemes such that Commit1 is length-regular, i.e., for all

9Note that in this proof we consider the real bound b = Q̂/Q̌ for a given value y, which can be significantly
better than the known estimate 2εQ from our assumptions. In such cases, we will derive a result for some value
b ≤ 2εQ and yield a bound ab+min{a,b}

a+b
, which is smaller than the upper bound we wish to prove.
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public parameters pp, |m0| = |m1| implies that |Commit1(pp,m0)| = |Commit1(pp,m1)| with
probability 1. The composition of C1 and C2 is the following non-interactive commitment
scheme C1,2 = (Setup1,2,Commit1,2,Open1,2):

Setup1,2(1k) :
pp1 ← Setup1(1k)
pp2 ← Setup2(1k)
output (pp1, pp2)

Commit1,2((pp1, pp2),m) :
(com1, op1)← Commit1(pp1,m)
(com2, op2)← Commit2(pp2, com1)
output (com2, (op1, op2))

Open1,2((pp1, pp2), com2, (op1, op2)) :
com1 ← Open2(pp2, com2, op2)
if com1 = ⊥ then

output ⊥
else

output Open1(pp1, com1, op1)

As an simple application of Theorem 5.2, we show that the secrecy provided by the composed
commitment scheme is better than the secrecy provided by the individual schemes:

Theorem 5.4. If C1 is ε′-differentially hiding and C2 is ε′-differentially hiding, and C1 and
C2 use independent randomness, then the composed scheme C1,2 is ε-differentially hiding for
ε ≈ ε′/2.

Proof. Let (A,B) ∈ A2
∞ be a probabilistic, not necessarily bounded two-part adversary. The

experiment in the definition of ε-hiding (Definition 4.2) applied to C1,2 can be expressed in the
following interaction: Consider two interactive challenger machines P0 and P1 that have the
same public parameters pp1 and two different messages m0 and m1 hardwired. The output of
machine Pb is x ··= Commit(pp1,mb), which is not sent to the adversary A10 but is used as
input for the machine Qx, which has the public parameters pp2 hardwired. Qx outputs the
final commitment Commit(pp2, x) to the adversary B.

It is clear that this composed interaction is equivalent to the setting in the definition of
ε-hiding commitment schemes (Definition 4.2). By assumption, C1 is ε′-differentially hiding.
Thus the outputs of P0 and P1 are (ε′, 0)-differentially indistinguishable for A∞. Analogously,
since C2 is ε′-differentially hiding, we know that for all x0 and x1, the outputs of Q are
ε′-differentially indistinguishable for A∞. Thus we are in the situation of Theorem 5.2.
Consequently, in the aforementioned scenario, the interaction with P0 is (ε, 0)-differential
indistinguishable from the interaction with P1 for B for ε′ ≈ ε/2. Since this scenario is
equivalent to the experiment in the definition of ε-hiding, it follows that C1,2 is information-
theoretically ε-hiding.

Binding of the Composed Commitment Scheme. Note that the composed commitment
C1,2 scheme stays computationally binding without any significant loss of security if the
underlying individual schemes C1 and C2 are computationally binding: It is easy to see
that this implication holds when uniform randomness is available. Then, since the binding
property is an example for an unpredictability notion, the security of the composed scheme
under uniform randomness implies the security even under bounded weak randomness, by an
application of Corollary 3.4.

10Actually, A is only a dummy machine in this particular setting, because it does not interact with the
corresponding challenger machine at all.
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6 Interpretation and Analysis
In this section, we analyze and interpret the security guarantees provided by differential
indistinguishability. In particular, we study the impact of a multiplication factor, and the
influence of min- and max-entropy on differential indistinguishability.

6.1 Impact of a Multiplicative Factor

Similar to differential privacy, differential indistinguishability adds a multiplicative factor
to the inequality used in the traditional indistinguishability notion. We observe that a
multiplicative bound may express properties that are inexpressible by an additive bound.
While every multiplicative bound of the form Pr [A] ≤ 2ε Pr [B] + δ implies a purely additive
bound Pr [A] ≤ Pr [B] + δ + 2ε − 1 ≈ Pr [B] + δ + ε, the converse does not hold in general.
No matter which additive bound can be shown between two probabilistic events, there does
not necessarily exist a multiplicative bound. In particular, there are machines that are
δ-indistinguishable for some δ but not (ε, δ′)-indistinguishable for any ε such that δ′ < δ. We
refer to Appendix A.4 for a formal counterexample.

For secrecy properties, traditional indistinguishability intuitively states that no adversary
can learn any information about the secret, except with negligible probability. The multi-
plicative factor generalizes indistinguishability to additionally allow the adversary to learn
information about the secret with more than a negligible probability, as long as the loss of
secrecy is bounded; e.g., if ε is a small constant then differential indistinguishability ensures
that the owner of the secret retains deniability by introducing doubt for the adversary.

Besides differential privacy, a multiplicative factor has also been used to achieve a spe-
cialized relaxation of semantic security in the presence of efficient adversaries that may
tamper with an SV source [1, App B.4], and additionally for a security analysis of anonymous
communication protocols [2, 3].

Example. Let us assume that Alice participates in an e-voting protocol based on, e.g., a
commitment scheme. If the random source that she uses to seed her PRG turns out to be an
(α, β)-bounded weak source, the commitments are still ε-differently hiding, where ε = α+ β
is a small constant. Assume that Alice can vote for one of two popular candidates, say,
Bob and Charlie, and she chooses to vote for Bob. In the traditional indistinguishability
case, a non-negligible additive difference in the guarantee could result from a non-negligible
probability of leaking the vote, which is highly unsatisfactory. The multiplicative factor 2ε,
however, allows us to guarantee that both cases will still maintain non-zero probability and no
distinguisher can be sure whether Alice voted for Bob or for Charlie. Consider a distinguisher
that only outputs, say ‘1’ if it is certain that the vote was cast for Bob, and ‘0’ in all other
cases. Such a distinguisher is affected by the multiplicative bound as the output ‘1’ is almost
equally probable in all cases. Moreover, if the probability of outputting ‘1’ is zero when the
vote was cast for Charlie, then differential indistinguishability implies that the probability of
outputting ‘1’ is zero when the vote was cast for Bob.

Notice that the same analysis applies if a negligible additive value δ 6= 0 is present. In this
case, there might be a negligible chance for the adversary to be certain about the vote, but in
all other cases, deniability is preserved.
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6.2 Influence of Min- and Max-Entropy

The literature on imperfect randomness has focused on “weak (entropy) sources” (called
α-weak sources in this paper), because a non-trivial amount of min-entropy suffices for many
applications. It is known to be sufficient to achieve unpredictability-based definitions, i.e.,
security notions in which the adversary has to guess a whole bitstring, e.g., the binding property
of commitments and unforgeability of signatures and message authentication codes [14, 16, 30]
(see also Section 3.3).

Recently, Dodis and Yu [19] have extended this result significantly by showing that if
such an unpredictability game can be considered a part of an indistinguishability game (e.g.,
for an encryption scheme with a weakly generated key) and if a simulatability condition
proposed by the authors holds, then min-entropy also suffices for the indistinguishability
game. In particular, they consider a primitive that can be divided into a setup phase
(generating setup elements such as a key pair) and a simulatable (i.e., stateless and repeatable)
indistinguishability game phase. They show that indistinguishability for such a primitive
that can be preserved despite the setup phase (but not the game phase!) employing an
α-weak source instead of uniform randomness. Here, the security notion under consideration
is indeed divided. The setup phase has some, usually not explicitly specified, unpredictability
notion (e.g., no adversary must be able to guess a correct key), and a corresponding game.
Nevertheless, due to the impossibility result by Dodis et al. [16], whenever only min-entropy is
ensured, a secrecy guarantee cannot be achieved in general, but only for certain schemes and
under certain conditions. We discuss this in detail for public-key encryption in Section 4.1.

If, however, the randomness source has additionally a bounded max-entropy, generic
results are possible; in particular a differential secrecy guarantee is still possible for a secrecy
notion that is not simulatable (as defined by Dodis and Yu [19]), when an (α, β)-bounded
weak source is used for generating the key. More importantly, such a differential guarantee is
achievable when bounded weak randomness is used by the encryption algorithm itself.

Interestingly, max-entropy on its own is not sufficient for giving meaningful guarantees.
If only the max-entropy of a source is bounded, the source could still output one individual
element with a very high probability such that the probability over the other elements is
evenly distributed. Therefore, we require both min-entropy and max-entropy measures for
giving reasonable quantitative guarantees in all cases for which none of the specialized (e.g.,
unpredictability-based) solutions is applicable.

6.3 Relation to Differential Privacy and Sensitivity

Differential privacy [20] quantifies the privacy provided by database query mechanisms:
Intuitively, differential privacy requires that the output of a query mechanism should not
allow to distinguish similar databases better than with a small multiplicative factor. Both in
terms of the definition and in terms of the small, but usually non-negligible multiplicative
factor, differential privacy and differential indistinguishability are closely related. We find this
relation to be helpful for interpreting the guarantees and for understanding the drawbacks
of differential indistinguishability. Differential privacy is influenced by the sensitivity of a
statistical query, i.e., the amount of influence individual database records can have on the
output of the query. Typical differential private mechanisms sanitize their output by adding
random noise to guarantee a certain ε-level of privacy; the amount of added noise directly
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depends on the sensitivity.
Although there are neither databases nor the concept of utility (in the same sense as

differential privacy) in our setting, the fact that a bounded weak source is differentially
indistinguishable from a uniform source is analogous to the differential privacy of a query
mechanism. From this point of view, the missing entropy of the weak source corresponds
directly to the sensitivity in differential privacy.

This relation between sensitivity and entropy is interesting for sources that can be analyzed
in a block-by-block manner, e.g., (n, γ)-SV sources. For such a source the entropy loss and
thus the “sensitivity” is directly associated with the parameter γ and the amount of blocks
that are drawn from this source. The higher the sensitivity, i.e., the more randomness
is drawn by honest parties, the smaller γ must be to allow for guaranteeing ε-differential
indistinguishability for a given value of ε. Clearly, the bias and thus the entropy loss in a
(1, γ)-SV source can be arbitrarily increased, e.g., by drawing more random bits and taking
the majority vote over them. Although this amplification does not make a difference for
uniform randomness, it may increase the bias of the bits for SV sources. Therefore, for SV
sources, the amount of randomness is a necessary parameter that influences the security.

7 Future Directions
Our work presents a novel view on the relation between weak randomness and indistinguisha-
bility, and it naturally leads to many more interesting questions.

For example, many indistinguishability-based definitions such as IND-CPA and semantic
security for public-key encryption have been shown to be equivalent. Which of these equiv-
alences hold for their differentially indistinguishable counterparts? A multiplicative factor
has proven to be useful in several cases [1–3,20]. Can it be used in other scenarios such as
leakage-resilient cryptography [8, 22]? For example, can one give differential guarantees in
cases where the adversary learns more than allowed by existing leakage-resilient schemes?
Since we have seen that it is possible to improve the multiplicative factor at least in the
information theoretical-case, a natural next step is to determine whether such possibilities
also exist for differential indistinguishability in the computational setting.
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A Postponed Proofs

A.1 Proof of Theorem 4.2 (Commitments)

Proof. Let C = (Setup,Commit,Open) be an information-theoretically hiding non-interactive
commitment scheme over the message spaceM such that Commit uses at most {0, 1}n random
bits. Let {Dn}n∈N be an (α, β)-bounded weak source and {Un}n∈N be the uniform distribution
over {0, 1}n. Furthermore, let A be the set of all probabilistic (not necessarily polynomially
bounded) machines.

We define the machines X0 and X1 as: Xb(1k, r) ··= receive pp and (m0,m1) from A and
output Commit(pp,mb) using r as randomness. Observe that by our definition of X0 and X1,
the following two statements hold:

(i) X0(1k, Un) and X1(1k, Un) are indistinguishable for the class A of adversaries if and only
if C is information-theoretically hiding.11

(ii) X0(1k, Dn) and X1(1k, Dn) are (ε, 0)-differential indistinguishability for the class A of
adversaries if and only if C is ε-differentially hiding for {Dn}n∈N.

Thus, the claim follows immediately from Theorem 3.1.

A.2 Proof of Theorem 4.3 (Zero-Knowledge Proofs)

Proof. Let A be a machine in the class Appt of all probabilistic polynomial-time adversaries.
Further, let F be an arbitrary function that maps each security parameter k to a triple
(x,w, z) consisting of a statement x ∈ L with |x| = k, a corresponding w ∈ W (x), and a
auxiliary string z.

We define machines X0(1k, r) and X1(1k, r) as follows: Both X0 and X1 use F (1k) to
generate a triple (x,w, z).12 X0(1k, r) runs 〈P(x,w; r)|V∗(x, z)〉 and sends the output of
V∗(x, z), whereas X1(1k, r) ignores r, runs S(x, z) and sends its output. (Recall that the
simulator has access to uniform randomness.)

Observe that X0 and X1 are (ε, δ)-differentially indistinguishable if and only if P = (P,V)
is (ε, δ)-zero-knowledge. In particular, the goal of the polynomially bounded adversary A is to
distinguish between the machines X0 and X1, which simulate {〈V∗(x, z)|P (x,w; r)〉}x∈L,z∈{0,1}∗
and {S(x, z)}x∈L,z∈{0,1}∗ , respectively. Note that A has access to the statement x and the
auxiliary string z, because it can be contained in the output of V∗(x, z).

Thus, Theorem 3.1 implies the claim.

A.3 Proof of Lemma 5.1 (General Composition)

Proof. Given any adversary A ∈ A, for sufficiently large k and every possible output x of A,
applying the definition of differential indistinguishability for X0 and X1 as well as X1 and X2

11Since Definition 4.2 required the scheme to be secure for all values pp, m0, m1, the values can also be
chosen by the (unbounded) adversary A.

12Note that F might not be computable. However, it can be verified that Theorem 3.1 as well as the
underlying Lemma 3.2 hold even in the case that the adversary has to distinguish between the outputs of
general functions. We have chosen to present the current formulation to stay consistent with common notions.
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yields

Pr
[〈

A(1k)
∣∣∣X0(1k)

〉
= x

]
≤ 2ε Pr

[〈
A(1k)

∣∣∣X1(1k)
〉

= x
]

+ δ

≤ 2ε(2ε′ Pr
[〈

A(1k
∣∣∣X2(1k)

〉
= x

]
+ δ′) + δ

= 2ε+ε′ Pr
[〈

A(1k)
∣∣∣X2(1k)

〉
= x

]
+ δ + 2εδ′

≤ 2ε+ε′ Pr
[〈

A(1k)
∣∣∣X2(1k)

〉
= x

]
+ 2ε′δ + 2εδ′.

Symmetrically, we obtain the opposite bound

Pr
[〈

A(1k)
∣∣∣X2(1k)

〉
= x

]
≤ 2ε′+ε Pr

[〈
A(1k)

∣∣∣X0(1k)
〉

= x
]

+ 2εδ′ + 2ε′δ.

A.4 On Additive and Multiplicative Bounds (Section 6.1)

Given any arbitrary function δ with 1 ≥ δk > 0, we construct a commitment scheme C such
that for every adversary there is an additive bound of δ (C is δ-hiding), but there is no pair
(ε, δ′) with δ′k < δk (for sufficiently large k) such that C is (ε, δ′)-differentially hiding. This
shows that no matter which additive bound can be shown between two probabilistic events,
there does not necessarily exist a non-trivial multiplicative bound, i.e., a multiplicative bound
that could be used to improve on the additive bound.

Proof. Let CIT be an information-theoretically hiding commitment scheme. We construct
C = (S,R) from CIT as follows. For security parameter k, C behaves like CIT but with
probability δk, the algorithm S additionally leaks the message. Clearly the scheme is δ-hiding.
Consider the distinguisher A that sends two messages m0,m1 to the challenger for the hiding
game. Only if S leaks m0, A outputs 0. In all other cases, A outputs 1. Let ε ≥ 0 and δ be
functions with δ′k < δk for sufficiently large k. For such k,

Pr
[〈

A(1k)
∣∣∣S(1k,m0)

〉
= 0

]
= δ > δ′ = 2ε 0 + δ′ = 2ε Pr

[〈
A(1k)

∣∣∣S(1k,m1)
〉

= 0
]

+ δ′.

Consequently, C is not (ε, δ′)-differentially hiding.

B Approximate (α, β)-Bounded Weak Sources
In this section we give a definition for sources that are only statistically close to bounded weak
sources. To do so, we first introduce a relaxed variant of entropy, which is in line with [25].

B.1 Approximate Definitions

Definition B.1. Given a distribution D over the set X and another set Y ⊆ X, we use the
following approximate measures of entropy:

• The Y-min-entropy of D is Hmin(D) ··= miny∈Y − log Pr[D = y]);

• The Y-max-entropy of D is Hmax(D) ··= maxy∈Y − log Pr[D = y]).
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Definition B.2. A family of distributions {Dn}n∈N, each over the set {0, 1}n of bitstrings
of length n, is a δ-approximate (α, β)-bounded weak source, if for every Dn, there is a set
Y ⊆ {0, 1}n such that the following entropy requirements are satisfied:

(i) Dn has Y -min-entropy at least n− α.

(ii) Dn has Y -max-entropy at most n+ β.

(iii) max(Pr [Dn /∈ Y ] ,Pr [Un /∈ Y ]) ≤ δ.

Using these approximate entropy measures, we can now define approximate bounded weak
sources, which are a slight generalization of balanced sources (with bias at most d) from [25],
in which α = β = log(1 + d) and where δ is a negligible function.

B.2 Main Result for Approximate Bounded Weak Sources

We continue by adopting our main result for δ-approximate (α, β)-bounded weak sources.

Lemma B.1. Let {Dn}n∈N be a δ-approximate (α, β)-bounded weak source over {0, 1}n and
let {Un}n∈N be a family of uniform sources over {0, 1}n. For all probabilistic machines A and
for all possible outputs x of A,

Pr
[
A(1k, Dn) = x

]
≤ 2α Pr

[
A(1k, Un) = x

]
+ δ (a)

and Pr
[
A(1k, Un) = x

]
≤ 2β Pr

[
A(1k, Dn) = x

]
+ δ. (b)

Proof. Let a δ-approximate (α, β)-bounded weak source {Dn}n∈N over {0, 1}n be given. By
Definition B.2, for every Dn, there is a set Y ⊆ {0, 1}n such that Dn has Y -min-entropy at
least n− α and Y -max-entropy at most n+ β and max(Pr [Dn /∈ Y ] ,Pr [Un /∈ Y ]) ≤ δ.

We start by proving (a). For all values r0 ∈ Y ,

log
(Pr [Dn = r0]

Pr [Un = r0]

)
= log (Pr [Dn = r0])− log

(
2−n

)
≤ −min

y∈Y
(− log (Pr [Dn = y]))− log

(
2−n

)
≤ − (n− α) + n

= α.

Using this inequality we can show (a) as follows. For all possible outputs x of A,

Pr
[
A(1k, Dn) = x

]
=
∑
r0∈Y

Pr
[
A(1k, r0) = x

]
Pr [Dn = r0]

+
∑

r0∈{0,1}n\Y
Pr
[
A(1k, r0) = x

]
Pr [Dn = r0]

≤

∑
r0∈Y

Pr
[
A(1k, r0) = x

]
· 2α · Pr [Un = r0]

+ Pr [Dn /∈ Y ]

≤ 2α · Pr
[
A(1k, Un) = x

]
+ δ.
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This shows (a). For (b), note that for all values r0 ∈ Y the probability Pr [Dn = r0] is strictly
larger than zero because β <∞. For all values r0 ∈ Y ,

log
(Pr [Un = r0]

Pr [Dn = r0]

)
= log

(
2−n

)
− log (Pr [Dn = r0])

≤ log
(
2−n

)
+ max

y∈Y
− log (Pr [Dn = y])

≤ −n+ (n+ β)
= β.

Using this equation we can show (b) as follows. For all possible outputs x of A,

Pr
[
A(1k, Un) = x

]
=
∑
r0∈Y

Pr
[
A(1k, r0) = x

]
Pr [Un = r0]

+
∑

r0∈{0,1}n\Y
Pr
[
A(1k, r0) = x

]
Pr [Un = r0]

≤

∑
r0∈Y

Pr
[
A(1k, r0) = x

]
· 2β · Pr [Dn = r0]

+ Pr [Un /∈ Y ]

≤ 2β · Pr
[
A(1k, Dn) = x

]
+ δ.

This completes the proof.

We can use this result to show a variant of our main theorem for approximate (α, β)-bounded
weak sources.

Theorem B.2. If two probabilistic machines X0 and X1 are ∆-indistinguishable for a class of
probabilistic machines A and the family of uniform sources {Un}n∈N over {0, 1}n, then X0 and
X1 are also (α+β, 2α(∆ + δ) + δ)-differentially indistinguishable for A and any δ-approximate
(α, β)-bounded weak source.

The proof is analogous to the proof of Theorem 3.1.
Note that this result is also applicable for non-negligible δ; however, the resulting guarantees

are not applicable to most cryptographic secrecy notions, as they would lead to a non-negligible
additive factor.
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