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Abstract. We present the first general MPC protocol that satisfies the following: (1) the con-
struction is black-box, (2) the protocol is universally composable in the plain model, and (3)
the number of rounds is constant. The security of our protocol is proven in angel-based UC
security under the assumption of the existence of one-way functions that are secure against
sub-exponential-time adversaries and constant-round semi-honest oblivious transfer protocols
that are secure against quasi-polynomial-time adversaries. We obtain the MPC protocol by
constructing a constant-round CCA-secure commitment scheme in a black-box way under the
assumption of the existence of one-way functions that are secure against sub-exponential-time
adversaries. To justify the use of such a sub-exponential hardness assumption in obtaining our
constant-round CCA-secure commitment scheme, we show that if black-box reductions are used,
there does not exist any constant-round CCA-secure commitment scheme under any falsifiable
polynomial-time hardness assumptions.

1 Introduction

Protocols for secure multi-party computation (MPC) enable mutually distrustful parties to
compute a functionality without compromising the correctness of the outputs and the privacy
of the inputs. In the seminal work of Goldreich et al. [GMW87], a general MPC protocol was
constructed in a model with malicious adversaries and a dishonest majority.3 (By “a general
MPC protocol,” we mean a protocol that can be used to securely compute any functionality.)

Black-box constructions. A construction of a protocol is black-box if it uses the underlying
cryptographic primitives only in a black-box way (that is, only through their input/output
interfaces). In contrast, if a construction uses the codes of the underlying primitives, it is
non-black-box.

Obtaining black-box constructions is an important step toward obtaining practical MPC
protocols. This is because black-box constructions are typically more efficient than non-black-
box ones. (Typical non-black-box constructions, such as that of [GMW87], use the codes of the
primitives to compute NP reductions in general zero-knowledge proofs. Thus, they should be
viewed as feasibility results.) Black-box constructions are also theoretically interesting, since

? This is the full version of a paper that appears in TCC 2014 [KMO14].
3 In the following, we consider only such a model.
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understanding whether non-black-box use of primitives is necessary for a cryptographic task
is of great theoretical interest.

Recently, a series of works showed black-box constructions of general MPC protocols.
Ishai et al. [IKLP06] showed the first construction of a general MPC protocol that uses the
underlying low-level primitives in a black-box way. Combined with the subsequent work of
Haitner [Hai08], their work showed a black-box construction of a general MPC protocol based
on a semi-honest oblivious transfer protocol [HIK+11]. Subsequently, Wee [Wee10] showed
an O(log∗ n)-round protocol under polynomial-time hardness assumptions and a constant-
round protocol under sub-exponential-time hardness assumptions, and Goyal [Goy11] showed
a constant-round protocol under polynomial-time hardness assumptions.

The security of these black-box protocols is considered in the stand-alone setting. That is,
the protocols of [IKLP06,Wee10,Goy11] are secure in the setting where only a single instance
of the protocol is executed at a time.

Composable security. The concurrent setting, in which many instances of protocols are
executed concurrently in an arbitrary schedule, is a more general and realistic setting than the
stand-alone one. In the concurrent setting, an adversary can perform a coordinated attack in
which he chooses his messages in an instance based on the executions of the other instances.

As a strong and realistic security notion in the concurrent setting, Canetti [Can01] pro-
posed universally composable (UC) security. The main advantage of UC security is compos-
ability, which guarantees that when we compose many UC-secure protocols, we can prove
the security of the resultant protocol using the security of its components. Thus, UC secu-
rity enables us to construct protocols in a modular way. Composability also guarantees that
a protocol remains secure even when it is concurrently executed with any other protocols
in any schedule. Canetti et al. [CLOS02] constructed a UC-secure general MPC protocol in
the common reference string (CRS) model (i.e., in a model in which all parties are given a
common public string that is chosen by a trusted third party).

UC security, however, turned out to be too strong to achieve in the plain model (i.e., in
a model without any trusted setup except for authenticated communication channels). That
is, we cannot construct UC-secure general MPC protocols in the plain model [CF01,CKL03].

To achieve composable security in the plain model, Prabhakaran and Sahai [PS04] pro-
posed a variant of UC security called angel-based UC security. Roughly speaking, angel-based
UC security is the same as UC security except that the adversary and the simulator have
access to an additional entity—the angel—that allows some judicious use of super-polynomial-
time resources. It was proven that, like UC security, angel-based UC security guarantees com-
posability. Furthermore, as argued in [PS04], angel-based UC security guarantees meaningful
security in many cases. (For example, angel-based UC security implies super-polynomial-time
simulation (SPS) security [Pas03,BS05,GGJS12,PLV12]. In SPS security, we allow the sim-
ulator to run in super-polynomial time. Thus, SPS security guarantees that whatever an
adversary can do in the real world can also be done in the ideal world in super-polynomial
time.) Then, Prabhakaran and Sahai [PS04] presented a general MPC protocol that sat-
isfies this security notion in the plain model, based on new (unstudied and non-standard)
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assumptions. Subsequently, Malkin et al. [MMY06] constructed another general MPC pro-
tocol that satisfies this security notion in the plain model based on new number-theoretic
assumption. In [BS05], Barak and Sahai remarked that their protocol (which is SPS secure
under subexponential-time hardness assumptions) can be shown to be secure in angel-based
UC security.

Recently, Canetti et al. constructed a polynomial-round general MPC protocol in angel-
based UC security based on a standard assumption (the existence of enhanced trapdoor
permutations). Subsequently, Lin [Lin11] and Goyal et al. [GLP+12] reduced the round com-
plexity to Õ(log n) under the same assumption. They also proposed constant-round protocols,
where the security is based on a super-polynomial-time hardness assumption (the existence of
enhanced trapdoor permutations that are secure against quasi-polynomial-time adversaries).
These constructions, however, use the underlying primitives in a non-black-box way.

Black-box constructions of composable protocols. Lin and Pass [LP12] showed the
first black-box construction of a general MPC protocol that guarantees composable security
in the plain model. The security of their protocol is proven under angel-based UC security,
and based on the minimum assumption of the existence of semi-honest oblivious transfer
(OT) protocols.

The round complexity of their protocol is O(nε), where ε > 0 is an arbitrary constant. In
contrast, for non-black-box constructions of composable protocols, we have constant-round
protocols in the plain model (under non-standard assumptions or super-polynomial-time
hardness assumptions) [PS04, MMY06, Lin11, GLP+12]. Thus, a natural question is the fol-
lowing.

Does there exist a constant-round black-box construction of a general MPC protocol
that guarantees composability in the plain model (possibly under super-polynomial-time
hardness assumptions)?

1.1 Our Result

In this paper, we answer the above question affirmatively.

Theorem (Informal). Assume the existence of one-way functions that are secure against
sub-exponential-time adversaries and constant-round semi-honest oblivious transfer protocols
that are secure against quasi-polynomial-time adversaries. Then, there exists a constant-round
black-box construction of a general MPC protocol that satisfies angel-based UC security in the
plain model.

The formal statement of this theorem is given in Section 7.

CCA-secure commitment schemes. We prove the above theorem by constructing a
constant-round CCA-secure commitment scheme [CLP10, LP12] in a black-box way. Once
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we obtain a CCA-secure commitment scheme, we can construct a general MPC protocol in
essentially the same way as Lin and Pass do in [LP12].

Roughly speaking, a CCA-secure commitment scheme is a tag-based commitment scheme
(i.e., a commitment scheme that takes an n-bit string, or tag, as an additional input) such
that the committed value of a commitment with tag id remains hidden even if the receiver
has access to a super-polynomial-time oracle—the committed-value oracle—that returns the
committed value of any commitment with tag id′ 6= id. Lin and Pass [LP12] showed an O(nε)-
round black-box construction of a CCA-secure commitment scheme for arbitrary ε > 0 by
assuming the minimum assumption of the existence of one-way functions.

Our main technical result is the following.

Theorem (Informal). Assume the existence of one-way functions that are secure against
sub-exponential-time adversaries. Then, there exists a constant-round black-box construction
of a CCA-secure commitment scheme.

The formal statement of this theorem is given in Section 7.
To obtain our CCA-secure commitment scheme, we use the idea of non-malleability am-

plification that was used in previous works on concurrent non-malleable (NM) commitment
schemes [LP09, PW10]. That is, we construct a CCA commitment scheme in the following
steps.

Step 1. We say that a commitment scheme is one-one CCA secure if it is CCA secure with
respect to restricted classes of adversaries that receive only a single answer from the oracle.
Then, we construct a constant-round one-one CCA-secure commitment for tags of length
O(log log log n).

Step 2. We construct a transformation from the commitment scheme constructed in Step 1
to a CCA-secure commitment for tags of length O(n) with a constant additive increase
in round complexity. Toward this end, we construct the following two transformations:
– A transformation from any one-one CCA-secure commitment scheme for tags of length
t(n) to a CCA-secure commitment scheme for tags of length t(n) with a constant
additive increase in round complexity

– A transformation from any CCA-secure commitment scheme for tags of length t(n) to
a one-one CCA-secure commitment scheme for tags of length 2t(n)−1 with no increase
in round complexity

(The latter transformation is essentially the same as the “DDN log n trick” [DDN00,
LPV08].) By repeatedly composing these two transformations, we obtain the desired
transformation.

On the use of super-polynomial-time hardness assumption. Although the round com-
plexity of our CCA-secure commitment scheme is constant, it relies on a super-polynomial-
time hardness assumption. (Recall that the O(nε)-round CCA-secure commitment scheme
of [LP12] relies on a polynomial-time hardness assumption.)

We show that the use of such a strong assumption is inevitable, as long as the security
of a constant-round CCA-secure commitment scheme is proven under falsifiable assumptions
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[Nao03,GW11] by using a black-box reduction. Roughly speaking, a falsifiable assumption is
an assumption that is modeled as an interactive game between a challenger and an adversary
such that the challenger can decide whether the adversary won the game in polynomial time.
Then, we say that the CCA security of a commitment scheme 〈C,R〉 is proven under a
falsifiable assumption by using a black-box reduction if the CCA security of 〈C,R〉 is proven
by constructing a ppt Turing machine R such that for any adversary A that breaks the CCA
security of 〈C,R〉, R can break the assumption by using A only in a black-box way. Then,
we show the following theorem.

Theorem (Informal). Let 〈C,R〉 be any constant-round commitment scheme. Then, the
CCA security of 〈C,R〉 cannot be proven by using black-box reductions under any falsifiable
polynomial-time hardness assumption.

Roughly speaking, we obtain this theorem by using techniques of the negative result on
concurrent zero-knowledge protocols [CKPR02].

Since all standard cryptographic assumptions are falsifiable, this theorem says that if
we want to construct a constant-round CCA-secure commitment scheme based on standard
assumptions, we must use either super-polynomial-time hardness assumptions (as this paper
does) or non-black-box reductions.4

We note that this negative result holds even for non-black-box constructions. That is,
we cannot construct constant-round CCA-secure commitment schemes even when we use
primitives in a non-black-box way, as long as we use black-box reductions and polynomial-
time hardness assumptions.

2 Overview of the Protocols

In this section, we give overviews of our main technical results: a one-one CCA-secure com-
mitment scheme for short tags and a transformation from one-one CCA security to CCA
security.

2.1 One-One CCA-Security for Short Tags

We obtain our one-one CCA-secure commitment scheme by observing that the non-black-box
construction of a NM commitment scheme of [PW10] is one-one CCA secure and converting
it into a black-box one.

First, we recall the scheme of [PW10].5 The starting point of the scheme is “two-slot
message length” technique [Pas04]. The basic idea of the technique is to let the receiver
sequentially send two challenges—one “long” and one “short”—where the length of the chal-
lenges are determined by the tag of the commitment. The protocol is designed so that the
response to a shorter challenge does not help a man-in-the-middle adversary to provide a

4 We note that, although very recently Goyal [Goy13] showed how to use non-black-box techniques in the
fully concurrent setting, Goyal’s technique requires polynomially many rounds.

5 In the following, some of the text is taken from [PW10].
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response to a longer challenge. A key conceptual insight of [PW10] is to rely on the com-
plexity leveraging technique [CGGM00] to construct these challenges: For one-way functions
with sub-exponential hardness, an oracle for inverting challenges of length no(1) (the “short”
challenge) does not help invert random challenges of length n (the “long” challenge), since

we can simulate such an oracle by brute force in time 2n
o(1)

.
More precisely, the scheme of [PW10] is as follows. Let d = O(log log n) be the number of

tags, and let nω(1) = T0(n)� T1(n)� · · · � Td+2(n) be a hierarchy of running times. Then,
to commit to v ∈ {0, 1}n with tag id ∈ {0, 1, . . . , d− 1}, the committer C does the following
with the receiver R.

1. C commits to v by using a statistically binding commitment Com that is hiding against
Td+1(n)-time adversaries but is completely broken in time Td+2(n).

2. (Slot 1) C proves knowledge of v by using a zero-knowledge argument of knowledge that is
computationally sound against Tid+1(n)-time adversaries and can be simulated in straight
line in time o(Tid+2(n)), where the simulated view is indistinguishable from the real one
in time Td+2(n).

3. (Slot 2) C proves knowledge of v by using a zero-knowledge argument of knowledge that is
computationally sound against Td−id(n)-time adversaries and can be simulated in straight
line in time o(Td−id+1(n)), where the simulated view is indistinguishable from the real one
in time Td+2(n).

We can show that the scheme of [PW10] is one-one CCA secure as follows (by using essentially
the same proof as the proof of its non-malleability). Recall that a commitment scheme is one-
one CCA secure if it is hiding against adversaries that give a single query to the committed-
value oracle O. Let id be the tag used in the left session (a commitment from the committer
to the adversary A) and ĩd be the tag used in the right session (a commitment from A to O).
Then, let us consider a hybrid experiment in which the proofs in the second and third steps
are replaced with the straight-line simulations in the left session. Since the running time of O
is at most Td+2(n), the zero-knowledge property guarantees that the view of A in the hybrid
experiment is indistinguishable from that of A in the real experiment even when A interacts
with O. Furthermore, in the right session of the hybrid experiment, the soundness of the zero-
knowledge argument still holds either in the second step or in the third step. This follows from
the following reasons. For simplicity, let us consider a synchronized adversary.6 Then, since
the simulation of the second step takes at most time o(Tid+2(n)) and the soundness of the
second step holds against T

ĩd+1
(n)-time adversaries, the soundness of the second step holds

if id < ĩd; similarly, the soundness of the third step holds if id > ĩd. In the hybrid experiment,
therefore, the committed value v can be extracted by using the knowledge extractor either in
the second step or in the third step, and thus the committed value oracle O can be simulated
in time o(max(Tid+2(n), Td−id+1(n))) · poly(n)� Td+1(n). Then, from the hiding property of
Com in the first step, the view of A in the hybrid experiment is computationally independent
of the value v. Thus, one-one CCA security follows.

6 An synchronized adversary sends the i-th round message to O immediately after receiving the i-th round
messages from the committer, and vise verse.
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To convert the scheme of [PW10] into a black-box protocol, we use a black-box trapdoor
commitment scheme TrapCom of [PW09]. We observe that TrapCom has similar properties
to the zero-knowledge argument used in the scheme of [PW10]: TrapCom is extractable and
a TrapCom commitment can be simulated in straight line in super-polynomial time. Then,
we modify the scheme of [PW10] and let the committer commit to v instead of proving the
knowledge of v. To ensure the “soundness,” that is, to ensure that the committed value of
TrapCom is v, we use the cut-and-choose technique and Shamir’s secret sharing scheme in
a similar manner to previous works on black-box protocols [CDSMW08,CDSMW09,Wee10,
LP12]. That is, we let the committer commit to Shamir’s secret sharing s = (s1, . . . , s10n)
of value v in all steps, let the receiver choose a random subset Γ ⊂ [10n] of size n, and let
the committer reveal sj and decommit the corresponding commitments for every j ∈ Γ . The
resultant scheme uses the underlying primitives only in a black-box way, and can be proven
to be one-one CCA secure from a similar argument to the scheme of [PW10]. (We note that
the actual scheme is a little more complicated. For details, see Section 4.) We note that
Lin and Pass [LP12] also use TrapCom to convert a non-black-box protocol into a black-box
one. Unlike them, who mainly use the fact that TrapCom is extractable and is secure against
selective opening attacks, we also use the fact that TrapCom commitments are straight-line
simulatable.

2.2 CCA Security from One-one CCA Security

We give an overview of the transformation from any one-one CCA-secure commitment scheme
to a CCA-secure commitment scheme. Let nω(1) = T0(n) � T1(n) � T2(n) � T3(n) be a
hierarchy of running times. Then, we construct a CCA-secure commitment scheme CCACom0

that is secure against T0(n)-time adversaries from a one-one CCA-secure commitment scheme
CCACom1:1

3 that is secure against T3(n)-time adversaries. Let Com1 be a 2-round statistically
binding commitment scheme that is secure against T1(n)-time adversaries but is completely
broken in time o(T2(n)), and CECom2 be a constant-round commitment scheme that is hiding
against T2(n)-time adversaries and is concurrently extractable by rewinding the committer
poly(nlogn) times [MOSV06, PV08]. Then, to commit to value v, the committer C does the
following with the receiver R.

1. R commits to a random subset Γ ⊂ [10n] of size n by using CCACom1:1
3 .

2. C computes an (n + 1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n) of value v
and commits to sj for each j ∈ [10n] in parallel by using Com1.

3. C commits to sj for each j ∈ [10n] in parallel by using CECom2.
4. R decommits the commitment of the first step and reveal Γ .
5. For each j ∈ Γ , C decommits the Com1 and CECom2 commitments whose committed

values are sj .

The committed value of CCACom0 is determined by the committed values of Com1. Thus,
the running time of O is at most o(T2(n)) · poly(n)� T2(n).

To prove the CCA security of the scheme, we consider a series of hybrid experiments.
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In the first hybrid, in the left interaction the committed value Γ of CCACom1:1
3 is extracted

by brute force and the committed value of CECom2 is switched from sj to 0 for every j 6∈ Γ .
Note that, during the CECom2 commitments of the left, the combined running time of A and
O is at most T2(n). Thus, from the hiding property of CECom2, the view of A in the first
hybrid is indistinguishable from that of A in the honest experiment.

The second hybrid is the same as the first one except for the following: in every right
session of which the second step ends after the start of the second step of the left session,
the committed values of the CECom commitments are extracted; then, the answer of O are
computed from the extracted values (instead of the committed values of Com1). We note
that, since the second hybrid differs from the first one only in how the answers of O are
computed, to show the indistinguishability it suffices to show that in the first hybrid the
committed values of CECom2 agree with those of Com1 in “most” indexes in every right
session. We first note that if we ignore the messages that A receives in the left session, we
can prove that the committed values of CECom2 agree with those of Com1 in most indexes
by using the property of the cut-and-choose technique. In the hybrid, however, A receives
messages in the left session, in which Γ is extracted by brute force and the committed values
of CECom2 disagree with those of Com1 in 90% of indexes. Thus, A may be able to use the
messages in the left to break the hiding property of CCACom1:1 in the right. (Note that, if
A can break the hiding property of CCACom1:1, we cannot use the property of the cut-and-
choose technique.) We show that A cannot break the hiding property of CCACom1:1 even with
the messages of the left session. A key is that given Γ , the left session can be simulated in
polynomial time. Hence, one-one CCA security of CCACom1:1 guarantees that the messages
of the left session are useless for breaking the hiding property of CCACom1:1. Thus, even
with messages of the left session, the cut-and-choose guarantees that the committed values
of CECom2 agree with those of Com1 in most indexes. The view of A in the second hybrid is
therefore indistinguishable from that of A in the first one.

The third hybrid is the same as the first one except that in the left session, the committed
value of Com1 is switched from sj to 0 for every j 6∈ Γ . Note that during the Com1 commit-
ments of the left, the combined running time ofA andO is at most T0(n)·poly(nlogn)� T1(n).
This is because

– for every right session in which A completes the second step before the start of the second
step of the left session, the answer of O (i.e., the committed value of CCACom0) can be
computed before the start of Com1 commitments of the left session, and

– for every right session in which A completes the second step after the start of the second
step of the left session, the answer of O is computed by extracting the committed values
of CECom2, which requires rewinding A at most poly(nlogn) times.

Thus, from the hiding property of Com1, the view of A in the third hybrid is indistinguishable
from that of A in the second one.

Note that, since s is (n+ 1)-out-of-10n secret sharing, A receives no information of v in
the third hybrid. Thus, the view of A in the third hybrid is independent of v, and thus the
CCA security follows.
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3 Preliminaries

In this section, we explain the assumptions and the definitions that we use in this paper.

3.1 Assumptions

For our CCA-secure commitment scheme, we use a one-way function f that is secure against
2n

ε
-time adversaries, where ε < 1 is a positive constant. Without loss of generality, we assume

that f can be inverted in time 2n. Let Ti(n)
def
= 2(logn)

(2/ε)10i+1

for i ∈ N. Then, by setting
the security parameter of f to `i(n) = (log n)(2/ε)

10i+2
, we obtain a one-way function fi that

is secure against Ti(n)-time adversaries but can be inverted in time less than Ti+0.5(n). We
note that when i ≤ O(log log n), we have `i(n) ≤ poly(n).

For our composable MPC protocol, we additionally use semi-honest oblivious transfer
protocols that are secure against 2poly(logn)-time adversaries.

3.2 Shamir’s Secret Sharing Scheme

In this paper, we use Shamir’s (n+ 1)-out-of-10n secret sharing scheme. For any positive real
number x ≤ 1 and any s = (s1, . . . , s10n) and s′ = (s′1, . . . , s

′
10n), we say that s and s′ are

x-close if |{i | si = s′i}| ≥ x · 10n. We note that Shamir’s secret sharing is a codeword of
Reed-Solomon code with minimum relative distance 0.9. Thus, for any x > 0.55 and any s
that is x-close to a valid codeword w, we can compute w from s.

3.3 Commitment Schemes

Recall that commitment schemes are two-party protocols between the committer C and the
receiver R. A transcript of the commit phase is accepted if R does not abort in the commit
phase. A transcript of the commit phase is valid if there exists a valid decommitment of this
transcript. We use a 2-round statistically binding commitment scheme Com based on one-way
functions [Nao91].

Strong computational binding property. We say that a commitment scheme 〈C,R〉 satisfies
a strong computational binding property if for any ppt committer C∗ interacting with the
honest receiver R, the probability that C∗ generates a commitment that has more than one
committed value is negligible.7

7 The standard computational binding property guarantees only that for any ppt committer C∗, the com-
mitment that C∗ generates cannot be decommitted to more than one value in polynomial time. Thus, this
commitment may have more than one committed value.

9



3.4 Extractable Commitments

We recall the definition of extractable commitments from [PW09]. Roughly speaking, a com-
mitment scheme is extractable if there exists an expected polynomial-time oracle machine
(or extractor) E such that for any committer C∗, EC∗ extracts the value that C∗ commits to
whenever the commitment is valid. We note that when the commitment is invalid, E may
output a garbage value. (This is called over-extraction.)

Formally, let 〈C,R〉 be a commitment scheme that satisfies the strong computational
binding property. Then, 〈C,R〉 is extractable if there exists an expected polynomial-time
probabilistic oracle machine E such that for any ppt committer C∗, extractor EC

∗
outputs a

pair (τ, σ) such that

– τ is identically distributed with the view of C∗ of the commit phase in which C∗ interacts
with honest receiver R.

– If τ is accepted, then σ 6= ⊥ except with negligible probability.
– If σ 6= ⊥, then it is statistically impossible to decommit τ to any value other than σ.

Note that when τ is accepted but invalid, σ may be an arbitrary value.
There exists a 4-round extractable commitment scheme ExtCom based on one-way func-

tions [PW09] (see Figure 1). The commit phase of ExtCom consists of three stages—commit,
challenge, and reply—and given two accepted transcripts that have the same commit mes-
sage but have different challenge messages, we can extract the committed value. Thus, we
can extract the committed value by rewinding the committer and obtaining two such tran-
scripts. In the following, we use slot to denote a pair of the challenge and reply messages
in ExtCom.

As shown in [PW09], ExtCom is in fact parallel extractable. Thus, even when a committer
commits to many values in parallel, we can extract all committed values.

3.5 Concurrently Extractable Commitments

Roughly speaking, a commitment scheme is concurrently extractable if there exists an ex-
pected polynomial-time extractor E such that for any committer C∗ that concurrently com-
mits to many values, EC

∗
extracts the committed value of each commitment immediately

after C∗ generates each commitment.
Formally, an extractable commitment 〈C,R〉 is concurrently extractable if for every poly-

nomial m, there exists an expected polynomial-time extractor E such that for any ppt com-
mitter C∗ that concurrently commits to at most m(n) values by using 〈C,R〉, the following
hold:

– The output τ of EC
∗

is identically distributed with the view of C∗ of the commit phase in
which C∗ interacts with honest receivers.

– Except with negligible probability, whenever E makes an oracle query Q to C∗ (where
query Q is a partial transcript of an interaction between C∗ and R), for each accepted
commitment τi that is contained in Q, extractor E immediately outputs a value σi such
that it is statistically impossible to decommit τi to any value other than σi.
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Commit Phase

The committer C and the receiver R receive common inputs 1n. To commit to v ∈ {0, 1}n,
the committer C does the following with the receiver R.

commit stage. For each i ∈ [n], the committer C chooses a pair of random n-bit strings
(a0i , a

1
i ) such that a0i ⊕a1i = v. Then, for each i ∈ [n] in parallel, C commits to a0i and

a1i by using Com. For each i ∈ [n] and b ∈ {0, 1}, let cbi be the commitment to abi .
challenge stage. R sends random n-bit string e = (e1, . . . , en) to C.
reply stage. For each i ∈ [n], C decommits ceii to aeii .

Decommit Phase

C sends v to R and decommits cbi for all i ∈ [n] and b ∈ {0, 1}. Then, R checks whether
a01 ⊕ a11 = · · · = a0n ⊕ a1n = v.

Fig. 1. Extractable commitment ExtCom [PW09].

Commit phase. The committer C and the receiver R receive common inputs 1n and
parameter r. To commit to v ∈ {0, 1}n, the committer C does the following.
Step 1. C and R execute commit stage of ExtCom r times in parallel.
Step 2i (i ∈ [r]). R sends the challenge message of ExtCom for the i-th session.
Step 2i+ 1 (i ∈ [r]). C sends the reply message of ExtCom for the i-th session.

Decommit phase. C sends v to R and decommits all the ExtCom commitments in the
commit phase.

Fig. 2. Concurrently extractable commitment CECom [MOSV06].

Micciancio et al. [MOSV06] showed a concurrently extractable commitment CECom (see
Figure 2). In CECom with parameter r, the committer sends commit messages of ExtCom r
times in parallel and then the committer and the receiver exchange challenge and reply

messages r times in sequence (thus, CECom has r sequential slots). When r = ω(log n),
the committed values of CECom are concurrently extractable with the rewinding strategy
of [PRS02]. We note that in the stand-alone setting, the committed value of CECom is ex-
tractable by rewinding any single slot.
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Concurrently T (n)-Extractable Commitments

For any function T (n), we consider a relaxed notion of concurrent extractability called con-
current T (n)-extractability, which is the same as concurrent extractability except that the
expected running time of the extractor is T (n).

By using the rewinding strategy of [PV08], we can show that CECom is concurrently
poly(nlogn)-extractable when r ≥ 3. (Note that when r is a constant, the round complexity of
CECom is constant.) In the rewinding strategy of [PV08], the extractor computes a sequence of
“threads of execution”—the main thread and look-ahead threads—where each thread consists
of the views of all the parties. For these threads, the following hold.

– Each thread is a perfect simulation of a prefix of an actual execution.

– Any two threads share a (possibly empty) prefix, but they are independent after the
shared prefix (i.e., after the prefix, the extractor emulates the interaction independently
in each thread).

– The main thread is a perfect simulation of a complete execution, and the extractor outputs
the view of C∗ in the main thread.

A little more precisely, the extractor does the following. First, the extractor begins to gener-
ate the main thread by simulating the interaction between C∗ and a honest receiver. Then,
whenever a slot ends in a session on the main thread and the slot contains only “small”
number of other slots, the extractor repeatedly generates look-ahead threads—by rewinding
the slot and starting new simulations with fresh randomness—until the committed value of
the session is extracted. In the look-ahead thread, the extractor also rewinds the slot in the
same manner as in the main thread (thus, the rewinding is performed recursively). It was
guaranteed that, when r ≥ 3, the extractor rewinds at least one slot in every accepted session
and therefore the extraction succeeds with probability 1.

3.6 Trapdoor Commitments

We recall the definition of trapdoor commitments from [PW09]. Roughly speaking, trapdoor
commitments are ones such that there exists a simulator that can generate a simulated
commitment and can later decommit it to any value.

Formally, a commitment scheme 〈C,R〉 is a trapdoor commitment if there exists an ex-
pected polynomial-time probabilistic oracle machine (or simulator) S = (S1,S2) such that for
any ppt adversary R∗ and all v ∈ {0, 1}n, the output (τ, ω) of the following two experiments
are computationally indistinguishable:

Experiment 1. On input v, the honest committer C interacts with R∗ to commit to v, and
then decommits the commitment to v. Let τ be the view of R∗ in the commit phase and
ω be the message that C sends to R∗ in the decommit phase.

Experiment 2. On input 1n, the simulator SR∗1 generates a simulated view τ of the commit
phase and a state state. Then, on inputs state and v, the simulator S2 generates ω.

12



Commit phase. To commit to σ ∈ {0, 1} on common input 1n, the committer C does
the following with the receiver R:
Step 1. R chooses a random n-bit string e = (e1, . . . , en) and commits to e by using

Com.
Step 2. For each i ∈ [n], the committer C chooses a random ηi ∈ {0, 1} and sets

vi :=

(
v00i v01i
v10i v11i

)
=

(
ηi ηi

σ ⊕ ηi σ ⊕ ηi

)
.

Then, for each i ∈ [n], α ∈ {0, 1}, and β ∈ {0, 1} in parallel, C commits to vαβi by

using ExtCom; let (vαβi , dαβi ) be the corresponding decommitment.
Step 3. R decommits the Step 1 commitment to e.
Step 4. For each i ∈ [n], C sends (vei0i , dei0i ) and (vei1i , dei1i ) to R. Then, R checks

whether these are valid decommitments and whether vei0i = vei1i .

Decommit phase. C sends σ and random γ ∈ {0, 1} to R. In addition, for every i ∈ [n],
C sends (v0γi , d

0γ
i ) and (v1γi , d

1γ
i ) to R. Then, R checks whether (v0γi , d

0γ
i ) and (v1γi , d

1γ
i )

are valid decommitments for every i ∈ [n] and whether v0γ0 ⊕ v
1γ
0 = · · · = v0γn ⊕ v1γn = σ.

Fig. 3. Black-box trapdoor bit commitment TrapCom.

Pass and Wee [PW09] showed that the black-box protocol TrapCom in Figure 3 is a
trapdoor bit commitment scheme. In fact, given the receiver’s challenge e in advance, we can
generate a simulated commitment and decommit it to both 0 and 1 in a straight-line manner
(i.e., without rewinding the receiver) as follows. To generate a simulated commitment, the
simulator internally simulates an interaction between C and R∗ honestly except that in Step
2, the simulator chooses random γ ∈ {0, 1} and lets each vi be a matrix such that the ei-th
row of vi is (ηi, ηi) and the (1 − ei)-th row of vi is (γ ⊕ ηi, (1 − γ) ⊕ ηi). To decommit the
simulated commitment to σ ∈ {0, 1}, the simulator decommits all the commitments in the
(σ ⊕ γ)-th column of each vi.

From the extractability of ExtCom, we can show that TrapCom is extractable. In addi-
tion, by using the hiding property of Com, we can show that TrapCom satisfies the strong
computational binding property. (Roughly speaking, if C∗ generates a commitment that has
more than one committed value, we can compute the committed value e of Com by extracting
v1, . . . , vn.)

Pass and Wee [PW09] showed that by running TrapCom in parallel, we obtain a black-
box trapdoor commitment PTrapCom for multiple bits. PTrapCom also satisfies the strong
computational binding property and extractability.
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3.7 CCA-Secure Commitments

We recall the definition of CCA security and κ-robustness [CLP10,LP12]. Tag-based commit-
ment schemes are ones such that both the committer and the receiver receive a string, or
tag, as an additional input.

CCA security (w.r.t. the committed-value oracle). Roughly speaking, a tag-based
commitment scheme 〈C,R〉 is CCA-secure if the hiding property of 〈C,R〉 holds even against
adversary A that interacts with the committed-value oracle during the interaction with the
committer. The committed-value oracle O interacts with A as an honest receiver in many
concurrent sessions of the commit phase of 〈C,R〉 using tags chosen adaptively by A. At the
end of each session, if the commitment of this session is invalid or has multiple committed
values, O returns ⊥ to A. Otherwise, O returns the unique committed value to A.

More precisely, let us consider the following probabilistic experiment indb(〈C,R〉,A, n, z)
for each b ∈ {0, 1}. On input 1n and auxiliary input z, adversary AO adaptively chooses a
pair of challenge values v0, v1 ∈ {0, 1}n and an n-bit tag id ∈ {0, 1}n. Then, AO receives a
commitment to vb with tag id, and A outputs y. The output of the experiment is ⊥ if during
the experiment, A sends O any commitment using tag id. Otherwise, the output of the ex-
periment is y. Let INDb(〈C,R〉,A, n, z) denote the output of experiment indb(〈C,R〉,A, n, z).

Then, the CCA security of 〈C,R〉 is defined as follows.

Definition 1. Let 〈C,R〉 be a tag-based commitment scheme and O be the committed-value
oracle of 〈C,R〉. Then, 〈C,R〉 is CCA-secure (w.r.t the committed-value oracle) if for any
ppt adversary A, the following are computationally indistinguishable:

– {IND0(〈C,R〉,A, n, z)}n∈N,z∈{0,1}∗
– {IND1(〈C,R〉,A, n, z)}n∈N,z∈{0,1}∗

If the length of the tags chosen by A is t(n) instead of n, 〈C,R〉 is CCA-secure for tags of
length t(n). ♦

We also consider a relaxed notion of CCA security called one-one CCA security. In the
definition of one-one CCA security, we consider adversaries that interact with O only in a
single session of the commit phase.

In the following, we use left session to denote the session of the commit phase between
the committer and A, and use right sessions to denote the sessions between A and O.

κ-robustness (w.r.t. the committed-value oracle). Roughly speaking, a tag-based com-
mitment scheme is κ-robust if for any adversary A and any ITM B, the joint output of a
κ-round interaction between AO and B can be simulated without O by a ppt simulator.
Thus, the κ-robustness guarantees that the committed-value oracle is useless in attacking
any κ-round protocol.

Formally, let 〈C,R〉 be a tag-based commitment scheme and O be the committed-value
oracle of 〈C,R〉. For any constant κ ∈ N, we say that 〈C,R〉 is κ-robust (w.r.t. the committed
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value oracle) if there exists a ppt oracle machine (or simulator) S such that for any ppt ad-
versary A and any κ-round ppt ITM B, the following are computationally indistinguishable:

– {outputB,AO [〈B(y),AO(z)〉(1n, x)]}n∈N,x,y,z∈{0,1}n
– {outputB,SA [〈B(y),SA(z)〉(1n, x)]}n∈N,x,y,z∈{0,1}n

Here, for any ITM A and B, we use outputA,B[〈A(y), B(z)〉(x)] to denote the joint output of
A and B in an interaction between them on inputs x, y to A and x, z to B respectively.

We also consider a relaxed notion of κ-robustness called κ-pqt-robustness. In the defini-
tion of κ-pqt-robustness, we allow the simulator to run in quasi-polynomial time.

Remark 1. In this paper, we assume that any adversary A (against CCA security or κ-
robustness) interacts with O in at most poly(n) sessions even when the running time of A is
super-polynomial. For our purpose, we can make this assumption without loss of generality.
This is because when we use our CCA secure commitment scheme to obtain a general MPC
protocol, the scheme need to be secure only for ppt adversaries.

4 One-One CCA Security for Short Tags

In this section, we construct a one-one CCA-secure commitment for tags of lengthO(log log log n).
Since the length of the tags is O(log log log n), we can view each tag as a value in {0, 1 . . . , d−
1 = O(log log n)}.

4.1 Building Blocks

Let Ti(n)
def
= 2(logn)

(2/ε)10i+1

for i ∈ N. Then, for constants a, b ∈ N, PTrapComb
a is a commit-

ment scheme such that

– the hiding property holds against any Ta(n)-time adversary but is completely broken in
time Ta+0.5(n),

– the strong computational binding property holds against any Tb(n)-time adversary, and

– there exists a Tb+0.5(n)-time straight-line simulator (of the trapdoor property) such that
the simulated commitment is indistinguishable from the actual commitment in time Ta(n).
(This holds even when Tb+0.5(n)� Ta(n).)

We can construct PTrapComb
a by appropriately setting the security parameters of Com and

ExtCom in PTrapCom. (Recall that in PTrapCom, many TrapCom are executed in parallel.)
More precisely, we scale down the security parameter of ExtCom so that the parallel execution
of ExtCom is hiding against Ta(n)-time adversaries but is completely broken in time less than
Ta+0.5(n), and scale down the security parameter of Com so that the parallel execution of Com
is hiding against Tb(n)-time adversaries but is completely broken in time less than Tb+0.5(n).

PCETrapComb
a is the same as PTrapComb

a except that we use CECom in Step 2 instead of
ExtCom.
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Commit phase. The committer C and the receiver R receive common inputs 1n and
id ∈ {0, 1, . . . , d − 1 = O(log log n)}. To commit to v ∈ {0, 1}n, the committer C does
the following with the receiver R.
Stage 1. C computes an (n+1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n) of

value v. Then, for each j ∈ [10n] in parallel, C commits to sj by using PTrapComi+d+1
i+d+1.

Let (sj , dj) be the decommitment of the j-th commitment.
Stage 2. For each j ∈ [10n] in parallel, C commits to (sj , dj) by using

PCETrapComi+id+1
i+d+2 . Here, the number of slots in PCETrapComi+id+1

i+d+2 is max(3, r+ 1),

where r is the round complexity of PTrapComi+d+1
i+d+1 in Stage 1.

Stage 3. For each j ∈ [10n] in parallel, C commits to (sj , dj) by using
PCETrapComi+d−id

i+d+2 . Here, the number of slots in PCETrapComi+d−id
i+d+2 is max(3, r+ 1).

Stage 4. R sends a random subset Γ ⊆ [10n] of size n to C.
Stage 5. For each j ∈ Γ , C decommits the j-th Stage 2 commitment and the j-th Stage

3 commitment to (sj , dj). Then, R checks whether (sj , dj) is a valid decommitment
of the j-th Stage 1 commitment.

Decommit phase. C sends v, s = (s1, . . . , s10n), and d = (d1, . . . , d10n) to R. Then,
R checks whether (sj , dj) is a valid decommitment of the j-th Stage 1 commitment for
every j ∈ [10n]. Furthermore, R checks whether (1) s is 0.9-close to a valid codeword
w = (w1, . . . , w10n) and (2) for each j ∈ Γ , wj is equal to the share that was revealed in
Stage 5. Finally, R checks whether w is a codeword corresponding to v.

Fig. 4. One-one CCA-secure commitment CCACom1:1
i .

4.2 One-One CCA Security for Tags of Length O(log log logn)

Lemma 1. Let ε < 1 be a positive constant, and for any i ∈ N, let Ti(n)
def
= 2(logn)

(2/ε)10i+1

.
Assume the existence of one-way functions that are secure against 2n

ε
-time adversaries. Then,

for any i ∈ N, there exists a constant-round commitment scheme CCACom1:1
i that satisfies

the following for any Ti(n)-time adversary.

– Strong computational binding property, and

– One-one CCA security for tags of length O(log log log n).

Furthermore, CCACom1:1
i uses the underlying one-way function only in a black-box way.

Proof. CCACom1:1
i is shown in Figure 4. The binding property follows from that of PTrapComi+d+1

i+d+1.

Thus, it remains to show that CCACom1:1
i is one-one CCA secure for tags of lengthO(log log log n).

To show that CCACom1:1
1 is one-one CCA secure, we show that for any Ti(n)-time ad-

versary A that interacts with O only in a single session, the following are computationally
indistinguishable:
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– {IND0(CCACom1:1
i ,A, n, z)}n∈N,z∈{0,1}∗

– {IND1(CCACom1:1
i ,A, n, z)}n∈N,z∈{0,1}∗

At the end of the right session, the committed-value oracle O does the following. First, O
computes the committed values s = (s1, . . . , s10n) of the Stage 1 commitments by brute force.
(If the committed value of the j-th commitment is not uniquely determined, sj is defined to
be ⊥.) Then, O checks whether the following conditions hold: (1) s is 0.9-close to a valid
codeword w = (w1, . . . , w10n) and (2) for every j ∈ Γ (where Γ is the subset that O sends to
A in Stage 4), wj is equal to the share that was revealed in Stage 5. If both conditions hold,
O recovers v from w and returns v to A. Otherwise, O returns v := ⊥ to A. We note that
the running time of O is at most poly(n) · Ti+d+1.5(n).

To show the indistinguishability, we consider hybrid experimentsGba(n, z) for a ∈ {0, 1, 2, 3}
and b ∈ {0, 1}.

Hybrid Gb0(n, z) is the same as experiment indb(CCACom1:1
i ,A, n, z).

Hybrid Gb1(n, z) is the same as Gb0(n, z) except for the following:

– In Stage 2 (resp., Stage 3) on the left, the left committer simulates the 10n com-
mitments of PCETrapComi+id+1

i+d+2 (resp., PCETrapComi+d−id
i+d+2 ) by using the straight-line

simulator.

– In Stage 5 on the left, for each j ∈ Γ , the left committer decommits the simulated
commitment of PCETrapComi+id+1

i+d+2 (resp., PCETrapComi+d−id
i+d+2 ) to (sj , dj) by using the

simulator.

We note that the running time of Gb1(n, z) is at most poly(n) · Ti+d+1.5(n).

Hybrid Gb2(n, z) is the same as Gb1(n, z) except for the following:

– Let ĩd be the tag of the right session. In Stage 2 (resp., Stage 3) of the right session, the

committed values of the PCETrapComi+ĩd+1
i+d+2 (resp., PCETrapComi+d−ĩd

i+d+2 ) commitments
are extracted without rewinding Stage 1 on the left by using the technique of [LP09,

CLP10]. (That is, in Step 2 of each PCETrapComi+ĩd+1
i+d+2 (resp. PCETrapComi+d−ĩd

i+d+2 )
commitment, the committed values of CECom are extracted by rewinding a single
slot that does not contain any Stage 1 messages of the left session. Such a slot must
exist, since the number of slots in CECom is max(3, r + 1).) Then, ŝ = (ŝ1, . . . , ŝ10n)

is defined as follows: if there exists a ∈ {2, 3} such that the extracted value (ŝ
(a)
j , d̂

(a)
j )

of the j-th commitment in Stage a is a valid decommitment of the j-th commitment

in Stage 1, let ŝj
def
= ŝ

(a)
j (if both (ŝ

(2)
j , d̂

(2)
j ) and (ŝ

(3)
j , d̂

(3)
j ) are valid decommitments

but ŝ
(2)
j 6= ŝ

(3)
j , let ŝj

def
= ⊥); otherwise, let ŝj

def
= ⊥.

– At the end of the right session, O checks whether the following conditions hold: (1)
ŝ is 0.8-close to a valid codeword ŵ = (ŵ1, . . . , ŵ10n) and (2) for every j ∈ Γ , ŵj is
equal to the share that was revealed in Stage 5. If both conditions hold, O recovers v̂
from ŵ and returns v̂ to A. Otherwise, O returns v̂ := ⊥ to A. We note that O does
not extract the committed values of the Stage 1 commitments.

We note that the expected running time of Gb2(n, z) is poly(n) · Ti+d+0.5(n).
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Hybrid Gb3(n, z) is the same as Gb2(n, z) except that on the left, the Stage 1 commitments
are simulated by the straight-line simulator of PTrapComi+d+1

i+d+1.

SinceA receives no information about {sj}j 6∈Γ in G0
3(n, z) and G1

3(n, z), the output of G0
3(n, z)

and that of G1
3(n, z) are identically distributed. Then, we consider the following claims. In

what follows, we use Gbi(n, z) to denote the output of experiment Gbi(n, z).

Claim 1. For each b ∈ {0, 1}, {Gb0(n, z)}n∈N,z∈{0,1}∗ and {Gb1(n, z)}n∈N,z∈{0,1}∗ are compu-
tationally indistinguishable.

Claim 2. For each b ∈ {0, 1}, {Gb1(n, z)}n∈N,z∈{0,1}∗ and {Gb2(n, z)}n∈N,z∈{0,1}∗ are statisti-
cally indistinguishable.

Claim 3. For each b ∈ {0, 1}, {Gb2(n, z)}n∈N,z∈{0,1}∗ and {Gb3(n, z)}n∈N,z∈{0,1}∗ are compu-
tationally indistinguishable.

The lemma follows from these claims. ut

Proof (of Claim 1). Gb1(n, z) differs from Gb0(n, z) only in that the Stage 2 commitments and
the Stage 3 commitments on the left are simulated by the simulator of PCETrapComi+id+1

i+d+2

and that of PCETrapComi+d−id
i+d+2 . Then, since the running time of Gb0(n, z) and that of Gb1(n, z)

are at most poly(n) · Ti+d+1.5(n)� Ti+d+2(n), the claim follows from the trapdoor property
of PCETrapComi+id+1

i+d+2 and that of PCETrapComi+d−id
i+d+2 . ut

Next, we consider Claim 2. Note that Gb2(n, z) differs from Gb1(n, z) in that O computes
the committed value of the right session from the extracted values of the Stage 2 commitments
and those of the Stage 3 commitments instead of from those of Stage 1 commitments. We
prove Claim 2 by showing that the value v̂ that O computes in Gb2(n, z) is the same as the
value v that O computes in Gb1(n, z). Toward this end, we first show that in the right session
of Gb1(n, z), the strong computational binding property holds in Stage 1 and either in Stage
2 or in Stage 3. Note that from the property of the cut-and-choose technique, this implies
that the committed values of either the Stage 2 commitments or the Sage 3 commitments
are 0.9-close to those of the Stage 1 commitments except with negligible probability. Let us
say that A cheats in Stage 1 if at least one of 10n PTrapCom commitments in Stage 1 on
the right has more than one committed value. We define cheating in Stage 2 and cheating in
Stage 3 similarly. Then, we prove two subclaims.

Subclaim 1. In Gb1(n, z), the probability that A cheats in Stage 1 is negligible.

Proof. This subclaim follows directly from the strong computational binding property of
PTrapComi+d+1

i+d+1, since the running time ofGb1(n, z) is at most poly(n)·Ti+d+0.5(n)� Ti+d+1(n)
when A completes Stage 1 on the right.

Formally, assume for contradiction that in Gb1(n, z), A cheats in Stage 1 with non-
negligible probability.
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Let us consider the following adversary B against the strong computational binding prop-
erty of PTrapComi+d+1

i+d+1. B internally invokes A and simulates Gb1(n, z) for A as follows until

A completes Stage 1 on the right. On the left, B perfectly simulates Gb1(n, z). On the right, B
perfectly simulates Gb1(n, z) except that in Stage 1, B chooses random j∗ ∈ [10n] and forwards
the j∗-th PTrapComi+d+1

i+d+1 commitment from A to the external receiver.

Since B does not simulate Gb1(n, z) after A completes Stage 1 on the right (and thus, B
does not need to simulate the value that O returns to A at the end of the right session), the
running time of B is at most poly(n) ·Ti+d+0.5(n)� Ti+d+1(n). In addition, since B perfectly
simulates Gb1(n, z), the j∗-th PTrapComi+d+1

i+d+1 commitment has more than one committed
value with non-negligible probability. Thus, we reach a contradiction. ut

Subclaim 2. In Gb1(n, z), the probability that A cheats in Stage 2 and Stage 3 simultaneously
is negligible.

Proof. To prove this subclaim, we need to show that even though the left committer “cheats,”
A cannot use the messages received on the left to cheat on the right. This can be proven by
following the proof of the scheme of [PW10]. Roughly speaking, we show that there always
exists a∗ ∈ {2, 3} such that during Stage a∗ on the right, the left session can be simulated in
“short” time (i.e., the left session can be simulated without breaking the strong computational
binding property of PCETrapCom in Stage a∗). A little more precisely, we show the following.
Recall that the commitment of PCETrapCom can be simulated in polynomial time if we know
the committed value of the Step 1 commitment of PCETrapCom. Then, we show that in the
left session, either this committed value can be extracted in “short” time (during Stage a∗ of
the right session) or it can be extracted before A starts Stage a∗ on the right (and thus can
be considered as an auxiliary input). Once we show that A cannot use the messages received
on the left to cheat on the right, the subclaim follows from the strong computational binding
property of PCETrapCom on the right.

Formally, assume for contradiction that with non-negligible probability, A cheats in Stage
2 and Stage 3 simultaneously. Let Cheat2,3 be the event that A cheats in Stage 2 and Stage

3 simultaneously, and let Tag
id,ĩd

be the event that A uses id on the left and uses ĩd on

the right for any tags id and ĩd. Then, since the number of tags is d = O(log log n), there
exists two distinct tags id and ĩd such that Cheat2,3 and Tag

id,ĩd
occur at the same time

with non-negligible probability. In the following, we fix any such id and ĩd. Then, to reach a
contradiction, we consider the following three message schedules of Gb1(n, z) (see Figure 5).

Schedule 1. A completes Step 1 of PCETrapComi+id+1
i+d+2 in Stage 2 on the left after A com-

pletes Stage 2 on the right.
Schedule 2. A completes Step 1 of PCETrapComi+id+1

i+d+2 in Stage 2 on the left before A
completes Stage 2 on the right, and A completes Step 1 of PCETrapComi+d−id

i+d+2 in Stage 3
on the left after A completes Stage 2 on the right.

Schedule 3. A completes Step 1 of PCETrapComi+d−id
i+d+2 in Stage 3 on the left before A

completes Stage 2 on the right.
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For any k ∈ {1, 2, 3}, let Schedulek be the event that A chooses Schedule k. Since A must
choose one of these schedules, there exists k∗ ∈ {1, 2, 3} such that the probability that all of
Schedulek∗ , Cheat2,3, and Tag

id,ĩd
occur simultaneously is non-negligible. Below, we reach a

contradiction for each k∗ ∈ {1, 2, 3}.

Fig. 5. Schedule 1 (left), Schedule 2 (center), and Schedule 3 (right).

When k∗ = 1, let us consider the following adversary B1 against the strong computational

binding property of PCETrapComi+ĩd+1
i+d+2 . B1 internally invokes A and simulates Gb1(n, z)

for A as follows until A completes Stage 2 on the right. On the left, B1 honestly simulates
Gb1(n, z). On the right, B1 honestly simulates Gb1(n, z) except that in Stage 2, B1 chooses
a uniformly random j∗ ∈ [10n] and forwards the j∗-th PCETrapComi+id+1

i+d+2 commitment
from A to the external receiver. If Schedule1 or Tag

id,ĩd
does not occur, B1 terminates and

outputs fail.

Since B1 does not simulate the left session after A completes Step 1 of Stage 2, and
since B1 does not simulate the right session after A completes Stage 2, the running time
of B1 is poly(n) + Ti(n) � T

i+ĩd+1
(n). In addition, from our assumption, B1 breaks the

strong computational binding property with non-negligible probability. Thus, we reach a
contradiction.

When k∗ = 2 and id < ĩd, let us consider the following adversary B2 against the strong

computational binding property of PCETrapComi+ĩd+1
i+d+2 . B2 is the same as B1 except that

B2 terminates and outputs fail if Schedule2 or Tag
id,ĩd

does not occur.

Since B2 does not simulate the left session after A completes Step 1 of Stage 3, and since
B1 does not simulate the right interaction after A completes Stage 2, the running time of
B2 is poly(n) ·Ti+id+1.5(n)� T

i+ĩd+1
(n). In addition, from our assumption, B2 breaks the

strong computational binding property with non-negligible probability. Thus, we reach a
contradiction.

When k∗ = 2 and id > ĩd, from an average argument, there exists a partial joint view V of
all the parties (the left committer, A, and O) such that after V, (1) A immediately starts
Stage 3 on the right and (2) the probability that all of Schedule2, Cheat2,3, and Tag

id,ĩd
occur is non-negligible. Then, since Schedule2 and Tag

id,ĩd
can occur, V contains Step 1 of
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PCETrapComi+id+1
i+d+2 in Stage 2 on the left. Let e be the sequence of the committed values

of Com commitments in Step 1 of these PCETrapComi+id+1
i+d+2 commitments.

Then, let us consider the following adversary B′2 against the strong computational binding

property of PCETrapComi+d−ĩd
i+d+2 . Upon receiving non-uniform advice V and e, B′2 internally

invokes A and simulates Gb1(n, z) for A as follows until A completes Stage 3 on the right.
First, B′2 feeds V to A. Then, on the left, B′2 honestly simulates Gb1(n, z) by using e
to simulate Stage 2. On the right, B′2 honestly simulates Gb1(n, z) except that in Stage

3, B′2 chooses uniformly random j∗ ∈ [10n] and forwards the j∗-th PCETrapComi+d−ĩd
i+d+2

commitment from A to the external receiver.
Since B′2 can simulate Stage 2 in the left session in polynomial time by using e, the
running time of B′2 is at most poly(n) ·Ti+d−id+0.5(n)� T

i+d−ĩd(n). In addition, from our

assumption, B′2 breaks the strong computational binding property of PCETrapComi+d−ĩd
i+d+2

with non-negligible probability. Thus, we reach a contradiction.
When k∗ = 3, from an average argument, there exists a partial joint view V ′ of all the

parties (the left committer, A, and O) such that after V ′, (1) A immediately starts Stage
3 on the right and (2) the probability that all of Schedule3, Cheat2,3, and Tag

id,ĩd
occur

is non-negligible. Then, since Schedule3 and Tag
id,ĩd

can occur, V ′ contains Step 1 of

PCETrapComi+d−id
i+d+2 in Stage 3 on the left. Let e be the sequence of the committed values

of Com commitments in Step 1 of these PCETrapComi+d−id
i+d+2 .

Then, let us consider the following adversary B3 against the strong computational binding

property of PCETrapComi+d−ĩd
i+d+2 . B3 is the same as B′2 except that B3 receives V ′ and e as

non-uniform advice, feeds V ′ to A, and simulates Stage 3 on the left by using e. (Since
V ′ contains Stage 2 on the left, B3 does not need to simulate Stage 2 on the left.)
The running time of B3 is at most poly(n)+Ti(n)� T

i+d−ĩd(n), and B3 breaks the strong

computational binding property of PCETrapComi+d−ĩd
i+d+2 with non-negligible probability.

Thus, we reach a contradiction.

Thus, for any case, we reach a contradiction. ut

Now, we are ready to prove Claim 2.

Proof (of Claim 2). As noted above, we prove Claim 2 by showing that the value computed
by O in Gb2(n, z) is equal to the value computed by O in Gb1(n, z). From Subclaim 2, there
exists a ∈ {2, 3} such that the committed values of the Stage a commitments are uniquely
determined. Then, since the committed values of the Stage 1 commitments and those of
Stage a commitments are uniquely determined before Γ is chosen, the committed values
of the Stage 1 commitments and those of Stage a commitments are 0.9-close except with
negligible probability. Then, since we have carefully defined the behavior of O in Gb2(n, z) (in
particular, since O checks whether the share is 0.8-close to a valid codeword in Gb2(n, z)), we
can show that the value computed by O from the extracted values of Stage 2 and 3 is the
same as the one computed from the committed values of Stage 1 in a similar manner to the
previous works on black-box constructions [CDSMW08,CDSMW09,Wee10,LP12].
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Formally, to show the indistinguishability, let us consider the following hybrid experiment:

Hybrid Gb1.5(n, z) is the same as Gb2(n, z) except that (1) on the right, O computes both v
(as in Gb1(n, z)) and v̂ (as in Gb2(n, z)) and (2) if v 6= v̂, then Gb1.5(n, z) terminates and
outputs fail.

In the following, we show that Gb1.5(n, z) outputs fail with at most negligible probability.
Since the view of A in Gb1(n, z) and that of A in Gb2(n, z) differ only in the value that O
returns to A, Claim 2 follows.

If the right session is not accepted, we have v = v̂ = ⊥, and thus Gb1.5(n, z) does not
output fail. Thus, in the following, we assume that the right session is accepted. Since the
view of A in Gb1.5(n, z) is identical with that of A in Gb1(n, z) until A completes the right ses-
sion, Subclaims 1 and 2 imply that except with negligible probability, there exists a ∈ {2, 3}
such that each commitment in Stage 1 and Stage a on the right has at most one committed

value. Let s(1) = (s
(1)
1 , . . . , s

(1)
10n) be the committed values of the Stage 1 commitment. Let

((s
(a)
1 , d

(a)
1 ), . . . , (s

(a)
10n, d

(a)
10n)) be the committed values of the Stage a commitments, and let

s(a) = (s
(a)
1 , . . . , s

(a)
10n) and d(a) = (d

(a)
1 , . . . , d

(a)
10n). For j ∈ [10n], we say that the j-th column

is bad if (s
(a)
j , d

(a)
j ) is not a valid decommitment of the j-th Stage 1 commitment. Then,

from the property of the cut-and-choose technique, the number of bad columns is less than n
except with exponentially small probability. Thus, when the committed values of the Stage
a commitments are extracted as in Gb2(n, z), the valid decommitments of the Stage 1 com-
mitments are extracted in at least 9n columns. Then, since each Stage 1 commitment has at
most one committed value, the shares ŝ, which is computed as in Gb2(n, z), is also 0.9-close
to s(1) except with negligible probability. Then, let us consider the following two cases:

– In Case 1, s(1) is 0.9-close to a valid codeword w = (w1, . . . , w10n). In this case, except
with negligible probability, ŝ is 0.8-close to w. Thus, the codeword ŵ, which O computed
from ŝ as in Gb2(n, z), is identical with w. Thus, we have v̂ = v except with negligible
probability.

– In Case 2, s(1) is not 0.9-close to any valid codeword. In this case, we have v = ⊥. If ŝ is
not 0.8-close to any valid codeword, we have v̂ = ⊥; thus we have v̂ = v. If ŝ is 0.8-close
to a valid codeword ŵ = (ŵ1, . . . , ŵ10n), since s(1) and ŵ are not 0.9-close, except with

exponentially small probability there exists j ∈ Γ such that ŵj 6= s
(1)
j . Thus, except with

negligible probability, we have v̂ = v = ⊥.

Thus, Gb1.5(n, z) outputs fail with at most negligible probability. ut
Finally, we prove Claim 3.

Proof (of Claim 3). Gb3(n, z) differs from Gb2(n, z) only in that on the left, the Stage 1 com-
mitments and their decommitments are generated by the simulator of PTrapComi+d+1

i+d+1. Then,

since the running time of Gb2(n, z) and that of Gb3(n, z) are at most poly(n) · Ti+d+0.5(n) �
Ti+d+1(n) except for Stage 1 on the left, and since Stage 1 on the left is not rewound in
Gb2(n, z) and in Gb3(n, z), the claim follows from the trapdoor property of PTrapComi+d+1

i+d+1.
ut
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5 CCA Security from One-One CCA Security

In this section, we show a transformation from any one-one CCA-secure commitment scheme
to a CCA-secure commitment scheme. To use this transformation to obtain a general MPC
protocol, we also show that the resultant CCA-secure commitment satisfies κ-pqt-robustness
for any κ ∈ N.

Lemma 2. Let ε < 1 be a positive constant, and assume the existence of one-way func-
tions that are secure against 2n

ε
-time adversaries. Let r(·) and t(·) be arbitrary functions,

let Ti(n)
def
= 2(logn)

(2/ε)10i+1

for any i ∈ N, and let CCACom1:1
i+3 be an r(n)-round commitment

scheme that satisfies the following for any Ti+3(n)-time adversary.

– Strong computational binding property, and
– One-one CCA security for tags of length t(n).

Then, for any κ ∈ N, there exists an (r(n) +O(1))-round commitment scheme CCAComi that
satisfies the following for any Ti(n)-time adversary.

– Statistical binding property,
– CCA security for tags of length t(n), and
– κ-pqt-robustness.

If CCACom1:1
i+3 uses the underlying one-way function only in a black-box way, then CCAComi

uses the underlying one-way function only in a black-box way.

In the proof of Lemma 2, we use the following building blocks, which we can obtain by
appropriately setting the security parameters of known protocols [Nao91,MOSV06,PV08].

– A 2-round statistically binding commitment Comi+1 that is secure against Ti+1(n)-time
adversaries but is completely broken in time Ti+1.5(n).

– A constant-round concurrently poly(nlogn)-extractable commitment CEComi+2 that is
secure against Ti+2(n)-time adversaries but is completely broken in time Ti+2.5(n). The
number of slots in CEComi+2 is κ + 3, and the extractor uses the rewinding strategy
of [PV08].

We note that both Comi+1 and CEComi+2 use the underlying one-way function in a black-box
way.

Proof (of Lemma 2). CCAComi is shown in Figure 6. The statistical binding property of
CCAComi follows from that of Comi+1. Then, we consider the following propositions.

Proposition 1. For any Ti(n)-time adversary, CCAComi is CCA secure for tags of length
t(n).

Proposition 2. For any Ti(n)-time adversary, CCAComi is κ-pqt-robust.

The lemma follows from these propositions. ut
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Commit phase. The committer C and the receiver R receive common inputs 1n and
id ∈ {0, 1}t(n). To commit to v ∈ {0, 1}n, the committer C does the following with the
receiver R.
Stage 1. R chooses a random subset Γ ⊆ [10n] of size n. Then, R commits to Γ by

using CCACom1:1
i+3 with tag id.

Stage 2. C computes an (n + 1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n)
of value v. Then, for each j ∈ [10n] in parallel, C commits to sj by using Comi+1.

Stage 3. For each j ∈ [10n] in parallel, C commits to sj by using CEComi+2.
Stage 4. R decommits the Stage 1 commitment to Γ .
Stage 5. For every j ∈ [10n], let the j-th column denote the j-th commitment in Stage

2 and the j-th one in Stage 3 (that is, the commitments whose committed value is
sj). Then, for each j ∈ Γ , C decommits the commitments of the j-th column to sj .

Decommit phase. C sends v to R and decommits the Stage 2 commitments to s.
Then, R checks whether all of these decommitments are valid. Furthermore, R checks
whether (1) s is 0.9-close to a valid codeword w = (w1, . . . , w10n) and (2) for every
j ∈ Γ , wj is equal to the share that was revealed in Stage 5. Finally, R checks whether
w is a codeword corresponding to v.

Fig. 6. CCA-secure commitment CCAComi.

5.1 Proof of Proposition 1

Proof (of Proposition 1). We show that for any Ti(n)-time adversary A, the following are
computationally indistinguishable:

– {IND0(CCAComi,A, n, z)}n∈N,z∈{0,1}∗
– {IND1(CCAComi,A, n, z)}n∈N,z∈{0,1}∗

Note that O does the following in each right session. First, O extracts the committed values
s = (s1, . . . , s10n) of the Stage 2 commitments by brute force. (If the committed value of the
j-th commitment is not uniquely determined, sj is defined to be ⊥.) Then, at the end of the
session, O checks whether the following conditions hold: (1) s is 0.9-close to a valid codeword
w = (w1, . . . , w10n), and (2) for every j ∈ Γ (where Γ is the value that O sends to A in Stage
4), wj is equal to the share that was revealed in Stage 5. If both conditions hold, O recovers
v from w and returns v to A. Otherwise, O returns v := ⊥ to A. We note that the running
time of O is at most poly(n) · Ti+1.5(n).

To show the indistinguishability, we consider hybrid experimentsHb
a(n, z) for a ∈ {0, 1, 2, 3}

and b ∈ {0, 1}.

Hybrid Hb
0(n, z) is the same as experiment indb(CCAComi,A, n, z).

Hybrid Hb
1(n, z) is the same as Hb

0(n, z) except for the following:
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– In Stage 1 of the left session, the committed value Γ is extracted by brute force. If the
commitment is invalid or has multiple committed values, Γ is defined to be a random
subset.8

– In Stage 3 of the left session, the left committer commits to 0 instead of sj for each
j 6∈ Γ .

The running time of Hb
1(n, z) is at most poly(n) · Ti+1.5(n) except for the brute-force

extraction of the Stage 1 commitment on the left.
Hybrid Hb

2(n, z) is the same as Hb
1(n, z) except for the following:

– In every right session of which Stage 2 ends after A starts Stage 2 on the left, the
committed values of the Stage 3 commitments are extracted by using the concurrent
poly(nlogn)-extractability of CEComi+2. Let ŝ = (ŝ1, . . . , ŝ10n) be the extracted values.

– At the end of each right session in which ŝ = (ŝ1, . . . , ŝ10n) is extracted, O does the
following. First, O checks whether the following conditions hold: (1) ŝ is 0.8-close to
a valid codeword ŵ = (ŵ1, . . . , ŵ10n) and (2) for every j ∈ Γ̃ (where Γ̃ is the value
that O sends to A in this session), ŵj is equal to the share that was revealed in Stage
5. If both conditions hold, O recovers v̂ from ŵ and returns v̂ to A. Otherwise, O
returns v̂ := ⊥ to A. We note that O does not extract the committed values of the
Stage 2 commitments in such right sessions.

The expected running time of Hb
2(n, z) is at most poly(nlogn) · Ti(n) after the start of

Stage 2 on the left.
Hybrid Hb

3(n, z) is the same as Hb
2(n, z) except that in Stage 2 on the left, the left committer

commits to 0 instead of sj for each j 6∈ Γ .

Since A receives no information about {sj}j 6∈Γ on the left in H0
3 (n, z) and H1

3 (n, z), and
since s is (n + 1)-out-of-10n secret sharing, the output of H0

3 (n, z) and that of H1
3 (n, z)

are identically distributed. Then, we consider the following claims. In what follows, we use
Hb
i(n, z) to denote the output of experiment Hb

i (n, z).

Claim 4. For each b ∈ {0, 1}, {Hb
0(n, z)}n∈N,z∈{0,1}∗ and {Hb

1(n, z)}n∈N,z∈{0,1}∗ are compu-
tationally indistinguishable.

Claim 5. For each b ∈ {0, 1}, {Hb
1(n, z)}n∈N,z∈{0,1}∗ and {Hb

2(n, z)}n∈N,z∈{0,1}∗ are statisti-
cally indistinguishable.

Claim 6. For each b ∈ {0, 1}, {Hb
2(n, z)}n∈N,z∈{0,1}∗ and {Hb

3(n, z)}n∈N,z∈{0,1}∗ are compu-
tationally indistinguishable.

The proposition follows from these claims. ut

Proof (of Claim 4). The view of A in Hb
0(n, z) and that of A in Hb

1(n, z) differ only in the
committed values of CEComi+2 on the left. In addition, the running time of Hb

0(n, z) and

8 Since the running time of A and O is at most poly(n) · Ti+1.5(n) � Ti+2(n), the strong computational
binding property of CCACom1:1

i+3 guarantees that the Stage 1 commitment has at most one committed value
except with negligible probability.
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that of Hb
1(n, z) are poly(n) ·Ti+1.5(n)� Ti+2(n) (except for the brute force extraction of the

Stage 1 commitment on the left in Hb
1(n, z)). Thus, by considering Γ as non-uniform advice,

we can prove indistinguishability from the hiding property of CEComi+2.
Formally, assume for contradiction that there exists a polynomial p(·) such that for in-

finitely many n, there exists z ∈ {0, 1}∗ and a ppt distinguisher D such that∣∣∣Pr
[
D(Hb

0(n, z)) = 1
]
− Pr

[
D(Hb

1(n, z)) = 1
]∣∣∣ ≥ 1

p(n)
.

In the following, we fix any such n and z. Let ρ be a prefix of the transcript of Hb
0(n, z) and

Hb
1(n, z) such that immediately after ρ, Stage 3 starts on the left. (Recall that Hb

0(n, z) and
Hb
1(n, z) proceed identically until the start of Stage 3 on the left.) Let prefixρ be the event

that a prefix of the transcript is ρ. From an average argument, with probability 1/2p(n) over
the choice of ρ, we have∣∣∣Pr

[
D(Hb

0(n, z)) = 1 | prefixρ

]
− Pr

[
D(Hb

1(n, z)) = 1 | prefixρ

]∣∣∣ ≥ 1

2p(n)
. (1)

Then, from the strong computational binding property of CCACom1:1
i+3, with probability

1/2p(n) − negl(n) over the choice of ρ, we have Equation (1) and ρ uniquely determines
the committed value Γ of the Stage 1 commitment of the left session. We fix any such ρ.

Let us consider the following Ti+2(n)-time adversary B against the (parallel) hiding prop-
erty of CEComi+2. On non-uniform advice ρ and Γ , adversary B internally invokes A and
honestly simulates Hb

1(n, z) after ρ except for the following:

– In Stage 3 on the left, B sends (sj)j 6∈Γ and (0, . . . , 0) to the external committer of
CEComi+2. Then, since the external committer commits to either (sj)j 6∈Γ or (0, . . . , 0)
in parallel, B forwards these commitments to A. (At the same time, B computes commit-
ments to (sj)j∈Γ and sends them to A.)

The output of B is that of the simulated Hb
1(n, z).

We reach a contradiction by showing that B breaks the hiding property of CEComi+2. The
view of the internal A is identical with either that of A in Hb

0(n, z) (when B receives com-
mitments to (sj)j 6∈Γ ) or that of A in Hb

1(n, z) (when B receives commitments to (0, . . . , 0)).
Thus, from Equation (1), B distinguishes the commitments of (sj)j 6∈Γ from those of (0, . . . , 0)
with non-negligible probability. ut

Next, we consider Claim 5. Note that Hb
2(n, z) differs from Hb

1(n, z) in that O computes
the committed value of each right session from the extracted values of Stage 3 commitments
instead of from those of Stage 2 commitments. We prove Claim 5 by showing that at the
end of each right session, the value v̂ that O computes in Hb

2(n, z) is the same as the value

v that O computes in Hb
1(n, z). Formally, for any right session, let s(2) = (s

(2)
1 , . . . , s

(2)
10n)

be the committed values of the Stage 2 commitments (if the committed value of the j-th

commitment is not uniquely determined, s
(2)
j is defined to be ⊥) and let s(3) = (s

(3)
1 , . . . , s

(3)
10n)
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be the committed values of the Stage 3 commitments. Then, for every j ∈ [10n], we say that

the j-th column of this session is bad if s
(2)
j = ⊥, s

(3)
j = ⊥, or s

(2)
j 6= s

(3)
j . In addition, we say

that A cheats in this session if the session is accepted and the number of bad columns is at
least n. Then, we prove the following subclaim.

Subclaim 3. In any right session of Hb
1(n, z), A cheats with at most negligible probability.

Proof. At first sight, it seems that we can prove this subclaim by simply using the hiding
property of CCACom1:1

i+3 and the property of cut-and-choose technique (i.e., it seems that,
since the committed value Γ of the Stage 1 commitment on the right is hidden from A, the
probability that there are at least n bad columns but the session is accepted is negligible).
However, A interacts with the left committer as well as with O, and the left committer
“cheats” in the left session (i.e., on the left, the committed values of the Stage 2 commitments
and those of the Stage 3 commitments are not 0.9-close). Thus, A may be able to cheat in a
right session by using the messages received on the left. A key to prove this subclaim is that
the left session can be simulated by using the committed-value oracle of CCACom1:1

i+3 (i.e., if
we know the committed value Γ of the Stage 1 commitment on the left, we can simulate the
later stages in polynomial time). Thus, the one-one CCA security of CCACom1:1

i+3 guarantees
that A cannot break the hiding property of CCACom1:1

i+3 even with the messages of the left
session. We can therefore use the cut-and-choose technique to prove the subclaim.

Formally, assume for contradiction that in Hb
1(n, z) there exists a right session in which

A cheats with non-negligible probability. Then, since the number of right sessions is at most
poly(n), A cheats with non-negligible probability in a randomly chosen session.

Let us consider the following Ti+3(n)-time adversary B against one-one CCA security
of CCACom1:1

i+3. B internally invokes A and simulates Hb
1(n, z) for A as follows. In Stage

1 on the left, B forwards the commitment from A to the committed-value oracle O (of
CCACom1:1

i+3) and receives Γ from O. (If O returns ⊥, B let Γ be a random subset.) Then, B
honestly simulates the later stages on the left by using Γ . On the right, B honestly simulates
Hb

1(n, z) in every right session except in a randomly chosen one. In Stage 1 of this randomly
chosen session, B sends random subsets Γ0, Γ1 ⊆ [10n] of size n to the external CCACom1:1

i+3

committer and forwards the CCACom1:1
i+3 commitment from the external committer to A (the

committed value is either Γ0 or Γ1). Then, B honestly simulates Hb
1(n, z) in Stage 2 and in

Stage 3, and at the end of Stage 3, B extracts the committed values s(2) = (s
(2)
1 , . . . , s

(2)
10n)

and s(3) = (s
(3)
1 , . . . , s

(3)
10n) by brute force. If s

(2)
j = s

(3)
j 6= ⊥ for all j ∈ Γ1 and the number of

bad columns is at least n, B outputs 1. Otherwise, B outputs 0. We note that the running
time of B is poly(n) · Ti+2.5(n)� Ti+3(n).

We reach a contradiction by showing that B breaks the one-one CCA security of CCACom1:1
i+3.

Since B perfectly simulates Hb
1(n, z) for A, the internal A cheats with non-negligible probabil-

ity in the session that B chooses. Therefore, when B receives a commitment to Γ1, B outputs
1 with non-negligible probability. On the other hand, when B receives a commitment to Γ0,
since the internal A receives no information about Γ1, the probability that the number of bad
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columns is at least n but we have s
(2)
j = s

(3)
j 6= ⊥ for all j ∈ Γ1 is exponentially small. Thus,

when B receives a commitment to Γ0, B outputs 1 with at most negligible probability. ut

Now, we are ready to prove Claim 5.

Proof (of Claim 5). As noted above, we prove Claim 5 by showing that at the end of each right
session, the value computed by O in Hb

2(n, z) is equal to the value computed by O in Hb
1(n, z).

Recall that if some of the Stage 3 commitments are invalid, there is over-extraction. To show
that the equality holds even with over-extraction, we use the technique used in the analysis
of the previous black-box constructions [CDSMW08, CDSMW09, Wee10, LP12]. Note that
Subclaim 3 guarantees that there are at most n bad columns (and thus there are not many
invalid commitments). Then, since we have carefully defined the behavior of O in Hb

2(n, z)
(in particular, since O checks whether the share is 0.8-close to a valid codeword in Hb

2(n, z)),
O can correctly decide the validity of each session in Hb

2(n, z) even with over-extraction.

Formally, to show the indistinguishability between {Hb
1(n, z)}n∈N,z∈{0,1}∗ and {Hb

2(n, z)}n∈N,z∈{0,1}∗ ,
let us consider the following hybrid experiment:

Hybrid Hb
1.5(n, z) is the same as Hb

2(n, z) except that in every right session on every thread,9

if the committed values of CEComi+2 are extracted, then (1) O computes both v (as in
Hb

1(n, z)) and v̂ (as in Hb
2(n, z)) and (2) Hb

1.5(n, z) terminates and outputs fail when v 6= v̂.

In the following, we fix a thread in Hb
1.5(n, z) and show that in every right session on this

thread, Hb
1.5(n, z) outputs fail with at most negligible probability. Since the only difference

between the view of A in Hb
1(n, z) and that of A in the main thread of Hb

2(n, z) is the values
that O returns to A, Claim 5 follows.

First, we show that except with negligible probability, Hb
1.5(n, z) does not outputs fail at

the end of the first right session in which the committed values of CEComi+2 are extracted
(the order of the right sessions is defined as the order of their completion; thus, the first right
session of Hb

1.5(n, z) is the first right session that A completes in Hb
1.5(n, z)). If the first right

session is not accepted, we have v = v̂ = ⊥ and thus Hb
1.5(n, z) does not output fail at the end

of this session. Thus, we assume that the first right session is accepted. Since the view of A
on any thread in Hb

1.5(n, z) is identical with that of A in Hb
1(n, z) until A completes the first

right session in which the committed values of CEComi+2 are extracted, Subclaim 3 implies
that the number of bad columns in the first right session on any thread in Hb

1.5(n, z) is less
than n except with negligible probability. Then, let us consider the following two cases:

– In Case 1, the committed shares s(2) = (s
(2)
1 , . . . , s

(2)
10n) of the Stage 2 commitment in

the first right session is 0.9-close to a valid codeword w = (w1, . . . , w10n). In this case,

except with negligible probability, the committed shares s(3) = (s
(3)
1 , . . . , s

(3)
10n) of the

Stage 3 commitments is 0.8-close to w. (Recall that, from Subclaim 3, s(3) is 0.9-close
to s(2) except with negligible probability.) Then, except with negligible probability, the

9 Recall that, as noted in Section 3.5, the extractor computes a sequence of “threads of execution” in the
rewinding strategy of [PV08].
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extracted shares ŝ(3) = (ŝ
(3)
1 , . . . , ŝ

(3)
10n) is also 0.8-close to w. (This is because (1) we

have ŝ
(3)
j = s

(3)
j when s

(3)
j 6= ⊥ and (2) we have

∣∣∣{j | s(3)j = wj 6= ⊥}
∣∣∣ ≥ 8n except with

negligible probability.) Thus, except with negligible probability, the codeword w, which
is computed from s(2), is identical with the codeword ŵ, which is computed from ŝ(3).
Thus, we have v = v̂ except with negligible probability.

– In Case 2, s(2) is not 0.9-close to any valid codeword. In this case, we have v = ⊥. If
ŝ(3) is not 0.8-close to any valid codeword, we have v̂ = ⊥. Thus, we assume that ŝ(3) is
0.8-close to a valid codeword ŵ = (ŵ1, . . . , ŵ10n). Note that s(2) is not 0.9-close to ŵ.

In addition, since Subclaim 3 guarantees that we have
∣∣∣{j | s(3)j 6= ⊥}∣∣∣ ≥ 9n except with

negligible probability, ŝ(3) and s(3) are 0.9-close except with negligible probability; thus,
ŵ can be computed from s(3) except with negligible probability. Then, as in the proof of
Subclaim 3, we can show that except with negligible probability, there exists j ∈ Γ such

that s
(2)
j 6= ŵj . Thus, we have v̂ = ⊥ except with negligible probability.

Therefore, at the end of the first right session in which the committed values of CEComi+2

are extracted, Hb
1.5(n, z) outputs fail with at most negligible probability.

Next, we show that for any k ∈ N, if Hb
1.5(n, z) does not output fail at the end of the

k′-th session for every k′ < k on the thread, Hb
1.5(n, z) does not output fail at the end of the

k-th session except with negligible probability. Since Hb
1.5(n, z) does not output fail until A

completes the k-th session, the view of A on the thread in Hb
1.5(n, z) is identical with that of

A in Hb
1(n, z) until A completes the k-th session. We can therefore use the same argument as

above to show that except with negligible probability, Hb
1.5(n, z) does not output fail at the

end of the k-th session.

We therefore conclude that Hb
1.5(n, z) outputs fail with at most negligible probability. ut

Finally, we prove Claim 6.

Proof (of Claim 6). Hb
2(n, z) and Hb

3(n, z) differ only in the committed values of Comi+1.
Since the running time of Hb

2(n, z) and that of Hb
3(n, z) are poly(nlogn) · Ti(n) � Ti+1(n)

after the start of Stage 2 on the left, we can prove Claim 6 from the hiding property of
Comi+1 (by considering Γ of the left session and the answers of O for some right sessions as
non-uniform advice). Here, we use the fact that Comi+1 is a 2-round commitment scheme.
This fact enables us to rewind A in the right sessions of Hb

2(n, z) without breaking the hiding
property of Comi+1.

Formally, assume for contradiction that there exists a polynomial p(·) such that for in-
finitely many n, there exists z ∈ {0, 1}∗ such that Hb

3(n, z) can be distinguished from Hb
2(n, z)

with probability at least 1/p(n). In the following, we fix any such n and z. Recall that both
in Hb

2(n, z) and Hb
3(n, z), A is not rewound before Stage 2 starts in the left session. Let ρ

be a prefix of the transcript of Hb
2(n, z) and Hb

3(n, z) such that immediately after ρ, Stage 2
starts on the left. Let prefixρ be the event that a prefix of the transcript is ρ. From an average
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argument, with probability 1/2p(n) over the choice of ρ, we have∣∣∣Pr
[
D(Hb

2(n, z)) = 1 | prefixρ

]
− Pr

[
D(Hb

3(n, z)) = 1 | prefixρ

]∣∣∣ ≥ 1

2p(n)
(2)

for a ppt distinguisher D. Then, from strong computational binding property of CCACom1:1
i+3,

with probability 1/2p(n)− negl(n) over the choice of ρ, we have Equation (2) and ρ uniquely
determines the committed value Γ of the Stage 1 commitment of the left session. We fix
any such ρ. Let s1, . . . , sk be the committed values of the Stage 2 commitments of the right
sessions of which Stage 2 is contained in ρ.

Let us consider the following Ti+1(n)-time adversary B against the hiding property of
Comi+1. On non-uniform advice ρ, Γ and s1, . . . , sk, adversary B internally invokes A and
simulates Hb

2(n, z) after ρ as follows.

– The right sessions are simulated honestly except that in the sessions of which Stage 2
completes before the start of Stage 2 of the left session, the answers of O are computed
by using non-uniform advice s1, . . . , sk.

– The left session is simulated honestly except that in Stage 2, B sends (sj)j 6∈Γ and (0, . . . , 0)
to the external Comi+1 committer and forwards 9n commitments from the external com-
mitter to A (the committed values are either (sj)j 6∈Γ or (0, . . . , 0)). When B rewinds A
during the simulation of Hb

2(n, z) and A requires new Stage 2 commitments, B does the
same thing again by receiving new Comi+1 commitments from the external committer.10

If the running time of the simulated Hb
2(n, z) exceeds 4p(n)T (n) � Ti+1(n), where T (n) =

poly(nlogn) · Ti(n) is the expected running time of Hb
2(n, z), B outputs fail1. Otherwise, B

outputs whatever the simulated Hb
2(n, z) outputs.

We reach a contradiction by showing that B breaks the hiding property of Comi+1. From
its construction, B either perfectly simulates Hb

2(n, z) (when B receives commitments to
(sj)j 6∈Γ ) or perfectly simulates Hb

3(n, z) (when B receives commitments to (0, . . . , 0)). In
addition, from Marcov’s inequality, B outputs fail1 with probability at most 1/4p(n). Thus,
from our assumption, the value that B outputs when B receives commitments to (0, . . . , 0)
can be distinguished with probability at least 1/4p(n) from the value that B outputs when
B receives commitments to (sj)j 6∈Γ . ut

5.2 Proof of Proposition 2

Like the robustness of previous CCA-secure commitment schemes [CLP10,LP12], the robust-
ness of CCAComi can be shown by using the techniques in the proof of its CCA security.

Proof (of Proposition 2). We show that there exists a pqt simulator S such that for any
Ti(n)-time adversary A and any κ-round ppt ITM B, the following are computationally
indistinguishable.

10 Since Comi+2 is a 2-round commitment, we can assume without loss of generality that A always receives
the second-round message of Comi+1 immediately after A sends the first-round message of Comi+1. Thus,
B can always simulate Stage 2 by receiving new Comi+1 commitments.
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– {outputB,AO [〈B(y),AO(z)〉(1n, x)]}n∈N,x,y,z∈{0,1}n
– {outputB,SA [〈B(y),SA(z)〉(1n, x)]}n∈N,x,y,z∈{0,1}n

Given oracle access to A, simulator S simulates the interaction between B and AO as
follows. On the left, S forwards messages from B to A and forwards those from A to B. On
the right, S simulates each session between A and O honestly except for the following.

– In Stage 3, S extracts ŝ(3) = (ŝ
(3)
1 , . . . , ŝ

(3)
10n) from the CEComi+1 commitments without

rewinding the left interaction by using the technique of [LP09]. That is, S extracts ŝ(3)

by using a slot that does not contain any message of the left interaction.11 There must
exist at least three such slots, since CEComi+1 in Stage 3 has (κ+ 3) slots.

– At the end of the session, S checks whether the following conditions hold: (1) ŝ(3) is
0.8-close to a valid codeword ŵ = (ŵ1, . . . , ŵ10n) and (2) for every j ∈ Γ (where Γ is the
value that S sends to A in Stage 4), ŵj is equal to the share that was revealed in Stage
5. If both conditions hold, S recovers v̂ from ŵ and returns v̂ to A. Otherwise, S returns
v̂ := ⊥.

We show that S correctly simulates the interaction between B and AO. First, as in the
proof of Subclaim 3, we can show that when AO interacts with B, in any right session
between A and O, A cheats with at most negligible probability (we use the hiding property
of CCACom1:1

i+3 instead of one-one CCA-secure property). Then, as in the proof of Claim 5,
we can show that the view of the internal A (in S) is statistically close to the view of AO
that interacts with B. ut

6 One-One CCA Security for Long Tags from CCA Security for Short
Tags

In this section, we consider a transformation from any CCA-secure commitment scheme for
tags of length t(n) to a one-one CCA-secure commitment scheme for tags of length 2t(n)−1.
The transformation is essentially the same as those in [LPV08], which shows a transformation
from any concurrent NM commitment scheme for short tags to a NM commitment scheme
for long tags.

Lemma 3. Let ε < 1 be a positive constant, and assume the existence of one-way functions
that are secure against 2n

ε
-time adversaries. Let r(·) and t(·) be arbitrary functions such that

t(n) ≤ O(log n), let Ti(n)
def
= 2(logn)

(2/ε)10i+1

for i ∈ N, and let CCAComi+1 be an r(n)-round
commitment scheme that satisfies the following for any Ti+1(n)-time adversary.

– Statistical binding property, and

11 Recall that in the rewinding strategy of [PV08], the extractor rewinds a single slot that contains only
“small” number of other slots. (Such a slot always exist when the number of slots is at least 3.) Then, S
extracts ŝ(3) by rewinding a slot that (1) contains only “small” number of other slots and (2) does not
contain any left message.
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Commit Phase

The committer C and the receiver R receive common inputs 1n and id ∈ {0, 1}2t(n)−1
.

To commit to v ∈ {0, 1}n, the committer C chooses random v1, . . . , v2t(n)−1 such that
v =

⊕
j vj , and for each j ∈ [2t(n)−1] in parallel, C commits to vj by using CCAComi+1

with tag (j, idj), where idj is the j-th bit of id.

Decommit Phase

C sends v to R and decommits all the CCAComi+1 commitments.

Fig. 7. One-one CCA-secure commitment CCACom1:1
i .

– CCA security for tags of length t(n).

Then, there exists an r(n)-round commitment scheme CCACom1:1
i that satisfies the following

for any Ti(n)-time adversary.

– Statistical binding property, and

– One-one CCA security for tags of length 2t(n)−1.

If CCAComi+1 uses the underlying one-way function only in a black-box way, then CCACom1:1
i

uses the underlying one-way function only in a black-box way.

Proof. CCACom1:1
i is shown in Figure 7. The statistical binding property follows from that

of CCAComi+1. Thus, it remains to show that CCACom1:1
i is one-one CCA secure.

We show that for any Ti(n)-time adversary A that interacts with O only in a single
session, the following are computationally indistinguishable:

– {IND0(CCACom1:1
i ,A, n, z)}n∈N,z∈{0,1}∗

– {IND1(CCACom1:1
i ,A, n, z)}n∈N,z∈{0,1}∗

Without loss of generality, we assume that the tag that A chooses in the right session is
always different from the tag that A chooses in the left session.

Assume for contradiction that there exist a ppt distinguisher D and a polynomial p(·) such
that for infinitely many n, there exists z ∈ {0, 1}∗ such thatD distinguishes IND1(CCACom1:1

i ,A, n, z)
from IND0(CCACom1:1

i ,A, n, z) with probability at least 1/p(n). In the following, we fix any
such n and z.

Let us consider the following Ti+1(n)-time adversary B against CCA security of CCAComi+1.
B internally invokes A and simulates ind0(CCACom1:1

i ,A, n, z) for A as follows. First, B
chooses random j∗ ∈ [2t(n)−1], and for each j ∈ [2t(n)−1] \ {j∗}, B chooses random vj ∈
{0, 1}n. Then, in the left session, when A outputs challenge values m0,m1 ∈ {0, 1}n and tag

id = (id1, . . . , id2t(n)−1), B sets v
(b)
j∗ := mb ⊕

⊕
j 6=j∗ vj for each b ∈ {0, 1} and sends challenge
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v
(0)
j∗ , v

(1)
j∗ and tag (j∗, idj∗) ∈ {0, 1}t(n) to the external left committer. When B receives a

CCAComi+1 commitment from the left committer (the committed value is either v
(0)
j∗ or v

(1)
j∗ ),

B forwards it to A. At the same time, B generates CCAComi+1 commitments to (vj)j 6=j∗ and

sends them to A. In the right session, when A outputs tag ĩd, B terminates and outputs fail
if idj∗ = ĩdj∗ . Otherwise, B forwards a CCACom1:1

i commitment from A to O as 2t(n)−1 paral-

lel commitments of CCAComi+1 with tags {(j, ĩdj)}2
t(n)−1

j=1 . Then, B receives (v1, . . . , v2t(n)−1)

from O, and if vj 6= ⊥ for all j ∈ [2t(n)−1], B returns v :=
⊕

j vj to A. If vj = ⊥ for
some j, B returns ⊥ to A. Finally, B outputs D(y), where y is the output of the simulated
ind0(CCACom1:1

i ,A, n, z).
We reach a contradiction by showing that B breaks the CCA security of CCAComi+1

with non-negligible probability. For b ∈ {0, 1}, let Abortb be the event that B outputs fail in
indb(CCAComi+1,B, n, z). Then, from the hiding property of CCAComi+1, we have

|Pr [Abort0]− Pr [Abort1]| ≤ negl(n) .

In addition, since we always have id 6= ĩd, for each b ∈ {0, 1} we have

Pr [¬Abortb] ≥
1

2t(n)−1
≥ 1

poly(n)
.

If B does not output fail, B perfectly simulates either ind0(CCACom1:1
i ,A, n, z) or ind1(CCACom1:1

i ,A, n, z).
In addition, if B does not output fail, each tag (j, ĩdj), which was used on the right, is different
from the tag (j∗, idj∗), which was used on the left. Thus, we have∣∣∣∣ Pr [IND0(CCAComi+1,B, n, z) = 1]

−Pr [IND1(CCAComi+1,B, n, z) = 1]

∣∣∣∣
=

∣∣∣∣ Pr [IND0(CCAComi+1,B, n, z) = 1
∧
¬Abort0]

−Pr [IND1(CCAComi+1,B, n, z) = 1
∧
¬Abort1]

∣∣∣∣
≥
∣∣∣∣ Pr [IND0(CCAComi+1,B, n, z) = 1 | ¬Abort0]
−Pr [IND1(CCAComi+1,B, n, z) = 1 | ¬Abort1]

∣∣∣∣× 1

poly(n)

=

∣∣∣∣ Pr
[
D(IND0(CCACom1:1

i ,A, n, z)) = 1
]

−Pr
[
D(IND1(CCACom1:1

i ,A, n, z)) = 1
]∣∣∣∣× 1

poly(n)

≥ 1

p(n)poly(n)
.

ut

7 Constant-Round Black-Box Composable Protocol

In this section, we show a constant-round black-box construction of a general MPC protocol
that satisfies angel-based UC security. Roughly speaking, the framework of angel-based UC
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security (called H-EUC framework) is the same as the UC framework except that both the
adversary and the environment in the real and the ideal worlds have access to a super-
polynomial-time angel H.

To construct our protocol, we use the following theorem, which we obtain by combining
Lemmas 1, 2, and 3.

Theorem 1. Assume the existence of one-way functions that are secure against sub-exponential-
time adversaries. Then, for any constant κ ∈ N, there exists a constant-round commitment
scheme that is CCA secure and κ-pqt-robust. This commitment scheme uses the underlying
one-way functions only in a black-box way.

We additionally use the following results of [CLP10] and [LP12].

Let 〈C,R〉 be any rcca(n)-round commitment scheme that is CCA secure and κ-robust
for any constant κ, 〈S,R〉 be any rot(n)-round semi-honest OT protocol, and H be an angel
that breaks 〈C,R〉 essentially in the same way as the committed-value oracle of 〈C,R〉 does.
Then, Lin and Pass [LP12] showed that there exists a black-box O(max(rot(n), rcca(n)))-round
protocol that securely realizes the ideal OT functionality FOT in the H-EUC framework. By
using essentially the same security proof as that of [LP12], we can show that even when 〈C,R〉
is CCA secure and only κ-pqt-robust for a sufficiently large κ, the protocol of [LP12] is still
secure if 〈S,R〉 is secure against any pqt adversary.12 Thus, we have the following theorem
from [LP12].

Theorem 2. Assume the existence of an rcca(n)-round commitment scheme 〈C,R〉 that is
CCA secure and κ-pqt-robust for a sufficiently large κ, and assume the existence of an rot(n)-
round semi-honest oblivious transfer protocol 〈S,R〉 that is secure against any pqt adversary.
Then, there exists an O(max(rcca(n), rot(n)))-round protocol that H-EUC-realizes FOT . This
protocol uses 〈C,R〉 and 〈S,R〉 only in a black-box way.

In [CLP10], Canetti et al. showed the following.

Theorem 3 ( [CLP10]). For every well-formed functionality F , there exists a constant-
round FOT -hybrid protocol that H-EUC-realizes F .

Then, by combining Theorems 1, 2, and 3, we obtain the following theorem.

Theorem 4. Assume the existence of one-way functions that are secure against sub-exponential-
time adversaries and constant-round semi-honest oblivious transfer protocols that are secure
against quasi-polynomial-time adversaries. Then, there exists an angel H such that for every
well-formed functionality F , there exists a constant-round protocol that H-EUC-realizes F .
This protocol uses the underlying one-way functions and oblivious transfer protocols only in
a black-box way.

12 This is because κ-pqt-robustness guarantees that the committed-value oracle is useless in attacking any
κ-round protocol if the protocol is pqt-secure.
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8 Negative Result on CCA-Secure Commitments

In this section, we show that if we use a black-box reduction and assume only falsifiable
polynomial-time hardness assumptions, we cannot prove the CCA security of any constant-
round commitment scheme.

8.1 Preliminaries

First, we give a definition of the falsifiable polynomial-time hardness assumptions, which is
essentially the same as the definition of the falsifiable assumptions of [GW11].

Definition 2. A falsifiable polynomial-time hardness assumption is a pair (Ch, c), where
Ch is a ppt ITM called challenger and c is a constant such that 0 ≤ c < 1. For any (possibly
super-polynomial-time) adversary A, we say that A breaks an assumption (Ch, c) if there
exists a polynomial p(·) such that for infinitely many n, we have

Pr [outputCh[〈Ch,A〉(1n)] = 1] ≥ c+ 1/p(n) .

The assumption (Ch, c) is true if and only if no ppt adversary can break (Ch, c). ♦

Next, we recall the definition of black-box reductions from [GW11]. For concreteness, we
consider only black-box reductions showing the CCA security of a commitment scheme.

Definition 3. A black-box reduction is a ppt oracle machine. We say that a black-box
reduction R shows the CCA security of a commitment scheme 〈C,R〉 based on an assumption
(Ch, c) if for any (possibly super-polynomial-time) adversary A that breaks the CCA security
of 〈C,R〉, RA breaks the assumption (Ch, c). ♦

8.2 Our Negative Result

Theorem 5. Let 〈C,R〉 be a o(log n/ log log n)-round commitment scheme. If there exists a
black-box reduction R showing that 〈C,R〉 is CCA secure based on a falsifiable polynomial-
time hardness assumption (Ch, c), then the assumption (Ch, c) is false.

In the proof of Theorem 5, we use a technique that Canetti et al. [CKPR02] used to show
the impossibility of o(log n/ log logn)-round black-box concurrent zero-knowledge proofs for
non-trivial languages.

First, we recall this technique (for details, see [CKPR02]). For any k(n) = o(log n/ log logn)-
round zero-knowledge proof 〈P, V 〉 and for any ppt black-box simulator S, Canetti et al.
constructed a family of cheating verifiers {Vg,h}g∈G,h∈H , where G and H are families of hash
functions. Each Vg,h executes n2 sessions of 〈P, V 〉 in a specific schedule Rn2 (see Figure 8).
The schedule Rn2 consists of n recursive blocks, and each recursive block consists of n sessions.
In each session, Vg,h interacts with the prover in the same way as the honest verifier does
except that (1) randomness used in this session is determined by using h and a prefix of the
transcript (called the block prefix ) and (2) Vg,h decides whether to abort this session by using
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For any m ≤ n2, the schedule Rm is recursively defined as follows.

1. If m < n, sessions 1, . . . ,m are executed sequentially until they are all completed.
2. Otherwise, for j = 1, . . . , k(n):

Message exchange: Each of the first n sessions exchanges two messages.
Recursive call: If j < k(n), the scheduling Rd(m−n)/(k(n)−1)e is applied recursively

on d(m− n)/(k(n)− 1)e new sessions.

The set of n sessions that is explicitly executed during the message exchange phase is
called a recursive block.

Fig. 8. Schedule Rm [CKPR02].

g and a prefix of the transcript (called the iteration prefix )13. Vg,h accepts a recursive block
if and only if Vg,h accepted at least n1/2/4 sessions in this recursive block. If Vg,h rejects a
recursive block, Vg,h halts. If Vg,h accepts all n recursive blocks, Vg,h outputs accept. Then,
Canetti et al. showed that with overwhelming probability over the choice of g ∈ G, h ∈ H,
and randomness of S, if SVg,h outputs an accepted transcript (i.e., a transcript in which
Vg,h outputs accept), there exists a session that was accepted but was not “rewound” in the
execution of SVg,h (since otherwise the running time of S becomes super-polynomial).14

Next, we prove Theorem 5. In the proof, we use the idea behind {Vg,h}g∈G,h∈H .

Proof (of Theorem 5). Let R be a black-box reduction showing CCA security of 〈C,R〉 based
on a falsifiable polynomial-time hardness assumption (Ch, c). Then, for any (possibly super-
polynomial-time) adversary A that breaks CCA security of 〈C,R〉, there exists a polynomial
p(·) such that for infinitely many n, we have

Pr
[
outputCh[〈Ch,RA〉(1n)] = 1

]
≥ c+ 1/p(n) .

First, let us consider the following family {A1
g,h}g∈G,h∈H of super-polynomial-time adver-

saries against CCA security of 〈C,R〉. In the left session, A1
g,h honestly interacts with the left

committer with randomly chosen challenge values. In the right sessions, A1
g,h interacts with O

in n2 sessions in the schedule Rn2 . In the i-th right session, A1
g,h chooses random vi ∈ {0, 1}n

and commits to vi. The randomness used in this session is generated as in [CKPR02] (i.e.,
using h and the block prefix) and A1

g,h decides whether to abort this session as in [CKPR02]

(i.e., using g and the iteration prefix). A1
g,h accepts the i-th session if and only if O returns

13 Roughly speaking, the block prefix is defined so that whenever S rewinds Vg,h in a recursive block, the
randomness used in higher-level recursive blocks is completely changed (and thus S needs to rewind Vg,h
in these recursive blocks as well), and the iteration prefix is defined so that whenever S rewinds Vg,h in a
session, Vg,h aborts this session with a fixed probability (and thus S needs to rewind Vg,h many times until
S gets an accepted transcript of this session).

14 Formally, Canetti et al. showed that in the execution of SVg,h , there exists a prefix called a useful block
prefix. For details, see [CKPR02].
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vi at the end of this session. A1
g,h accepts a recursive block if and only if A1

g,h accepted at

least n1/2/4 sessions in this recursive block. If A1
g,h rejects a recursive block, A1

g,h halts. If

A1
g,h accepts all n recursive blocks, A1

g,h computes the committed value v in the left session

by brute force and outputs v. (Thus, A1
g,h breaks CCA security of 〈C,R〉.)

Next, let us consider the following family {A2
g,h}g∈G,h∈H of ppt adversaries. A2

g,h is the

same as A1
g,h except that if A2

g,h accepts all n blocks, A2
g,h outputs a random string v.

Then, we show that with overwhelming probability over the choice of g and h, the following
are computationally indistinguishable:

– {outputCh[〈Ch,RA
1
g,h〉(1n)]}n∈N

– {outputCh[〈Ch,RA
2
g,h〉(1n)]}n∈N

Since A1
g,h and A2

g,h differ only in the last message v, we can show the indistinguishability

by showing that in the interaction with Ch, RA
1
g,h does not receive v from A1

g,h. Assume

for contradiction that RA
1
g,h receives v from A1

g,h. Then, since A1
g,h outputs v only if A1

g,h

accepts all n recursive blocks, and since the running time of Ch and that ofR are polynomially
bounded, from the analysis in [CKPR02], there exists a session that was accepted but was
not rewound. Then, since A1

g,h accepts a session only if A1
g,h received the committed value of

this session, R must have sent the committed value of this session to A1
g,h without rewinding

A1
g,h. Since the running time of Ch and that of R are polynomially bounded, this contradicts

the hiding property of 〈C,R〉 (i.e., we can use Ch and R to break the hiding property of
〈C,R〉). We thus conclude that R does not receive v from A1

g,h, and therefore we conclude
that the indistinguishability holds.

For every g ∈ G and h ∈ H, since A1
g,h breaks CCA security of 〈C,R〉, there exists a

polynomial p(·) such that for infinitely many n, we have

Pr
[
outputCh[〈Ch,RA

1
g,h〉(1n)] = 1

]
≥ c+ 1/p(n) .

Then, from the above indistinguishability, for random g ∈ G and h ∈ H, we have

Pr
[
outputCh[〈Ch,RA

2
g,h〉(1n)] = 1

]
≥ c+ 1/p(n)− negl(n)

≥ c+ 1/poly(n)

with overwhelming probability over the choice of g and h. Since the running time of R and
that of A2

g,h are polynomially bounded, this fact implies that the assumption (Ch, c) is false.
ut
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