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Abstract

We study the asymptotic-capacity-achieving score function that was recently proposed by
Oosterwijk et al. for bias-based traitor tracing codes. For the bias function we choose the
Dirichlet distribution with a cutoff. Using Bernstein’s inequality and Bennett’s inequality,
we upper bound the false positive and false negative error probabilities. From these bounds
we derive sufficient conditions for the scheme parameters. We solve these conditions in the
limit of large coalition size c0 and obtain asymptotic solutions for the cutoff, the sufficient
code length and the corresponding accusation threshold. The code length converges to its
asymptote approximately as c

−1/2
0 , which is faster than the c

−1/3
0 of Tardos’ score function.

1 Introduction

1.1 Traitor tracing

Forensic watermarking is a means for tracing unauthorized redistribution of digital content. Before
distribution, the content is modified by embedding an imperceptible watermark, which plays the
role of a personalized identifier. When an unauthorized copy of the content is found, a tracing
algorithm outputs a list of suspicious users, based on the watermark detected in this copy.
The most powerful attacks against watermarking are collusion attacks, in which multiple attackers
(the ‘coalition’) combine their differently watermarked versions of the same content; the observed
differences point to the locations of the hidden marks and allow for a targeted attack.
Collusion-resistant codes have been specifically designed as a defense against collusion attacks:
when codewords from such a code are embedded into the content, the surviving parts of the
watermark, after the collusion attack, still contain enough information to identify (some of the)
attackers, provided that the coalition is not too large.
In the past two decades several types of collusion-resistant codes have been developed. The most
popular type in the recent literature is the class of bias-based codes. These were introduced by G.
Tardos in 2003. The code construction consists of two steps: first a sequence of biases is generated,
one for each position in the content; then the watermark symbols for each user are randomly drawn
according to these biases. The original paper [22] was followed by a flurry of activity, e.g. improved
analyses [4, 8, 9, 12, 21, 26], code modifications [11, 17, 18], decoder modifications [1, 7, 15, 20]
and various generalizations [6, 23, 24, 27]. The advantage of bias-based versus deterministic codes
is that they can achieve the asymptotically optimal relationship ` ∝ c20 between the sufficient code
length ` and the coalition size c0 to be resisted.

1.2 Capacity-achieving simple decoder

Two kinds of tracing algorithm can be distinguished: (i) simple decoders, which assign a score to
single users independent of the watermarks of other users, and (ii) joint decoders [1, 7, 15], which
assign scores to sets of users and are typically more powerful, but also require more computational
resources. Efficient joint decoders typically employ a simple decoder as a bootstrapping step.
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The performance of a traitor tracing code is often measured by looking at the sufficient code
length ` as a function of the coalition size c0 to be resisted and the imposed low error rate.
Equivalently, one can look at the fingerprinting rate, which is defined as the fraction logq n

` , where
q is the size of the alphabet and n is the number of users. The numerator corresponds to the
number of q-ary symbols needed to point out one of the n users; the denominator is the number of
symbols used to convey this ‘message’. Hence the fingerprinting rate has a natural interpretation
as the fraction of codeword symbols that actually encodes the ‘message’, i.e. the identifying
information that allows for tracing. The fingerprinting rate is a figure of merit that can be used
to fairly compare codes which have different alphabet size. The fingerprinting capacity, which can
be computed information-theoretically, is an upper bound on the fingerprinting rate that can be
achieved against colluders who employ an optimal strategy against the tracing scheme. It was
found by Boesten and Škorić [5] that the asymptotic1 capacity is given by

C =
q − 1

2c20 ln q
. (1)

Huang and Moulin [10] found the location of the corresponding asymptotic saddlepoint: the
strongest attack is the so-called interleaving attack, and the best bias distribution is the Dirichlet
distribution with concentration parameter 1/2. (See Section 2.) For the colluders as well as the
tracer it is bad to depart from the saddlepoint. If the colluders move away from it, the tracer can
achieve a higher fingerprinting rate; if the tracer moves away, the colluders can launch a stronger
attack which reduces the rate.
Oosterwijk et al. [19] devised a simple decoder that reaches asymptotic capacity. The possibility
of such an achievement was foreseen in [10], where it was shown that the simple decoder capacity
becomes equal to the joint decoder capacity as c0 goes to infinity.

1.3 Contributions and outline

In this paper we analyze the performance of the capacity-achieving simple decoder of [19] in the
Restricted Digit Model.

• Following the approach of [25], we use Bernstein’s inequality and Bennett’s inequality to
upper bound the false positive and false negative error probability, respectively. From these
bounds we derive conditions on the code parameters (code length, cutoff, threshold) such
that the error probabilities are sufficiently low.

• We determine the asymptotics of the sufficient code length in the direct vicinity of the
saddlepoint.

• We find that the optimal choice for the cutoff τ is given by τ ∝ c−γ0 , with γ slightly larger than
1/2. With this choice, the code length approaches its saddlepoint value with a correction
term of order cγ−1

0 ≈ c
−1/2
0 . Thus, convergence to the limit is faster than in the case of the

binary Tardos score, where the correction is of order c−1/3
0 [12].

• Our analysis yields a recipe for placing the accusation threshold as a function of the innocent
user score variance. This differs from the case of the Tardos score function [22, 23], where
the threshold is fixed.

In Section 2 we briefly review bias-based traitor tracing, the asymptotic saddlepoint, and the
asymptotic-capacity-achieving score function. We also list the inequalities of Bernstein and Ben-
nett. In Section 3 we study the statistical properties of an innocent user’s score and the coalition’s
collective score. In Section 4 we derive the bounds on the error rates and the sufficient conditions
on the code parameters. The asymptotics of the sufficient code length are treated in Section 5.

1Throughout this paper, the term asymptotic refers to the limit of large coalition size.
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2 Preliminaries

2.1 Bias-based tracing using the asymptotically optimal simple decoder

2.1.1 Notation

The number of users is denoted as n, and the code length (the number of positions in the content)
as `. We define [n] = {1, . . . , n}. The alphabet isQ, with size |Q| = q. The symbols in the alphabet
have no natural ordering. The bias in position i is denoted as p(i). The bias is a q-dimensional
vector, with components p(i)

α ∈ [τ, 1− (q − 1)τ ], α ∈ Q. The parameter τ � 1 is called the cutoff.
For each i the bias satisfies |p(i)| = 1, where | · · · | denotes the 1-norm, i.e

∑
α∈Q p

(i)
α = 1. We will

often use multi-index notation: for a scalar z, the notation pz stands for
∏
α∈Q p

z
α; for a vector m,

the notation pm stands for
∏
α∈Q p

mα
α . We introduce the q-component vector 1q = (1, 1, . . . , 1).

The notation δxy stands for the Kronecker delta.

2.1.2 Code generation

The bias vectors p(i) are drawn independently from a (truncated) Dirichlet distribution F with
concentration parameter κ > 0,

F (p) = p−1+κ/Bτ (κ1q) (2)

Bτ (κ1q) =
∫ 1−(q−1)τ

τ

dqp δ(1− |p|) p−1+κ. (3)

The δ in the integral is a Dirac delta function; it ensures that the condition |p| = 1 is enforced.
The τ is called the cutoff parameter. Note that pα ∈ [τ, 1 − (q − 1)τ ]. Therefore τ ≤ 1/q must
hold, for otherwise the interval is empty (and we would get |p| > 1).
For τ = 0 the normalization constant (3) evaluates to a generalized Beta function. Let z ∈ (0,∞)q

be a vector; then the Beta function B(z) is defined as B(z) = [
∏
α Γ(zα)]/Γ(

∑
β zβ), where Γ is

the Gamma function. Hence B0(κ1q) = B(κ1q) = [Γ(κ)]q/Γ(qκ).
In the asymptotic saddlepoint it holds that τ = 0 and κ = 1/2. For large but finite c0 the
saddlepoint lies close to the asymptotic saddlepoint, but it is not known exactly where. It is
known that for finite c0 the optimal bias distribution is a discrete distribution [18, 11, 13], with
a number of discrete pα values proportional to c0. In spite of this, we will use the continuous
probability density (2). Our motivation is that we only investigate asymptotics. The cutoff τ will
depend on c0.
The code word assigned to user j is denoted as a row vector Xj = (Xj1, . . . , Xj`). The set of
codewords is arranged in a code matrix X. The elements of the code matrix are independently
generated according to the biases p(1), . . . ,p(`) as follows: Pr[Xji = α] = p

(i)
α .

2.1.3 Collusion attack

The coalition is a subset C ⊂ [n] of users, with size |C| = c. We explicitly make the distinction
between the actual coalition size c and the parameter c0 in the code construction, which is the
maximum coalition size that can be resisted. The colluders see a submatrix XC of X. The symbol
‘tallies’ are defined as follows,

m(i) = (m(i)
α )α∈Q ; m(i)

α = |{j ∈ C : Xji = α}|. (4)

In words: m(i)
α is the number of colluders that received symbol α in position i.

Based on XC the colluders produce an output y = (y1, . . . , y`). For our analysis we adopt the
Restricted Digit Model as the attack model: for any i ∈ [`], the output yi is only allowed to be
a symbol that the colluders have observed in position i. The strategy for choosing an output is
allowed to be probabilistic. We adopt a number of frequently made assumptions about the attack
strategy.
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1. Symbol symmetry. The strategy is invariant under permutation of the alphabet for each
position independently. This assumption is motivated by the lack of a natural ordering of
the alphabet.

2. Colluder symmetry. The strategy is invariant under permutation of the colluders. (In other
words, the colluders equally share the risk.) This assumption is motivated by the fact that
breaking colluder symmetry will make it easier for the tracer to find at least one colluder.

3. Position symmetry. The same strategy is applied in each position i ∈ [`], and it does not
depend on any Xjk values with k 6= i. Motivation: asymptotically the optimal attack must
be position-symmetric [16].

When assumptions 2 and 3 hold, the strategy can be parametrized by a set of probabilities that
depend only on the ‘local’ tallies: in position i, the probability of outputting symbol yi is a function
of only m(i). Omitting the position index, this is denoted as

θy|m = Pr[colluders output y|the tally is m]. (5)

Furthermore, if assumption 1 holds as well, it is possible [21] to re-parametrize this as

Ψb(x) = θy|m for {my = b, and m without the y component is x}. (6)

In other words, Ψb(x) is the coalition’s probability of outputting a symbol given that it has tally b,
and that the other tallies are x. The probability Ψb(x) is invariant under permutation of x.

2.1.4 Simple decoder

The tracer notices the pirated copy with watermark sequence y ‘in the wild’. Based on y and X
he tries to find at least one colluder. The asymptotic-capacity-achieving simple decoder of [19]
works as follows: for each user j ∈ [n] a score Sj =

∑
i∈[`] S

(i)
j is computed, where

S
(i)
j = h(Xji, yi,p

(i)) with h(x, y,p) =
δxy
py
− 1. (7)

Note that we normalized the function h differently from [19], by a factor
√
q − 1, for notational

brevity. The score function (7) has the special property of being ‘strongly centered’: for any p
and y (we are omitting the position index) the expected score of an innocent user is zero.∑

x∈Q
pxh(x, y,p) =

py
py
−
∑
x∈Q

px = 0. (8)

The collective score of the coalition is written as SC ,

SC =
∑
j∈C

Sj . (9)

The tracer makes a list L of ‘suspicious’ users, whose score exceeds a threshold Z,

L = {j ∈ [n] : Sj > Z}. (10)

2.1.5 Measuring the performance

Two types of error can occur: a False Positive, with PFP defined as the probability that a fixed
innocent user gets added to L; and a False Negative, with PFN defined as the probability that
none of the colluders is found,

PFP = Pr[j ∈ L] for fixed innocent j ; PFN = Pr[C ∩ L = ∅] (11)
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The tracer demands that PFP ≤ ε1 and PFN ≤ ε2, where ε1 and ε2 are constants, typically with
ε1 � ε2.
The code length ` and threshold Z are often parametrized as

` = Ac20 ln 1
ε1

; Z = Bc0 ln 1
ε1
. (12)

This parametrization is motivated by the fact that asymptotically, for the Tardos code, A and B
can be considered as constants. The relationship between the code length parametrization (12)
and the fingerprinting rate is as follows. The rate is R = (logq n)/` = (lnn)/(Ac20 ln q ln ε−1

1 ). Let
η = Pr[L \ C 6= ∅], i.e. the probability that at least one innocent user ends up in the list L. It can
be shown (Lemma 6 in [25]) for n � 1, c � n that η ≈ nε1. Then ln ε−1

1 ≈ lnn − ln η ≈ lnn.
Asymptotically the rate satisfies R ∼ 1/(Ac20 ln q).

Definition 2.1 The variance of an innocent user’s score, and the average and variance of the
coalition score, are written as

σ̃2
inn =

1
`

∑
i

E(S(i)
j )2 for arbitrary j /∈ C (13)

µ̃ =
1
`

∑
i

ES(i)
C (14)

σ̃2 =
1
`

∑
i

E(S(i)
C )2 − µ̃2. (15)

Here E stands for the expectation over all the probabilistic degrees of freedom: the biases p(i),
the code matrix X, and the coalition output y. (The ‘tilde’ notation indicates that there is an
average over positions.)
Remark: If assumption 3 holds (position symmetry, Section 2.1.3) then in Definition 2.1 the
average over the positions is not necessary; in every position E[· · · ] has the same value.
In this paper we introduce a rescaled version (β) of the threshold parameter B,

B = βσ̃inn. (16)

It will turn out that it is more natural to use the quantity β than B.
Asymptotically the first and second moment completely determine the shape of the probability
distribution of the score, for an innocent user as well as for the coalition score. (The distribution
becomes Gaussian in accordance with the central limit theorem.) It was found [26] that the code
length parameter (and hence the fingerprinting rate) then depend on µ̃ and σ̃inn as follows,

A ∼ 2σ̃2
inn

µ̃2
; R ∼ µ̃2

σ̃2
inn

· 1
2c20 ln q

(17)

In the asymptotic saddlepoint, the tracer uses the bias distribution (2) with τ = 0, while the
coalition strategy is the interleaving attack, θy|m = my/c. In the asymptotic saddlepoint it holds
[19] that µ̃2/σ̃2

inn = q − 1.
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2.2 Computing expectations

Following previous work [21, 23, 25] we define (conditional) expectations as shown below. We omit
the position index, and write x as shorthand for Xji for a fixed innocent user j /∈ C.

Ep[r(p)] =
∫ 1−(q−1)τ

τ

dqp δ(1− |p|)F (p)r(p) (18)

Ex|p[r(x)] =
∑
x∈Q

pxr(x) (19)

Em|p[r(m)] =
∑

m≥0: |m|=c

(
c

m

)
pmr(m) (20)

Ey|m[r(y)] =
∑
y∈Q

θy|mr(y) (21)

Ey|p[r(y)] = Em|pEy|m[r(y)] =
∑
y∈Q

 ∑
m≥0: |m|=c

(
c

m

)
pmθy|m

 r(y) (22)

Em[r(m)] =
∑

m≥0: |m|=c

(
c

m

)
Bτ (κ1q +m)
Bτ (κ1q)

r(m) (23)

Emα [r(mα)] =
c∑
b=0

P1(b)r(b) =
c∑
b=0

(
c

b

)
Bτ (κ+ b, [q − 1]κ+ c− b)

Bτ (κ, [q − 1]κ)
r(b) (24)

Kb = Ex|bΨb(x) =
∑

x≥0: |x|=c−b

(
c− b
x

)
B(κ1q−1 + x)
B(κ1q−1)

Ψb(x) (25)

Here P1(b) is a marginal probability for a single fixed symbol to have tally b. The quantity Kb is
the probability, given that a certain symbol has tally b, for the colluders to output that symbol;
i.e. for arbitrary fixed α, we have Kb = Pr[y = α|mα = b]. The sum rule

∑
b P1(b)Kb = 1/q holds

[21], since the overall probability of outputting y = α is 1/q.

2.3 Concentration inequalities

Lemma 2.2 (Bernstein’s inequality [3]) Let a > 0 be a constant. Let U1, · · · , U` be indepen-
dent zero-mean random variables, with |Ui| ≤ a for all i. Let Z ≥ 0. Then

Pr

[∑̀
i=1

Ui > Z

]
≤ exp

(
− Z2/2∑`

i=1 E[U2
i ] + aZ/3

)
. (26)

Lemma 2.3 (Bennett’s inequality [2]) Let b > 0 be a constant. Let Y1, · · · , Y` be independent
zero-mean random variables, with |Yi| ≤ b for all i. Let s2 = 1

`

∑`
i=1 E[Y 2

i ]. Let the function ξ be
defined as

ξ(v) =
∫ v

0

dx ln(1 + x) = (v + 1) ln(v + 1)− v. (27)

Let T ≥ 0. Then

Pr

[∑̀
i=1

Yi > T

]
≤ exp

(
−`s

2

b2
ξ(

b

`s2
T )
)
. (28)

Property 2.4 The function ξ in Lemma 2.3 can be lower bounded as

v > 0 =⇒ ξ(v) > v ln
v

e
. (29)
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Proof: For v > 0 we have ξ(v) =
∫ v

0
dx ln(1 + x) >

∫ v
0

dx lnx = v ln v
e . �

Lemma 2.5 (Weaker form of Bennett’s inequality) Let b > 0 be a constant. Let Y1, · · · , Y`
be independent zero-mean random variables, with |Yi| ≤ b for all i. Let s2 = 1

`

∑`
i=1 E[Y 2

i ]. Let
T > 0. Then

Pr

[∑̀
i=1

Yi > T

]
≤ exp

(
−T
b

ln
bT

e`s2

)
. (30)

Proof: We substitute Property 2.4 in Lemma 2.3. This is allowed since the argument of ξ is
positive. �

3 Statistics of the innocent score and coalition score

We study the moments of the innocent score and coalition score in two cases: (i) Interleaving
attack and arbitrary bias distribution; (ii) The bias distribution is the Dirichlet distribution with
τ = 0 and arbitrary concentration parameter κ; the attack is arbitrary.
These two scenarios represent two different ways of departing from the asymptotic saddlepoint.
In the first one, the bias distribution is varied. In the second one, not only the attack is varied
but also a limited change of the bias distribution is allowed (κ).
The results of this section do not all contribute directly to the analysis of the sufficient code length
in Section 5, but they are important in their own right since they elucidate how the score moments
behave in a variety of circumstances.

3.1 General result for the moments

We investigate the first and second moment of an innocent user’s score and of the coalition score.
We begin with a general result for position-symmetric colluder strategies. Then we look more
specifically at the Interleaving attack.

Lemma 3.1 If the coalition is employing a position-symmetric strategy, then

σ̃2
inn = −1 + E

1
py

(31)

µ̃ = −c+ E
my

py
(32)

µ̃2 + σ̃2 = E
(my − cpy)2

p2
y

. (33)

Proof: We start from Definition 2.1. For σ̃2
inn we write E(S(i)

j )2 = EpEy|pEx|p(−1 + δxy/py)2

= EpEy|pEx|p(1− 2δxy/py + δxy/p
2
y) = 1− 2EpEy|p1 + EpEy|p1/py.

The results for µ̃ and σ̃ follow directly from the fact that S(i)
C = (my/py − c) = (my − cpy)/py. �

3.2 The case of the Interleaving attack

Lemma 3.2 If the coalition is using the Interleaving attack, then

µ̃Int = q − 1, (σ̃2
inn)Int = q − 1, µ̃2

Int + σ̃2
Int = c(q − 1)− 3q + 2 + q Ep

1
pα
. (34)

where α ∈ Q is arbitrary.

Proof: For the Interleaving attack we have E[· · · ] = EpEm|p
∑
y(my/c)[· · · ] =

∑
y EpEm|p(my−cpyc +

py)[· · · ]. We will make use of the binomial properties Em|pmα = cpα, Em|p(mα − cpα)2 =
cpα(1− pα) and Em|p(mα − cpα)3 = cpα(1− pα)(1− 2pα).
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For µ̃ this gives µ̃ =
∑
y EpEm|p[ (my−cpy)2

cpy
+my − cpy] = Ep

∑
y(1− py) + 0 = q − 1.

Furthermore σ̃2
inn = −1 + Ep

∑
y Em|p[mycpy ] = −1 + Ep

∑
y 1 = q − 1.

Finally µ̃2 + σ̃2 =
∑
y EpEm|p[ (my−cpy)3

cp2y
+ (my−cpy)2

py
] = Ep

∑
y[ (1−py)(1−2py)

py
+ c(1− py)] = c(q−

1)− 3q + 2 +
∑
y Ep

1
py

. �

Remark 1: Part of Lemma 3.2 (µ̃ and σ̃inn) was already done in [19]. We show the proof again
because of our modified normalization of the score function.
Remark 2: The result for µ̃Int and (σ̃2

inn)Int does not depend on the bias distribution F , but σ̃Int

does.
Remark 3: In the large-c limit the variance of the coalition score tends to be large, due to the
c(q − 1) term as well as the expression E[1/pα] which blows up when τ becomes small.

3.3 Taking the Dirichlet distribution with cutoff τ = 0

Lemma 3.3 Let τ = 0. Let the coalition use a strategy that is colluder-symmetric and position-
symmetric. Then the quantities µ̃ and σ̃inn can be written as

µ̃τ=0 = −c+ (qκ+ c− 1)Em

∑
y∈Q

θy|m[1 +
1− κ

κ+my − 1
] (35)

(σ̃2
inn)τ=0 = −1 + (qκ+ c− 1)Em

∑
y∈Q

θy|m
1

κ+my − 1
(36)

Furthermore, if the colluder strategy is also symbol-symmetric, then

µ̃τ=0 = −c+ (qκ+ c− 1)q
c∑
b=1

P1(b)Kb
b

κ+ b− 1
, (37)

(σ̃2
inn)τ=0 = −1 + (qκ+ c− 1)q

c∑
b=1

P1(b)Kb
1

κ+ b− 1
. (38)

Proof: We start from the expressions µ̃ = −c+E[my/py] and σ̃2
inn = −1+E[1/py]. For any function

J(my) we can write E[J(my)/py] = Ep

∑
m

(
c

m

)
pm

∑
y θy|mJ(my)/py

=
∑

m

(
c

m

)∑
y θy|mJ(my)Epp

m/py. For τ = 0 we have

Ep
pm

py
=
B(κ1q +m− ey)

B(κ1q)
=

qκ+ c− 1
κ+my − 1

· B(κ1q +m)
B(κ1q)

=
qκ+ c− 1
κ+my − 1

Epp
m. (39)

Setting J(my) = my for µ̃, and J(my) = 1 for σ̃2
inn, yields (35) and (36). The final step is to notice

that E[J(my)/py] = EmEy|m[ qκ+c−1
κ+my−1J(my)] which can be rewritten as q

∑
b P1(b)Kb

qκ+c−1
κ+b−1 J(b)

if the strategy is symbol-symmetric. �

Theorem 3.4 Let c� 1 and κ ∈ (0, 1). Let the coalition use a strategy that is colluder-symmetric
and position-symmetric. Then both quantities µ̃ and σ̃inn are maximized by the Minority Voting
attack and minimized by the Majority Voting attack.

Proof: For c� 1 we can use the τ = 0 approximation for µ̃ and σ̃inn, i.e. Lemma 3.3. In (35) and
(36), the θy|m in the y-summation multiplies a decreasing function of my. Hence the summand is
maximized by outputting a symbol y with tally my as small as possible (but nonzero because of
the Marking Assumption), and, vice versa, minimized by outputting the symbol with the largest
tally. �

Theorem 3.4 gives insight into the trade-offs that the colluders have to deal with. They want to
minimize µ̃ and to maximize σ̃inn, since this leads to high error rates. However, the strategy that
optimizes µ̃ for them is the worst possible strategy regarding σ̃inn, and vice versa. The Interleaving
attack at the saddlepoint is ‘in the middle’ between Minority Voting and Majority Voting.
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Lemma 3.5 Let τ = 0. Let the coalition use a strategy that is colluder-symmetric and position-
symmetric. Then µ̃ and σ̃inn can be bounded as

cκ(q − 1)
c− 1 + κ

≤ µ̃τ=0 ≤ c( 1
κ
− 1) + q − 1

κ
(40)

κ(q − 1)
c− 1 + κ

≤ (σ̃2
inn)τ=0 ≤ c

κ
+ q − 1− 1

κ
. (41)

Proof: For my ∈ {1, . . . , c} we have 1
κ+c−1 ≤

1
κ+my−1 ≤

1
κ . We substitute these inequalities into

(35) and (36). Finally we use
∑
y θy|m = 1. �

Remark: It is possible to obtain a tighter upper bound by treating the my = c term separately
in (35),(36), since then θy|m = 1. However, the improvement of the tightness is minimal.

4 Bounding the error probabilities

We use Bernstein’s inequality and Bennett’s inequality to upper bound the False Positive and
False Negative error probability, respectively.

4.1 Bounding the False Positive probability

Theorem 4.1 Let q ≥ 2. Let the coalition use any attack strategy. Then the False Positive
probability for a fixed innocent user can be bounded as

PFP ≤ exp

[
(ln ε1)

β2

2A

(
1 +

β

3Ac0τ σ̃inn

)−1
]
. (42)

Proof: For any coalition strategy, even one that breaks the position symmetry, the single-position

scores S(i)
j for the innocent user are mutually independent [22]. Hence we are allowed to use

Bernstein’s inequality. In Lemma 2.2 we set Ui = S
(i)
j for the innocent user. This is allowed since

S
(i)
j has zero expectation value. We have

|Ui| ≤ max{ 1
pmin

− 1, | − 1|} = max{1
τ
− 1, 1} =

1
τ
− 1 <

1
τ
. (43)

In the last equality we used τ ≤ 1/q (see Section 2.1.2). Thus we are allowed to set a = 1/τ in
Lemma 2.2. Furthermore we note that by definition E[U2

i ] = σ̃2
inn for all i. Lemma 2.2 then gives

Pr[Sj > Z] ≤ exp
(

−Z2/2
`σ̃2

inn + aZ/3

)
= exp

(
−Z2

2`σ̃2
inn

· 1
1 + aZ/(3`σ̃2

inn)

)
. (44)

Substituting a = 1/τ , ` = Ac20 ln 1
ε1

and Z = βσ̃innc0 ln 1
ε1

finishes the proof. �

Remark: In (42) we see that the bound on PFP is a decreasing function of the product c0τ . Hence
it is advantageous to set τ such that c0τ � 1.

Corollary 4.2 Let q ≥ 2 and τ ≤ 1/2. Let the coalition use any attack strategy. Then it holds
that

A ≤ 1
2β

2 − β

3c0τ σ̃inn
=⇒ PFP ≤ ε1. (45)

Proof: Follows directly from Theorem 4.1. �
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4.2 Bounding the False Negative probability

Theorem 4.3 Let q ≥ 2. Let the coalition employ a position-symmetric strategy. Let µ̃Ac0 −
σ̃innβc > 0. Let τ satisfy

τ ≤ c/(c+ µ̃). (46)

Then the False Negative probability can be bounded as

PFN ≤ exp
[
(ln ε1)

c0τ

c
[µ̃Ac0 − σ̃innβc] ln

µ̃Ac0 − σ̃innβc

e(σ̃2/c)Ac0τ

]
. (47)

Proof: We start from

PFN = Pr[∀j∈C Sj < Z] < Pr[SC < cZ] = Pr[`µ̃− SC > `µ̃− cZ] = Pr[
∑̀
i=1

(µ̃− S(i)
C ) > `µ̃− cZ].

(48)
Because of the assumption that the collusion attack is position-symmetric, the random variables
S

(i)
C are mutually independent. We are then allowed to use Bennett’s inequality (we take the weaker

form, Lemma 2.5), which we do with the following parameters: Yi = µ̃ − S(i)
C ; T = `µ̃ − cZ =

(µ̃Ac0 − σ̃innβc)c0 ln 1
ε1

; s2 = σ̃2; b = c/τ . The choice for b follows from

|Yi| = |S(i)
C − µ̃| ≤ max{c( 1

τ
− 1)− µ̃, µ̃+ c} ≤ max{ c

τ
, µ̃+ c} =

c

τ
, (49)

where the last equality is a consequence of the assumption (46). We can see that the T is positive
from the assumption µ̃Ac0 − σ̃innβc > 0. �

Notice that at c � c0 Theorem 4.3 no longer applies, because the condition µ̃Ac0 − σ̃innβc > 0
cannot be satisfied. In practical terms this means that for c > c0 the FN probability is no longer
under control, and the colluders may evade detection with high probability.

Theorem 4.4 Let q ≥ 2. Let the coalition employ a position-symmetric strategy. Let 2 ≤ c ≤ c0.
Let µ̃A− σ̃innβ > 0. Let τ ≤ 2/(2 + µ̃). Then the False Negative probability can be bounded as

PFN ≤ exp
[
(ln ε1)c0τ [µ̃A− σ̃innβ] ln

µ̃A− σ̃innβ

e(σ̃2/c0)Aτ

]
. (50)

Proof: We start from Theorem 4.3. Due to the conditions c ≤ c0 and µ̃A− σ̃innβ > 0, the condition
µ̃Ac0 − σ̃innβc > 0 in Theorem 4.3 holds. Due to c ≥ 2 and τ < 2/(2 + µ̃), the condition (46)
holds. Since all the conditions are satisfied we are allowed to apply Theorem 4.3. Finally we make
use of the fact that the expression (47) is an increasing function of c for c ≤ c0. �

Corollary 4.5 Let q ≥ 2. Let the coalition employ a position-symmetric strategy. Let 2 ≤ c ≤ c0.
Let µ̃A− σ̃innβ > 0. Let τ ≤ 2/(2 + µ̃). Then it holds that

c0τ [µ̃A− σ̃innβ] ln
µ̃A− σ̃innβ

e(σ̃2/c0)Aτ
≥ ln ε2

ln ε1
=⇒ PFN ≤ ε2. (51)

Proof: Follows directly from Theorem 4.4. �

5 Asymptotics of the sufficient code length

The main aim of this paper is to determine the performance of the score system (7) at large but
finite c0. The performance at ‘c0 = ∞’ is known: the saddlepoint is given by the Interleaving
attack, combined with the κ = 1

2 Dirichlet distribution (with τ = 0) as the bias distribution; in
this saddlepoint the rate of the score system is equal to capacity. What we want to know is how
the fingerprinting rate approaches capacity, and how to optimally choose the cutoff τ as a function
of c0.
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5.1 Sufficient code length

We aim for an analysis in the (unknown!) large-but-finite-c0 saddlepoint.

• The saddlepoint (‘SP’) of the mutual information minimax game [10] is close to the asymp-
totic saddlepoint. The unknown strategy θSP is close to Interleaving. The unknown bias
distribution F SP(p) is some discrete distribution close to the Dirichlet distribution. We ap-
proximate F by the continuous Dirichlet distribution with cutoff τ because this is the only
available constructive approach that we know of.

• Hence, we analyze the tracing system consisting of the bias distribution (2) and the score
system (7), when pitted against an unknown attack close to Interleaving. Our starting
point will be the ‘sufficient’ conditions given by Corollaries 4.2 and 4.5. We know that
µ̃SP = q − 1 − 4µ̃ and (σ̃2

inn)SP = q − 1 +4σ̃2
inn, and we have to carefully deal with the

corrections 4µ̃ and 4σ̃2
inn. On the other hand, the σ̃ appears only in the logarithm in (51)

and hence any corrections with respect to Lemma 3.2 can be neglected.

Corollary 4.2 and the condition µ̃A− σ̃innβ > 0 together define an interval for the sufficient code
length parameter ‘Asuff ’,

Asuff ∈ (
σ̃inn

µ̃
β, 1

2β
2 − β

3c0τ σ̃inn
]. (52)

This interval exists only if

β > 2
σ̃inn

µ̃
+

2
3c0τ σ̃inn

, (53)

which yields

Asuff >
2σ̃2

inn

µ̃2
+

2
3c0τ µ̃

. (54)

We must try to bring β and A as close as possible to the bounds (53,54) while still satisfying the
condition in the left hand side of (51). We introduce the following shorthand notation,

σ̃inn

µ̃
=

1√
q − 1

(1 + w), δ = µ̃A− σ̃innβ,
σ̃2

c
= q − 1 + r (55)

where w � 1, δ � 1, r � 1. The w will be studied in the next section. The δ we will solve
approximately. The fact that r is small follows from Lemma 3.2. The expression E[1/pα] in (34) is
of order τκ−1; this leads to a contribution to σ̃2/c of order τκ/(c0τ), which is negligible compared
to (q − 1) since c0τ � 1 (see Section 4.1).

Theorem 5.1 Let c0τ � 1 and c0τ2 � 1. Let the attackers employ a position-symmetric strategy.
Let 2 ≤ c ≤ c0. Then the following combination of a code length parameter A and threshold
parameter β is sufficient to achieve PFP ≤ ε1 and PFN ≤ ε2.

βsuff =
2√
q − 1

[1 + w +
1

3c0τ
+O(

w

c0τ
)] (56)

Asuff =
2

q − 1

[
1 + 2w +

1
3c0τ

+
ln ε2/ ln ε1

2c0τ ln 1
c0τ2

+O(w2) +O(
w

c0τ
)

]
. (57)

Proof: The condition in (51) can be written compactly as

c0τδ ln
δ

e(q − 1 + r)Aτ
≥ ln ε2

ln ε1
. (58)
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Taking the equal sign and solving for δ gives (we denote the solution as δ0)

δ0 =
ln ε2

ln ε1
· 1
c0τ
· 1

ln[ 1
e(q−1+r)Aτ ·

ln ε2
ln ε1
· 1
c0τ

ln δ0
e(q−1+r)Aτ ]

=
ln ε2

ln ε1
· 1
c0τ
· 1

ln[ 1
c0τ2 ] + ln[ 1

e(q−1)A
ln ε2
ln ε1

]−O(r) +O(ln ln δ0
τ )

=
ln ε2

ln ε1
· 1
c0τ ln 1

c0τ2

[1−O(
ln ln 1

c0τ2

ln 1
c0τ2

)]

<
ln ε2

ln ε1
· 1
c0τ ln 1

c0τ2

. (59)

We take δ = ln ε2
ln ε1
· 1
c0τ ln 1

c0τ2
(last line of (59)), since it is a compact analytical expression that

satisfies (58). We can now find the sufficient A and β. We write βsuff = 2 σ̃inn
µ̃ + 2

3c0τσ̃inn
+ λ, with

λ arbitrarily close to zero. Solving A from β and δ gives

Asuff = βsuff
σ̃inn

µ̃
+
δ

µ̃

=
2

q − 1

[
1 + 2w +

1
3c0τ

+
ln ε2/ ln ε1

2c0τ ln 1
c0τ2

+O(w2) +O(λ) +O(
w

c0τ
)

]
(60)

where we have used that 4µ̃ and 4σ̃inn are of order w. Finally we note that λ is much smaller
than the other high-order correction terms. �
Note that the condition c0τ

2 � 1 is required in the above proof in order to make sure that the
argument of the logarithm is well-behaved, i.e. larger than 1. Hence when choosing τ we have to
satisfy

Condition 1: c0τ � 1.
Condition 2: c0τ2 � 1.

One way of satisfying these conditions is to set

τ ∝ c−γ0 with γ ∈ ( 1
2 , 1). (61)

5.2 Optimization of the cutoff τ as a function of c0

Lemma 5.2 (adapted from [19]) Let 4θy|m = θSP
y|m −my/c. The first order and second order

correction terms to µ̃ and σ̃2
inn in the vicinity of the saddle point are given by

µ̃(1) =
∑
m

(
c

m

)∑
y∈Q
4θy|mmy

B(κ1q +m− ey)
B(κ1q)

= Em

∑
y∈Q
4θy|m(1− κ)

c+ qκ− 1
my − (1− κ)

[σ̃2
inn](1) =

∑
m

(
c

m

)∑
y∈Q
4θy|m

B(κ1q +m− ey)
B(κ1q)

= Em

∑
y∈Q
4θy|m

c+ qκ− 1
my − (1− κ)

µ̃(2) =
∑
m

(
c

m

)∑
y∈Q
4θy|mmy

[
B(κ1q +m− ey)

B(κ1q)
− Bτ (κ1q +m− ey)

Bτ (κ1q)

]

[σ̃2
inn](2) =

∑
m

(
c

m

)∑
y∈Q
4θy|m

[
B(κ1q +m− ey)

B(κ1q)
− Bτ (κ1q +m− ey)

Bτ (κ1q)

]
. (62)
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The first order correction to µ̃2/σ̃2
inn is zero, because of the saddlepoint. The second order correction

to µ̃2/σ̃2
inn is given by[
µ̃2

σ̃2
inn

]
(2)

= 2µ̃(2) − [σ̃2
inn](2) +

1
q − 1

(
µ̃(1) − [σ̃2

inn](1)

)2
(63)

= −
∑
m

(
c

m

)∑
y∈Q
4θy|m(2my − 1)

Bτ (κ1q +m− ey)
Bτ (κ1q)

+
κ2

q − 1
([σ̃2

inn](1))2. (64)

Proof: Eqs. (62) and (63) are a slight adaptation of the saddlepoint formulas in [19], where we
have substituted the saddlepoint values µ̃ = q − 1 and σ̃2

inn = q − 1. Note again that we have
normalized the score function different from [19] by a factor

√
q − 1. Eq. (64) follows from (63)

by using (62). �

Proposition 5.3 The correction w is negligible compared to 1
c0τ

.

Argumentation: The w is proportional to (63) or, differently expressed, (64). In (64) we have
the ([σ̃2

inn](1))2 term which is of order (4θ)2. The order of magnitude of the
∑

m contribution is
more difficult to determine, because the incomplete Dirichlet integral Bτ (κ1q+m−ey) is difficult
to bound2 ; however, no matter how Bτ (κ1q + m − ey) is behaved, the

∑
m contribution is at

most of order 4θ. Huang and Moulin [10] conjectured that 4θ = O( 1
c ), and this turned out

to be consistent with their asymptotic saddlepoint analysis. If their conjecture is true, we have
w ∝ 1

c0
� 1

c0τ
. Even if their conjecture is not true and 4θ scales as, for instance, 1/

√
c, then

w ∝ 1/
√
c0 � 1

c0τ
, i.e. w is still negligible. (The latter holds because τ scales as c−γ0 with γ > 1

2 .)
�

The consequences of Proposition 5.3 are

• The optimal choice for the cutoff is to set

γopt = 1
2 + ν (65)

where ν denotes a very small positive number.

• The sufficient code length is then given by

Asuff =
2

q − 1
[1 +O(c−1/2+ν

0 )]. (66)

Note that the correction term is smaller than the O(c−1/3
0 ) that was found [12] for Tardos’s

score function at q = 2.

6 Discussion

We have studied a q-ary bias-based collusion-resistant scheme where the score function (7) of
Oosterwijk et al. [19] is used in combination with the Dirichlet distribution with a cutoff. We
have used Bernstein’s inequality and Bennett’s inequality to upper bound the error rates. For
large c0 this leads to a sufficient code length as specified in Theorem 5.1.
Then we adopted a conjecture (based on a conjecture by Huang and Moulin) that4θ, the difference
in strategy between the finite-c and infinite-c saddlepoint, is of order O(1/

√
c). This leads to an

optimal cutoff choice τ = 1/(λc1/2+ν
0 ), where λ > 0 is a constant, and ν is a very small positive

constant. The sufficient code length is then

`suff =
2

q − 1

[
1 + λc

− 1
2 +ν

0 (
1
3

+
1
4

ln ε2

ln ε1

1
ln(cν0λ)

) + · · ·
]
c20 ln ε−1

1 , (67)

2The correction to the normalization factor is known. In [25] it was found that Bτ (κ1q) = B(κ1q)[1−O(τκ)].
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and the corresponding accusation threshold is

Z = 2[1 + 1
3λc
− 1

2 +ν

0 + · · · ]c0 ln ε−1
1 . (68)

From previous work on provable bounds for bias-based codes it is clear that the bounds obtained
from concentration inequalities (Markov, Bernstein, Bennett) are not tight.
As topics for future work we mention
(i) Obtaining tighter bounds. The CSE method [21] or similar techniques may yield more precise
information about the error rates.
(ii) Studying the performance of the score function (7) further away from the asymptotic saddle-
point. This would require locating (by numerical techniques) the saddlepoint for large but finite c.
(iii) Applying the analysis in this paper in the context of dynamic traitor tracing, similar to the
work in [14].
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